43b3733649f4422ec468b3074efde26aa2586ce9
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
555 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
556 void (*to_stop) (struct target_ops *, ptid_t);
557 void (*to_rcmd) (struct target_ops *,
558 char *command, struct ui_file *output)
559 TARGET_DEFAULT_FUNC (default_rcmd);
560 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
561 void (*to_log_command) (struct target_ops *, const char *);
562 struct target_section_table *(*to_get_section_table) (struct target_ops *);
563 enum strata to_stratum;
564 int (*to_has_all_memory) (struct target_ops *);
565 int (*to_has_memory) (struct target_ops *);
566 int (*to_has_stack) (struct target_ops *);
567 int (*to_has_registers) (struct target_ops *);
568 int (*to_has_execution) (struct target_ops *, ptid_t);
569 int to_has_thread_control; /* control thread execution */
570 int to_attach_no_wait;
571 /* ASYNC target controls */
572 int (*to_can_async_p) (struct target_ops *)
573 TARGET_DEFAULT_FUNC (find_default_can_async_p);
574 int (*to_is_async_p) (struct target_ops *)
575 TARGET_DEFAULT_FUNC (find_default_is_async_p);
576 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
577 TARGET_DEFAULT_NORETURN (tcomplain ());
578 int (*to_supports_non_stop) (struct target_ops *);
579 /* find_memory_regions support method for gcore */
580 int (*to_find_memory_regions) (struct target_ops *,
581 find_memory_region_ftype func, void *data);
582 /* make_corefile_notes support method for gcore */
583 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
584 /* get_bookmark support method for bookmarks */
585 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
586 /* goto_bookmark support method for bookmarks */
587 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
588 /* Return the thread-local address at OFFSET in the
589 thread-local storage for the thread PTID and the shared library
590 or executable file given by OBJFILE. If that block of
591 thread-local storage hasn't been allocated yet, this function
592 may return an error. */
593 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
594 ptid_t ptid,
595 CORE_ADDR load_module_addr,
596 CORE_ADDR offset);
597
598 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
599 OBJECT. The OFFSET, for a seekable object, specifies the
600 starting point. The ANNEX can be used to provide additional
601 data-specific information to the target.
602
603 Return the transferred status, error or OK (an
604 'enum target_xfer_status' value). Save the number of bytes
605 actually transferred in *XFERED_LEN if transfer is successful
606 (TARGET_XFER_OK) or the number unavailable bytes if the requested
607 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
608 smaller than LEN does not indicate the end of the object, only
609 the end of the transfer; higher level code should continue
610 transferring if desired. This is handled in target.c.
611
612 The interface does not support a "retry" mechanism. Instead it
613 assumes that at least one byte will be transfered on each
614 successful call.
615
616 NOTE: cagney/2003-10-17: The current interface can lead to
617 fragmented transfers. Lower target levels should not implement
618 hacks, such as enlarging the transfer, in an attempt to
619 compensate for this. Instead, the target stack should be
620 extended so that it implements supply/collect methods and a
621 look-aside object cache. With that available, the lowest
622 target can safely and freely "push" data up the stack.
623
624 See target_read and target_write for more information. One,
625 and only one, of readbuf or writebuf must be non-NULL. */
626
627 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
628 enum target_object object,
629 const char *annex,
630 gdb_byte *readbuf,
631 const gdb_byte *writebuf,
632 ULONGEST offset, ULONGEST len,
633 ULONGEST *xfered_len)
634 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
635
636 /* Returns the memory map for the target. A return value of NULL
637 means that no memory map is available. If a memory address
638 does not fall within any returned regions, it's assumed to be
639 RAM. The returned memory regions should not overlap.
640
641 The order of regions does not matter; target_memory_map will
642 sort regions by starting address. For that reason, this
643 function should not be called directly except via
644 target_memory_map.
645
646 This method should not cache data; if the memory map could
647 change unexpectedly, it should be invalidated, and higher
648 layers will re-fetch it. */
649 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
650
651 /* Erases the region of flash memory starting at ADDRESS, of
652 length LENGTH.
653
654 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
655 on flash block boundaries, as reported by 'to_memory_map'. */
656 void (*to_flash_erase) (struct target_ops *,
657 ULONGEST address, LONGEST length);
658
659 /* Finishes a flash memory write sequence. After this operation
660 all flash memory should be available for writing and the result
661 of reading from areas written by 'to_flash_write' should be
662 equal to what was written. */
663 void (*to_flash_done) (struct target_ops *);
664
665 /* Describe the architecture-specific features of this target.
666 Returns the description found, or NULL if no description
667 was available. */
668 const struct target_desc *(*to_read_description) (struct target_ops *ops);
669
670 /* Build the PTID of the thread on which a given task is running,
671 based on LWP and THREAD. These values are extracted from the
672 task Private_Data section of the Ada Task Control Block, and
673 their interpretation depends on the target. */
674 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
675 long lwp, long thread);
676
677 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
678 Return 0 if *READPTR is already at the end of the buffer.
679 Return -1 if there is insufficient buffer for a whole entry.
680 Return 1 if an entry was read into *TYPEP and *VALP. */
681 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
682 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
683
684 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
685 sequence of bytes in PATTERN with length PATTERN_LEN.
686
687 The result is 1 if found, 0 if not found, and -1 if there was an error
688 requiring halting of the search (e.g. memory read error).
689 If the pattern is found the address is recorded in FOUND_ADDRP. */
690 int (*to_search_memory) (struct target_ops *ops,
691 CORE_ADDR start_addr, ULONGEST search_space_len,
692 const gdb_byte *pattern, ULONGEST pattern_len,
693 CORE_ADDR *found_addrp);
694
695 /* Can target execute in reverse? */
696 int (*to_can_execute_reverse) (struct target_ops *);
697
698 /* The direction the target is currently executing. Must be
699 implemented on targets that support reverse execution and async
700 mode. The default simply returns forward execution. */
701 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
702
703 /* Does this target support debugging multiple processes
704 simultaneously? */
705 int (*to_supports_multi_process) (struct target_ops *);
706
707 /* Does this target support enabling and disabling tracepoints while a trace
708 experiment is running? */
709 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
710
711 /* Does this target support disabling address space randomization? */
712 int (*to_supports_disable_randomization) (struct target_ops *);
713
714 /* Does this target support the tracenz bytecode for string collection? */
715 int (*to_supports_string_tracing) (struct target_ops *);
716
717 /* Does this target support evaluation of breakpoint conditions on its
718 end? */
719 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
720
721 /* Does this target support evaluation of breakpoint commands on its
722 end? */
723 int (*to_can_run_breakpoint_commands) (struct target_ops *);
724
725 /* Determine current architecture of thread PTID.
726
727 The target is supposed to determine the architecture of the code where
728 the target is currently stopped at (on Cell, if a target is in spu_run,
729 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
730 This is architecture used to perform decr_pc_after_break adjustment,
731 and also determines the frame architecture of the innermost frame.
732 ptrace operations need to operate according to target_gdbarch ().
733
734 The default implementation always returns target_gdbarch (). */
735 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
736
737 /* Determine current address space of thread PTID.
738
739 The default implementation always returns the inferior's
740 address space. */
741 struct address_space *(*to_thread_address_space) (struct target_ops *,
742 ptid_t);
743
744 /* Target file operations. */
745
746 /* Open FILENAME on the target, using FLAGS and MODE. Return a
747 target file descriptor, or -1 if an error occurs (and set
748 *TARGET_ERRNO). */
749 int (*to_fileio_open) (struct target_ops *,
750 const char *filename, int flags, int mode,
751 int *target_errno);
752
753 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
754 Return the number of bytes written, or -1 if an error occurs
755 (and set *TARGET_ERRNO). */
756 int (*to_fileio_pwrite) (struct target_ops *,
757 int fd, const gdb_byte *write_buf, int len,
758 ULONGEST offset, int *target_errno);
759
760 /* Read up to LEN bytes FD on the target into READ_BUF.
761 Return the number of bytes read, or -1 if an error occurs
762 (and set *TARGET_ERRNO). */
763 int (*to_fileio_pread) (struct target_ops *,
764 int fd, gdb_byte *read_buf, int len,
765 ULONGEST offset, int *target_errno);
766
767 /* Close FD on the target. Return 0, or -1 if an error occurs
768 (and set *TARGET_ERRNO). */
769 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
770
771 /* Unlink FILENAME on the target. Return 0, or -1 if an error
772 occurs (and set *TARGET_ERRNO). */
773 int (*to_fileio_unlink) (struct target_ops *,
774 const char *filename, int *target_errno);
775
776 /* Read value of symbolic link FILENAME on the target. Return a
777 null-terminated string allocated via xmalloc, or NULL if an error
778 occurs (and set *TARGET_ERRNO). */
779 char *(*to_fileio_readlink) (struct target_ops *,
780 const char *filename, int *target_errno);
781
782
783 /* Implement the "info proc" command. */
784 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
785
786 /* Tracepoint-related operations. */
787
788 /* Prepare the target for a tracing run. */
789 void (*to_trace_init) (struct target_ops *);
790
791 /* Send full details of a tracepoint location to the target. */
792 void (*to_download_tracepoint) (struct target_ops *,
793 struct bp_location *location);
794
795 /* Is the target able to download tracepoint locations in current
796 state? */
797 int (*to_can_download_tracepoint) (struct target_ops *);
798
799 /* Send full details of a trace state variable to the target. */
800 void (*to_download_trace_state_variable) (struct target_ops *,
801 struct trace_state_variable *tsv);
802
803 /* Enable a tracepoint on the target. */
804 void (*to_enable_tracepoint) (struct target_ops *,
805 struct bp_location *location);
806
807 /* Disable a tracepoint on the target. */
808 void (*to_disable_tracepoint) (struct target_ops *,
809 struct bp_location *location);
810
811 /* Inform the target info of memory regions that are readonly
812 (such as text sections), and so it should return data from
813 those rather than look in the trace buffer. */
814 void (*to_trace_set_readonly_regions) (struct target_ops *);
815
816 /* Start a trace run. */
817 void (*to_trace_start) (struct target_ops *);
818
819 /* Get the current status of a tracing run. */
820 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
821
822 void (*to_get_tracepoint_status) (struct target_ops *,
823 struct breakpoint *tp,
824 struct uploaded_tp *utp);
825
826 /* Stop a trace run. */
827 void (*to_trace_stop) (struct target_ops *);
828
829 /* Ask the target to find a trace frame of the given type TYPE,
830 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
831 number of the trace frame, and also the tracepoint number at
832 TPP. If no trace frame matches, return -1. May throw if the
833 operation fails. */
834 int (*to_trace_find) (struct target_ops *,
835 enum trace_find_type type, int num,
836 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
837
838 /* Get the value of the trace state variable number TSV, returning
839 1 if the value is known and writing the value itself into the
840 location pointed to by VAL, else returning 0. */
841 int (*to_get_trace_state_variable_value) (struct target_ops *,
842 int tsv, LONGEST *val);
843
844 int (*to_save_trace_data) (struct target_ops *, const char *filename);
845
846 int (*to_upload_tracepoints) (struct target_ops *,
847 struct uploaded_tp **utpp);
848
849 int (*to_upload_trace_state_variables) (struct target_ops *,
850 struct uploaded_tsv **utsvp);
851
852 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
853 ULONGEST offset, LONGEST len);
854
855 /* Get the minimum length of instruction on which a fast tracepoint
856 may be set on the target. If this operation is unsupported,
857 return -1. If for some reason the minimum length cannot be
858 determined, return 0. */
859 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
860
861 /* Set the target's tracing behavior in response to unexpected
862 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
863 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
864 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
865 /* Set the size of trace buffer in the target. */
866 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
867
868 /* Add/change textual notes about the trace run, returning 1 if
869 successful, 0 otherwise. */
870 int (*to_set_trace_notes) (struct target_ops *,
871 const char *user, const char *notes,
872 const char *stopnotes);
873
874 /* Return the processor core that thread PTID was last seen on.
875 This information is updated only when:
876 - update_thread_list is called
877 - thread stops
878 If the core cannot be determined -- either for the specified
879 thread, or right now, or in this debug session, or for this
880 target -- return -1. */
881 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
882
883 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
884 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
885 a match, 0 if there's a mismatch, and -1 if an error is
886 encountered while reading memory. */
887 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
888 CORE_ADDR memaddr, ULONGEST size);
889
890 /* Return the address of the start of the Thread Information Block
891 a Windows OS specific feature. */
892 int (*to_get_tib_address) (struct target_ops *,
893 ptid_t ptid, CORE_ADDR *addr);
894
895 /* Send the new settings of write permission variables. */
896 void (*to_set_permissions) (struct target_ops *);
897
898 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
899 with its details. Return 1 on success, 0 on failure. */
900 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
901 struct static_tracepoint_marker *marker);
902
903 /* Return a vector of all tracepoints markers string id ID, or all
904 markers if ID is NULL. */
905 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
906 (struct target_ops *, const char *id);
907
908 /* Return a traceframe info object describing the current
909 traceframe's contents. If the target doesn't support
910 traceframe info, return NULL. If the current traceframe is not
911 selected (the current traceframe number is -1), the target can
912 choose to return either NULL or an empty traceframe info. If
913 NULL is returned, for example in remote target, GDB will read
914 from the live inferior. If an empty traceframe info is
915 returned, for example in tfile target, which means the
916 traceframe info is available, but the requested memory is not
917 available in it. GDB will try to see if the requested memory
918 is available in the read-only sections. This method should not
919 cache data; higher layers take care of caching, invalidating,
920 and re-fetching when necessary. */
921 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
922
923 /* Ask the target to use or not to use agent according to USE. Return 1
924 successful, 0 otherwise. */
925 int (*to_use_agent) (struct target_ops *, int use);
926
927 /* Is the target able to use agent in current state? */
928 int (*to_can_use_agent) (struct target_ops *);
929
930 /* Check whether the target supports branch tracing. */
931 int (*to_supports_btrace) (struct target_ops *)
932 TARGET_DEFAULT_RETURN (0);
933
934 /* Enable branch tracing for PTID and allocate a branch trace target
935 information struct for reading and for disabling branch trace. */
936 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
937 ptid_t ptid);
938
939 /* Disable branch tracing and deallocate TINFO. */
940 void (*to_disable_btrace) (struct target_ops *,
941 struct btrace_target_info *tinfo);
942
943 /* Disable branch tracing and deallocate TINFO. This function is similar
944 to to_disable_btrace, except that it is called during teardown and is
945 only allowed to perform actions that are safe. A counter-example would
946 be attempting to talk to a remote target. */
947 void (*to_teardown_btrace) (struct target_ops *,
948 struct btrace_target_info *tinfo);
949
950 /* Read branch trace data for the thread indicated by BTINFO into DATA.
951 DATA is cleared before new trace is added.
952 The branch trace will start with the most recent block and continue
953 towards older blocks. */
954 enum btrace_error (*to_read_btrace) (struct target_ops *self,
955 VEC (btrace_block_s) **data,
956 struct btrace_target_info *btinfo,
957 enum btrace_read_type type);
958
959 /* Stop trace recording. */
960 void (*to_stop_recording) (struct target_ops *);
961
962 /* Print information about the recording. */
963 void (*to_info_record) (struct target_ops *);
964
965 /* Save the recorded execution trace into a file. */
966 void (*to_save_record) (struct target_ops *, const char *filename);
967
968 /* Delete the recorded execution trace from the current position onwards. */
969 void (*to_delete_record) (struct target_ops *);
970
971 /* Query if the record target is currently replaying. */
972 int (*to_record_is_replaying) (struct target_ops *);
973
974 /* Go to the begin of the execution trace. */
975 void (*to_goto_record_begin) (struct target_ops *);
976
977 /* Go to the end of the execution trace. */
978 void (*to_goto_record_end) (struct target_ops *);
979
980 /* Go to a specific location in the recorded execution trace. */
981 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
982
983 /* Disassemble SIZE instructions in the recorded execution trace from
984 the current position.
985 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
986 disassemble SIZE succeeding instructions. */
987 void (*to_insn_history) (struct target_ops *, int size, int flags);
988
989 /* Disassemble SIZE instructions in the recorded execution trace around
990 FROM.
991 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
992 disassemble SIZE instructions after FROM. */
993 void (*to_insn_history_from) (struct target_ops *,
994 ULONGEST from, int size, int flags);
995
996 /* Disassemble a section of the recorded execution trace from instruction
997 BEGIN (inclusive) to instruction END (inclusive). */
998 void (*to_insn_history_range) (struct target_ops *,
999 ULONGEST begin, ULONGEST end, int flags);
1000
1001 /* Print a function trace of the recorded execution trace.
1002 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1003 succeeding functions. */
1004 void (*to_call_history) (struct target_ops *, int size, int flags);
1005
1006 /* Print a function trace of the recorded execution trace starting
1007 at function FROM.
1008 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1009 SIZE functions after FROM. */
1010 void (*to_call_history_from) (struct target_ops *,
1011 ULONGEST begin, int size, int flags);
1012
1013 /* Print a function trace of an execution trace section from function BEGIN
1014 (inclusive) to function END (inclusive). */
1015 void (*to_call_history_range) (struct target_ops *,
1016 ULONGEST begin, ULONGEST end, int flags);
1017
1018 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1019 non-empty annex. */
1020 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1021
1022 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1023 it is not used. */
1024 const struct frame_unwind *to_get_unwinder;
1025 const struct frame_unwind *to_get_tailcall_unwinder;
1026
1027 /* Return the number of bytes by which the PC needs to be decremented
1028 after executing a breakpoint instruction.
1029 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1030 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1031 struct gdbarch *gdbarch);
1032
1033 int to_magic;
1034 /* Need sub-structure for target machine related rather than comm related?
1035 */
1036 };
1037
1038 /* Magic number for checking ops size. If a struct doesn't end with this
1039 number, somebody changed the declaration but didn't change all the
1040 places that initialize one. */
1041
1042 #define OPS_MAGIC 3840
1043
1044 /* The ops structure for our "current" target process. This should
1045 never be NULL. If there is no target, it points to the dummy_target. */
1046
1047 extern struct target_ops current_target;
1048
1049 /* Define easy words for doing these operations on our current target. */
1050
1051 #define target_shortname (current_target.to_shortname)
1052 #define target_longname (current_target.to_longname)
1053
1054 /* Does whatever cleanup is required for a target that we are no
1055 longer going to be calling. This routine is automatically always
1056 called after popping the target off the target stack - the target's
1057 own methods are no longer available through the target vector.
1058 Closing file descriptors and freeing all memory allocated memory are
1059 typical things it should do. */
1060
1061 void target_close (struct target_ops *targ);
1062
1063 /* Attaches to a process on the target side. Arguments are as passed
1064 to the `attach' command by the user. This routine can be called
1065 when the target is not on the target-stack, if the target_can_run
1066 routine returns 1; in that case, it must push itself onto the stack.
1067 Upon exit, the target should be ready for normal operations, and
1068 should be ready to deliver the status of the process immediately
1069 (without waiting) to an upcoming target_wait call. */
1070
1071 void target_attach (char *, int);
1072
1073 /* Some targets don't generate traps when attaching to the inferior,
1074 or their target_attach implementation takes care of the waiting.
1075 These targets must set to_attach_no_wait. */
1076
1077 #define target_attach_no_wait \
1078 (current_target.to_attach_no_wait)
1079
1080 /* The target_attach operation places a process under debugger control,
1081 and stops the process.
1082
1083 This operation provides a target-specific hook that allows the
1084 necessary bookkeeping to be performed after an attach completes. */
1085 #define target_post_attach(pid) \
1086 (*current_target.to_post_attach) (&current_target, pid)
1087
1088 /* Takes a program previously attached to and detaches it.
1089 The program may resume execution (some targets do, some don't) and will
1090 no longer stop on signals, etc. We better not have left any breakpoints
1091 in the program or it'll die when it hits one. ARGS is arguments
1092 typed by the user (e.g. a signal to send the process). FROM_TTY
1093 says whether to be verbose or not. */
1094
1095 extern void target_detach (const char *, int);
1096
1097 /* Disconnect from the current target without resuming it (leaving it
1098 waiting for a debugger). */
1099
1100 extern void target_disconnect (char *, int);
1101
1102 /* Resume execution of the target process PTID (or a group of
1103 threads). STEP says whether to single-step or to run free; SIGGNAL
1104 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1105 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1106 PTID means `step/resume only this process id'. A wildcard PTID
1107 (all threads, or all threads of process) means `step/resume
1108 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1109 matches) resume with their 'thread->suspend.stop_signal' signal
1110 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1111 if in "no pass" state. */
1112
1113 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1114
1115 /* Wait for process pid to do something. PTID = -1 to wait for any
1116 pid to do something. Return pid of child, or -1 in case of error;
1117 store status through argument pointer STATUS. Note that it is
1118 _NOT_ OK to throw_exception() out of target_wait() without popping
1119 the debugging target from the stack; GDB isn't prepared to get back
1120 to the prompt with a debugging target but without the frame cache,
1121 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1122 options. */
1123
1124 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1125 int options);
1126
1127 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1128
1129 extern void target_fetch_registers (struct regcache *regcache, int regno);
1130
1131 /* Store at least register REGNO, or all regs if REGNO == -1.
1132 It can store as many registers as it wants to, so target_prepare_to_store
1133 must have been previously called. Calls error() if there are problems. */
1134
1135 extern void target_store_registers (struct regcache *regcache, int regs);
1136
1137 /* Get ready to modify the registers array. On machines which store
1138 individual registers, this doesn't need to do anything. On machines
1139 which store all the registers in one fell swoop, this makes sure
1140 that REGISTERS contains all the registers from the program being
1141 debugged. */
1142
1143 #define target_prepare_to_store(regcache) \
1144 (*current_target.to_prepare_to_store) (&current_target, regcache)
1145
1146 /* Determine current address space of thread PTID. */
1147
1148 struct address_space *target_thread_address_space (ptid_t);
1149
1150 /* Implement the "info proc" command. This returns one if the request
1151 was handled, and zero otherwise. It can also throw an exception if
1152 an error was encountered while attempting to handle the
1153 request. */
1154
1155 int target_info_proc (char *, enum info_proc_what);
1156
1157 /* Returns true if this target can debug multiple processes
1158 simultaneously. */
1159
1160 #define target_supports_multi_process() \
1161 (*current_target.to_supports_multi_process) (&current_target)
1162
1163 /* Returns true if this target can disable address space randomization. */
1164
1165 int target_supports_disable_randomization (void);
1166
1167 /* Returns true if this target can enable and disable tracepoints
1168 while a trace experiment is running. */
1169
1170 #define target_supports_enable_disable_tracepoint() \
1171 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1172
1173 #define target_supports_string_tracing() \
1174 (*current_target.to_supports_string_tracing) (&current_target)
1175
1176 /* Returns true if this target can handle breakpoint conditions
1177 on its end. */
1178
1179 #define target_supports_evaluation_of_breakpoint_conditions() \
1180 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1181
1182 /* Returns true if this target can handle breakpoint commands
1183 on its end. */
1184
1185 #define target_can_run_breakpoint_commands() \
1186 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1187
1188 extern int target_read_string (CORE_ADDR, char **, int, int *);
1189
1190 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1191 ssize_t len);
1192
1193 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1194 ssize_t len);
1195
1196 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1197
1198 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1199
1200 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1201 ssize_t len);
1202
1203 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1204 ssize_t len);
1205
1206 /* Fetches the target's memory map. If one is found it is sorted
1207 and returned, after some consistency checking. Otherwise, NULL
1208 is returned. */
1209 VEC(mem_region_s) *target_memory_map (void);
1210
1211 /* Erase the specified flash region. */
1212 void target_flash_erase (ULONGEST address, LONGEST length);
1213
1214 /* Finish a sequence of flash operations. */
1215 void target_flash_done (void);
1216
1217 /* Describes a request for a memory write operation. */
1218 struct memory_write_request
1219 {
1220 /* Begining address that must be written. */
1221 ULONGEST begin;
1222 /* Past-the-end address. */
1223 ULONGEST end;
1224 /* The data to write. */
1225 gdb_byte *data;
1226 /* A callback baton for progress reporting for this request. */
1227 void *baton;
1228 };
1229 typedef struct memory_write_request memory_write_request_s;
1230 DEF_VEC_O(memory_write_request_s);
1231
1232 /* Enumeration specifying different flash preservation behaviour. */
1233 enum flash_preserve_mode
1234 {
1235 flash_preserve,
1236 flash_discard
1237 };
1238
1239 /* Write several memory blocks at once. This version can be more
1240 efficient than making several calls to target_write_memory, in
1241 particular because it can optimize accesses to flash memory.
1242
1243 Moreover, this is currently the only memory access function in gdb
1244 that supports writing to flash memory, and it should be used for
1245 all cases where access to flash memory is desirable.
1246
1247 REQUESTS is the vector (see vec.h) of memory_write_request.
1248 PRESERVE_FLASH_P indicates what to do with blocks which must be
1249 erased, but not completely rewritten.
1250 PROGRESS_CB is a function that will be periodically called to provide
1251 feedback to user. It will be called with the baton corresponding
1252 to the request currently being written. It may also be called
1253 with a NULL baton, when preserved flash sectors are being rewritten.
1254
1255 The function returns 0 on success, and error otherwise. */
1256 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1257 enum flash_preserve_mode preserve_flash_p,
1258 void (*progress_cb) (ULONGEST, void *));
1259
1260 /* Print a line about the current target. */
1261
1262 #define target_files_info() \
1263 (*current_target.to_files_info) (&current_target)
1264
1265 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1266 the target machine. Returns 0 for success, and returns non-zero or
1267 throws an error (with a detailed failure reason error code and
1268 message) otherwise. */
1269
1270 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1271 struct bp_target_info *bp_tgt);
1272
1273 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1274 machine. Result is 0 for success, non-zero for error. */
1275
1276 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1277 struct bp_target_info *bp_tgt);
1278
1279 /* Initialize the terminal settings we record for the inferior,
1280 before we actually run the inferior. */
1281
1282 #define target_terminal_init() \
1283 (*current_target.to_terminal_init) (&current_target)
1284
1285 /* Put the inferior's terminal settings into effect.
1286 This is preparation for starting or resuming the inferior. */
1287
1288 extern void target_terminal_inferior (void);
1289
1290 /* Put some of our terminal settings into effect,
1291 enough to get proper results from our output,
1292 but do not change into or out of RAW mode
1293 so that no input is discarded.
1294
1295 After doing this, either terminal_ours or terminal_inferior
1296 should be called to get back to a normal state of affairs. */
1297
1298 #define target_terminal_ours_for_output() \
1299 (*current_target.to_terminal_ours_for_output) (&current_target)
1300
1301 /* Put our terminal settings into effect.
1302 First record the inferior's terminal settings
1303 so they can be restored properly later. */
1304
1305 #define target_terminal_ours() \
1306 (*current_target.to_terminal_ours) (&current_target)
1307
1308 /* Save our terminal settings.
1309 This is called from TUI after entering or leaving the curses
1310 mode. Since curses modifies our terminal this call is here
1311 to take this change into account. */
1312
1313 #define target_terminal_save_ours() \
1314 (*current_target.to_terminal_save_ours) (&current_target)
1315
1316 /* Print useful information about our terminal status, if such a thing
1317 exists. */
1318
1319 #define target_terminal_info(arg, from_tty) \
1320 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1321
1322 /* Kill the inferior process. Make it go away. */
1323
1324 extern void target_kill (void);
1325
1326 /* Load an executable file into the target process. This is expected
1327 to not only bring new code into the target process, but also to
1328 update GDB's symbol tables to match.
1329
1330 ARG contains command-line arguments, to be broken down with
1331 buildargv (). The first non-switch argument is the filename to
1332 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1333 0)), which is an offset to apply to the load addresses of FILE's
1334 sections. The target may define switches, or other non-switch
1335 arguments, as it pleases. */
1336
1337 extern void target_load (char *arg, int from_tty);
1338
1339 /* Start an inferior process and set inferior_ptid to its pid.
1340 EXEC_FILE is the file to run.
1341 ALLARGS is a string containing the arguments to the program.
1342 ENV is the environment vector to pass. Errors reported with error().
1343 On VxWorks and various standalone systems, we ignore exec_file. */
1344
1345 void target_create_inferior (char *exec_file, char *args,
1346 char **env, int from_tty);
1347
1348 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1349 notification of inferior events such as fork and vork immediately
1350 after the inferior is created. (This because of how gdb gets an
1351 inferior created via invoking a shell to do it. In such a scenario,
1352 if the shell init file has commands in it, the shell will fork and
1353 exec for each of those commands, and we will see each such fork
1354 event. Very bad.)
1355
1356 Such targets will supply an appropriate definition for this function. */
1357
1358 #define target_post_startup_inferior(ptid) \
1359 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1360
1361 /* On some targets, we can catch an inferior fork or vfork event when
1362 it occurs. These functions insert/remove an already-created
1363 catchpoint for such events. They return 0 for success, 1 if the
1364 catchpoint type is not supported and -1 for failure. */
1365
1366 #define target_insert_fork_catchpoint(pid) \
1367 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1368
1369 #define target_remove_fork_catchpoint(pid) \
1370 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1371
1372 #define target_insert_vfork_catchpoint(pid) \
1373 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1374
1375 #define target_remove_vfork_catchpoint(pid) \
1376 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1377
1378 /* If the inferior forks or vforks, this function will be called at
1379 the next resume in order to perform any bookkeeping and fiddling
1380 necessary to continue debugging either the parent or child, as
1381 requested, and releasing the other. Information about the fork
1382 or vfork event is available via get_last_target_status ().
1383 This function returns 1 if the inferior should not be resumed
1384 (i.e. there is another event pending). */
1385
1386 int target_follow_fork (int follow_child, int detach_fork);
1387
1388 /* On some targets, we can catch an inferior exec event when it
1389 occurs. These functions insert/remove an already-created
1390 catchpoint for such events. They return 0 for success, 1 if the
1391 catchpoint type is not supported and -1 for failure. */
1392
1393 #define target_insert_exec_catchpoint(pid) \
1394 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1395
1396 #define target_remove_exec_catchpoint(pid) \
1397 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1398
1399 /* Syscall catch.
1400
1401 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1402 If NEEDED is zero, it means the target can disable the mechanism to
1403 catch system calls because there are no more catchpoints of this type.
1404
1405 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1406 being requested. In this case, both TABLE_SIZE and TABLE should
1407 be ignored.
1408
1409 TABLE_SIZE is the number of elements in TABLE. It only matters if
1410 ANY_COUNT is zero.
1411
1412 TABLE is an array of ints, indexed by syscall number. An element in
1413 this array is nonzero if that syscall should be caught. This argument
1414 only matters if ANY_COUNT is zero.
1415
1416 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1417 for failure. */
1418
1419 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1420 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1421 pid, needed, any_count, \
1422 table_size, table)
1423
1424 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1425 exit code of PID, if any. */
1426
1427 #define target_has_exited(pid,wait_status,exit_status) \
1428 (*current_target.to_has_exited) (&current_target, \
1429 pid,wait_status,exit_status)
1430
1431 /* The debugger has completed a blocking wait() call. There is now
1432 some process event that must be processed. This function should
1433 be defined by those targets that require the debugger to perform
1434 cleanup or internal state changes in response to the process event. */
1435
1436 /* The inferior process has died. Do what is right. */
1437
1438 void target_mourn_inferior (void);
1439
1440 /* Does target have enough data to do a run or attach command? */
1441
1442 #define target_can_run(t) \
1443 ((t)->to_can_run) (t)
1444
1445 /* Set list of signals to be handled in the target.
1446
1447 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1448 (enum gdb_signal). For every signal whose entry in this array is
1449 non-zero, the target is allowed -but not required- to skip reporting
1450 arrival of the signal to the GDB core by returning from target_wait,
1451 and to pass the signal directly to the inferior instead.
1452
1453 However, if the target is hardware single-stepping a thread that is
1454 about to receive a signal, it needs to be reported in any case, even
1455 if mentioned in a previous target_pass_signals call. */
1456
1457 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1458
1459 /* Set list of signals the target may pass to the inferior. This
1460 directly maps to the "handle SIGNAL pass/nopass" setting.
1461
1462 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1463 number (enum gdb_signal). For every signal whose entry in this
1464 array is non-zero, the target is allowed to pass the signal to the
1465 inferior. Signals not present in the array shall be silently
1466 discarded. This does not influence whether to pass signals to the
1467 inferior as a result of a target_resume call. This is useful in
1468 scenarios where the target needs to decide whether to pass or not a
1469 signal to the inferior without GDB core involvement, such as for
1470 example, when detaching (as threads may have been suspended with
1471 pending signals not reported to GDB). */
1472
1473 extern void target_program_signals (int nsig, unsigned char *program_signals);
1474
1475 /* Check to see if a thread is still alive. */
1476
1477 extern int target_thread_alive (ptid_t ptid);
1478
1479 /* Query for new threads and add them to the thread list. */
1480
1481 extern void target_find_new_threads (void);
1482
1483 /* Make target stop in a continuable fashion. (For instance, under
1484 Unix, this should act like SIGSTOP). This function is normally
1485 used by GUIs to implement a stop button. */
1486
1487 extern void target_stop (ptid_t ptid);
1488
1489 /* Send the specified COMMAND to the target's monitor
1490 (shell,interpreter) for execution. The result of the query is
1491 placed in OUTBUF. */
1492
1493 #define target_rcmd(command, outbuf) \
1494 (*current_target.to_rcmd) (&current_target, command, outbuf)
1495
1496
1497 /* Does the target include all of memory, or only part of it? This
1498 determines whether we look up the target chain for other parts of
1499 memory if this target can't satisfy a request. */
1500
1501 extern int target_has_all_memory_1 (void);
1502 #define target_has_all_memory target_has_all_memory_1 ()
1503
1504 /* Does the target include memory? (Dummy targets don't.) */
1505
1506 extern int target_has_memory_1 (void);
1507 #define target_has_memory target_has_memory_1 ()
1508
1509 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1510 we start a process.) */
1511
1512 extern int target_has_stack_1 (void);
1513 #define target_has_stack target_has_stack_1 ()
1514
1515 /* Does the target have registers? (Exec files don't.) */
1516
1517 extern int target_has_registers_1 (void);
1518 #define target_has_registers target_has_registers_1 ()
1519
1520 /* Does the target have execution? Can we make it jump (through
1521 hoops), or pop its stack a few times? This means that the current
1522 target is currently executing; for some targets, that's the same as
1523 whether or not the target is capable of execution, but there are
1524 also targets which can be current while not executing. In that
1525 case this will become true after target_create_inferior or
1526 target_attach. */
1527
1528 extern int target_has_execution_1 (ptid_t);
1529
1530 /* Like target_has_execution_1, but always passes inferior_ptid. */
1531
1532 extern int target_has_execution_current (void);
1533
1534 #define target_has_execution target_has_execution_current ()
1535
1536 /* Default implementations for process_stratum targets. Return true
1537 if there's a selected inferior, false otherwise. */
1538
1539 extern int default_child_has_all_memory (struct target_ops *ops);
1540 extern int default_child_has_memory (struct target_ops *ops);
1541 extern int default_child_has_stack (struct target_ops *ops);
1542 extern int default_child_has_registers (struct target_ops *ops);
1543 extern int default_child_has_execution (struct target_ops *ops,
1544 ptid_t the_ptid);
1545
1546 /* Can the target support the debugger control of thread execution?
1547 Can it lock the thread scheduler? */
1548
1549 #define target_can_lock_scheduler \
1550 (current_target.to_has_thread_control & tc_schedlock)
1551
1552 /* Should the target enable async mode if it is supported? Temporary
1553 cludge until async mode is a strict superset of sync mode. */
1554 extern int target_async_permitted;
1555
1556 /* Can the target support asynchronous execution? */
1557 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1558
1559 /* Is the target in asynchronous execution mode? */
1560 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1561
1562 int target_supports_non_stop (void);
1563
1564 /* Put the target in async mode with the specified callback function. */
1565 #define target_async(CALLBACK,CONTEXT) \
1566 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1567
1568 #define target_execution_direction() \
1569 (current_target.to_execution_direction (&current_target))
1570
1571 /* Converts a process id to a string. Usually, the string just contains
1572 `process xyz', but on some systems it may contain
1573 `process xyz thread abc'. */
1574
1575 extern char *target_pid_to_str (ptid_t ptid);
1576
1577 extern char *normal_pid_to_str (ptid_t ptid);
1578
1579 /* Return a short string describing extra information about PID,
1580 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1581 is okay. */
1582
1583 #define target_extra_thread_info(TP) \
1584 (current_target.to_extra_thread_info (&current_target, TP))
1585
1586 /* Return the thread's name. A NULL result means that the target
1587 could not determine this thread's name. */
1588
1589 extern char *target_thread_name (struct thread_info *);
1590
1591 /* Attempts to find the pathname of the executable file
1592 that was run to create a specified process.
1593
1594 The process PID must be stopped when this operation is used.
1595
1596 If the executable file cannot be determined, NULL is returned.
1597
1598 Else, a pointer to a character string containing the pathname
1599 is returned. This string should be copied into a buffer by
1600 the client if the string will not be immediately used, or if
1601 it must persist. */
1602
1603 #define target_pid_to_exec_file(pid) \
1604 (current_target.to_pid_to_exec_file) (&current_target, pid)
1605
1606 /* See the to_thread_architecture description in struct target_ops. */
1607
1608 #define target_thread_architecture(ptid) \
1609 (current_target.to_thread_architecture (&current_target, ptid))
1610
1611 /*
1612 * Iterator function for target memory regions.
1613 * Calls a callback function once for each memory region 'mapped'
1614 * in the child process. Defined as a simple macro rather than
1615 * as a function macro so that it can be tested for nullity.
1616 */
1617
1618 #define target_find_memory_regions(FUNC, DATA) \
1619 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1620
1621 /*
1622 * Compose corefile .note section.
1623 */
1624
1625 #define target_make_corefile_notes(BFD, SIZE_P) \
1626 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1627
1628 /* Bookmark interfaces. */
1629 #define target_get_bookmark(ARGS, FROM_TTY) \
1630 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1631
1632 #define target_goto_bookmark(ARG, FROM_TTY) \
1633 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1634
1635 /* Hardware watchpoint interfaces. */
1636
1637 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1638 write). Only the INFERIOR_PTID task is being queried. */
1639
1640 #define target_stopped_by_watchpoint() \
1641 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1642
1643 /* Non-zero if we have steppable watchpoints */
1644
1645 #define target_have_steppable_watchpoint \
1646 (current_target.to_have_steppable_watchpoint)
1647
1648 /* Non-zero if we have continuable watchpoints */
1649
1650 #define target_have_continuable_watchpoint \
1651 (current_target.to_have_continuable_watchpoint)
1652
1653 /* Provide defaults for hardware watchpoint functions. */
1654
1655 /* If the *_hw_beakpoint functions have not been defined
1656 elsewhere use the definitions in the target vector. */
1657
1658 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1659 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1660 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1661 (including this one?). OTHERTYPE is who knows what... */
1662
1663 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1664 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1665 TYPE, CNT, OTHERTYPE);
1666
1667 /* Returns the number of debug registers needed to watch the given
1668 memory region, or zero if not supported. */
1669
1670 #define target_region_ok_for_hw_watchpoint(addr, len) \
1671 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1672 addr, len)
1673
1674
1675 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1676 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1677 COND is the expression for its condition, or NULL if there's none.
1678 Returns 0 for success, 1 if the watchpoint type is not supported,
1679 -1 for failure. */
1680
1681 #define target_insert_watchpoint(addr, len, type, cond) \
1682 (*current_target.to_insert_watchpoint) (&current_target, \
1683 addr, len, type, cond)
1684
1685 #define target_remove_watchpoint(addr, len, type, cond) \
1686 (*current_target.to_remove_watchpoint) (&current_target, \
1687 addr, len, type, cond)
1688
1689 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1690 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1691 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1692 masked watchpoints are not supported, -1 for failure. */
1693
1694 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1695
1696 /* Remove a masked watchpoint at ADDR with the mask MASK.
1697 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1698 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1699 for failure. */
1700
1701 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1702
1703 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1704 the target machine. Returns 0 for success, and returns non-zero or
1705 throws an error (with a detailed failure reason error code and
1706 message) otherwise. */
1707
1708 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1709 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1710 gdbarch, bp_tgt)
1711
1712 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1713 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1714 gdbarch, bp_tgt)
1715
1716 /* Return number of debug registers needed for a ranged breakpoint,
1717 or -1 if ranged breakpoints are not supported. */
1718
1719 extern int target_ranged_break_num_registers (void);
1720
1721 /* Return non-zero if target knows the data address which triggered this
1722 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1723 INFERIOR_PTID task is being queried. */
1724 #define target_stopped_data_address(target, addr_p) \
1725 (*target.to_stopped_data_address) (target, addr_p)
1726
1727 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1728 LENGTH bytes beginning at START. */
1729 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1730 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1731
1732 /* Return non-zero if the target is capable of using hardware to evaluate
1733 the condition expression. In this case, if the condition is false when
1734 the watched memory location changes, execution may continue without the
1735 debugger being notified.
1736
1737 Due to limitations in the hardware implementation, it may be capable of
1738 avoiding triggering the watchpoint in some cases where the condition
1739 expression is false, but may report some false positives as well.
1740 For this reason, GDB will still evaluate the condition expression when
1741 the watchpoint triggers. */
1742 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1743 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1744 addr, len, type, cond)
1745
1746 /* Return number of debug registers needed for a masked watchpoint,
1747 -1 if masked watchpoints are not supported or -2 if the given address
1748 and mask combination cannot be used. */
1749
1750 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1751
1752 /* Target can execute in reverse? */
1753 #define target_can_execute_reverse \
1754 (current_target.to_can_execute_reverse ? \
1755 current_target.to_can_execute_reverse (&current_target) : 0)
1756
1757 extern const struct target_desc *target_read_description (struct target_ops *);
1758
1759 #define target_get_ada_task_ptid(lwp, tid) \
1760 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1761
1762 /* Utility implementation of searching memory. */
1763 extern int simple_search_memory (struct target_ops* ops,
1764 CORE_ADDR start_addr,
1765 ULONGEST search_space_len,
1766 const gdb_byte *pattern,
1767 ULONGEST pattern_len,
1768 CORE_ADDR *found_addrp);
1769
1770 /* Main entry point for searching memory. */
1771 extern int target_search_memory (CORE_ADDR start_addr,
1772 ULONGEST search_space_len,
1773 const gdb_byte *pattern,
1774 ULONGEST pattern_len,
1775 CORE_ADDR *found_addrp);
1776
1777 /* Target file operations. */
1778
1779 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1780 target file descriptor, or -1 if an error occurs (and set
1781 *TARGET_ERRNO). */
1782 extern int target_fileio_open (const char *filename, int flags, int mode,
1783 int *target_errno);
1784
1785 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1786 Return the number of bytes written, or -1 if an error occurs
1787 (and set *TARGET_ERRNO). */
1788 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1789 ULONGEST offset, int *target_errno);
1790
1791 /* Read up to LEN bytes FD on the target into READ_BUF.
1792 Return the number of bytes read, or -1 if an error occurs
1793 (and set *TARGET_ERRNO). */
1794 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1795 ULONGEST offset, int *target_errno);
1796
1797 /* Close FD on the target. Return 0, or -1 if an error occurs
1798 (and set *TARGET_ERRNO). */
1799 extern int target_fileio_close (int fd, int *target_errno);
1800
1801 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1802 occurs (and set *TARGET_ERRNO). */
1803 extern int target_fileio_unlink (const char *filename, int *target_errno);
1804
1805 /* Read value of symbolic link FILENAME on the target. Return a
1806 null-terminated string allocated via xmalloc, or NULL if an error
1807 occurs (and set *TARGET_ERRNO). */
1808 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1809
1810 /* Read target file FILENAME. The return value will be -1 if the transfer
1811 fails or is not supported; 0 if the object is empty; or the length
1812 of the object otherwise. If a positive value is returned, a
1813 sufficiently large buffer will be allocated using xmalloc and
1814 returned in *BUF_P containing the contents of the object.
1815
1816 This method should be used for objects sufficiently small to store
1817 in a single xmalloc'd buffer, when no fixed bound on the object's
1818 size is known in advance. */
1819 extern LONGEST target_fileio_read_alloc (const char *filename,
1820 gdb_byte **buf_p);
1821
1822 /* Read target file FILENAME. The result is NUL-terminated and
1823 returned as a string, allocated using xmalloc. If an error occurs
1824 or the transfer is unsupported, NULL is returned. Empty objects
1825 are returned as allocated but empty strings. A warning is issued
1826 if the result contains any embedded NUL bytes. */
1827 extern char *target_fileio_read_stralloc (const char *filename);
1828
1829
1830 /* Tracepoint-related operations. */
1831
1832 #define target_trace_init() \
1833 (*current_target.to_trace_init) (&current_target)
1834
1835 #define target_download_tracepoint(t) \
1836 (*current_target.to_download_tracepoint) (&current_target, t)
1837
1838 #define target_can_download_tracepoint() \
1839 (*current_target.to_can_download_tracepoint) (&current_target)
1840
1841 #define target_download_trace_state_variable(tsv) \
1842 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1843
1844 #define target_enable_tracepoint(loc) \
1845 (*current_target.to_enable_tracepoint) (&current_target, loc)
1846
1847 #define target_disable_tracepoint(loc) \
1848 (*current_target.to_disable_tracepoint) (&current_target, loc)
1849
1850 #define target_trace_start() \
1851 (*current_target.to_trace_start) (&current_target)
1852
1853 #define target_trace_set_readonly_regions() \
1854 (*current_target.to_trace_set_readonly_regions) (&current_target)
1855
1856 #define target_get_trace_status(ts) \
1857 (*current_target.to_get_trace_status) (&current_target, ts)
1858
1859 #define target_get_tracepoint_status(tp,utp) \
1860 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1861
1862 #define target_trace_stop() \
1863 (*current_target.to_trace_stop) (&current_target)
1864
1865 #define target_trace_find(type,num,addr1,addr2,tpp) \
1866 (*current_target.to_trace_find) (&current_target, \
1867 (type), (num), (addr1), (addr2), (tpp))
1868
1869 #define target_get_trace_state_variable_value(tsv,val) \
1870 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1871 (tsv), (val))
1872
1873 #define target_save_trace_data(filename) \
1874 (*current_target.to_save_trace_data) (&current_target, filename)
1875
1876 #define target_upload_tracepoints(utpp) \
1877 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1878
1879 #define target_upload_trace_state_variables(utsvp) \
1880 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1881
1882 #define target_get_raw_trace_data(buf,offset,len) \
1883 (*current_target.to_get_raw_trace_data) (&current_target, \
1884 (buf), (offset), (len))
1885
1886 #define target_get_min_fast_tracepoint_insn_len() \
1887 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1888
1889 #define target_set_disconnected_tracing(val) \
1890 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1891
1892 #define target_set_circular_trace_buffer(val) \
1893 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1894
1895 #define target_set_trace_buffer_size(val) \
1896 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1897
1898 #define target_set_trace_notes(user,notes,stopnotes) \
1899 (*current_target.to_set_trace_notes) (&current_target, \
1900 (user), (notes), (stopnotes))
1901
1902 #define target_get_tib_address(ptid, addr) \
1903 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1904
1905 #define target_set_permissions() \
1906 (*current_target.to_set_permissions) (&current_target)
1907
1908 #define target_static_tracepoint_marker_at(addr, marker) \
1909 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1910 addr, marker)
1911
1912 #define target_static_tracepoint_markers_by_strid(marker_id) \
1913 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1914 marker_id)
1915
1916 #define target_traceframe_info() \
1917 (*current_target.to_traceframe_info) (&current_target)
1918
1919 #define target_use_agent(use) \
1920 (*current_target.to_use_agent) (&current_target, use)
1921
1922 #define target_can_use_agent() \
1923 (*current_target.to_can_use_agent) (&current_target)
1924
1925 #define target_augmented_libraries_svr4_read() \
1926 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1927
1928 /* Command logging facility. */
1929
1930 #define target_log_command(p) \
1931 do \
1932 if (current_target.to_log_command) \
1933 (*current_target.to_log_command) (&current_target, \
1934 p); \
1935 while (0)
1936
1937
1938 extern int target_core_of_thread (ptid_t ptid);
1939
1940 /* See to_get_unwinder in struct target_ops. */
1941 extern const struct frame_unwind *target_get_unwinder (void);
1942
1943 /* See to_get_tailcall_unwinder in struct target_ops. */
1944 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1945
1946 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1947 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1948 if there's a mismatch, and -1 if an error is encountered while
1949 reading memory. Throws an error if the functionality is found not
1950 to be supported by the current target. */
1951 int target_verify_memory (const gdb_byte *data,
1952 CORE_ADDR memaddr, ULONGEST size);
1953
1954 /* Routines for maintenance of the target structures...
1955
1956 complete_target_initialization: Finalize a target_ops by filling in
1957 any fields needed by the target implementation.
1958
1959 add_target: Add a target to the list of all possible targets.
1960
1961 push_target: Make this target the top of the stack of currently used
1962 targets, within its particular stratum of the stack. Result
1963 is 0 if now atop the stack, nonzero if not on top (maybe
1964 should warn user).
1965
1966 unpush_target: Remove this from the stack of currently used targets,
1967 no matter where it is on the list. Returns 0 if no
1968 change, 1 if removed from stack. */
1969
1970 extern void add_target (struct target_ops *);
1971
1972 extern void add_target_with_completer (struct target_ops *t,
1973 completer_ftype *completer);
1974
1975 extern void complete_target_initialization (struct target_ops *t);
1976
1977 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1978 for maintaining backwards compatibility when renaming targets. */
1979
1980 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1981
1982 extern void push_target (struct target_ops *);
1983
1984 extern int unpush_target (struct target_ops *);
1985
1986 extern void target_pre_inferior (int);
1987
1988 extern void target_preopen (int);
1989
1990 /* Does whatever cleanup is required to get rid of all pushed targets. */
1991 extern void pop_all_targets (void);
1992
1993 /* Like pop_all_targets, but pops only targets whose stratum is
1994 strictly above ABOVE_STRATUM. */
1995 extern void pop_all_targets_above (enum strata above_stratum);
1996
1997 extern int target_is_pushed (struct target_ops *t);
1998
1999 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2000 CORE_ADDR offset);
2001
2002 /* Struct target_section maps address ranges to file sections. It is
2003 mostly used with BFD files, but can be used without (e.g. for handling
2004 raw disks, or files not in formats handled by BFD). */
2005
2006 struct target_section
2007 {
2008 CORE_ADDR addr; /* Lowest address in section */
2009 CORE_ADDR endaddr; /* 1+highest address in section */
2010
2011 struct bfd_section *the_bfd_section;
2012
2013 /* The "owner" of the section.
2014 It can be any unique value. It is set by add_target_sections
2015 and used by remove_target_sections.
2016 For example, for executables it is a pointer to exec_bfd and
2017 for shlibs it is the so_list pointer. */
2018 void *owner;
2019 };
2020
2021 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2022
2023 struct target_section_table
2024 {
2025 struct target_section *sections;
2026 struct target_section *sections_end;
2027 };
2028
2029 /* Return the "section" containing the specified address. */
2030 struct target_section *target_section_by_addr (struct target_ops *target,
2031 CORE_ADDR addr);
2032
2033 /* Return the target section table this target (or the targets
2034 beneath) currently manipulate. */
2035
2036 extern struct target_section_table *target_get_section_table
2037 (struct target_ops *target);
2038
2039 /* From mem-break.c */
2040
2041 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2042 struct bp_target_info *);
2043
2044 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2045 struct bp_target_info *);
2046
2047 extern int default_memory_remove_breakpoint (struct gdbarch *,
2048 struct bp_target_info *);
2049
2050 extern int default_memory_insert_breakpoint (struct gdbarch *,
2051 struct bp_target_info *);
2052
2053
2054 /* From target.c */
2055
2056 extern void initialize_targets (void);
2057
2058 extern void noprocess (void) ATTRIBUTE_NORETURN;
2059
2060 extern void target_require_runnable (void);
2061
2062 extern void find_default_attach (struct target_ops *, char *, int);
2063
2064 extern void find_default_create_inferior (struct target_ops *,
2065 char *, char *, char **, int);
2066
2067 extern struct target_ops *find_target_beneath (struct target_ops *);
2068
2069 /* Find the target at STRATUM. If no target is at that stratum,
2070 return NULL. */
2071
2072 struct target_ops *find_target_at (enum strata stratum);
2073
2074 /* Read OS data object of type TYPE from the target, and return it in
2075 XML format. The result is NUL-terminated and returned as a string,
2076 allocated using xmalloc. If an error occurs or the transfer is
2077 unsupported, NULL is returned. Empty objects are returned as
2078 allocated but empty strings. */
2079
2080 extern char *target_get_osdata (const char *type);
2081
2082 \f
2083 /* Stuff that should be shared among the various remote targets. */
2084
2085 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2086 information (higher values, more information). */
2087 extern int remote_debug;
2088
2089 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2090 extern int baud_rate;
2091 /* Timeout limit for response from target. */
2092 extern int remote_timeout;
2093
2094 \f
2095
2096 /* Set the show memory breakpoints mode to show, and installs a cleanup
2097 to restore it back to the current value. */
2098 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2099
2100 extern int may_write_registers;
2101 extern int may_write_memory;
2102 extern int may_insert_breakpoints;
2103 extern int may_insert_tracepoints;
2104 extern int may_insert_fast_tracepoints;
2105 extern int may_stop;
2106
2107 extern void update_target_permissions (void);
2108
2109 \f
2110 /* Imported from machine dependent code. */
2111
2112 /* Blank target vector entries are initialized to target_ignore. */
2113 void target_ignore (void);
2114
2115 /* See to_supports_btrace in struct target_ops. */
2116 #define target_supports_btrace() \
2117 (current_target.to_supports_btrace (&current_target))
2118
2119 /* See to_enable_btrace in struct target_ops. */
2120 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2121
2122 /* See to_disable_btrace in struct target_ops. */
2123 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2124
2125 /* See to_teardown_btrace in struct target_ops. */
2126 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2127
2128 /* See to_read_btrace in struct target_ops. */
2129 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2130 struct btrace_target_info *,
2131 enum btrace_read_type);
2132
2133 /* See to_stop_recording in struct target_ops. */
2134 extern void target_stop_recording (void);
2135
2136 /* See to_info_record in struct target_ops. */
2137 extern void target_info_record (void);
2138
2139 /* See to_save_record in struct target_ops. */
2140 extern void target_save_record (const char *filename);
2141
2142 /* Query if the target supports deleting the execution log. */
2143 extern int target_supports_delete_record (void);
2144
2145 /* See to_delete_record in struct target_ops. */
2146 extern void target_delete_record (void);
2147
2148 /* See to_record_is_replaying in struct target_ops. */
2149 extern int target_record_is_replaying (void);
2150
2151 /* See to_goto_record_begin in struct target_ops. */
2152 extern void target_goto_record_begin (void);
2153
2154 /* See to_goto_record_end in struct target_ops. */
2155 extern void target_goto_record_end (void);
2156
2157 /* See to_goto_record in struct target_ops. */
2158 extern void target_goto_record (ULONGEST insn);
2159
2160 /* See to_insn_history. */
2161 extern void target_insn_history (int size, int flags);
2162
2163 /* See to_insn_history_from. */
2164 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2165
2166 /* See to_insn_history_range. */
2167 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2168
2169 /* See to_call_history. */
2170 extern void target_call_history (int size, int flags);
2171
2172 /* See to_call_history_from. */
2173 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2174
2175 /* See to_call_history_range. */
2176 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2177
2178 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2179 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2180 struct gdbarch *gdbarch);
2181
2182 /* See to_decr_pc_after_break. */
2183 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2184
2185 #endif /* !defined (TARGET_H) */
This page took 0.074868 seconds and 4 git commands to generate.