Remove varobj_language_string, languages and varobj_languages
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42 of the debugger, and the part which is target-specific, or
43 specific to the communications interface between us and the
44 target.
45
46 A TARGET is an interface between the debugger and a particular
47 kind of file or process. Targets can be STACKED in STRATA,
48 so that more than one target can potentially respond to a request.
49 In particular, memory accesses will walk down the stack of targets
50 until they find a target that is interested in handling that particular
51 address. STRATA are artificial boundaries on the stack, within
52 which particular kinds of targets live. Strata exist so that
53 people don't get confused by pushing e.g. a process target and then
54 a file target, and wondering why they can't see the current values
55 of variables any more (the file target is handling them and they
56 never get to the process target). So when you push a file target,
57 it goes into the file stratum, which is always below the process
58 stratum. */
59
60 #include "target/resume.h"
61 #include "target/wait.h"
62 #include "target/waitstatus.h"
63 #include "bfd.h"
64 #include "symtab.h"
65 #include "memattr.h"
66 #include "vec.h"
67 #include "gdb_signals.h"
68 #include "btrace.h"
69 #include "command.h"
70
71 enum strata
72 {
73 dummy_stratum, /* The lowest of the low */
74 file_stratum, /* Executable files, etc */
75 process_stratum, /* Executing processes or core dump files */
76 thread_stratum, /* Executing threads */
77 record_stratum, /* Support record debugging */
78 arch_stratum /* Architecture overrides */
79 };
80
81 enum thread_control_capabilities
82 {
83 tc_none = 0, /* Default: can't control thread execution. */
84 tc_schedlock = 1, /* Can lock the thread scheduler. */
85 };
86
87 /* The structure below stores information about a system call.
88 It is basically used in the "catch syscall" command, and in
89 every function that gives information about a system call.
90
91 It's also good to mention that its fields represent everything
92 that we currently know about a syscall in GDB. */
93 struct syscall
94 {
95 /* The syscall number. */
96 int number;
97
98 /* The syscall name. */
99 const char *name;
100 };
101
102 /* Return a pretty printed form of target_waitstatus.
103 Space for the result is malloc'd, caller must free. */
104 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
105
106 /* Return a pretty printed form of TARGET_OPTIONS.
107 Space for the result is malloc'd, caller must free. */
108 extern char *target_options_to_string (int target_options);
109
110 /* Possible types of events that the inferior handler will have to
111 deal with. */
112 enum inferior_event_type
113 {
114 /* Process a normal inferior event which will result in target_wait
115 being called. */
116 INF_REG_EVENT,
117 /* We are called because a timer went off. */
118 INF_TIMER,
119 /* We are called to do stuff after the inferior stops. */
120 INF_EXEC_COMPLETE,
121 /* We are called to do some stuff after the inferior stops, but we
122 are expected to reenter the proceed() and
123 handle_inferior_event() functions. This is used only in case of
124 'step n' like commands. */
125 INF_EXEC_CONTINUE
126 };
127 \f
128 /* Target objects which can be transfered using target_read,
129 target_write, et cetera. */
130
131 enum target_object
132 {
133 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
134 TARGET_OBJECT_AVR,
135 /* SPU target specific transfer. See "spu-tdep.c". */
136 TARGET_OBJECT_SPU,
137 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
138 TARGET_OBJECT_MEMORY,
139 /* Memory, avoiding GDB's data cache and trusting the executable.
140 Target implementations of to_xfer_partial never need to handle
141 this object, and most callers should not use it. */
142 TARGET_OBJECT_RAW_MEMORY,
143 /* Memory known to be part of the target's stack. This is cached even
144 if it is not in a region marked as such, since it is known to be
145 "normal" RAM. */
146 TARGET_OBJECT_STACK_MEMORY,
147 /* Kernel Unwind Table. See "ia64-tdep.c". */
148 TARGET_OBJECT_UNWIND_TABLE,
149 /* Transfer auxilliary vector. */
150 TARGET_OBJECT_AUXV,
151 /* StackGhost cookie. See "sparc-tdep.c". */
152 TARGET_OBJECT_WCOOKIE,
153 /* Target memory map in XML format. */
154 TARGET_OBJECT_MEMORY_MAP,
155 /* Flash memory. This object can be used to write contents to
156 a previously erased flash memory. Using it without erasing
157 flash can have unexpected results. Addresses are physical
158 address on target, and not relative to flash start. */
159 TARGET_OBJECT_FLASH,
160 /* Available target-specific features, e.g. registers and coprocessors.
161 See "target-descriptions.c". ANNEX should never be empty. */
162 TARGET_OBJECT_AVAILABLE_FEATURES,
163 /* Currently loaded libraries, in XML format. */
164 TARGET_OBJECT_LIBRARIES,
165 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
166 TARGET_OBJECT_LIBRARIES_SVR4,
167 /* Currently loaded libraries specific to AIX systems, in XML format. */
168 TARGET_OBJECT_LIBRARIES_AIX,
169 /* Get OS specific data. The ANNEX specifies the type (running
170 processes, etc.). The data being transfered is expected to follow
171 the DTD specified in features/osdata.dtd. */
172 TARGET_OBJECT_OSDATA,
173 /* Extra signal info. Usually the contents of `siginfo_t' on unix
174 platforms. */
175 TARGET_OBJECT_SIGNAL_INFO,
176 /* The list of threads that are being debugged. */
177 TARGET_OBJECT_THREADS,
178 /* Collected static trace data. */
179 TARGET_OBJECT_STATIC_TRACE_DATA,
180 /* The HP-UX registers (those that can be obtained or modified by using
181 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
182 TARGET_OBJECT_HPUX_UREGS,
183 /* The HP-UX shared library linkage pointer. ANNEX should be a string
184 image of the code address whose linkage pointer we are looking for.
185
186 The size of the data transfered is always 8 bytes (the size of an
187 address on ia64). */
188 TARGET_OBJECT_HPUX_SOLIB_GOT,
189 /* Traceframe info, in XML format. */
190 TARGET_OBJECT_TRACEFRAME_INFO,
191 /* Load maps for FDPIC systems. */
192 TARGET_OBJECT_FDPIC,
193 /* Darwin dynamic linker info data. */
194 TARGET_OBJECT_DARWIN_DYLD_INFO,
195 /* OpenVMS Unwind Information Block. */
196 TARGET_OBJECT_OPENVMS_UIB,
197 /* Branch trace data, in XML format. */
198 TARGET_OBJECT_BTRACE
199 /* Possible future objects: TARGET_OBJECT_FILE, ... */
200 };
201
202 /* Possible error codes returned by target_xfer_partial, etc. */
203
204 enum target_xfer_error
205 {
206 /* Generic I/O error. Note that it's important that this is '-1',
207 as we still have target_xfer-related code returning hardcoded
208 '-1' on error. */
209 TARGET_XFER_E_IO = -1,
210
211 /* Transfer failed because the piece of the object requested is
212 unavailable. */
213 TARGET_XFER_E_UNAVAILABLE = -2,
214
215 /* Keep list in sync with target_xfer_error_to_string. */
216 };
217
218 /* Return the string form of ERR. */
219
220 extern const char *target_xfer_error_to_string (enum target_xfer_error err);
221
222 /* Enumeration of the kinds of traceframe searches that a target may
223 be able to perform. */
224
225 enum trace_find_type
226 {
227 tfind_number,
228 tfind_pc,
229 tfind_tp,
230 tfind_range,
231 tfind_outside,
232 };
233
234 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
235 DEF_VEC_P(static_tracepoint_marker_p);
236
237 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
238 OBJECT. The OFFSET, for a seekable object, specifies the
239 starting point. The ANNEX can be used to provide additional
240 data-specific information to the target.
241
242 Return the number of bytes actually transfered, or a negative error
243 code (an 'enum target_xfer_error' value) if the transfer is not
244 supported or otherwise fails. Return of a positive value less than
245 LEN indicates that no further transfer is possible. Unlike the raw
246 to_xfer_partial interface, callers of these functions do not need
247 to retry partial transfers. */
248
249 extern LONGEST target_read (struct target_ops *ops,
250 enum target_object object,
251 const char *annex, gdb_byte *buf,
252 ULONGEST offset, LONGEST len);
253
254 struct memory_read_result
255 {
256 /* First address that was read. */
257 ULONGEST begin;
258 /* Past-the-end address. */
259 ULONGEST end;
260 /* The data. */
261 gdb_byte *data;
262 };
263 typedef struct memory_read_result memory_read_result_s;
264 DEF_VEC_O(memory_read_result_s);
265
266 extern void free_memory_read_result_vector (void *);
267
268 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
269 ULONGEST offset,
270 LONGEST len);
271
272 extern LONGEST target_write (struct target_ops *ops,
273 enum target_object object,
274 const char *annex, const gdb_byte *buf,
275 ULONGEST offset, LONGEST len);
276
277 /* Similar to target_write, except that it also calls PROGRESS with
278 the number of bytes written and the opaque BATON after every
279 successful partial write (and before the first write). This is
280 useful for progress reporting and user interaction while writing
281 data. To abort the transfer, the progress callback can throw an
282 exception. */
283
284 LONGEST target_write_with_progress (struct target_ops *ops,
285 enum target_object object,
286 const char *annex, const gdb_byte *buf,
287 ULONGEST offset, LONGEST len,
288 void (*progress) (ULONGEST, void *),
289 void *baton);
290
291 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
292 be read using OPS. The return value will be -1 if the transfer
293 fails or is not supported; 0 if the object is empty; or the length
294 of the object otherwise. If a positive value is returned, a
295 sufficiently large buffer will be allocated using xmalloc and
296 returned in *BUF_P containing the contents of the object.
297
298 This method should be used for objects sufficiently small to store
299 in a single xmalloc'd buffer, when no fixed bound on the object's
300 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
301 through this function. */
302
303 extern LONGEST target_read_alloc (struct target_ops *ops,
304 enum target_object object,
305 const char *annex, gdb_byte **buf_p);
306
307 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
308 returned as a string, allocated using xmalloc. If an error occurs
309 or the transfer is unsupported, NULL is returned. Empty objects
310 are returned as allocated but empty strings. A warning is issued
311 if the result contains any embedded NUL bytes. */
312
313 extern char *target_read_stralloc (struct target_ops *ops,
314 enum target_object object,
315 const char *annex);
316
317 /* See target_ops->to_xfer_partial. */
318
319 extern LONGEST target_xfer_partial (struct target_ops *ops,
320 enum target_object object,
321 const char *annex,
322 void *readbuf, const void *writebuf,
323 ULONGEST offset, LONGEST len);
324
325 /* Wrappers to target read/write that perform memory transfers. They
326 throw an error if the memory transfer fails.
327
328 NOTE: cagney/2003-10-23: The naming schema is lifted from
329 "frame.h". The parameter order is lifted from get_frame_memory,
330 which in turn lifted it from read_memory. */
331
332 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
333 gdb_byte *buf, LONGEST len);
334 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
335 CORE_ADDR addr, int len,
336 enum bfd_endian byte_order);
337 \f
338 struct thread_info; /* fwd decl for parameter list below: */
339
340 struct target_ops
341 {
342 struct target_ops *beneath; /* To the target under this one. */
343 char *to_shortname; /* Name this target type */
344 char *to_longname; /* Name for printing */
345 char *to_doc; /* Documentation. Does not include trailing
346 newline, and starts with a one-line descrip-
347 tion (probably similar to to_longname). */
348 /* Per-target scratch pad. */
349 void *to_data;
350 /* The open routine takes the rest of the parameters from the
351 command, and (if successful) pushes a new target onto the
352 stack. Targets should supply this routine, if only to provide
353 an error message. */
354 void (*to_open) (char *, int);
355 /* Old targets with a static target vector provide "to_close".
356 New re-entrant targets provide "to_xclose" and that is expected
357 to xfree everything (including the "struct target_ops"). */
358 void (*to_xclose) (struct target_ops *targ);
359 void (*to_close) (void);
360 void (*to_attach) (struct target_ops *ops, char *, int);
361 void (*to_post_attach) (int);
362 void (*to_detach) (struct target_ops *ops, char *, int);
363 void (*to_disconnect) (struct target_ops *, char *, int);
364 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
365 ptid_t (*to_wait) (struct target_ops *,
366 ptid_t, struct target_waitstatus *, int);
367 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
368 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
369 void (*to_prepare_to_store) (struct regcache *);
370
371 /* Transfer LEN bytes of memory between GDB address MYADDR and
372 target address MEMADDR. If WRITE, transfer them to the target, else
373 transfer them from the target. TARGET is the target from which we
374 get this function.
375
376 Return value, N, is one of the following:
377
378 0 means that we can't handle this. If errno has been set, it is the
379 error which prevented us from doing it (FIXME: What about bfd_error?).
380
381 positive (call it N) means that we have transferred N bytes
382 starting at MEMADDR. We might be able to handle more bytes
383 beyond this length, but no promises.
384
385 negative (call its absolute value N) means that we cannot
386 transfer right at MEMADDR, but we could transfer at least
387 something at MEMADDR + N.
388
389 NOTE: cagney/2004-10-01: This has been entirely superseeded by
390 to_xfer_partial and inferior inheritance. */
391
392 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
393 int len, int write,
394 struct mem_attrib *attrib,
395 struct target_ops *target);
396
397 void (*to_files_info) (struct target_ops *);
398 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
399 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
400 int (*to_can_use_hw_breakpoint) (int, int, int);
401 int (*to_ranged_break_num_registers) (struct target_ops *);
402 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
403 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
404
405 /* Documentation of what the two routines below are expected to do is
406 provided with the corresponding target_* macros. */
407 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
408 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
409
410 int (*to_insert_mask_watchpoint) (struct target_ops *,
411 CORE_ADDR, CORE_ADDR, int);
412 int (*to_remove_mask_watchpoint) (struct target_ops *,
413 CORE_ADDR, CORE_ADDR, int);
414 int (*to_stopped_by_watchpoint) (void);
415 int to_have_steppable_watchpoint;
416 int to_have_continuable_watchpoint;
417 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
418 int (*to_watchpoint_addr_within_range) (struct target_ops *,
419 CORE_ADDR, CORE_ADDR, int);
420
421 /* Documentation of this routine is provided with the corresponding
422 target_* macro. */
423 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
424
425 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
426 struct expression *);
427 int (*to_masked_watch_num_registers) (struct target_ops *,
428 CORE_ADDR, CORE_ADDR);
429 void (*to_terminal_init) (void);
430 void (*to_terminal_inferior) (void);
431 void (*to_terminal_ours_for_output) (void);
432 void (*to_terminal_ours) (void);
433 void (*to_terminal_save_ours) (void);
434 void (*to_terminal_info) (const char *, int);
435 void (*to_kill) (struct target_ops *);
436 void (*to_load) (char *, int);
437 void (*to_create_inferior) (struct target_ops *,
438 char *, char *, char **, int);
439 void (*to_post_startup_inferior) (ptid_t);
440 int (*to_insert_fork_catchpoint) (int);
441 int (*to_remove_fork_catchpoint) (int);
442 int (*to_insert_vfork_catchpoint) (int);
443 int (*to_remove_vfork_catchpoint) (int);
444 int (*to_follow_fork) (struct target_ops *, int, int);
445 int (*to_insert_exec_catchpoint) (int);
446 int (*to_remove_exec_catchpoint) (int);
447 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
448 int (*to_has_exited) (int, int, int *);
449 void (*to_mourn_inferior) (struct target_ops *);
450 int (*to_can_run) (void);
451
452 /* Documentation of this routine is provided with the corresponding
453 target_* macro. */
454 void (*to_pass_signals) (int, unsigned char *);
455
456 /* Documentation of this routine is provided with the
457 corresponding target_* function. */
458 void (*to_program_signals) (int, unsigned char *);
459
460 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
461 void (*to_find_new_threads) (struct target_ops *);
462 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
463 char *(*to_extra_thread_info) (struct thread_info *);
464 char *(*to_thread_name) (struct thread_info *);
465 void (*to_stop) (ptid_t);
466 void (*to_rcmd) (char *command, struct ui_file *output);
467 char *(*to_pid_to_exec_file) (int pid);
468 void (*to_log_command) (const char *);
469 struct target_section_table *(*to_get_section_table) (struct target_ops *);
470 enum strata to_stratum;
471 int (*to_has_all_memory) (struct target_ops *);
472 int (*to_has_memory) (struct target_ops *);
473 int (*to_has_stack) (struct target_ops *);
474 int (*to_has_registers) (struct target_ops *);
475 int (*to_has_execution) (struct target_ops *, ptid_t);
476 int to_has_thread_control; /* control thread execution */
477 int to_attach_no_wait;
478 /* ASYNC target controls */
479 int (*to_can_async_p) (void);
480 int (*to_is_async_p) (void);
481 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
482 int (*to_supports_non_stop) (void);
483 /* find_memory_regions support method for gcore */
484 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
485 /* make_corefile_notes support method for gcore */
486 char * (*to_make_corefile_notes) (bfd *, int *);
487 /* get_bookmark support method for bookmarks */
488 gdb_byte * (*to_get_bookmark) (char *, int);
489 /* goto_bookmark support method for bookmarks */
490 void (*to_goto_bookmark) (gdb_byte *, int);
491 /* Return the thread-local address at OFFSET in the
492 thread-local storage for the thread PTID and the shared library
493 or executable file given by OBJFILE. If that block of
494 thread-local storage hasn't been allocated yet, this function
495 may return an error. */
496 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
497 ptid_t ptid,
498 CORE_ADDR load_module_addr,
499 CORE_ADDR offset);
500
501 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
502 OBJECT. The OFFSET, for a seekable object, specifies the
503 starting point. The ANNEX can be used to provide additional
504 data-specific information to the target.
505
506 Return the number of bytes actually transfered, zero when no
507 further transfer is possible, and a negative error code (really
508 an 'enum target_xfer_error' value) when the transfer is not
509 supported. Return of a positive value smaller than LEN does
510 not indicate the end of the object, only the end of the
511 transfer; higher level code should continue transferring if
512 desired. This is handled in target.c.
513
514 The interface does not support a "retry" mechanism. Instead it
515 assumes that at least one byte will be transfered on each
516 successful call.
517
518 NOTE: cagney/2003-10-17: The current interface can lead to
519 fragmented transfers. Lower target levels should not implement
520 hacks, such as enlarging the transfer, in an attempt to
521 compensate for this. Instead, the target stack should be
522 extended so that it implements supply/collect methods and a
523 look-aside object cache. With that available, the lowest
524 target can safely and freely "push" data up the stack.
525
526 See target_read and target_write for more information. One,
527 and only one, of readbuf or writebuf must be non-NULL. */
528
529 LONGEST (*to_xfer_partial) (struct target_ops *ops,
530 enum target_object object, const char *annex,
531 gdb_byte *readbuf, const gdb_byte *writebuf,
532 ULONGEST offset, LONGEST len);
533
534 /* Returns the memory map for the target. A return value of NULL
535 means that no memory map is available. If a memory address
536 does not fall within any returned regions, it's assumed to be
537 RAM. The returned memory regions should not overlap.
538
539 The order of regions does not matter; target_memory_map will
540 sort regions by starting address. For that reason, this
541 function should not be called directly except via
542 target_memory_map.
543
544 This method should not cache data; if the memory map could
545 change unexpectedly, it should be invalidated, and higher
546 layers will re-fetch it. */
547 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
548
549 /* Erases the region of flash memory starting at ADDRESS, of
550 length LENGTH.
551
552 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
553 on flash block boundaries, as reported by 'to_memory_map'. */
554 void (*to_flash_erase) (struct target_ops *,
555 ULONGEST address, LONGEST length);
556
557 /* Finishes a flash memory write sequence. After this operation
558 all flash memory should be available for writing and the result
559 of reading from areas written by 'to_flash_write' should be
560 equal to what was written. */
561 void (*to_flash_done) (struct target_ops *);
562
563 /* Describe the architecture-specific features of this target.
564 Returns the description found, or NULL if no description
565 was available. */
566 const struct target_desc *(*to_read_description) (struct target_ops *ops);
567
568 /* Build the PTID of the thread on which a given task is running,
569 based on LWP and THREAD. These values are extracted from the
570 task Private_Data section of the Ada Task Control Block, and
571 their interpretation depends on the target. */
572 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
573
574 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
575 Return 0 if *READPTR is already at the end of the buffer.
576 Return -1 if there is insufficient buffer for a whole entry.
577 Return 1 if an entry was read into *TYPEP and *VALP. */
578 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
579 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
580
581 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
582 sequence of bytes in PATTERN with length PATTERN_LEN.
583
584 The result is 1 if found, 0 if not found, and -1 if there was an error
585 requiring halting of the search (e.g. memory read error).
586 If the pattern is found the address is recorded in FOUND_ADDRP. */
587 int (*to_search_memory) (struct target_ops *ops,
588 CORE_ADDR start_addr, ULONGEST search_space_len,
589 const gdb_byte *pattern, ULONGEST pattern_len,
590 CORE_ADDR *found_addrp);
591
592 /* Can target execute in reverse? */
593 int (*to_can_execute_reverse) (void);
594
595 /* The direction the target is currently executing. Must be
596 implemented on targets that support reverse execution and async
597 mode. The default simply returns forward execution. */
598 enum exec_direction_kind (*to_execution_direction) (void);
599
600 /* Does this target support debugging multiple processes
601 simultaneously? */
602 int (*to_supports_multi_process) (void);
603
604 /* Does this target support enabling and disabling tracepoints while a trace
605 experiment is running? */
606 int (*to_supports_enable_disable_tracepoint) (void);
607
608 /* Does this target support disabling address space randomization? */
609 int (*to_supports_disable_randomization) (void);
610
611 /* Does this target support the tracenz bytecode for string collection? */
612 int (*to_supports_string_tracing) (void);
613
614 /* Does this target support evaluation of breakpoint conditions on its
615 end? */
616 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
617
618 /* Does this target support evaluation of breakpoint commands on its
619 end? */
620 int (*to_can_run_breakpoint_commands) (void);
621
622 /* Determine current architecture of thread PTID.
623
624 The target is supposed to determine the architecture of the code where
625 the target is currently stopped at (on Cell, if a target is in spu_run,
626 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
627 This is architecture used to perform decr_pc_after_break adjustment,
628 and also determines the frame architecture of the innermost frame.
629 ptrace operations need to operate according to target_gdbarch ().
630
631 The default implementation always returns target_gdbarch (). */
632 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
633
634 /* Determine current address space of thread PTID.
635
636 The default implementation always returns the inferior's
637 address space. */
638 struct address_space *(*to_thread_address_space) (struct target_ops *,
639 ptid_t);
640
641 /* Target file operations. */
642
643 /* Open FILENAME on the target, using FLAGS and MODE. Return a
644 target file descriptor, or -1 if an error occurs (and set
645 *TARGET_ERRNO). */
646 int (*to_fileio_open) (const char *filename, int flags, int mode,
647 int *target_errno);
648
649 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
650 Return the number of bytes written, or -1 if an error occurs
651 (and set *TARGET_ERRNO). */
652 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
653 ULONGEST offset, int *target_errno);
654
655 /* Read up to LEN bytes FD on the target into READ_BUF.
656 Return the number of bytes read, or -1 if an error occurs
657 (and set *TARGET_ERRNO). */
658 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
659 ULONGEST offset, int *target_errno);
660
661 /* Close FD on the target. Return 0, or -1 if an error occurs
662 (and set *TARGET_ERRNO). */
663 int (*to_fileio_close) (int fd, int *target_errno);
664
665 /* Unlink FILENAME on the target. Return 0, or -1 if an error
666 occurs (and set *TARGET_ERRNO). */
667 int (*to_fileio_unlink) (const char *filename, int *target_errno);
668
669 /* Read value of symbolic link FILENAME on the target. Return a
670 null-terminated string allocated via xmalloc, or NULL if an error
671 occurs (and set *TARGET_ERRNO). */
672 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
673
674
675 /* Implement the "info proc" command. */
676 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
677
678 /* Tracepoint-related operations. */
679
680 /* Prepare the target for a tracing run. */
681 void (*to_trace_init) (void);
682
683 /* Send full details of a tracepoint location to the target. */
684 void (*to_download_tracepoint) (struct bp_location *location);
685
686 /* Is the target able to download tracepoint locations in current
687 state? */
688 int (*to_can_download_tracepoint) (void);
689
690 /* Send full details of a trace state variable to the target. */
691 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
692
693 /* Enable a tracepoint on the target. */
694 void (*to_enable_tracepoint) (struct bp_location *location);
695
696 /* Disable a tracepoint on the target. */
697 void (*to_disable_tracepoint) (struct bp_location *location);
698
699 /* Inform the target info of memory regions that are readonly
700 (such as text sections), and so it should return data from
701 those rather than look in the trace buffer. */
702 void (*to_trace_set_readonly_regions) (void);
703
704 /* Start a trace run. */
705 void (*to_trace_start) (void);
706
707 /* Get the current status of a tracing run. */
708 int (*to_get_trace_status) (struct trace_status *ts);
709
710 void (*to_get_tracepoint_status) (struct breakpoint *tp,
711 struct uploaded_tp *utp);
712
713 /* Stop a trace run. */
714 void (*to_trace_stop) (void);
715
716 /* Ask the target to find a trace frame of the given type TYPE,
717 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
718 number of the trace frame, and also the tracepoint number at
719 TPP. If no trace frame matches, return -1. May throw if the
720 operation fails. */
721 int (*to_trace_find) (enum trace_find_type type, int num,
722 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
723
724 /* Get the value of the trace state variable number TSV, returning
725 1 if the value is known and writing the value itself into the
726 location pointed to by VAL, else returning 0. */
727 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
728
729 int (*to_save_trace_data) (const char *filename);
730
731 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
732
733 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
734
735 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
736 ULONGEST offset, LONGEST len);
737
738 /* Get the minimum length of instruction on which a fast tracepoint
739 may be set on the target. If this operation is unsupported,
740 return -1. If for some reason the minimum length cannot be
741 determined, return 0. */
742 int (*to_get_min_fast_tracepoint_insn_len) (void);
743
744 /* Set the target's tracing behavior in response to unexpected
745 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
746 void (*to_set_disconnected_tracing) (int val);
747 void (*to_set_circular_trace_buffer) (int val);
748 /* Set the size of trace buffer in the target. */
749 void (*to_set_trace_buffer_size) (LONGEST val);
750
751 /* Add/change textual notes about the trace run, returning 1 if
752 successful, 0 otherwise. */
753 int (*to_set_trace_notes) (const char *user, const char *notes,
754 const char *stopnotes);
755
756 /* Return the processor core that thread PTID was last seen on.
757 This information is updated only when:
758 - update_thread_list is called
759 - thread stops
760 If the core cannot be determined -- either for the specified
761 thread, or right now, or in this debug session, or for this
762 target -- return -1. */
763 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
764
765 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
766 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
767 a match, 0 if there's a mismatch, and -1 if an error is
768 encountered while reading memory. */
769 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
770 CORE_ADDR memaddr, ULONGEST size);
771
772 /* Return the address of the start of the Thread Information Block
773 a Windows OS specific feature. */
774 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
775
776 /* Send the new settings of write permission variables. */
777 void (*to_set_permissions) (void);
778
779 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
780 with its details. Return 1 on success, 0 on failure. */
781 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
782 struct static_tracepoint_marker *marker);
783
784 /* Return a vector of all tracepoints markers string id ID, or all
785 markers if ID is NULL. */
786 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
787 (const char *id);
788
789 /* Return a traceframe info object describing the current
790 traceframe's contents. If the target doesn't support
791 traceframe info, return NULL. If the current traceframe is not
792 selected (the current traceframe number is -1), the target can
793 choose to return either NULL or an empty traceframe info. If
794 NULL is returned, for example in remote target, GDB will read
795 from the live inferior. If an empty traceframe info is
796 returned, for example in tfile target, which means the
797 traceframe info is available, but the requested memory is not
798 available in it. GDB will try to see if the requested memory
799 is available in the read-only sections. This method should not
800 cache data; higher layers take care of caching, invalidating,
801 and re-fetching when necessary. */
802 struct traceframe_info *(*to_traceframe_info) (void);
803
804 /* Ask the target to use or not to use agent according to USE. Return 1
805 successful, 0 otherwise. */
806 int (*to_use_agent) (int use);
807
808 /* Is the target able to use agent in current state? */
809 int (*to_can_use_agent) (void);
810
811 /* Check whether the target supports branch tracing. */
812 int (*to_supports_btrace) (void);
813
814 /* Enable branch tracing for PTID and allocate a branch trace target
815 information struct for reading and for disabling branch trace. */
816 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
817
818 /* Disable branch tracing and deallocate TINFO. */
819 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
820
821 /* Disable branch tracing and deallocate TINFO. This function is similar
822 to to_disable_btrace, except that it is called during teardown and is
823 only allowed to perform actions that are safe. A counter-example would
824 be attempting to talk to a remote target. */
825 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
826
827 /* Read branch trace data. */
828 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
829 enum btrace_read_type);
830
831 /* Stop trace recording. */
832 void (*to_stop_recording) (void);
833
834 /* Print information about the recording. */
835 void (*to_info_record) (void);
836
837 /* Save the recorded execution trace into a file. */
838 void (*to_save_record) (const char *filename);
839
840 /* Delete the recorded execution trace from the current position onwards. */
841 void (*to_delete_record) (void);
842
843 /* Query if the record target is currently replaying. */
844 int (*to_record_is_replaying) (void);
845
846 /* Go to the begin of the execution trace. */
847 void (*to_goto_record_begin) (void);
848
849 /* Go to the end of the execution trace. */
850 void (*to_goto_record_end) (void);
851
852 /* Go to a specific location in the recorded execution trace. */
853 void (*to_goto_record) (ULONGEST insn);
854
855 /* Disassemble SIZE instructions in the recorded execution trace from
856 the current position.
857 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
858 disassemble SIZE succeeding instructions. */
859 void (*to_insn_history) (int size, int flags);
860
861 /* Disassemble SIZE instructions in the recorded execution trace around
862 FROM.
863 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
864 disassemble SIZE instructions after FROM. */
865 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
866
867 /* Disassemble a section of the recorded execution trace from instruction
868 BEGIN (inclusive) to instruction END (exclusive). */
869 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
870
871 /* Print a function trace of the recorded execution trace.
872 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
873 succeeding functions. */
874 void (*to_call_history) (int size, int flags);
875
876 /* Print a function trace of the recorded execution trace starting
877 at function FROM.
878 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
879 SIZE functions after FROM. */
880 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
881
882 /* Print a function trace of an execution trace section from function BEGIN
883 (inclusive) to function END (exclusive). */
884 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
885
886 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
887 non-empty annex. */
888 int (*to_augmented_libraries_svr4_read) (void);
889
890 int to_magic;
891 /* Need sub-structure for target machine related rather than comm related?
892 */
893 };
894
895 /* Magic number for checking ops size. If a struct doesn't end with this
896 number, somebody changed the declaration but didn't change all the
897 places that initialize one. */
898
899 #define OPS_MAGIC 3840
900
901 /* The ops structure for our "current" target process. This should
902 never be NULL. If there is no target, it points to the dummy_target. */
903
904 extern struct target_ops current_target;
905
906 /* Define easy words for doing these operations on our current target. */
907
908 #define target_shortname (current_target.to_shortname)
909 #define target_longname (current_target.to_longname)
910
911 /* Does whatever cleanup is required for a target that we are no
912 longer going to be calling. This routine is automatically always
913 called after popping the target off the target stack - the target's
914 own methods are no longer available through the target vector.
915 Closing file descriptors and freeing all memory allocated memory are
916 typical things it should do. */
917
918 void target_close (struct target_ops *targ);
919
920 /* Attaches to a process on the target side. Arguments are as passed
921 to the `attach' command by the user. This routine can be called
922 when the target is not on the target-stack, if the target_can_run
923 routine returns 1; in that case, it must push itself onto the stack.
924 Upon exit, the target should be ready for normal operations, and
925 should be ready to deliver the status of the process immediately
926 (without waiting) to an upcoming target_wait call. */
927
928 void target_attach (char *, int);
929
930 /* Some targets don't generate traps when attaching to the inferior,
931 or their target_attach implementation takes care of the waiting.
932 These targets must set to_attach_no_wait. */
933
934 #define target_attach_no_wait \
935 (current_target.to_attach_no_wait)
936
937 /* The target_attach operation places a process under debugger control,
938 and stops the process.
939
940 This operation provides a target-specific hook that allows the
941 necessary bookkeeping to be performed after an attach completes. */
942 #define target_post_attach(pid) \
943 (*current_target.to_post_attach) (pid)
944
945 /* Takes a program previously attached to and detaches it.
946 The program may resume execution (some targets do, some don't) and will
947 no longer stop on signals, etc. We better not have left any breakpoints
948 in the program or it'll die when it hits one. ARGS is arguments
949 typed by the user (e.g. a signal to send the process). FROM_TTY
950 says whether to be verbose or not. */
951
952 extern void target_detach (char *, int);
953
954 /* Disconnect from the current target without resuming it (leaving it
955 waiting for a debugger). */
956
957 extern void target_disconnect (char *, int);
958
959 /* Resume execution of the target process PTID (or a group of
960 threads). STEP says whether to single-step or to run free; SIGGNAL
961 is the signal to be given to the target, or GDB_SIGNAL_0 for no
962 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
963 PTID means `step/resume only this process id'. A wildcard PTID
964 (all threads, or all threads of process) means `step/resume
965 INFERIOR_PTID, and let other threads (for which the wildcard PTID
966 matches) resume with their 'thread->suspend.stop_signal' signal
967 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
968 if in "no pass" state. */
969
970 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
971
972 /* Wait for process pid to do something. PTID = -1 to wait for any
973 pid to do something. Return pid of child, or -1 in case of error;
974 store status through argument pointer STATUS. Note that it is
975 _NOT_ OK to throw_exception() out of target_wait() without popping
976 the debugging target from the stack; GDB isn't prepared to get back
977 to the prompt with a debugging target but without the frame cache,
978 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
979 options. */
980
981 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
982 int options);
983
984 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
985
986 extern void target_fetch_registers (struct regcache *regcache, int regno);
987
988 /* Store at least register REGNO, or all regs if REGNO == -1.
989 It can store as many registers as it wants to, so target_prepare_to_store
990 must have been previously called. Calls error() if there are problems. */
991
992 extern void target_store_registers (struct regcache *regcache, int regs);
993
994 /* Get ready to modify the registers array. On machines which store
995 individual registers, this doesn't need to do anything. On machines
996 which store all the registers in one fell swoop, this makes sure
997 that REGISTERS contains all the registers from the program being
998 debugged. */
999
1000 #define target_prepare_to_store(regcache) \
1001 (*current_target.to_prepare_to_store) (regcache)
1002
1003 /* Determine current address space of thread PTID. */
1004
1005 struct address_space *target_thread_address_space (ptid_t);
1006
1007 /* Implement the "info proc" command. This returns one if the request
1008 was handled, and zero otherwise. It can also throw an exception if
1009 an error was encountered while attempting to handle the
1010 request. */
1011
1012 int target_info_proc (char *, enum info_proc_what);
1013
1014 /* Returns true if this target can debug multiple processes
1015 simultaneously. */
1016
1017 #define target_supports_multi_process() \
1018 (*current_target.to_supports_multi_process) ()
1019
1020 /* Returns true if this target can disable address space randomization. */
1021
1022 int target_supports_disable_randomization (void);
1023
1024 /* Returns true if this target can enable and disable tracepoints
1025 while a trace experiment is running. */
1026
1027 #define target_supports_enable_disable_tracepoint() \
1028 (*current_target.to_supports_enable_disable_tracepoint) ()
1029
1030 #define target_supports_string_tracing() \
1031 (*current_target.to_supports_string_tracing) ()
1032
1033 /* Returns true if this target can handle breakpoint conditions
1034 on its end. */
1035
1036 #define target_supports_evaluation_of_breakpoint_conditions() \
1037 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1038
1039 /* Returns true if this target can handle breakpoint commands
1040 on its end. */
1041
1042 #define target_can_run_breakpoint_commands() \
1043 (*current_target.to_can_run_breakpoint_commands) ()
1044
1045 /* Invalidate all target dcaches. */
1046 extern void target_dcache_invalidate (void);
1047
1048 extern int target_read_string (CORE_ADDR, char **, int, int *);
1049
1050 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1051 ssize_t len);
1052
1053 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1054
1055 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1056 ssize_t len);
1057
1058 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1059 ssize_t len);
1060
1061 /* Fetches the target's memory map. If one is found it is sorted
1062 and returned, after some consistency checking. Otherwise, NULL
1063 is returned. */
1064 VEC(mem_region_s) *target_memory_map (void);
1065
1066 /* Erase the specified flash region. */
1067 void target_flash_erase (ULONGEST address, LONGEST length);
1068
1069 /* Finish a sequence of flash operations. */
1070 void target_flash_done (void);
1071
1072 /* Describes a request for a memory write operation. */
1073 struct memory_write_request
1074 {
1075 /* Begining address that must be written. */
1076 ULONGEST begin;
1077 /* Past-the-end address. */
1078 ULONGEST end;
1079 /* The data to write. */
1080 gdb_byte *data;
1081 /* A callback baton for progress reporting for this request. */
1082 void *baton;
1083 };
1084 typedef struct memory_write_request memory_write_request_s;
1085 DEF_VEC_O(memory_write_request_s);
1086
1087 /* Enumeration specifying different flash preservation behaviour. */
1088 enum flash_preserve_mode
1089 {
1090 flash_preserve,
1091 flash_discard
1092 };
1093
1094 /* Write several memory blocks at once. This version can be more
1095 efficient than making several calls to target_write_memory, in
1096 particular because it can optimize accesses to flash memory.
1097
1098 Moreover, this is currently the only memory access function in gdb
1099 that supports writing to flash memory, and it should be used for
1100 all cases where access to flash memory is desirable.
1101
1102 REQUESTS is the vector (see vec.h) of memory_write_request.
1103 PRESERVE_FLASH_P indicates what to do with blocks which must be
1104 erased, but not completely rewritten.
1105 PROGRESS_CB is a function that will be periodically called to provide
1106 feedback to user. It will be called with the baton corresponding
1107 to the request currently being written. It may also be called
1108 with a NULL baton, when preserved flash sectors are being rewritten.
1109
1110 The function returns 0 on success, and error otherwise. */
1111 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1112 enum flash_preserve_mode preserve_flash_p,
1113 void (*progress_cb) (ULONGEST, void *));
1114
1115 /* Print a line about the current target. */
1116
1117 #define target_files_info() \
1118 (*current_target.to_files_info) (&current_target)
1119
1120 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1121 machine. Result is 0 for success, non-zero for error. */
1122
1123 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1124 struct bp_target_info *bp_tgt);
1125
1126 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1127 machine. Result is 0 for success, non-zero for error. */
1128
1129 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1130 struct bp_target_info *bp_tgt);
1131
1132 /* Initialize the terminal settings we record for the inferior,
1133 before we actually run the inferior. */
1134
1135 #define target_terminal_init() \
1136 (*current_target.to_terminal_init) ()
1137
1138 /* Put the inferior's terminal settings into effect.
1139 This is preparation for starting or resuming the inferior. */
1140
1141 extern void target_terminal_inferior (void);
1142
1143 /* Put some of our terminal settings into effect,
1144 enough to get proper results from our output,
1145 but do not change into or out of RAW mode
1146 so that no input is discarded.
1147
1148 After doing this, either terminal_ours or terminal_inferior
1149 should be called to get back to a normal state of affairs. */
1150
1151 #define target_terminal_ours_for_output() \
1152 (*current_target.to_terminal_ours_for_output) ()
1153
1154 /* Put our terminal settings into effect.
1155 First record the inferior's terminal settings
1156 so they can be restored properly later. */
1157
1158 #define target_terminal_ours() \
1159 (*current_target.to_terminal_ours) ()
1160
1161 /* Save our terminal settings.
1162 This is called from TUI after entering or leaving the curses
1163 mode. Since curses modifies our terminal this call is here
1164 to take this change into account. */
1165
1166 #define target_terminal_save_ours() \
1167 (*current_target.to_terminal_save_ours) ()
1168
1169 /* Print useful information about our terminal status, if such a thing
1170 exists. */
1171
1172 #define target_terminal_info(arg, from_tty) \
1173 (*current_target.to_terminal_info) (arg, from_tty)
1174
1175 /* Kill the inferior process. Make it go away. */
1176
1177 extern void target_kill (void);
1178
1179 /* Load an executable file into the target process. This is expected
1180 to not only bring new code into the target process, but also to
1181 update GDB's symbol tables to match.
1182
1183 ARG contains command-line arguments, to be broken down with
1184 buildargv (). The first non-switch argument is the filename to
1185 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1186 0)), which is an offset to apply to the load addresses of FILE's
1187 sections. The target may define switches, or other non-switch
1188 arguments, as it pleases. */
1189
1190 extern void target_load (char *arg, int from_tty);
1191
1192 /* Start an inferior process and set inferior_ptid to its pid.
1193 EXEC_FILE is the file to run.
1194 ALLARGS is a string containing the arguments to the program.
1195 ENV is the environment vector to pass. Errors reported with error().
1196 On VxWorks and various standalone systems, we ignore exec_file. */
1197
1198 void target_create_inferior (char *exec_file, char *args,
1199 char **env, int from_tty);
1200
1201 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1202 notification of inferior events such as fork and vork immediately
1203 after the inferior is created. (This because of how gdb gets an
1204 inferior created via invoking a shell to do it. In such a scenario,
1205 if the shell init file has commands in it, the shell will fork and
1206 exec for each of those commands, and we will see each such fork
1207 event. Very bad.)
1208
1209 Such targets will supply an appropriate definition for this function. */
1210
1211 #define target_post_startup_inferior(ptid) \
1212 (*current_target.to_post_startup_inferior) (ptid)
1213
1214 /* On some targets, we can catch an inferior fork or vfork event when
1215 it occurs. These functions insert/remove an already-created
1216 catchpoint for such events. They return 0 for success, 1 if the
1217 catchpoint type is not supported and -1 for failure. */
1218
1219 #define target_insert_fork_catchpoint(pid) \
1220 (*current_target.to_insert_fork_catchpoint) (pid)
1221
1222 #define target_remove_fork_catchpoint(pid) \
1223 (*current_target.to_remove_fork_catchpoint) (pid)
1224
1225 #define target_insert_vfork_catchpoint(pid) \
1226 (*current_target.to_insert_vfork_catchpoint) (pid)
1227
1228 #define target_remove_vfork_catchpoint(pid) \
1229 (*current_target.to_remove_vfork_catchpoint) (pid)
1230
1231 /* If the inferior forks or vforks, this function will be called at
1232 the next resume in order to perform any bookkeeping and fiddling
1233 necessary to continue debugging either the parent or child, as
1234 requested, and releasing the other. Information about the fork
1235 or vfork event is available via get_last_target_status ().
1236 This function returns 1 if the inferior should not be resumed
1237 (i.e. there is another event pending). */
1238
1239 int target_follow_fork (int follow_child, int detach_fork);
1240
1241 /* On some targets, we can catch an inferior exec event when it
1242 occurs. These functions insert/remove an already-created
1243 catchpoint for such events. They return 0 for success, 1 if the
1244 catchpoint type is not supported and -1 for failure. */
1245
1246 #define target_insert_exec_catchpoint(pid) \
1247 (*current_target.to_insert_exec_catchpoint) (pid)
1248
1249 #define target_remove_exec_catchpoint(pid) \
1250 (*current_target.to_remove_exec_catchpoint) (pid)
1251
1252 /* Syscall catch.
1253
1254 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1255 If NEEDED is zero, it means the target can disable the mechanism to
1256 catch system calls because there are no more catchpoints of this type.
1257
1258 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1259 being requested. In this case, both TABLE_SIZE and TABLE should
1260 be ignored.
1261
1262 TABLE_SIZE is the number of elements in TABLE. It only matters if
1263 ANY_COUNT is zero.
1264
1265 TABLE is an array of ints, indexed by syscall number. An element in
1266 this array is nonzero if that syscall should be caught. This argument
1267 only matters if ANY_COUNT is zero.
1268
1269 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1270 for failure. */
1271
1272 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1273 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1274 table_size, table)
1275
1276 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1277 exit code of PID, if any. */
1278
1279 #define target_has_exited(pid,wait_status,exit_status) \
1280 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1281
1282 /* The debugger has completed a blocking wait() call. There is now
1283 some process event that must be processed. This function should
1284 be defined by those targets that require the debugger to perform
1285 cleanup or internal state changes in response to the process event. */
1286
1287 /* The inferior process has died. Do what is right. */
1288
1289 void target_mourn_inferior (void);
1290
1291 /* Does target have enough data to do a run or attach command? */
1292
1293 #define target_can_run(t) \
1294 ((t)->to_can_run) ()
1295
1296 /* Set list of signals to be handled in the target.
1297
1298 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1299 (enum gdb_signal). For every signal whose entry in this array is
1300 non-zero, the target is allowed -but not required- to skip reporting
1301 arrival of the signal to the GDB core by returning from target_wait,
1302 and to pass the signal directly to the inferior instead.
1303
1304 However, if the target is hardware single-stepping a thread that is
1305 about to receive a signal, it needs to be reported in any case, even
1306 if mentioned in a previous target_pass_signals call. */
1307
1308 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1309
1310 /* Set list of signals the target may pass to the inferior. This
1311 directly maps to the "handle SIGNAL pass/nopass" setting.
1312
1313 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1314 number (enum gdb_signal). For every signal whose entry in this
1315 array is non-zero, the target is allowed to pass the signal to the
1316 inferior. Signals not present in the array shall be silently
1317 discarded. This does not influence whether to pass signals to the
1318 inferior as a result of a target_resume call. This is useful in
1319 scenarios where the target needs to decide whether to pass or not a
1320 signal to the inferior without GDB core involvement, such as for
1321 example, when detaching (as threads may have been suspended with
1322 pending signals not reported to GDB). */
1323
1324 extern void target_program_signals (int nsig, unsigned char *program_signals);
1325
1326 /* Check to see if a thread is still alive. */
1327
1328 extern int target_thread_alive (ptid_t ptid);
1329
1330 /* Query for new threads and add them to the thread list. */
1331
1332 extern void target_find_new_threads (void);
1333
1334 /* Make target stop in a continuable fashion. (For instance, under
1335 Unix, this should act like SIGSTOP). This function is normally
1336 used by GUIs to implement a stop button. */
1337
1338 extern void target_stop (ptid_t ptid);
1339
1340 /* Send the specified COMMAND to the target's monitor
1341 (shell,interpreter) for execution. The result of the query is
1342 placed in OUTBUF. */
1343
1344 #define target_rcmd(command, outbuf) \
1345 (*current_target.to_rcmd) (command, outbuf)
1346
1347
1348 /* Does the target include all of memory, or only part of it? This
1349 determines whether we look up the target chain for other parts of
1350 memory if this target can't satisfy a request. */
1351
1352 extern int target_has_all_memory_1 (void);
1353 #define target_has_all_memory target_has_all_memory_1 ()
1354
1355 /* Does the target include memory? (Dummy targets don't.) */
1356
1357 extern int target_has_memory_1 (void);
1358 #define target_has_memory target_has_memory_1 ()
1359
1360 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1361 we start a process.) */
1362
1363 extern int target_has_stack_1 (void);
1364 #define target_has_stack target_has_stack_1 ()
1365
1366 /* Does the target have registers? (Exec files don't.) */
1367
1368 extern int target_has_registers_1 (void);
1369 #define target_has_registers target_has_registers_1 ()
1370
1371 /* Does the target have execution? Can we make it jump (through
1372 hoops), or pop its stack a few times? This means that the current
1373 target is currently executing; for some targets, that's the same as
1374 whether or not the target is capable of execution, but there are
1375 also targets which can be current while not executing. In that
1376 case this will become true after target_create_inferior or
1377 target_attach. */
1378
1379 extern int target_has_execution_1 (ptid_t);
1380
1381 /* Like target_has_execution_1, but always passes inferior_ptid. */
1382
1383 extern int target_has_execution_current (void);
1384
1385 #define target_has_execution target_has_execution_current ()
1386
1387 /* Default implementations for process_stratum targets. Return true
1388 if there's a selected inferior, false otherwise. */
1389
1390 extern int default_child_has_all_memory (struct target_ops *ops);
1391 extern int default_child_has_memory (struct target_ops *ops);
1392 extern int default_child_has_stack (struct target_ops *ops);
1393 extern int default_child_has_registers (struct target_ops *ops);
1394 extern int default_child_has_execution (struct target_ops *ops,
1395 ptid_t the_ptid);
1396
1397 /* Can the target support the debugger control of thread execution?
1398 Can it lock the thread scheduler? */
1399
1400 #define target_can_lock_scheduler \
1401 (current_target.to_has_thread_control & tc_schedlock)
1402
1403 /* Should the target enable async mode if it is supported? Temporary
1404 cludge until async mode is a strict superset of sync mode. */
1405 extern int target_async_permitted;
1406
1407 /* Can the target support asynchronous execution? */
1408 #define target_can_async_p() (current_target.to_can_async_p ())
1409
1410 /* Is the target in asynchronous execution mode? */
1411 #define target_is_async_p() (current_target.to_is_async_p ())
1412
1413 int target_supports_non_stop (void);
1414
1415 /* Put the target in async mode with the specified callback function. */
1416 #define target_async(CALLBACK,CONTEXT) \
1417 (current_target.to_async ((CALLBACK), (CONTEXT)))
1418
1419 #define target_execution_direction() \
1420 (current_target.to_execution_direction ())
1421
1422 /* Converts a process id to a string. Usually, the string just contains
1423 `process xyz', but on some systems it may contain
1424 `process xyz thread abc'. */
1425
1426 extern char *target_pid_to_str (ptid_t ptid);
1427
1428 extern char *normal_pid_to_str (ptid_t ptid);
1429
1430 /* Return a short string describing extra information about PID,
1431 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1432 is okay. */
1433
1434 #define target_extra_thread_info(TP) \
1435 (current_target.to_extra_thread_info (TP))
1436
1437 /* Return the thread's name. A NULL result means that the target
1438 could not determine this thread's name. */
1439
1440 extern char *target_thread_name (struct thread_info *);
1441
1442 /* Attempts to find the pathname of the executable file
1443 that was run to create a specified process.
1444
1445 The process PID must be stopped when this operation is used.
1446
1447 If the executable file cannot be determined, NULL is returned.
1448
1449 Else, a pointer to a character string containing the pathname
1450 is returned. This string should be copied into a buffer by
1451 the client if the string will not be immediately used, or if
1452 it must persist. */
1453
1454 #define target_pid_to_exec_file(pid) \
1455 (current_target.to_pid_to_exec_file) (pid)
1456
1457 /* See the to_thread_architecture description in struct target_ops. */
1458
1459 #define target_thread_architecture(ptid) \
1460 (current_target.to_thread_architecture (&current_target, ptid))
1461
1462 /*
1463 * Iterator function for target memory regions.
1464 * Calls a callback function once for each memory region 'mapped'
1465 * in the child process. Defined as a simple macro rather than
1466 * as a function macro so that it can be tested for nullity.
1467 */
1468
1469 #define target_find_memory_regions(FUNC, DATA) \
1470 (current_target.to_find_memory_regions) (FUNC, DATA)
1471
1472 /*
1473 * Compose corefile .note section.
1474 */
1475
1476 #define target_make_corefile_notes(BFD, SIZE_P) \
1477 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1478
1479 /* Bookmark interfaces. */
1480 #define target_get_bookmark(ARGS, FROM_TTY) \
1481 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1482
1483 #define target_goto_bookmark(ARG, FROM_TTY) \
1484 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1485
1486 /* Hardware watchpoint interfaces. */
1487
1488 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1489 write). Only the INFERIOR_PTID task is being queried. */
1490
1491 #define target_stopped_by_watchpoint \
1492 (*current_target.to_stopped_by_watchpoint)
1493
1494 /* Non-zero if we have steppable watchpoints */
1495
1496 #define target_have_steppable_watchpoint \
1497 (current_target.to_have_steppable_watchpoint)
1498
1499 /* Non-zero if we have continuable watchpoints */
1500
1501 #define target_have_continuable_watchpoint \
1502 (current_target.to_have_continuable_watchpoint)
1503
1504 /* Provide defaults for hardware watchpoint functions. */
1505
1506 /* If the *_hw_beakpoint functions have not been defined
1507 elsewhere use the definitions in the target vector. */
1508
1509 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1510 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1511 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1512 (including this one?). OTHERTYPE is who knows what... */
1513
1514 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1515 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1516
1517 /* Returns the number of debug registers needed to watch the given
1518 memory region, or zero if not supported. */
1519
1520 #define target_region_ok_for_hw_watchpoint(addr, len) \
1521 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1522
1523
1524 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1525 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1526 COND is the expression for its condition, or NULL if there's none.
1527 Returns 0 for success, 1 if the watchpoint type is not supported,
1528 -1 for failure. */
1529
1530 #define target_insert_watchpoint(addr, len, type, cond) \
1531 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1532
1533 #define target_remove_watchpoint(addr, len, type, cond) \
1534 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1535
1536 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1537 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1538 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1539 masked watchpoints are not supported, -1 for failure. */
1540
1541 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1542
1543 /* Remove a masked watchpoint at ADDR with the mask MASK.
1544 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1545 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1546 for failure. */
1547
1548 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1549
1550 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1551 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1552
1553 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1554 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1555
1556 /* Return number of debug registers needed for a ranged breakpoint,
1557 or -1 if ranged breakpoints are not supported. */
1558
1559 extern int target_ranged_break_num_registers (void);
1560
1561 /* Return non-zero if target knows the data address which triggered this
1562 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1563 INFERIOR_PTID task is being queried. */
1564 #define target_stopped_data_address(target, addr_p) \
1565 (*target.to_stopped_data_address) (target, addr_p)
1566
1567 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1568 LENGTH bytes beginning at START. */
1569 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1570 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1571
1572 /* Return non-zero if the target is capable of using hardware to evaluate
1573 the condition expression. In this case, if the condition is false when
1574 the watched memory location changes, execution may continue without the
1575 debugger being notified.
1576
1577 Due to limitations in the hardware implementation, it may be capable of
1578 avoiding triggering the watchpoint in some cases where the condition
1579 expression is false, but may report some false positives as well.
1580 For this reason, GDB will still evaluate the condition expression when
1581 the watchpoint triggers. */
1582 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1583 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1584
1585 /* Return number of debug registers needed for a masked watchpoint,
1586 -1 if masked watchpoints are not supported or -2 if the given address
1587 and mask combination cannot be used. */
1588
1589 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1590
1591 /* Target can execute in reverse? */
1592 #define target_can_execute_reverse \
1593 (current_target.to_can_execute_reverse ? \
1594 current_target.to_can_execute_reverse () : 0)
1595
1596 extern const struct target_desc *target_read_description (struct target_ops *);
1597
1598 #define target_get_ada_task_ptid(lwp, tid) \
1599 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1600
1601 /* Utility implementation of searching memory. */
1602 extern int simple_search_memory (struct target_ops* ops,
1603 CORE_ADDR start_addr,
1604 ULONGEST search_space_len,
1605 const gdb_byte *pattern,
1606 ULONGEST pattern_len,
1607 CORE_ADDR *found_addrp);
1608
1609 /* Main entry point for searching memory. */
1610 extern int target_search_memory (CORE_ADDR start_addr,
1611 ULONGEST search_space_len,
1612 const gdb_byte *pattern,
1613 ULONGEST pattern_len,
1614 CORE_ADDR *found_addrp);
1615
1616 /* Target file operations. */
1617
1618 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1619 target file descriptor, or -1 if an error occurs (and set
1620 *TARGET_ERRNO). */
1621 extern int target_fileio_open (const char *filename, int flags, int mode,
1622 int *target_errno);
1623
1624 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1625 Return the number of bytes written, or -1 if an error occurs
1626 (and set *TARGET_ERRNO). */
1627 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1628 ULONGEST offset, int *target_errno);
1629
1630 /* Read up to LEN bytes FD on the target into READ_BUF.
1631 Return the number of bytes read, or -1 if an error occurs
1632 (and set *TARGET_ERRNO). */
1633 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1634 ULONGEST offset, int *target_errno);
1635
1636 /* Close FD on the target. Return 0, or -1 if an error occurs
1637 (and set *TARGET_ERRNO). */
1638 extern int target_fileio_close (int fd, int *target_errno);
1639
1640 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1641 occurs (and set *TARGET_ERRNO). */
1642 extern int target_fileio_unlink (const char *filename, int *target_errno);
1643
1644 /* Read value of symbolic link FILENAME on the target. Return a
1645 null-terminated string allocated via xmalloc, or NULL if an error
1646 occurs (and set *TARGET_ERRNO). */
1647 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1648
1649 /* Read target file FILENAME. The return value will be -1 if the transfer
1650 fails or is not supported; 0 if the object is empty; or the length
1651 of the object otherwise. If a positive value is returned, a
1652 sufficiently large buffer will be allocated using xmalloc and
1653 returned in *BUF_P containing the contents of the object.
1654
1655 This method should be used for objects sufficiently small to store
1656 in a single xmalloc'd buffer, when no fixed bound on the object's
1657 size is known in advance. */
1658 extern LONGEST target_fileio_read_alloc (const char *filename,
1659 gdb_byte **buf_p);
1660
1661 /* Read target file FILENAME. The result is NUL-terminated and
1662 returned as a string, allocated using xmalloc. If an error occurs
1663 or the transfer is unsupported, NULL is returned. Empty objects
1664 are returned as allocated but empty strings. A warning is issued
1665 if the result contains any embedded NUL bytes. */
1666 extern char *target_fileio_read_stralloc (const char *filename);
1667
1668
1669 /* Tracepoint-related operations. */
1670
1671 #define target_trace_init() \
1672 (*current_target.to_trace_init) ()
1673
1674 #define target_download_tracepoint(t) \
1675 (*current_target.to_download_tracepoint) (t)
1676
1677 #define target_can_download_tracepoint() \
1678 (*current_target.to_can_download_tracepoint) ()
1679
1680 #define target_download_trace_state_variable(tsv) \
1681 (*current_target.to_download_trace_state_variable) (tsv)
1682
1683 #define target_enable_tracepoint(loc) \
1684 (*current_target.to_enable_tracepoint) (loc)
1685
1686 #define target_disable_tracepoint(loc) \
1687 (*current_target.to_disable_tracepoint) (loc)
1688
1689 #define target_trace_start() \
1690 (*current_target.to_trace_start) ()
1691
1692 #define target_trace_set_readonly_regions() \
1693 (*current_target.to_trace_set_readonly_regions) ()
1694
1695 #define target_get_trace_status(ts) \
1696 (*current_target.to_get_trace_status) (ts)
1697
1698 #define target_get_tracepoint_status(tp,utp) \
1699 (*current_target.to_get_tracepoint_status) (tp, utp)
1700
1701 #define target_trace_stop() \
1702 (*current_target.to_trace_stop) ()
1703
1704 #define target_trace_find(type,num,addr1,addr2,tpp) \
1705 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1706
1707 #define target_get_trace_state_variable_value(tsv,val) \
1708 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1709
1710 #define target_save_trace_data(filename) \
1711 (*current_target.to_save_trace_data) (filename)
1712
1713 #define target_upload_tracepoints(utpp) \
1714 (*current_target.to_upload_tracepoints) (utpp)
1715
1716 #define target_upload_trace_state_variables(utsvp) \
1717 (*current_target.to_upload_trace_state_variables) (utsvp)
1718
1719 #define target_get_raw_trace_data(buf,offset,len) \
1720 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1721
1722 #define target_get_min_fast_tracepoint_insn_len() \
1723 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1724
1725 #define target_set_disconnected_tracing(val) \
1726 (*current_target.to_set_disconnected_tracing) (val)
1727
1728 #define target_set_circular_trace_buffer(val) \
1729 (*current_target.to_set_circular_trace_buffer) (val)
1730
1731 #define target_set_trace_buffer_size(val) \
1732 (*current_target.to_set_trace_buffer_size) (val)
1733
1734 #define target_set_trace_notes(user,notes,stopnotes) \
1735 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1736
1737 #define target_get_tib_address(ptid, addr) \
1738 (*current_target.to_get_tib_address) ((ptid), (addr))
1739
1740 #define target_set_permissions() \
1741 (*current_target.to_set_permissions) ()
1742
1743 #define target_static_tracepoint_marker_at(addr, marker) \
1744 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1745
1746 #define target_static_tracepoint_markers_by_strid(marker_id) \
1747 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1748
1749 #define target_traceframe_info() \
1750 (*current_target.to_traceframe_info) ()
1751
1752 #define target_use_agent(use) \
1753 (*current_target.to_use_agent) (use)
1754
1755 #define target_can_use_agent() \
1756 (*current_target.to_can_use_agent) ()
1757
1758 #define target_augmented_libraries_svr4_read() \
1759 (*current_target.to_augmented_libraries_svr4_read) ()
1760
1761 /* Command logging facility. */
1762
1763 #define target_log_command(p) \
1764 do \
1765 if (current_target.to_log_command) \
1766 (*current_target.to_log_command) (p); \
1767 while (0)
1768
1769
1770 extern int target_core_of_thread (ptid_t ptid);
1771
1772 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1773 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1774 if there's a mismatch, and -1 if an error is encountered while
1775 reading memory. Throws an error if the functionality is found not
1776 to be supported by the current target. */
1777 int target_verify_memory (const gdb_byte *data,
1778 CORE_ADDR memaddr, ULONGEST size);
1779
1780 /* Routines for maintenance of the target structures...
1781
1782 complete_target_initialization: Finalize a target_ops by filling in
1783 any fields needed by the target implementation.
1784
1785 add_target: Add a target to the list of all possible targets.
1786
1787 push_target: Make this target the top of the stack of currently used
1788 targets, within its particular stratum of the stack. Result
1789 is 0 if now atop the stack, nonzero if not on top (maybe
1790 should warn user).
1791
1792 unpush_target: Remove this from the stack of currently used targets,
1793 no matter where it is on the list. Returns 0 if no
1794 change, 1 if removed from stack. */
1795
1796 extern void add_target (struct target_ops *);
1797
1798 extern void add_target_with_completer (struct target_ops *t,
1799 completer_ftype *completer);
1800
1801 extern void complete_target_initialization (struct target_ops *t);
1802
1803 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1804 for maintaining backwards compatibility when renaming targets. */
1805
1806 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1807
1808 extern void push_target (struct target_ops *);
1809
1810 extern int unpush_target (struct target_ops *);
1811
1812 extern void target_pre_inferior (int);
1813
1814 extern void target_preopen (int);
1815
1816 /* Does whatever cleanup is required to get rid of all pushed targets. */
1817 extern void pop_all_targets (void);
1818
1819 /* Like pop_all_targets, but pops only targets whose stratum is
1820 strictly above ABOVE_STRATUM. */
1821 extern void pop_all_targets_above (enum strata above_stratum);
1822
1823 extern int target_is_pushed (struct target_ops *t);
1824
1825 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1826 CORE_ADDR offset);
1827
1828 /* Struct target_section maps address ranges to file sections. It is
1829 mostly used with BFD files, but can be used without (e.g. for handling
1830 raw disks, or files not in formats handled by BFD). */
1831
1832 struct target_section
1833 {
1834 CORE_ADDR addr; /* Lowest address in section */
1835 CORE_ADDR endaddr; /* 1+highest address in section */
1836
1837 struct bfd_section *the_bfd_section;
1838
1839 /* The "owner" of the section.
1840 It can be any unique value. It is set by add_target_sections
1841 and used by remove_target_sections.
1842 For example, for executables it is a pointer to exec_bfd and
1843 for shlibs it is the so_list pointer. */
1844 void *owner;
1845 };
1846
1847 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1848
1849 struct target_section_table
1850 {
1851 struct target_section *sections;
1852 struct target_section *sections_end;
1853 };
1854
1855 /* Return the "section" containing the specified address. */
1856 struct target_section *target_section_by_addr (struct target_ops *target,
1857 CORE_ADDR addr);
1858
1859 /* Return the target section table this target (or the targets
1860 beneath) currently manipulate. */
1861
1862 extern struct target_section_table *target_get_section_table
1863 (struct target_ops *target);
1864
1865 /* From mem-break.c */
1866
1867 extern int memory_remove_breakpoint (struct gdbarch *,
1868 struct bp_target_info *);
1869
1870 extern int memory_insert_breakpoint (struct gdbarch *,
1871 struct bp_target_info *);
1872
1873 extern int default_memory_remove_breakpoint (struct gdbarch *,
1874 struct bp_target_info *);
1875
1876 extern int default_memory_insert_breakpoint (struct gdbarch *,
1877 struct bp_target_info *);
1878
1879
1880 /* From target.c */
1881
1882 extern void initialize_targets (void);
1883
1884 extern void noprocess (void) ATTRIBUTE_NORETURN;
1885
1886 extern void target_require_runnable (void);
1887
1888 extern void find_default_attach (struct target_ops *, char *, int);
1889
1890 extern void find_default_create_inferior (struct target_ops *,
1891 char *, char *, char **, int);
1892
1893 extern struct target_ops *find_target_beneath (struct target_ops *);
1894
1895 /* Read OS data object of type TYPE from the target, and return it in
1896 XML format. The result is NUL-terminated and returned as a string,
1897 allocated using xmalloc. If an error occurs or the transfer is
1898 unsupported, NULL is returned. Empty objects are returned as
1899 allocated but empty strings. */
1900
1901 extern char *target_get_osdata (const char *type);
1902
1903 \f
1904 /* Stuff that should be shared among the various remote targets. */
1905
1906 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1907 information (higher values, more information). */
1908 extern int remote_debug;
1909
1910 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1911 extern int baud_rate;
1912 /* Timeout limit for response from target. */
1913 extern int remote_timeout;
1914
1915 \f
1916
1917 /* Set the show memory breakpoints mode to show, and installs a cleanup
1918 to restore it back to the current value. */
1919 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1920
1921 extern int may_write_registers;
1922 extern int may_write_memory;
1923 extern int may_insert_breakpoints;
1924 extern int may_insert_tracepoints;
1925 extern int may_insert_fast_tracepoints;
1926 extern int may_stop;
1927
1928 extern void update_target_permissions (void);
1929
1930 \f
1931 /* Imported from machine dependent code. */
1932
1933 /* Blank target vector entries are initialized to target_ignore. */
1934 void target_ignore (void);
1935
1936 /* See to_supports_btrace in struct target_ops. */
1937 extern int target_supports_btrace (void);
1938
1939 /* See to_enable_btrace in struct target_ops. */
1940 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1941
1942 /* See to_disable_btrace in struct target_ops. */
1943 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1944
1945 /* See to_teardown_btrace in struct target_ops. */
1946 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1947
1948 /* See to_read_btrace in struct target_ops. */
1949 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
1950 enum btrace_read_type);
1951
1952 /* See to_stop_recording in struct target_ops. */
1953 extern void target_stop_recording (void);
1954
1955 /* See to_info_record in struct target_ops. */
1956 extern void target_info_record (void);
1957
1958 /* See to_save_record in struct target_ops. */
1959 extern void target_save_record (const char *filename);
1960
1961 /* Query if the target supports deleting the execution log. */
1962 extern int target_supports_delete_record (void);
1963
1964 /* See to_delete_record in struct target_ops. */
1965 extern void target_delete_record (void);
1966
1967 /* See to_record_is_replaying in struct target_ops. */
1968 extern int target_record_is_replaying (void);
1969
1970 /* See to_goto_record_begin in struct target_ops. */
1971 extern void target_goto_record_begin (void);
1972
1973 /* See to_goto_record_end in struct target_ops. */
1974 extern void target_goto_record_end (void);
1975
1976 /* See to_goto_record in struct target_ops. */
1977 extern void target_goto_record (ULONGEST insn);
1978
1979 /* See to_insn_history. */
1980 extern void target_insn_history (int size, int flags);
1981
1982 /* See to_insn_history_from. */
1983 extern void target_insn_history_from (ULONGEST from, int size, int flags);
1984
1985 /* See to_insn_history_range. */
1986 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
1987
1988 /* See to_call_history. */
1989 extern void target_call_history (int size, int flags);
1990
1991 /* See to_call_history_from. */
1992 extern void target_call_history_from (ULONGEST begin, int size, int flags);
1993
1994 /* See to_call_history_range. */
1995 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
1996
1997 #endif /* !defined (TARGET_H) */
This page took 0.079379 seconds and 4 git commands to generate.