2002-11-12 David Carlton <carlton@math.stanford.edu>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 /* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45 #include "bfd.h"
46 #include "symtab.h"
47 #include "dcache.h"
48 #include "memattr.h"
49
50 enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
58 };
59
60 enum thread_control_capabilities
61 {
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
65 };
66
67 /* Stuff for target_wait. */
68
69 /* Generally, what has the program done? */
70 enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
74
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_STOPPED,
78
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
82
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
86
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
91 TARGET_WAITKIND_FORKED,
92
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
96 TARGET_WAITKIND_VFORKED,
97
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
101 TARGET_WAITKIND_EXECD,
102
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
109
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* This is used for target async and extended-async
116 only. Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
123 like for instance the user typing. */
124 TARGET_WAITKIND_IGNORE
125 };
126
127 struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
142
143 /* Possible types of events that the inferior handler will have to
144 deal with. */
145 enum inferior_event_type
146 {
147 /* There is a request to quit the inferior, abandon it. */
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
150 being called. */
151 INF_REG_EVENT,
152 /* Deal with an error on the inferior. */
153 INF_ERROR,
154 /* We are called because a timer went off. */
155 INF_TIMER,
156 /* We are called to do stuff after the inferior stops. */
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
161 'step n' like commands. */
162 INF_EXEC_CONTINUE
163 };
164
165 /* Return the string for a signal. */
166 extern char *target_signal_to_string (enum target_signal);
167
168 /* Return the name (SIGHUP, etc.) for a signal. */
169 extern char *target_signal_to_name (enum target_signal);
170
171 /* Given a name (SIGHUP, etc.), return its signal. */
172 enum target_signal target_signal_from_name (char *);
173 \f
174
175 /* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
178 on TARGET_ACTIVITY_FD. */
179 extern int target_activity_fd;
180 /* Returns zero to leave the inferior alone, one to interrupt it. */
181 extern int (*target_activity_function) (void);
182 \f
183 struct thread_info; /* fwd decl for parameter list below: */
184
185 struct target_ops
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
190 newline, and starts with a one-line descrip-
191 tion (probably similar to to_longname). */
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
199 void (*to_resume) (ptid_t, int, enum target_signal);
200 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201 void (*to_post_wait) (ptid_t, int);
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
228
229 #if 0
230 /* Enable this after 4.12. */
231
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
238
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
246
247 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
250 #endif /* 0 */
251
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
255 int (*to_can_use_hw_breakpoint) (int, int, int);
256 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
257 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
258 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
259 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
260 int (*to_stopped_by_watchpoint) (void);
261 CORE_ADDR (*to_stopped_data_address) (void);
262 int (*to_region_size_ok_for_hw_watchpoint) (int);
263 void (*to_terminal_init) (void);
264 void (*to_terminal_inferior) (void);
265 void (*to_terminal_ours_for_output) (void);
266 void (*to_terminal_ours) (void);
267 void (*to_terminal_save_ours) (void);
268 void (*to_terminal_info) (char *, int);
269 void (*to_kill) (void);
270 void (*to_load) (char *, int);
271 int (*to_lookup_symbol) (char *, CORE_ADDR *);
272 void (*to_create_inferior) (char *, char *, char **);
273 void (*to_post_startup_inferior) (ptid_t);
274 void (*to_acknowledge_created_inferior) (int);
275 void (*to_clone_and_follow_inferior) (int, int *);
276 void (*to_post_follow_inferior_by_clone) (void);
277 int (*to_insert_fork_catchpoint) (int);
278 int (*to_remove_fork_catchpoint) (int);
279 int (*to_insert_vfork_catchpoint) (int);
280 int (*to_remove_vfork_catchpoint) (int);
281 int (*to_has_forked) (int, int *);
282 int (*to_has_vforked) (int, int *);
283 int (*to_can_follow_vfork_prior_to_exec) (void);
284 void (*to_post_follow_vfork) (int, int, int, int);
285 int (*to_insert_exec_catchpoint) (int);
286 int (*to_remove_exec_catchpoint) (int);
287 int (*to_has_execd) (int, char **);
288 int (*to_reported_exec_events_per_exec_call) (void);
289 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
290 int (*to_has_exited) (int, int, int *);
291 void (*to_mourn_inferior) (void);
292 int (*to_can_run) (void);
293 void (*to_notice_signals) (ptid_t ptid);
294 int (*to_thread_alive) (ptid_t ptid);
295 void (*to_find_new_threads) (void);
296 char *(*to_pid_to_str) (ptid_t);
297 char *(*to_extra_thread_info) (struct thread_info *);
298 void (*to_stop) (void);
299 int (*to_query) (int /*char */ , char *, char *, int *);
300 void (*to_rcmd) (char *command, struct ui_file *output);
301 struct symtab_and_line *(*to_enable_exception_callback) (enum
302 exception_event_kind,
303 int);
304 struct exception_event_record *(*to_get_current_exception_event) (void);
305 char *(*to_pid_to_exec_file) (int pid);
306 enum strata to_stratum;
307 struct target_ops
308 *DONT_USE; /* formerly to_next */
309 int to_has_all_memory;
310 int to_has_memory;
311 int to_has_stack;
312 int to_has_registers;
313 int to_has_execution;
314 int to_has_thread_control; /* control thread execution */
315 struct section_table
316 *to_sections;
317 struct section_table
318 *to_sections_end;
319 /* ASYNC target controls */
320 int (*to_can_async_p) (void);
321 int (*to_is_async_p) (void);
322 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
323 void *context);
324 int to_async_mask_value;
325 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
326 unsigned long,
327 int, int, int,
328 void *),
329 void *);
330 char * (*to_make_corefile_notes) (bfd *, int *);
331
332 /* Return the thread-local address at OFFSET in the
333 thread-local storage for the thread PTID and the shared library
334 or executable file given by OBJFILE. If that block of
335 thread-local storage hasn't been allocated yet, this function
336 may return an error. */
337 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
338 struct objfile *objfile,
339 CORE_ADDR offset);
340
341 int to_magic;
342 /* Need sub-structure for target machine related rather than comm related?
343 */
344 };
345
346 /* Magic number for checking ops size. If a struct doesn't end with this
347 number, somebody changed the declaration but didn't change all the
348 places that initialize one. */
349
350 #define OPS_MAGIC 3840
351
352 /* The ops structure for our "current" target process. This should
353 never be NULL. If there is no target, it points to the dummy_target. */
354
355 extern struct target_ops current_target;
356
357 /* An item on the target stack. */
358
359 struct target_stack_item
360 {
361 struct target_stack_item *next;
362 struct target_ops *target_ops;
363 };
364
365 /* The target stack. */
366
367 extern struct target_stack_item *target_stack;
368
369 /* Define easy words for doing these operations on our current target. */
370
371 #define target_shortname (current_target.to_shortname)
372 #define target_longname (current_target.to_longname)
373
374 /* The open routine takes the rest of the parameters from the command,
375 and (if successful) pushes a new target onto the stack.
376 Targets should supply this routine, if only to provide an error message. */
377
378 #define target_open(name, from_tty) \
379 do { \
380 dcache_invalidate (target_dcache); \
381 (*current_target.to_open) (name, from_tty); \
382 } while (0)
383
384 /* Does whatever cleanup is required for a target that we are no longer
385 going to be calling. Argument says whether we are quitting gdb and
386 should not get hung in case of errors, or whether we want a clean
387 termination even if it takes a while. This routine is automatically
388 always called just before a routine is popped off the target stack.
389 Closing file descriptors and freeing memory are typical things it should
390 do. */
391
392 #define target_close(quitting) \
393 (*current_target.to_close) (quitting)
394
395 /* Attaches to a process on the target side. Arguments are as passed
396 to the `attach' command by the user. This routine can be called
397 when the target is not on the target-stack, if the target_can_run
398 routine returns 1; in that case, it must push itself onto the stack.
399 Upon exit, the target should be ready for normal operations, and
400 should be ready to deliver the status of the process immediately
401 (without waiting) to an upcoming target_wait call. */
402
403 #define target_attach(args, from_tty) \
404 (*current_target.to_attach) (args, from_tty)
405
406 /* The target_attach operation places a process under debugger control,
407 and stops the process.
408
409 This operation provides a target-specific hook that allows the
410 necessary bookkeeping to be performed after an attach completes. */
411 #define target_post_attach(pid) \
412 (*current_target.to_post_attach) (pid)
413
414 /* Attaches to a process on the target side, if not already attached.
415 (If already attached, takes no action.)
416
417 This operation can be used to follow the child process of a fork.
418 On some targets, such child processes of an original inferior process
419 are automatically under debugger control, and thus do not require an
420 actual attach operation. */
421
422 #define target_require_attach(args, from_tty) \
423 (*current_target.to_require_attach) (args, from_tty)
424
425 /* Takes a program previously attached to and detaches it.
426 The program may resume execution (some targets do, some don't) and will
427 no longer stop on signals, etc. We better not have left any breakpoints
428 in the program or it'll die when it hits one. ARGS is arguments
429 typed by the user (e.g. a signal to send the process). FROM_TTY
430 says whether to be verbose or not. */
431
432 extern void target_detach (char *, int);
433
434 /* Detaches from a process on the target side, if not already dettached.
435 (If already detached, takes no action.)
436
437 This operation can be used to follow the parent process of a fork.
438 On some targets, such child processes of an original inferior process
439 are automatically under debugger control, and thus do require an actual
440 detach operation.
441
442 PID is the process id of the child to detach from.
443 ARGS is arguments typed by the user (e.g. a signal to send the process).
444 FROM_TTY says whether to be verbose or not. */
445
446 #define target_require_detach(pid, args, from_tty) \
447 (*current_target.to_require_detach) (pid, args, from_tty)
448
449 /* Resume execution of the target process PTID. STEP says whether to
450 single-step or to run free; SIGGNAL is the signal to be given to
451 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
452 pass TARGET_SIGNAL_DEFAULT. */
453
454 #define target_resume(ptid, step, siggnal) \
455 do { \
456 dcache_invalidate(target_dcache); \
457 (*current_target.to_resume) (ptid, step, siggnal); \
458 } while (0)
459
460 /* Wait for process pid to do something. PTID = -1 to wait for any
461 pid to do something. Return pid of child, or -1 in case of error;
462 store status through argument pointer STATUS. Note that it is
463 _NOT_ OK to throw_exception() out of target_wait() without popping
464 the debugging target from the stack; GDB isn't prepared to get back
465 to the prompt with a debugging target but without the frame cache,
466 stop_pc, etc., set up. */
467
468 #define target_wait(ptid, status) \
469 (*current_target.to_wait) (ptid, status)
470
471 /* The target_wait operation waits for a process event to occur, and
472 thereby stop the process.
473
474 On some targets, certain events may happen in sequences. gdb's
475 correct response to any single event of such a sequence may require
476 knowledge of what earlier events in the sequence have been seen.
477
478 This operation provides a target-specific hook that allows the
479 necessary bookkeeping to be performed to track such sequences. */
480
481 #define target_post_wait(ptid, status) \
482 (*current_target.to_post_wait) (ptid, status)
483
484 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
485
486 #define target_fetch_registers(regno) \
487 (*current_target.to_fetch_registers) (regno)
488
489 /* Store at least register REGNO, or all regs if REGNO == -1.
490 It can store as many registers as it wants to, so target_prepare_to_store
491 must have been previously called. Calls error() if there are problems. */
492
493 #define target_store_registers(regs) \
494 (*current_target.to_store_registers) (regs)
495
496 /* Get ready to modify the registers array. On machines which store
497 individual registers, this doesn't need to do anything. On machines
498 which store all the registers in one fell swoop, this makes sure
499 that REGISTERS contains all the registers from the program being
500 debugged. */
501
502 #define target_prepare_to_store() \
503 (*current_target.to_prepare_to_store) ()
504
505 extern DCACHE *target_dcache;
506
507 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
508 struct mem_attrib *attrib);
509
510 extern int target_read_string (CORE_ADDR, char **, int, int *);
511
512 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
513
514 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
515
516 extern int xfer_memory (CORE_ADDR, char *, int, int,
517 struct mem_attrib *, struct target_ops *);
518
519 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
520 struct mem_attrib *, struct target_ops *);
521
522 /* Make a single attempt at transfering LEN bytes. On a successful
523 transfer, the number of bytes actually transfered is returned and
524 ERR is set to 0. When a transfer fails, -1 is returned (the number
525 of bytes actually transfered is not defined) and ERR is set to a
526 non-zero error indication. */
527
528 extern int
529 target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
530
531 extern int
532 target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
533
534 extern char *child_pid_to_exec_file (int);
535
536 extern char *child_core_file_to_sym_file (char *);
537
538 #if defined(CHILD_POST_ATTACH)
539 extern void child_post_attach (int);
540 #endif
541
542 extern void child_post_wait (ptid_t, int);
543
544 extern void child_post_startup_inferior (ptid_t);
545
546 extern void child_acknowledge_created_inferior (int);
547
548 extern void child_clone_and_follow_inferior (int, int *);
549
550 extern void child_post_follow_inferior_by_clone (void);
551
552 extern int child_insert_fork_catchpoint (int);
553
554 extern int child_remove_fork_catchpoint (int);
555
556 extern int child_insert_vfork_catchpoint (int);
557
558 extern int child_remove_vfork_catchpoint (int);
559
560 extern int child_has_forked (int, int *);
561
562 extern int child_has_vforked (int, int *);
563
564 extern void child_acknowledge_created_inferior (int);
565
566 extern int child_can_follow_vfork_prior_to_exec (void);
567
568 extern void child_post_follow_vfork (int, int, int, int);
569
570 extern int child_insert_exec_catchpoint (int);
571
572 extern int child_remove_exec_catchpoint (int);
573
574 extern int child_has_execd (int, char **);
575
576 extern int child_reported_exec_events_per_exec_call (void);
577
578 extern int child_has_syscall_event (int, enum target_waitkind *, int *);
579
580 extern int child_has_exited (int, int, int *);
581
582 extern int child_thread_alive (ptid_t);
583
584 /* From exec.c */
585
586 extern void print_section_info (struct target_ops *, bfd *);
587
588 /* Print a line about the current target. */
589
590 #define target_files_info() \
591 (*current_target.to_files_info) (&current_target)
592
593 /* Insert a breakpoint at address ADDR in the target machine.
594 SAVE is a pointer to memory allocated for saving the
595 target contents. It is guaranteed by the caller to be long enough
596 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
597 an errno value. */
598
599 #define target_insert_breakpoint(addr, save) \
600 (*current_target.to_insert_breakpoint) (addr, save)
601
602 /* Remove a breakpoint at address ADDR in the target machine.
603 SAVE is a pointer to the same save area
604 that was previously passed to target_insert_breakpoint.
605 Result is 0 for success, or an errno value. */
606
607 #define target_remove_breakpoint(addr, save) \
608 (*current_target.to_remove_breakpoint) (addr, save)
609
610 /* Initialize the terminal settings we record for the inferior,
611 before we actually run the inferior. */
612
613 #define target_terminal_init() \
614 (*current_target.to_terminal_init) ()
615
616 /* Put the inferior's terminal settings into effect.
617 This is preparation for starting or resuming the inferior. */
618
619 #define target_terminal_inferior() \
620 (*current_target.to_terminal_inferior) ()
621
622 /* Put some of our terminal settings into effect,
623 enough to get proper results from our output,
624 but do not change into or out of RAW mode
625 so that no input is discarded.
626
627 After doing this, either terminal_ours or terminal_inferior
628 should be called to get back to a normal state of affairs. */
629
630 #define target_terminal_ours_for_output() \
631 (*current_target.to_terminal_ours_for_output) ()
632
633 /* Put our terminal settings into effect.
634 First record the inferior's terminal settings
635 so they can be restored properly later. */
636
637 #define target_terminal_ours() \
638 (*current_target.to_terminal_ours) ()
639
640 /* Save our terminal settings.
641 This is called from TUI after entering or leaving the curses
642 mode. Since curses modifies our terminal this call is here
643 to take this change into account. */
644
645 #define target_terminal_save_ours() \
646 (*current_target.to_terminal_save_ours) ()
647
648 /* Print useful information about our terminal status, if such a thing
649 exists. */
650
651 #define target_terminal_info(arg, from_tty) \
652 (*current_target.to_terminal_info) (arg, from_tty)
653
654 /* Kill the inferior process. Make it go away. */
655
656 #define target_kill() \
657 (*current_target.to_kill) ()
658
659 /* Load an executable file into the target process. This is expected
660 to not only bring new code into the target process, but also to
661 update GDB's symbol tables to match. */
662
663 extern void target_load (char *arg, int from_tty);
664
665 /* Look up a symbol in the target's symbol table. NAME is the symbol
666 name. ADDRP is a CORE_ADDR * pointing to where the value of the
667 symbol should be returned. The result is 0 if successful, nonzero
668 if the symbol does not exist in the target environment. This
669 function should not call error() if communication with the target
670 is interrupted, since it is called from symbol reading, but should
671 return nonzero, possibly doing a complain(). */
672
673 #define target_lookup_symbol(name, addrp) \
674 (*current_target.to_lookup_symbol) (name, addrp)
675
676 /* Start an inferior process and set inferior_ptid to its pid.
677 EXEC_FILE is the file to run.
678 ALLARGS is a string containing the arguments to the program.
679 ENV is the environment vector to pass. Errors reported with error().
680 On VxWorks and various standalone systems, we ignore exec_file. */
681
682 #define target_create_inferior(exec_file, args, env) \
683 (*current_target.to_create_inferior) (exec_file, args, env)
684
685
686 /* Some targets (such as ttrace-based HPUX) don't allow us to request
687 notification of inferior events such as fork and vork immediately
688 after the inferior is created. (This because of how gdb gets an
689 inferior created via invoking a shell to do it. In such a scenario,
690 if the shell init file has commands in it, the shell will fork and
691 exec for each of those commands, and we will see each such fork
692 event. Very bad.)
693
694 Such targets will supply an appropriate definition for this function. */
695
696 #define target_post_startup_inferior(ptid) \
697 (*current_target.to_post_startup_inferior) (ptid)
698
699 /* On some targets, the sequence of starting up an inferior requires
700 some synchronization between gdb and the new inferior process, PID. */
701
702 #define target_acknowledge_created_inferior(pid) \
703 (*current_target.to_acknowledge_created_inferior) (pid)
704
705 /* An inferior process has been created via a fork() or similar
706 system call. This function will clone the debugger, then ensure
707 that CHILD_PID is attached to by that debugger.
708
709 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
710 and FALSE otherwise. (The original and clone debuggers can use this
711 to determine which they are, if need be.)
712
713 (This is not a terribly useful feature without a GUI to prevent
714 the two debuggers from competing for shell input.) */
715
716 #define target_clone_and_follow_inferior(child_pid,followed_child) \
717 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
718
719 /* This operation is intended to be used as the last in a sequence of
720 steps taken when following both parent and child of a fork. This
721 is used by a clone of the debugger, which will follow the child.
722
723 The original debugger has detached from this process, and the
724 clone has attached to it.
725
726 On some targets, this requires a bit of cleanup to make it work
727 correctly. */
728
729 #define target_post_follow_inferior_by_clone() \
730 (*current_target.to_post_follow_inferior_by_clone) ()
731
732 /* On some targets, we can catch an inferior fork or vfork event when
733 it occurs. These functions insert/remove an already-created
734 catchpoint for such events. */
735
736 #define target_insert_fork_catchpoint(pid) \
737 (*current_target.to_insert_fork_catchpoint) (pid)
738
739 #define target_remove_fork_catchpoint(pid) \
740 (*current_target.to_remove_fork_catchpoint) (pid)
741
742 #define target_insert_vfork_catchpoint(pid) \
743 (*current_target.to_insert_vfork_catchpoint) (pid)
744
745 #define target_remove_vfork_catchpoint(pid) \
746 (*current_target.to_remove_vfork_catchpoint) (pid)
747
748 /* Returns TRUE if PID has invoked the fork() system call. And,
749 also sets CHILD_PID to the process id of the other ("child")
750 inferior process that was created by that call. */
751
752 #define target_has_forked(pid,child_pid) \
753 (*current_target.to_has_forked) (pid,child_pid)
754
755 /* Returns TRUE if PID has invoked the vfork() system call. And,
756 also sets CHILD_PID to the process id of the other ("child")
757 inferior process that was created by that call. */
758
759 #define target_has_vforked(pid,child_pid) \
760 (*current_target.to_has_vforked) (pid,child_pid)
761
762 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
763 anything to a vforked child before it subsequently calls exec().
764 On such platforms, we say that the debugger cannot "follow" the
765 child until it has vforked.
766
767 This function should be defined to return 1 by those targets
768 which can allow the debugger to immediately follow a vforked
769 child, and 0 if they cannot. */
770
771 #define target_can_follow_vfork_prior_to_exec() \
772 (*current_target.to_can_follow_vfork_prior_to_exec) ()
773
774 /* An inferior process has been created via a vfork() system call.
775 The debugger has followed the parent, the child, or both. The
776 process of setting up for that follow may have required some
777 target-specific trickery to track the sequence of reported events.
778 If so, this function should be defined by those targets that
779 require the debugger to perform cleanup or initialization after
780 the vfork follow. */
781
782 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
783 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
784
785 /* On some targets, we can catch an inferior exec event when it
786 occurs. These functions insert/remove an already-created
787 catchpoint for such events. */
788
789 #define target_insert_exec_catchpoint(pid) \
790 (*current_target.to_insert_exec_catchpoint) (pid)
791
792 #define target_remove_exec_catchpoint(pid) \
793 (*current_target.to_remove_exec_catchpoint) (pid)
794
795 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
796 And, also sets EXECD_PATHNAME to the pathname of the executable
797 file that was passed to exec(), and is now being executed. */
798
799 #define target_has_execd(pid,execd_pathname) \
800 (*current_target.to_has_execd) (pid,execd_pathname)
801
802 /* Returns the number of exec events that are reported when a process
803 invokes a flavor of the exec() system call on this target, if exec
804 events are being reported. */
805
806 #define target_reported_exec_events_per_exec_call() \
807 (*current_target.to_reported_exec_events_per_exec_call) ()
808
809 /* Returns TRUE if PID has reported a syscall event. And, also sets
810 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
811 the unique integer ID of the syscall. */
812
813 #define target_has_syscall_event(pid,kind,syscall_id) \
814 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
815
816 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
817 exit code of PID, if any. */
818
819 #define target_has_exited(pid,wait_status,exit_status) \
820 (*current_target.to_has_exited) (pid,wait_status,exit_status)
821
822 /* The debugger has completed a blocking wait() call. There is now
823 some process event that must be processed. This function should
824 be defined by those targets that require the debugger to perform
825 cleanup or internal state changes in response to the process event. */
826
827 /* The inferior process has died. Do what is right. */
828
829 #define target_mourn_inferior() \
830 (*current_target.to_mourn_inferior) ()
831
832 /* Does target have enough data to do a run or attach command? */
833
834 #define target_can_run(t) \
835 ((t)->to_can_run) ()
836
837 /* post process changes to signal handling in the inferior. */
838
839 #define target_notice_signals(ptid) \
840 (*current_target.to_notice_signals) (ptid)
841
842 /* Check to see if a thread is still alive. */
843
844 #define target_thread_alive(ptid) \
845 (*current_target.to_thread_alive) (ptid)
846
847 /* Query for new threads and add them to the thread list. */
848
849 #define target_find_new_threads() \
850 (*current_target.to_find_new_threads) (); \
851
852 /* Make target stop in a continuable fashion. (For instance, under
853 Unix, this should act like SIGSTOP). This function is normally
854 used by GUIs to implement a stop button. */
855
856 #define target_stop current_target.to_stop
857
858 /* Queries the target side for some information. The first argument is a
859 letter specifying the type of the query, which is used to determine who
860 should process it. The second argument is a string that specifies which
861 information is desired and the third is a buffer that carries back the
862 response from the target side. The fourth parameter is the size of the
863 output buffer supplied. */
864
865 #define target_query(query_type, query, resp_buffer, bufffer_size) \
866 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
867
868 /* Send the specified COMMAND to the target's monitor
869 (shell,interpreter) for execution. The result of the query is
870 placed in OUTBUF. */
871
872 #define target_rcmd(command, outbuf) \
873 (*current_target.to_rcmd) (command, outbuf)
874
875
876 /* Get the symbol information for a breakpointable routine called when
877 an exception event occurs.
878 Intended mainly for C++, and for those
879 platforms/implementations where such a callback mechanism is available,
880 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
881 different mechanisms for debugging exceptions. */
882
883 #define target_enable_exception_callback(kind, enable) \
884 (*current_target.to_enable_exception_callback) (kind, enable)
885
886 /* Get the current exception event kind -- throw or catch, etc. */
887
888 #define target_get_current_exception_event() \
889 (*current_target.to_get_current_exception_event) ()
890
891 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
892
893 #define target_next \
894 (current_target.to_next)
895
896 /* Does the target include all of memory, or only part of it? This
897 determines whether we look up the target chain for other parts of
898 memory if this target can't satisfy a request. */
899
900 #define target_has_all_memory \
901 (current_target.to_has_all_memory)
902
903 /* Does the target include memory? (Dummy targets don't.) */
904
905 #define target_has_memory \
906 (current_target.to_has_memory)
907
908 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
909 we start a process.) */
910
911 #define target_has_stack \
912 (current_target.to_has_stack)
913
914 /* Does the target have registers? (Exec files don't.) */
915
916 #define target_has_registers \
917 (current_target.to_has_registers)
918
919 /* Does the target have execution? Can we make it jump (through
920 hoops), or pop its stack a few times? FIXME: If this is to work that
921 way, it needs to check whether an inferior actually exists.
922 remote-udi.c and probably other targets can be the current target
923 when the inferior doesn't actually exist at the moment. Right now
924 this just tells us whether this target is *capable* of execution. */
925
926 #define target_has_execution \
927 (current_target.to_has_execution)
928
929 /* Can the target support the debugger control of thread execution?
930 a) Can it lock the thread scheduler?
931 b) Can it switch the currently running thread? */
932
933 #define target_can_lock_scheduler \
934 (current_target.to_has_thread_control & tc_schedlock)
935
936 #define target_can_switch_threads \
937 (current_target.to_has_thread_control & tc_switch)
938
939 /* Can the target support asynchronous execution? */
940 #define target_can_async_p() (current_target.to_can_async_p ())
941
942 /* Is the target in asynchronous execution mode? */
943 #define target_is_async_p() (current_target.to_is_async_p())
944
945 /* Put the target in async mode with the specified callback function. */
946 #define target_async(CALLBACK,CONTEXT) \
947 (current_target.to_async((CALLBACK), (CONTEXT)))
948
949 /* This is to be used ONLY within run_stack_dummy(). It
950 provides a workaround, to have inferior function calls done in
951 sychronous mode, even though the target is asynchronous. After
952 target_async_mask(0) is called, calls to target_can_async_p() will
953 return FALSE , so that target_resume() will not try to start the
954 target asynchronously. After the inferior stops, we IMMEDIATELY
955 restore the previous nature of the target, by calling
956 target_async_mask(1). After that, target_can_async_p() will return
957 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
958
959 FIXME ezannoni 1999-12-13: we won't need this once we move
960 the turning async on and off to the single execution commands,
961 from where it is done currently, in remote_resume(). */
962
963 #define target_async_mask_value \
964 (current_target.to_async_mask_value)
965
966 extern int target_async_mask (int mask);
967
968 extern void target_link (char *, CORE_ADDR *);
969
970 /* Converts a process id to a string. Usually, the string just contains
971 `process xyz', but on some systems it may contain
972 `process xyz thread abc'. */
973
974 #undef target_pid_to_str
975 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
976
977 #ifndef target_tid_to_str
978 #define target_tid_to_str(PID) \
979 target_pid_to_str (PID)
980 extern char *normal_pid_to_str (ptid_t ptid);
981 #endif
982
983 /* Return a short string describing extra information about PID,
984 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
985 is okay. */
986
987 #define target_extra_thread_info(TP) \
988 (current_target.to_extra_thread_info (TP))
989
990 /*
991 * New Objfile Event Hook:
992 *
993 * Sometimes a GDB component wants to get notified whenever a new
994 * objfile is loaded. Mainly this is used by thread-debugging
995 * implementations that need to know when symbols for the target
996 * thread implemenation are available.
997 *
998 * The old way of doing this is to define a macro 'target_new_objfile'
999 * that points to the function that you want to be called on every
1000 * objfile/shlib load.
1001 *
1002 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1003 * and point it to the function that you want to be called on every
1004 * objfile/shlib load.
1005 *
1006 * If multiple clients are willing to be cooperative, they can each
1007 * save a pointer to the previous value of target_new_objfile_hook
1008 * before modifying it, and arrange for their function to call the
1009 * previous function in the chain. In that way, multiple clients
1010 * can receive this notification (something like with signal handlers).
1011 */
1012
1013 extern void (*target_new_objfile_hook) (struct objfile *);
1014
1015 #ifndef target_pid_or_tid_to_str
1016 #define target_pid_or_tid_to_str(ID) \
1017 target_pid_to_str (ID)
1018 #endif
1019
1020 /* Attempts to find the pathname of the executable file
1021 that was run to create a specified process.
1022
1023 The process PID must be stopped when this operation is used.
1024
1025 If the executable file cannot be determined, NULL is returned.
1026
1027 Else, a pointer to a character string containing the pathname
1028 is returned. This string should be copied into a buffer by
1029 the client if the string will not be immediately used, or if
1030 it must persist. */
1031
1032 #define target_pid_to_exec_file(pid) \
1033 (current_target.to_pid_to_exec_file) (pid)
1034
1035 /*
1036 * Iterator function for target memory regions.
1037 * Calls a callback function once for each memory region 'mapped'
1038 * in the child process. Defined as a simple macro rather than
1039 * as a function macro so that it can be tested for nullity.
1040 */
1041
1042 #define target_find_memory_regions(FUNC, DATA) \
1043 (current_target.to_find_memory_regions) (FUNC, DATA)
1044
1045 /*
1046 * Compose corefile .note section.
1047 */
1048
1049 #define target_make_corefile_notes(BFD, SIZE_P) \
1050 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1051
1052 /* Thread-local values. */
1053 #define target_get_thread_local_address \
1054 (current_target.to_get_thread_local_address)
1055 #define target_get_thread_local_address_p() \
1056 (target_get_thread_local_address != NULL)
1057
1058 /* Hook to call target-dependent code after reading in a new symbol table. */
1059
1060 #ifndef TARGET_SYMFILE_POSTREAD
1061 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
1062 #endif
1063
1064 /* Hook to call target dependent code just after inferior target process has
1065 started. */
1066
1067 #ifndef TARGET_CREATE_INFERIOR_HOOK
1068 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1069 #endif
1070
1071 /* Hardware watchpoint interfaces. */
1072
1073 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1074 write). */
1075
1076 #ifndef STOPPED_BY_WATCHPOINT
1077 #define STOPPED_BY_WATCHPOINT(w) \
1078 (*current_target.to_stopped_by_watchpoint) ()
1079 #endif
1080
1081 /* HP-UX supplies these operations, which respectively disable and enable
1082 the memory page-protections that are used to implement hardware watchpoints
1083 on that platform. See wait_for_inferior's use of these. */
1084
1085 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1086 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1087 #endif
1088
1089 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1090 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1091 #endif
1092
1093 /* Provide defaults for hardware watchpoint functions. */
1094
1095 /* If the *_hw_beakpoint functions have not been defined
1096 elsewhere use the definitions in the target vector. */
1097
1098 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1099 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1100 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1101 (including this one?). OTHERTYPE is who knows what... */
1102
1103 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1104 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1105 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1106 #endif
1107
1108 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1109 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1110 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1111 #endif
1112
1113
1114 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1115 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1116 success, non-zero for failure. */
1117
1118 #ifndef target_insert_watchpoint
1119 #define target_insert_watchpoint(addr, len, type) \
1120 (*current_target.to_insert_watchpoint) (addr, len, type)
1121
1122 #define target_remove_watchpoint(addr, len, type) \
1123 (*current_target.to_remove_watchpoint) (addr, len, type)
1124 #endif
1125
1126 #ifndef target_insert_hw_breakpoint
1127 #define target_insert_hw_breakpoint(addr, save) \
1128 (*current_target.to_insert_hw_breakpoint) (addr, save)
1129
1130 #define target_remove_hw_breakpoint(addr, save) \
1131 (*current_target.to_remove_hw_breakpoint) (addr, save)
1132 #endif
1133
1134 #ifndef target_stopped_data_address
1135 #define target_stopped_data_address() \
1136 (*current_target.to_stopped_data_address) ()
1137 #endif
1138
1139 /* If defined, then we need to decr pc by this much after a hardware break-
1140 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1141
1142 #ifndef DECR_PC_AFTER_HW_BREAK
1143 #define DECR_PC_AFTER_HW_BREAK 0
1144 #endif
1145
1146 /* Sometimes gdb may pick up what appears to be a valid target address
1147 from a minimal symbol, but the value really means, essentially,
1148 "This is an index into a table which is populated when the inferior
1149 is run. Therefore, do not attempt to use this as a PC." */
1150
1151 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1152 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1153 #endif
1154
1155 /* This will only be defined by a target that supports catching vfork events,
1156 such as HP-UX.
1157
1158 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1159 child process after it has exec'd, causes the parent process to resume as
1160 well. To prevent the parent from running spontaneously, such targets should
1161 define this to a function that prevents that from happening. */
1162 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1163 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1164 #endif
1165
1166 /* This will only be defined by a target that supports catching vfork events,
1167 such as HP-UX.
1168
1169 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1170 process must be resumed when it delivers its exec event, before the parent
1171 vfork event will be delivered to us. */
1172
1173 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1174 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1175 #endif
1176
1177 /* Routines for maintenance of the target structures...
1178
1179 add_target: Add a target to the list of all possible targets.
1180
1181 push_target: Make this target the top of the stack of currently used
1182 targets, within its particular stratum of the stack. Result
1183 is 0 if now atop the stack, nonzero if not on top (maybe
1184 should warn user).
1185
1186 unpush_target: Remove this from the stack of currently used targets,
1187 no matter where it is on the list. Returns 0 if no
1188 change, 1 if removed from stack.
1189
1190 pop_target: Remove the top thing on the stack of current targets. */
1191
1192 extern void add_target (struct target_ops *);
1193
1194 extern int push_target (struct target_ops *);
1195
1196 extern int unpush_target (struct target_ops *);
1197
1198 extern void target_preopen (int);
1199
1200 extern void pop_target (void);
1201
1202 /* Struct section_table maps address ranges to file sections. It is
1203 mostly used with BFD files, but can be used without (e.g. for handling
1204 raw disks, or files not in formats handled by BFD). */
1205
1206 struct section_table
1207 {
1208 CORE_ADDR addr; /* Lowest address in section */
1209 CORE_ADDR endaddr; /* 1+highest address in section */
1210
1211 sec_ptr the_bfd_section;
1212
1213 bfd *bfd; /* BFD file pointer */
1214 };
1215
1216 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1217 Returns 0 if OK, 1 on error. */
1218
1219 extern int
1220 build_section_table (bfd *, struct section_table **, struct section_table **);
1221
1222 /* From mem-break.c */
1223
1224 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1225
1226 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1227
1228 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1229
1230 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1231
1232 extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1233 int *lenptr);
1234
1235
1236 /* From target.c */
1237
1238 extern void initialize_targets (void);
1239
1240 extern void noprocess (void);
1241
1242 extern void find_default_attach (char *, int);
1243
1244 extern void find_default_require_attach (char *, int);
1245
1246 extern void find_default_require_detach (int, char *, int);
1247
1248 extern void find_default_create_inferior (char *, char *, char **);
1249
1250 extern void find_default_clone_and_follow_inferior (int, int *);
1251
1252 extern struct target_ops *find_run_target (void);
1253
1254 extern struct target_ops *find_core_target (void);
1255
1256 extern struct target_ops *find_target_beneath (struct target_ops *);
1257
1258 extern int
1259 target_resize_to_sections (struct target_ops *target, int num_added);
1260
1261 extern void remove_target_sections (bfd *abfd);
1262
1263 \f
1264 /* Stuff that should be shared among the various remote targets. */
1265
1266 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1267 information (higher values, more information). */
1268 extern int remote_debug;
1269
1270 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1271 extern int baud_rate;
1272 /* Timeout limit for response from target. */
1273 extern int remote_timeout;
1274
1275 \f
1276 /* Functions for helping to write a native target. */
1277
1278 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1279 extern void store_waitstatus (struct target_waitstatus *, int);
1280
1281 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1282 targ_signal SIGNO has an equivalent ``host'' representation. */
1283 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1284 to the shorter target_signal_p() because it is far less ambigious.
1285 In this context ``target_signal'' refers to GDB's internal
1286 representation of the target's set of signals while ``host signal''
1287 refers to the target operating system's signal. Confused? */
1288
1289 extern int target_signal_to_host_p (enum target_signal signo);
1290
1291 /* Convert between host signal numbers and enum target_signal's.
1292 target_signal_to_host() returns 0 and prints a warning() on GDB's
1293 console if SIGNO has no equivalent host representation. */
1294 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1295 refering to the target operating system's signal numbering.
1296 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1297 gdb_signal'' would probably be better as it is refering to GDB's
1298 internal representation of a target operating system's signal. */
1299
1300 extern enum target_signal target_signal_from_host (int);
1301 extern int target_signal_to_host (enum target_signal);
1302
1303 /* Convert from a number used in a GDB command to an enum target_signal. */
1304 extern enum target_signal target_signal_from_command (int);
1305
1306 /* Any target can call this to switch to remote protocol (in remote.c). */
1307 extern void push_remote_target (char *name, int from_tty);
1308 \f
1309 /* Imported from machine dependent code */
1310
1311 /* Blank target vector entries are initialized to target_ignore. */
1312 void target_ignore (void);
1313
1314 #endif /* !defined (TARGET_H) */
This page took 0.062116 seconds and 4 git commands to generate.