5d5802ef098be80b9e81970bd6f7ebdcddd86406
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int);
407 void (*to_post_attach) (struct target_ops *, int);
408 void (*to_detach) (struct target_ops *ops, const char *, int);
409 void (*to_disconnect) (struct target_ops *, char *, int);
410 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
411 TARGET_DEFAULT_NORETURN (noprocess ());
412 ptid_t (*to_wait) (struct target_ops *,
413 ptid_t, struct target_waitstatus *, int)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
416 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
419
420 /* Transfer LEN bytes of memory between GDB address MYADDR and
421 target address MEMADDR. If WRITE, transfer them to the target, else
422 transfer them from the target. TARGET is the target from which we
423 get this function.
424
425 Return value, N, is one of the following:
426
427 0 means that we can't handle this. If errno has been set, it is the
428 error which prevented us from doing it (FIXME: What about bfd_error?).
429
430 positive (call it N) means that we have transferred N bytes
431 starting at MEMADDR. We might be able to handle more bytes
432 beyond this length, but no promises.
433
434 negative (call its absolute value N) means that we cannot
435 transfer right at MEMADDR, but we could transfer at least
436 something at MEMADDR + N.
437
438 NOTE: cagney/2004-10-01: This has been entirely superseeded by
439 to_xfer_partial and inferior inheritance. */
440
441 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
442 int len, int write,
443 struct mem_attrib *attrib,
444 struct target_ops *target);
445
446 void (*to_files_info) (struct target_ops *);
447 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
448 struct bp_target_info *)
449 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
450 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
451 struct bp_target_info *)
452 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
453 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct target_ops *,
456 struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_hw_breakpoint) (struct target_ops *,
458 struct gdbarch *, struct bp_target_info *);
459
460 /* Documentation of what the two routines below are expected to do is
461 provided with the corresponding target_* macros. */
462 int (*to_remove_watchpoint) (struct target_ops *,
463 CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (struct target_ops *,
465 CORE_ADDR, int, int, struct expression *);
466
467 int (*to_insert_mask_watchpoint) (struct target_ops *,
468 CORE_ADDR, CORE_ADDR, int);
469 int (*to_remove_mask_watchpoint) (struct target_ops *,
470 CORE_ADDR, CORE_ADDR, int);
471 int (*to_stopped_by_watchpoint) (struct target_ops *)
472 TARGET_DEFAULT_RETURN (0);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
476 TARGET_DEFAULT_RETURN (0);
477 int (*to_watchpoint_addr_within_range) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479
480 /* Documentation of this routine is provided with the corresponding
481 target_* macro. */
482 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
483 CORE_ADDR, int);
484
485 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
486 CORE_ADDR, int, int,
487 struct expression *);
488 int (*to_masked_watch_num_registers) (struct target_ops *,
489 CORE_ADDR, CORE_ADDR);
490 void (*to_terminal_init) (struct target_ops *);
491 void (*to_terminal_inferior) (struct target_ops *);
492 void (*to_terminal_ours_for_output) (struct target_ops *);
493 void (*to_terminal_ours) (struct target_ops *);
494 void (*to_terminal_save_ours) (struct target_ops *);
495 void (*to_terminal_info) (struct target_ops *, const char *, int);
496 void (*to_kill) (struct target_ops *);
497 void (*to_load) (struct target_ops *, char *, int);
498 void (*to_create_inferior) (struct target_ops *,
499 char *, char *, char **, int);
500 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
501 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
502 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
503 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
504 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
505 int (*to_follow_fork) (struct target_ops *, int, int);
506 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
507 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
508 int (*to_set_syscall_catchpoint) (struct target_ops *,
509 int, int, int, int, int *);
510 int (*to_has_exited) (struct target_ops *, int, int, int *);
511 void (*to_mourn_inferior) (struct target_ops *);
512 int (*to_can_run) (struct target_ops *);
513
514 /* Documentation of this routine is provided with the corresponding
515 target_* macro. */
516 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
517
518 /* Documentation of this routine is provided with the
519 corresponding target_* function. */
520 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
521
522 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
523 void (*to_find_new_threads) (struct target_ops *);
524 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
525 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
526 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
527 void (*to_stop) (struct target_ops *, ptid_t);
528 void (*to_rcmd) (struct target_ops *,
529 char *command, struct ui_file *output);
530 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
531 void (*to_log_command) (struct target_ops *, const char *);
532 struct target_section_table *(*to_get_section_table) (struct target_ops *);
533 enum strata to_stratum;
534 int (*to_has_all_memory) (struct target_ops *);
535 int (*to_has_memory) (struct target_ops *);
536 int (*to_has_stack) (struct target_ops *);
537 int (*to_has_registers) (struct target_ops *);
538 int (*to_has_execution) (struct target_ops *, ptid_t);
539 int to_has_thread_control; /* control thread execution */
540 int to_attach_no_wait;
541 /* ASYNC target controls */
542 int (*to_can_async_p) (struct target_ops *)
543 TARGET_DEFAULT_FUNC (find_default_can_async_p);
544 int (*to_is_async_p) (struct target_ops *)
545 TARGET_DEFAULT_FUNC (find_default_is_async_p);
546 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
547 TARGET_DEFAULT_NORETURN (tcomplain ());
548 int (*to_supports_non_stop) (struct target_ops *);
549 /* find_memory_regions support method for gcore */
550 int (*to_find_memory_regions) (struct target_ops *,
551 find_memory_region_ftype func, void *data);
552 /* make_corefile_notes support method for gcore */
553 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
554 /* get_bookmark support method for bookmarks */
555 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
556 /* goto_bookmark support method for bookmarks */
557 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
558 /* Return the thread-local address at OFFSET in the
559 thread-local storage for the thread PTID and the shared library
560 or executable file given by OBJFILE. If that block of
561 thread-local storage hasn't been allocated yet, this function
562 may return an error. */
563 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
564 ptid_t ptid,
565 CORE_ADDR load_module_addr,
566 CORE_ADDR offset);
567
568 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
569 OBJECT. The OFFSET, for a seekable object, specifies the
570 starting point. The ANNEX can be used to provide additional
571 data-specific information to the target.
572
573 Return the transferred status, error or OK (an
574 'enum target_xfer_status' value). Save the number of bytes
575 actually transferred in *XFERED_LEN if transfer is successful
576 (TARGET_XFER_OK) or the number unavailable bytes if the requested
577 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
578 smaller than LEN does not indicate the end of the object, only
579 the end of the transfer; higher level code should continue
580 transferring if desired. This is handled in target.c.
581
582 The interface does not support a "retry" mechanism. Instead it
583 assumes that at least one byte will be transfered on each
584 successful call.
585
586 NOTE: cagney/2003-10-17: The current interface can lead to
587 fragmented transfers. Lower target levels should not implement
588 hacks, such as enlarging the transfer, in an attempt to
589 compensate for this. Instead, the target stack should be
590 extended so that it implements supply/collect methods and a
591 look-aside object cache. With that available, the lowest
592 target can safely and freely "push" data up the stack.
593
594 See target_read and target_write for more information. One,
595 and only one, of readbuf or writebuf must be non-NULL. */
596
597 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
598 enum target_object object,
599 const char *annex,
600 gdb_byte *readbuf,
601 const gdb_byte *writebuf,
602 ULONGEST offset, ULONGEST len,
603 ULONGEST *xfered_len)
604 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
605
606 /* Returns the memory map for the target. A return value of NULL
607 means that no memory map is available. If a memory address
608 does not fall within any returned regions, it's assumed to be
609 RAM. The returned memory regions should not overlap.
610
611 The order of regions does not matter; target_memory_map will
612 sort regions by starting address. For that reason, this
613 function should not be called directly except via
614 target_memory_map.
615
616 This method should not cache data; if the memory map could
617 change unexpectedly, it should be invalidated, and higher
618 layers will re-fetch it. */
619 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
620
621 /* Erases the region of flash memory starting at ADDRESS, of
622 length LENGTH.
623
624 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
625 on flash block boundaries, as reported by 'to_memory_map'. */
626 void (*to_flash_erase) (struct target_ops *,
627 ULONGEST address, LONGEST length);
628
629 /* Finishes a flash memory write sequence. After this operation
630 all flash memory should be available for writing and the result
631 of reading from areas written by 'to_flash_write' should be
632 equal to what was written. */
633 void (*to_flash_done) (struct target_ops *);
634
635 /* Describe the architecture-specific features of this target.
636 Returns the description found, or NULL if no description
637 was available. */
638 const struct target_desc *(*to_read_description) (struct target_ops *ops);
639
640 /* Build the PTID of the thread on which a given task is running,
641 based on LWP and THREAD. These values are extracted from the
642 task Private_Data section of the Ada Task Control Block, and
643 their interpretation depends on the target. */
644 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
645 long lwp, long thread);
646
647 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
648 Return 0 if *READPTR is already at the end of the buffer.
649 Return -1 if there is insufficient buffer for a whole entry.
650 Return 1 if an entry was read into *TYPEP and *VALP. */
651 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
652 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
653
654 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
655 sequence of bytes in PATTERN with length PATTERN_LEN.
656
657 The result is 1 if found, 0 if not found, and -1 if there was an error
658 requiring halting of the search (e.g. memory read error).
659 If the pattern is found the address is recorded in FOUND_ADDRP. */
660 int (*to_search_memory) (struct target_ops *ops,
661 CORE_ADDR start_addr, ULONGEST search_space_len,
662 const gdb_byte *pattern, ULONGEST pattern_len,
663 CORE_ADDR *found_addrp);
664
665 /* Can target execute in reverse? */
666 int (*to_can_execute_reverse) (struct target_ops *);
667
668 /* The direction the target is currently executing. Must be
669 implemented on targets that support reverse execution and async
670 mode. The default simply returns forward execution. */
671 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
672
673 /* Does this target support debugging multiple processes
674 simultaneously? */
675 int (*to_supports_multi_process) (struct target_ops *);
676
677 /* Does this target support enabling and disabling tracepoints while a trace
678 experiment is running? */
679 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
680
681 /* Does this target support disabling address space randomization? */
682 int (*to_supports_disable_randomization) (struct target_ops *);
683
684 /* Does this target support the tracenz bytecode for string collection? */
685 int (*to_supports_string_tracing) (struct target_ops *);
686
687 /* Does this target support evaluation of breakpoint conditions on its
688 end? */
689 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
690
691 /* Does this target support evaluation of breakpoint commands on its
692 end? */
693 int (*to_can_run_breakpoint_commands) (struct target_ops *);
694
695 /* Determine current architecture of thread PTID.
696
697 The target is supposed to determine the architecture of the code where
698 the target is currently stopped at (on Cell, if a target is in spu_run,
699 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
700 This is architecture used to perform decr_pc_after_break adjustment,
701 and also determines the frame architecture of the innermost frame.
702 ptrace operations need to operate according to target_gdbarch ().
703
704 The default implementation always returns target_gdbarch (). */
705 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
706
707 /* Determine current address space of thread PTID.
708
709 The default implementation always returns the inferior's
710 address space. */
711 struct address_space *(*to_thread_address_space) (struct target_ops *,
712 ptid_t);
713
714 /* Target file operations. */
715
716 /* Open FILENAME on the target, using FLAGS and MODE. Return a
717 target file descriptor, or -1 if an error occurs (and set
718 *TARGET_ERRNO). */
719 int (*to_fileio_open) (struct target_ops *,
720 const char *filename, int flags, int mode,
721 int *target_errno);
722
723 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
724 Return the number of bytes written, or -1 if an error occurs
725 (and set *TARGET_ERRNO). */
726 int (*to_fileio_pwrite) (struct target_ops *,
727 int fd, const gdb_byte *write_buf, int len,
728 ULONGEST offset, int *target_errno);
729
730 /* Read up to LEN bytes FD on the target into READ_BUF.
731 Return the number of bytes read, or -1 if an error occurs
732 (and set *TARGET_ERRNO). */
733 int (*to_fileio_pread) (struct target_ops *,
734 int fd, gdb_byte *read_buf, int len,
735 ULONGEST offset, int *target_errno);
736
737 /* Close FD on the target. Return 0, or -1 if an error occurs
738 (and set *TARGET_ERRNO). */
739 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
740
741 /* Unlink FILENAME on the target. Return 0, or -1 if an error
742 occurs (and set *TARGET_ERRNO). */
743 int (*to_fileio_unlink) (struct target_ops *,
744 const char *filename, int *target_errno);
745
746 /* Read value of symbolic link FILENAME on the target. Return a
747 null-terminated string allocated via xmalloc, or NULL if an error
748 occurs (and set *TARGET_ERRNO). */
749 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
750
751
752 /* Implement the "info proc" command. */
753 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
754
755 /* Tracepoint-related operations. */
756
757 /* Prepare the target for a tracing run. */
758 void (*to_trace_init) (void);
759
760 /* Send full details of a tracepoint location to the target. */
761 void (*to_download_tracepoint) (struct bp_location *location);
762
763 /* Is the target able to download tracepoint locations in current
764 state? */
765 int (*to_can_download_tracepoint) (void);
766
767 /* Send full details of a trace state variable to the target. */
768 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
769
770 /* Enable a tracepoint on the target. */
771 void (*to_enable_tracepoint) (struct bp_location *location);
772
773 /* Disable a tracepoint on the target. */
774 void (*to_disable_tracepoint) (struct bp_location *location);
775
776 /* Inform the target info of memory regions that are readonly
777 (such as text sections), and so it should return data from
778 those rather than look in the trace buffer. */
779 void (*to_trace_set_readonly_regions) (void);
780
781 /* Start a trace run. */
782 void (*to_trace_start) (void);
783
784 /* Get the current status of a tracing run. */
785 int (*to_get_trace_status) (struct trace_status *ts);
786
787 void (*to_get_tracepoint_status) (struct breakpoint *tp,
788 struct uploaded_tp *utp);
789
790 /* Stop a trace run. */
791 void (*to_trace_stop) (void);
792
793 /* Ask the target to find a trace frame of the given type TYPE,
794 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
795 number of the trace frame, and also the tracepoint number at
796 TPP. If no trace frame matches, return -1. May throw if the
797 operation fails. */
798 int (*to_trace_find) (enum trace_find_type type, int num,
799 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
800
801 /* Get the value of the trace state variable number TSV, returning
802 1 if the value is known and writing the value itself into the
803 location pointed to by VAL, else returning 0. */
804 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
805
806 int (*to_save_trace_data) (const char *filename);
807
808 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
809
810 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
811
812 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
813 ULONGEST offset, LONGEST len);
814
815 /* Get the minimum length of instruction on which a fast tracepoint
816 may be set on the target. If this operation is unsupported,
817 return -1. If for some reason the minimum length cannot be
818 determined, return 0. */
819 int (*to_get_min_fast_tracepoint_insn_len) (void);
820
821 /* Set the target's tracing behavior in response to unexpected
822 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
823 void (*to_set_disconnected_tracing) (int val);
824 void (*to_set_circular_trace_buffer) (int val);
825 /* Set the size of trace buffer in the target. */
826 void (*to_set_trace_buffer_size) (LONGEST val);
827
828 /* Add/change textual notes about the trace run, returning 1 if
829 successful, 0 otherwise. */
830 int (*to_set_trace_notes) (const char *user, const char *notes,
831 const char *stopnotes);
832
833 /* Return the processor core that thread PTID was last seen on.
834 This information is updated only when:
835 - update_thread_list is called
836 - thread stops
837 If the core cannot be determined -- either for the specified
838 thread, or right now, or in this debug session, or for this
839 target -- return -1. */
840 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
841
842 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
843 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
844 a match, 0 if there's a mismatch, and -1 if an error is
845 encountered while reading memory. */
846 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
847 CORE_ADDR memaddr, ULONGEST size);
848
849 /* Return the address of the start of the Thread Information Block
850 a Windows OS specific feature. */
851 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
852
853 /* Send the new settings of write permission variables. */
854 void (*to_set_permissions) (void);
855
856 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
857 with its details. Return 1 on success, 0 on failure. */
858 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
859 struct static_tracepoint_marker *marker);
860
861 /* Return a vector of all tracepoints markers string id ID, or all
862 markers if ID is NULL. */
863 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
864 (const char *id);
865
866 /* Return a traceframe info object describing the current
867 traceframe's contents. If the target doesn't support
868 traceframe info, return NULL. If the current traceframe is not
869 selected (the current traceframe number is -1), the target can
870 choose to return either NULL or an empty traceframe info. If
871 NULL is returned, for example in remote target, GDB will read
872 from the live inferior. If an empty traceframe info is
873 returned, for example in tfile target, which means the
874 traceframe info is available, but the requested memory is not
875 available in it. GDB will try to see if the requested memory
876 is available in the read-only sections. This method should not
877 cache data; higher layers take care of caching, invalidating,
878 and re-fetching when necessary. */
879 struct traceframe_info *(*to_traceframe_info) (void);
880
881 /* Ask the target to use or not to use agent according to USE. Return 1
882 successful, 0 otherwise. */
883 int (*to_use_agent) (int use);
884
885 /* Is the target able to use agent in current state? */
886 int (*to_can_use_agent) (void);
887
888 /* Check whether the target supports branch tracing. */
889 int (*to_supports_btrace) (struct target_ops *)
890 TARGET_DEFAULT_RETURN (0);
891
892 /* Enable branch tracing for PTID and allocate a branch trace target
893 information struct for reading and for disabling branch trace. */
894 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
895
896 /* Disable branch tracing and deallocate TINFO. */
897 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
898
899 /* Disable branch tracing and deallocate TINFO. This function is similar
900 to to_disable_btrace, except that it is called during teardown and is
901 only allowed to perform actions that are safe. A counter-example would
902 be attempting to talk to a remote target. */
903 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
904
905 /* Read branch trace data for the thread indicated by BTINFO into DATA.
906 DATA is cleared before new trace is added.
907 The branch trace will start with the most recent block and continue
908 towards older blocks. */
909 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
910 struct btrace_target_info *btinfo,
911 enum btrace_read_type type);
912
913 /* Stop trace recording. */
914 void (*to_stop_recording) (void);
915
916 /* Print information about the recording. */
917 void (*to_info_record) (void);
918
919 /* Save the recorded execution trace into a file. */
920 void (*to_save_record) (const char *filename);
921
922 /* Delete the recorded execution trace from the current position onwards. */
923 void (*to_delete_record) (void);
924
925 /* Query if the record target is currently replaying. */
926 int (*to_record_is_replaying) (void);
927
928 /* Go to the begin of the execution trace. */
929 void (*to_goto_record_begin) (void);
930
931 /* Go to the end of the execution trace. */
932 void (*to_goto_record_end) (void);
933
934 /* Go to a specific location in the recorded execution trace. */
935 void (*to_goto_record) (ULONGEST insn);
936
937 /* Disassemble SIZE instructions in the recorded execution trace from
938 the current position.
939 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
940 disassemble SIZE succeeding instructions. */
941 void (*to_insn_history) (int size, int flags);
942
943 /* Disassemble SIZE instructions in the recorded execution trace around
944 FROM.
945 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
946 disassemble SIZE instructions after FROM. */
947 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
948
949 /* Disassemble a section of the recorded execution trace from instruction
950 BEGIN (inclusive) to instruction END (inclusive). */
951 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
952
953 /* Print a function trace of the recorded execution trace.
954 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
955 succeeding functions. */
956 void (*to_call_history) (int size, int flags);
957
958 /* Print a function trace of the recorded execution trace starting
959 at function FROM.
960 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
961 SIZE functions after FROM. */
962 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
963
964 /* Print a function trace of an execution trace section from function BEGIN
965 (inclusive) to function END (inclusive). */
966 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
967
968 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
969 non-empty annex. */
970 int (*to_augmented_libraries_svr4_read) (void);
971
972 /* Those unwinders are tried before any other arch unwinders. Use NULL if
973 it is not used. */
974 const struct frame_unwind *to_get_unwinder;
975 const struct frame_unwind *to_get_tailcall_unwinder;
976
977 /* Return the number of bytes by which the PC needs to be decremented
978 after executing a breakpoint instruction.
979 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
980 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
981 struct gdbarch *gdbarch);
982
983 int to_magic;
984 /* Need sub-structure for target machine related rather than comm related?
985 */
986 };
987
988 /* Magic number for checking ops size. If a struct doesn't end with this
989 number, somebody changed the declaration but didn't change all the
990 places that initialize one. */
991
992 #define OPS_MAGIC 3840
993
994 /* The ops structure for our "current" target process. This should
995 never be NULL. If there is no target, it points to the dummy_target. */
996
997 extern struct target_ops current_target;
998
999 /* Define easy words for doing these operations on our current target. */
1000
1001 #define target_shortname (current_target.to_shortname)
1002 #define target_longname (current_target.to_longname)
1003
1004 /* Does whatever cleanup is required for a target that we are no
1005 longer going to be calling. This routine is automatically always
1006 called after popping the target off the target stack - the target's
1007 own methods are no longer available through the target vector.
1008 Closing file descriptors and freeing all memory allocated memory are
1009 typical things it should do. */
1010
1011 void target_close (struct target_ops *targ);
1012
1013 /* Attaches to a process on the target side. Arguments are as passed
1014 to the `attach' command by the user. This routine can be called
1015 when the target is not on the target-stack, if the target_can_run
1016 routine returns 1; in that case, it must push itself onto the stack.
1017 Upon exit, the target should be ready for normal operations, and
1018 should be ready to deliver the status of the process immediately
1019 (without waiting) to an upcoming target_wait call. */
1020
1021 void target_attach (char *, int);
1022
1023 /* Some targets don't generate traps when attaching to the inferior,
1024 or their target_attach implementation takes care of the waiting.
1025 These targets must set to_attach_no_wait. */
1026
1027 #define target_attach_no_wait \
1028 (current_target.to_attach_no_wait)
1029
1030 /* The target_attach operation places a process under debugger control,
1031 and stops the process.
1032
1033 This operation provides a target-specific hook that allows the
1034 necessary bookkeeping to be performed after an attach completes. */
1035 #define target_post_attach(pid) \
1036 (*current_target.to_post_attach) (&current_target, pid)
1037
1038 /* Takes a program previously attached to and detaches it.
1039 The program may resume execution (some targets do, some don't) and will
1040 no longer stop on signals, etc. We better not have left any breakpoints
1041 in the program or it'll die when it hits one. ARGS is arguments
1042 typed by the user (e.g. a signal to send the process). FROM_TTY
1043 says whether to be verbose or not. */
1044
1045 extern void target_detach (const char *, int);
1046
1047 /* Disconnect from the current target without resuming it (leaving it
1048 waiting for a debugger). */
1049
1050 extern void target_disconnect (char *, int);
1051
1052 /* Resume execution of the target process PTID (or a group of
1053 threads). STEP says whether to single-step or to run free; SIGGNAL
1054 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1055 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1056 PTID means `step/resume only this process id'. A wildcard PTID
1057 (all threads, or all threads of process) means `step/resume
1058 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1059 matches) resume with their 'thread->suspend.stop_signal' signal
1060 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1061 if in "no pass" state. */
1062
1063 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1064
1065 /* Wait for process pid to do something. PTID = -1 to wait for any
1066 pid to do something. Return pid of child, or -1 in case of error;
1067 store status through argument pointer STATUS. Note that it is
1068 _NOT_ OK to throw_exception() out of target_wait() without popping
1069 the debugging target from the stack; GDB isn't prepared to get back
1070 to the prompt with a debugging target but without the frame cache,
1071 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1072 options. */
1073
1074 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1075 int options);
1076
1077 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1078
1079 extern void target_fetch_registers (struct regcache *regcache, int regno);
1080
1081 /* Store at least register REGNO, or all regs if REGNO == -1.
1082 It can store as many registers as it wants to, so target_prepare_to_store
1083 must have been previously called. Calls error() if there are problems. */
1084
1085 extern void target_store_registers (struct regcache *regcache, int regs);
1086
1087 /* Get ready to modify the registers array. On machines which store
1088 individual registers, this doesn't need to do anything. On machines
1089 which store all the registers in one fell swoop, this makes sure
1090 that REGISTERS contains all the registers from the program being
1091 debugged. */
1092
1093 #define target_prepare_to_store(regcache) \
1094 (*current_target.to_prepare_to_store) (&current_target, regcache)
1095
1096 /* Determine current address space of thread PTID. */
1097
1098 struct address_space *target_thread_address_space (ptid_t);
1099
1100 /* Implement the "info proc" command. This returns one if the request
1101 was handled, and zero otherwise. It can also throw an exception if
1102 an error was encountered while attempting to handle the
1103 request. */
1104
1105 int target_info_proc (char *, enum info_proc_what);
1106
1107 /* Returns true if this target can debug multiple processes
1108 simultaneously. */
1109
1110 #define target_supports_multi_process() \
1111 (*current_target.to_supports_multi_process) (&current_target)
1112
1113 /* Returns true if this target can disable address space randomization. */
1114
1115 int target_supports_disable_randomization (void);
1116
1117 /* Returns true if this target can enable and disable tracepoints
1118 while a trace experiment is running. */
1119
1120 #define target_supports_enable_disable_tracepoint() \
1121 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1122
1123 #define target_supports_string_tracing() \
1124 (*current_target.to_supports_string_tracing) (&current_target)
1125
1126 /* Returns true if this target can handle breakpoint conditions
1127 on its end. */
1128
1129 #define target_supports_evaluation_of_breakpoint_conditions() \
1130 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1131
1132 /* Returns true if this target can handle breakpoint commands
1133 on its end. */
1134
1135 #define target_can_run_breakpoint_commands() \
1136 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1137
1138 extern int target_read_string (CORE_ADDR, char **, int, int *);
1139
1140 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1141 ssize_t len);
1142
1143 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1144 ssize_t len);
1145
1146 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1147
1148 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1149
1150 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1151 ssize_t len);
1152
1153 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1154 ssize_t len);
1155
1156 /* Fetches the target's memory map. If one is found it is sorted
1157 and returned, after some consistency checking. Otherwise, NULL
1158 is returned. */
1159 VEC(mem_region_s) *target_memory_map (void);
1160
1161 /* Erase the specified flash region. */
1162 void target_flash_erase (ULONGEST address, LONGEST length);
1163
1164 /* Finish a sequence of flash operations. */
1165 void target_flash_done (void);
1166
1167 /* Describes a request for a memory write operation. */
1168 struct memory_write_request
1169 {
1170 /* Begining address that must be written. */
1171 ULONGEST begin;
1172 /* Past-the-end address. */
1173 ULONGEST end;
1174 /* The data to write. */
1175 gdb_byte *data;
1176 /* A callback baton for progress reporting for this request. */
1177 void *baton;
1178 };
1179 typedef struct memory_write_request memory_write_request_s;
1180 DEF_VEC_O(memory_write_request_s);
1181
1182 /* Enumeration specifying different flash preservation behaviour. */
1183 enum flash_preserve_mode
1184 {
1185 flash_preserve,
1186 flash_discard
1187 };
1188
1189 /* Write several memory blocks at once. This version can be more
1190 efficient than making several calls to target_write_memory, in
1191 particular because it can optimize accesses to flash memory.
1192
1193 Moreover, this is currently the only memory access function in gdb
1194 that supports writing to flash memory, and it should be used for
1195 all cases where access to flash memory is desirable.
1196
1197 REQUESTS is the vector (see vec.h) of memory_write_request.
1198 PRESERVE_FLASH_P indicates what to do with blocks which must be
1199 erased, but not completely rewritten.
1200 PROGRESS_CB is a function that will be periodically called to provide
1201 feedback to user. It will be called with the baton corresponding
1202 to the request currently being written. It may also be called
1203 with a NULL baton, when preserved flash sectors are being rewritten.
1204
1205 The function returns 0 on success, and error otherwise. */
1206 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1207 enum flash_preserve_mode preserve_flash_p,
1208 void (*progress_cb) (ULONGEST, void *));
1209
1210 /* Print a line about the current target. */
1211
1212 #define target_files_info() \
1213 (*current_target.to_files_info) (&current_target)
1214
1215 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1216 the target machine. Returns 0 for success, and returns non-zero or
1217 throws an error (with a detailed failure reason error code and
1218 message) otherwise. */
1219
1220 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1221 struct bp_target_info *bp_tgt);
1222
1223 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1224 machine. Result is 0 for success, non-zero for error. */
1225
1226 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1227 struct bp_target_info *bp_tgt);
1228
1229 /* Initialize the terminal settings we record for the inferior,
1230 before we actually run the inferior. */
1231
1232 #define target_terminal_init() \
1233 (*current_target.to_terminal_init) (&current_target)
1234
1235 /* Put the inferior's terminal settings into effect.
1236 This is preparation for starting or resuming the inferior. */
1237
1238 extern void target_terminal_inferior (void);
1239
1240 /* Put some of our terminal settings into effect,
1241 enough to get proper results from our output,
1242 but do not change into or out of RAW mode
1243 so that no input is discarded.
1244
1245 After doing this, either terminal_ours or terminal_inferior
1246 should be called to get back to a normal state of affairs. */
1247
1248 #define target_terminal_ours_for_output() \
1249 (*current_target.to_terminal_ours_for_output) (&current_target)
1250
1251 /* Put our terminal settings into effect.
1252 First record the inferior's terminal settings
1253 so they can be restored properly later. */
1254
1255 #define target_terminal_ours() \
1256 (*current_target.to_terminal_ours) (&current_target)
1257
1258 /* Save our terminal settings.
1259 This is called from TUI after entering or leaving the curses
1260 mode. Since curses modifies our terminal this call is here
1261 to take this change into account. */
1262
1263 #define target_terminal_save_ours() \
1264 (*current_target.to_terminal_save_ours) (&current_target)
1265
1266 /* Print useful information about our terminal status, if such a thing
1267 exists. */
1268
1269 #define target_terminal_info(arg, from_tty) \
1270 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1271
1272 /* Kill the inferior process. Make it go away. */
1273
1274 extern void target_kill (void);
1275
1276 /* Load an executable file into the target process. This is expected
1277 to not only bring new code into the target process, but also to
1278 update GDB's symbol tables to match.
1279
1280 ARG contains command-line arguments, to be broken down with
1281 buildargv (). The first non-switch argument is the filename to
1282 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1283 0)), which is an offset to apply to the load addresses of FILE's
1284 sections. The target may define switches, or other non-switch
1285 arguments, as it pleases. */
1286
1287 extern void target_load (char *arg, int from_tty);
1288
1289 /* Start an inferior process and set inferior_ptid to its pid.
1290 EXEC_FILE is the file to run.
1291 ALLARGS is a string containing the arguments to the program.
1292 ENV is the environment vector to pass. Errors reported with error().
1293 On VxWorks and various standalone systems, we ignore exec_file. */
1294
1295 void target_create_inferior (char *exec_file, char *args,
1296 char **env, int from_tty);
1297
1298 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1299 notification of inferior events such as fork and vork immediately
1300 after the inferior is created. (This because of how gdb gets an
1301 inferior created via invoking a shell to do it. In such a scenario,
1302 if the shell init file has commands in it, the shell will fork and
1303 exec for each of those commands, and we will see each such fork
1304 event. Very bad.)
1305
1306 Such targets will supply an appropriate definition for this function. */
1307
1308 #define target_post_startup_inferior(ptid) \
1309 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1310
1311 /* On some targets, we can catch an inferior fork or vfork event when
1312 it occurs. These functions insert/remove an already-created
1313 catchpoint for such events. They return 0 for success, 1 if the
1314 catchpoint type is not supported and -1 for failure. */
1315
1316 #define target_insert_fork_catchpoint(pid) \
1317 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1318
1319 #define target_remove_fork_catchpoint(pid) \
1320 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1321
1322 #define target_insert_vfork_catchpoint(pid) \
1323 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1324
1325 #define target_remove_vfork_catchpoint(pid) \
1326 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1327
1328 /* If the inferior forks or vforks, this function will be called at
1329 the next resume in order to perform any bookkeeping and fiddling
1330 necessary to continue debugging either the parent or child, as
1331 requested, and releasing the other. Information about the fork
1332 or vfork event is available via get_last_target_status ().
1333 This function returns 1 if the inferior should not be resumed
1334 (i.e. there is another event pending). */
1335
1336 int target_follow_fork (int follow_child, int detach_fork);
1337
1338 /* On some targets, we can catch an inferior exec event when it
1339 occurs. These functions insert/remove an already-created
1340 catchpoint for such events. They return 0 for success, 1 if the
1341 catchpoint type is not supported and -1 for failure. */
1342
1343 #define target_insert_exec_catchpoint(pid) \
1344 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1345
1346 #define target_remove_exec_catchpoint(pid) \
1347 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1348
1349 /* Syscall catch.
1350
1351 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1352 If NEEDED is zero, it means the target can disable the mechanism to
1353 catch system calls because there are no more catchpoints of this type.
1354
1355 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1356 being requested. In this case, both TABLE_SIZE and TABLE should
1357 be ignored.
1358
1359 TABLE_SIZE is the number of elements in TABLE. It only matters if
1360 ANY_COUNT is zero.
1361
1362 TABLE is an array of ints, indexed by syscall number. An element in
1363 this array is nonzero if that syscall should be caught. This argument
1364 only matters if ANY_COUNT is zero.
1365
1366 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1367 for failure. */
1368
1369 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1370 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1371 pid, needed, any_count, \
1372 table_size, table)
1373
1374 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1375 exit code of PID, if any. */
1376
1377 #define target_has_exited(pid,wait_status,exit_status) \
1378 (*current_target.to_has_exited) (&current_target, \
1379 pid,wait_status,exit_status)
1380
1381 /* The debugger has completed a blocking wait() call. There is now
1382 some process event that must be processed. This function should
1383 be defined by those targets that require the debugger to perform
1384 cleanup or internal state changes in response to the process event. */
1385
1386 /* The inferior process has died. Do what is right. */
1387
1388 void target_mourn_inferior (void);
1389
1390 /* Does target have enough data to do a run or attach command? */
1391
1392 #define target_can_run(t) \
1393 ((t)->to_can_run) (t)
1394
1395 /* Set list of signals to be handled in the target.
1396
1397 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1398 (enum gdb_signal). For every signal whose entry in this array is
1399 non-zero, the target is allowed -but not required- to skip reporting
1400 arrival of the signal to the GDB core by returning from target_wait,
1401 and to pass the signal directly to the inferior instead.
1402
1403 However, if the target is hardware single-stepping a thread that is
1404 about to receive a signal, it needs to be reported in any case, even
1405 if mentioned in a previous target_pass_signals call. */
1406
1407 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1408
1409 /* Set list of signals the target may pass to the inferior. This
1410 directly maps to the "handle SIGNAL pass/nopass" setting.
1411
1412 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1413 number (enum gdb_signal). For every signal whose entry in this
1414 array is non-zero, the target is allowed to pass the signal to the
1415 inferior. Signals not present in the array shall be silently
1416 discarded. This does not influence whether to pass signals to the
1417 inferior as a result of a target_resume call. This is useful in
1418 scenarios where the target needs to decide whether to pass or not a
1419 signal to the inferior without GDB core involvement, such as for
1420 example, when detaching (as threads may have been suspended with
1421 pending signals not reported to GDB). */
1422
1423 extern void target_program_signals (int nsig, unsigned char *program_signals);
1424
1425 /* Check to see if a thread is still alive. */
1426
1427 extern int target_thread_alive (ptid_t ptid);
1428
1429 /* Query for new threads and add them to the thread list. */
1430
1431 extern void target_find_new_threads (void);
1432
1433 /* Make target stop in a continuable fashion. (For instance, under
1434 Unix, this should act like SIGSTOP). This function is normally
1435 used by GUIs to implement a stop button. */
1436
1437 extern void target_stop (ptid_t ptid);
1438
1439 /* Send the specified COMMAND to the target's monitor
1440 (shell,interpreter) for execution. The result of the query is
1441 placed in OUTBUF. */
1442
1443 #define target_rcmd(command, outbuf) \
1444 (*current_target.to_rcmd) (&current_target, command, outbuf)
1445
1446
1447 /* Does the target include all of memory, or only part of it? This
1448 determines whether we look up the target chain for other parts of
1449 memory if this target can't satisfy a request. */
1450
1451 extern int target_has_all_memory_1 (void);
1452 #define target_has_all_memory target_has_all_memory_1 ()
1453
1454 /* Does the target include memory? (Dummy targets don't.) */
1455
1456 extern int target_has_memory_1 (void);
1457 #define target_has_memory target_has_memory_1 ()
1458
1459 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1460 we start a process.) */
1461
1462 extern int target_has_stack_1 (void);
1463 #define target_has_stack target_has_stack_1 ()
1464
1465 /* Does the target have registers? (Exec files don't.) */
1466
1467 extern int target_has_registers_1 (void);
1468 #define target_has_registers target_has_registers_1 ()
1469
1470 /* Does the target have execution? Can we make it jump (through
1471 hoops), or pop its stack a few times? This means that the current
1472 target is currently executing; for some targets, that's the same as
1473 whether or not the target is capable of execution, but there are
1474 also targets which can be current while not executing. In that
1475 case this will become true after target_create_inferior or
1476 target_attach. */
1477
1478 extern int target_has_execution_1 (ptid_t);
1479
1480 /* Like target_has_execution_1, but always passes inferior_ptid. */
1481
1482 extern int target_has_execution_current (void);
1483
1484 #define target_has_execution target_has_execution_current ()
1485
1486 /* Default implementations for process_stratum targets. Return true
1487 if there's a selected inferior, false otherwise. */
1488
1489 extern int default_child_has_all_memory (struct target_ops *ops);
1490 extern int default_child_has_memory (struct target_ops *ops);
1491 extern int default_child_has_stack (struct target_ops *ops);
1492 extern int default_child_has_registers (struct target_ops *ops);
1493 extern int default_child_has_execution (struct target_ops *ops,
1494 ptid_t the_ptid);
1495
1496 /* Can the target support the debugger control of thread execution?
1497 Can it lock the thread scheduler? */
1498
1499 #define target_can_lock_scheduler \
1500 (current_target.to_has_thread_control & tc_schedlock)
1501
1502 /* Should the target enable async mode if it is supported? Temporary
1503 cludge until async mode is a strict superset of sync mode. */
1504 extern int target_async_permitted;
1505
1506 /* Can the target support asynchronous execution? */
1507 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1508
1509 /* Is the target in asynchronous execution mode? */
1510 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1511
1512 int target_supports_non_stop (void);
1513
1514 /* Put the target in async mode with the specified callback function. */
1515 #define target_async(CALLBACK,CONTEXT) \
1516 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1517
1518 #define target_execution_direction() \
1519 (current_target.to_execution_direction (&current_target))
1520
1521 /* Converts a process id to a string. Usually, the string just contains
1522 `process xyz', but on some systems it may contain
1523 `process xyz thread abc'. */
1524
1525 extern char *target_pid_to_str (ptid_t ptid);
1526
1527 extern char *normal_pid_to_str (ptid_t ptid);
1528
1529 /* Return a short string describing extra information about PID,
1530 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1531 is okay. */
1532
1533 #define target_extra_thread_info(TP) \
1534 (current_target.to_extra_thread_info (&current_target, TP))
1535
1536 /* Return the thread's name. A NULL result means that the target
1537 could not determine this thread's name. */
1538
1539 extern char *target_thread_name (struct thread_info *);
1540
1541 /* Attempts to find the pathname of the executable file
1542 that was run to create a specified process.
1543
1544 The process PID must be stopped when this operation is used.
1545
1546 If the executable file cannot be determined, NULL is returned.
1547
1548 Else, a pointer to a character string containing the pathname
1549 is returned. This string should be copied into a buffer by
1550 the client if the string will not be immediately used, or if
1551 it must persist. */
1552
1553 #define target_pid_to_exec_file(pid) \
1554 (current_target.to_pid_to_exec_file) (&current_target, pid)
1555
1556 /* See the to_thread_architecture description in struct target_ops. */
1557
1558 #define target_thread_architecture(ptid) \
1559 (current_target.to_thread_architecture (&current_target, ptid))
1560
1561 /*
1562 * Iterator function for target memory regions.
1563 * Calls a callback function once for each memory region 'mapped'
1564 * in the child process. Defined as a simple macro rather than
1565 * as a function macro so that it can be tested for nullity.
1566 */
1567
1568 #define target_find_memory_regions(FUNC, DATA) \
1569 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1570
1571 /*
1572 * Compose corefile .note section.
1573 */
1574
1575 #define target_make_corefile_notes(BFD, SIZE_P) \
1576 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1577
1578 /* Bookmark interfaces. */
1579 #define target_get_bookmark(ARGS, FROM_TTY) \
1580 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1581
1582 #define target_goto_bookmark(ARG, FROM_TTY) \
1583 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1584
1585 /* Hardware watchpoint interfaces. */
1586
1587 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1588 write). Only the INFERIOR_PTID task is being queried. */
1589
1590 #define target_stopped_by_watchpoint() \
1591 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1592
1593 /* Non-zero if we have steppable watchpoints */
1594
1595 #define target_have_steppable_watchpoint \
1596 (current_target.to_have_steppable_watchpoint)
1597
1598 /* Non-zero if we have continuable watchpoints */
1599
1600 #define target_have_continuable_watchpoint \
1601 (current_target.to_have_continuable_watchpoint)
1602
1603 /* Provide defaults for hardware watchpoint functions. */
1604
1605 /* If the *_hw_beakpoint functions have not been defined
1606 elsewhere use the definitions in the target vector. */
1607
1608 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1609 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1610 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1611 (including this one?). OTHERTYPE is who knows what... */
1612
1613 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1614 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1615 TYPE, CNT, OTHERTYPE);
1616
1617 /* Returns the number of debug registers needed to watch the given
1618 memory region, or zero if not supported. */
1619
1620 #define target_region_ok_for_hw_watchpoint(addr, len) \
1621 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1622 addr, len)
1623
1624
1625 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1626 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1627 COND is the expression for its condition, or NULL if there's none.
1628 Returns 0 for success, 1 if the watchpoint type is not supported,
1629 -1 for failure. */
1630
1631 #define target_insert_watchpoint(addr, len, type, cond) \
1632 (*current_target.to_insert_watchpoint) (&current_target, \
1633 addr, len, type, cond)
1634
1635 #define target_remove_watchpoint(addr, len, type, cond) \
1636 (*current_target.to_remove_watchpoint) (&current_target, \
1637 addr, len, type, cond)
1638
1639 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1640 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1641 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1642 masked watchpoints are not supported, -1 for failure. */
1643
1644 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1645
1646 /* Remove a masked watchpoint at ADDR with the mask MASK.
1647 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1648 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1649 for failure. */
1650
1651 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1652
1653 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1654 the target machine. Returns 0 for success, and returns non-zero or
1655 throws an error (with a detailed failure reason error code and
1656 message) otherwise. */
1657
1658 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1659 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1660 gdbarch, bp_tgt)
1661
1662 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1663 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1664 gdbarch, bp_tgt)
1665
1666 /* Return number of debug registers needed for a ranged breakpoint,
1667 or -1 if ranged breakpoints are not supported. */
1668
1669 extern int target_ranged_break_num_registers (void);
1670
1671 /* Return non-zero if target knows the data address which triggered this
1672 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1673 INFERIOR_PTID task is being queried. */
1674 #define target_stopped_data_address(target, addr_p) \
1675 (*target.to_stopped_data_address) (target, addr_p)
1676
1677 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1678 LENGTH bytes beginning at START. */
1679 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1680 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1681
1682 /* Return non-zero if the target is capable of using hardware to evaluate
1683 the condition expression. In this case, if the condition is false when
1684 the watched memory location changes, execution may continue without the
1685 debugger being notified.
1686
1687 Due to limitations in the hardware implementation, it may be capable of
1688 avoiding triggering the watchpoint in some cases where the condition
1689 expression is false, but may report some false positives as well.
1690 For this reason, GDB will still evaluate the condition expression when
1691 the watchpoint triggers. */
1692 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1693 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1694 addr, len, type, cond)
1695
1696 /* Return number of debug registers needed for a masked watchpoint,
1697 -1 if masked watchpoints are not supported or -2 if the given address
1698 and mask combination cannot be used. */
1699
1700 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1701
1702 /* Target can execute in reverse? */
1703 #define target_can_execute_reverse \
1704 (current_target.to_can_execute_reverse ? \
1705 current_target.to_can_execute_reverse (&current_target) : 0)
1706
1707 extern const struct target_desc *target_read_description (struct target_ops *);
1708
1709 #define target_get_ada_task_ptid(lwp, tid) \
1710 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1711
1712 /* Utility implementation of searching memory. */
1713 extern int simple_search_memory (struct target_ops* ops,
1714 CORE_ADDR start_addr,
1715 ULONGEST search_space_len,
1716 const gdb_byte *pattern,
1717 ULONGEST pattern_len,
1718 CORE_ADDR *found_addrp);
1719
1720 /* Main entry point for searching memory. */
1721 extern int target_search_memory (CORE_ADDR start_addr,
1722 ULONGEST search_space_len,
1723 const gdb_byte *pattern,
1724 ULONGEST pattern_len,
1725 CORE_ADDR *found_addrp);
1726
1727 /* Target file operations. */
1728
1729 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1730 target file descriptor, or -1 if an error occurs (and set
1731 *TARGET_ERRNO). */
1732 extern int target_fileio_open (const char *filename, int flags, int mode,
1733 int *target_errno);
1734
1735 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1736 Return the number of bytes written, or -1 if an error occurs
1737 (and set *TARGET_ERRNO). */
1738 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1739 ULONGEST offset, int *target_errno);
1740
1741 /* Read up to LEN bytes FD on the target into READ_BUF.
1742 Return the number of bytes read, or -1 if an error occurs
1743 (and set *TARGET_ERRNO). */
1744 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1745 ULONGEST offset, int *target_errno);
1746
1747 /* Close FD on the target. Return 0, or -1 if an error occurs
1748 (and set *TARGET_ERRNO). */
1749 extern int target_fileio_close (int fd, int *target_errno);
1750
1751 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1752 occurs (and set *TARGET_ERRNO). */
1753 extern int target_fileio_unlink (const char *filename, int *target_errno);
1754
1755 /* Read value of symbolic link FILENAME on the target. Return a
1756 null-terminated string allocated via xmalloc, or NULL if an error
1757 occurs (and set *TARGET_ERRNO). */
1758 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1759
1760 /* Read target file FILENAME. The return value will be -1 if the transfer
1761 fails or is not supported; 0 if the object is empty; or the length
1762 of the object otherwise. If a positive value is returned, a
1763 sufficiently large buffer will be allocated using xmalloc and
1764 returned in *BUF_P containing the contents of the object.
1765
1766 This method should be used for objects sufficiently small to store
1767 in a single xmalloc'd buffer, when no fixed bound on the object's
1768 size is known in advance. */
1769 extern LONGEST target_fileio_read_alloc (const char *filename,
1770 gdb_byte **buf_p);
1771
1772 /* Read target file FILENAME. The result is NUL-terminated and
1773 returned as a string, allocated using xmalloc. If an error occurs
1774 or the transfer is unsupported, NULL is returned. Empty objects
1775 are returned as allocated but empty strings. A warning is issued
1776 if the result contains any embedded NUL bytes. */
1777 extern char *target_fileio_read_stralloc (const char *filename);
1778
1779
1780 /* Tracepoint-related operations. */
1781
1782 #define target_trace_init() \
1783 (*current_target.to_trace_init) ()
1784
1785 #define target_download_tracepoint(t) \
1786 (*current_target.to_download_tracepoint) (t)
1787
1788 #define target_can_download_tracepoint() \
1789 (*current_target.to_can_download_tracepoint) ()
1790
1791 #define target_download_trace_state_variable(tsv) \
1792 (*current_target.to_download_trace_state_variable) (tsv)
1793
1794 #define target_enable_tracepoint(loc) \
1795 (*current_target.to_enable_tracepoint) (loc)
1796
1797 #define target_disable_tracepoint(loc) \
1798 (*current_target.to_disable_tracepoint) (loc)
1799
1800 #define target_trace_start() \
1801 (*current_target.to_trace_start) ()
1802
1803 #define target_trace_set_readonly_regions() \
1804 (*current_target.to_trace_set_readonly_regions) ()
1805
1806 #define target_get_trace_status(ts) \
1807 (*current_target.to_get_trace_status) (ts)
1808
1809 #define target_get_tracepoint_status(tp,utp) \
1810 (*current_target.to_get_tracepoint_status) (tp, utp)
1811
1812 #define target_trace_stop() \
1813 (*current_target.to_trace_stop) ()
1814
1815 #define target_trace_find(type,num,addr1,addr2,tpp) \
1816 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1817
1818 #define target_get_trace_state_variable_value(tsv,val) \
1819 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1820
1821 #define target_save_trace_data(filename) \
1822 (*current_target.to_save_trace_data) (filename)
1823
1824 #define target_upload_tracepoints(utpp) \
1825 (*current_target.to_upload_tracepoints) (utpp)
1826
1827 #define target_upload_trace_state_variables(utsvp) \
1828 (*current_target.to_upload_trace_state_variables) (utsvp)
1829
1830 #define target_get_raw_trace_data(buf,offset,len) \
1831 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1832
1833 #define target_get_min_fast_tracepoint_insn_len() \
1834 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1835
1836 #define target_set_disconnected_tracing(val) \
1837 (*current_target.to_set_disconnected_tracing) (val)
1838
1839 #define target_set_circular_trace_buffer(val) \
1840 (*current_target.to_set_circular_trace_buffer) (val)
1841
1842 #define target_set_trace_buffer_size(val) \
1843 (*current_target.to_set_trace_buffer_size) (val)
1844
1845 #define target_set_trace_notes(user,notes,stopnotes) \
1846 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1847
1848 #define target_get_tib_address(ptid, addr) \
1849 (*current_target.to_get_tib_address) ((ptid), (addr))
1850
1851 #define target_set_permissions() \
1852 (*current_target.to_set_permissions) ()
1853
1854 #define target_static_tracepoint_marker_at(addr, marker) \
1855 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1856
1857 #define target_static_tracepoint_markers_by_strid(marker_id) \
1858 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1859
1860 #define target_traceframe_info() \
1861 (*current_target.to_traceframe_info) ()
1862
1863 #define target_use_agent(use) \
1864 (*current_target.to_use_agent) (use)
1865
1866 #define target_can_use_agent() \
1867 (*current_target.to_can_use_agent) ()
1868
1869 #define target_augmented_libraries_svr4_read() \
1870 (*current_target.to_augmented_libraries_svr4_read) ()
1871
1872 /* Command logging facility. */
1873
1874 #define target_log_command(p) \
1875 do \
1876 if (current_target.to_log_command) \
1877 (*current_target.to_log_command) (&current_target, \
1878 p); \
1879 while (0)
1880
1881
1882 extern int target_core_of_thread (ptid_t ptid);
1883
1884 /* See to_get_unwinder in struct target_ops. */
1885 extern const struct frame_unwind *target_get_unwinder (void);
1886
1887 /* See to_get_tailcall_unwinder in struct target_ops. */
1888 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1889
1890 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1891 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1892 if there's a mismatch, and -1 if an error is encountered while
1893 reading memory. Throws an error if the functionality is found not
1894 to be supported by the current target. */
1895 int target_verify_memory (const gdb_byte *data,
1896 CORE_ADDR memaddr, ULONGEST size);
1897
1898 /* Routines for maintenance of the target structures...
1899
1900 complete_target_initialization: Finalize a target_ops by filling in
1901 any fields needed by the target implementation.
1902
1903 add_target: Add a target to the list of all possible targets.
1904
1905 push_target: Make this target the top of the stack of currently used
1906 targets, within its particular stratum of the stack. Result
1907 is 0 if now atop the stack, nonzero if not on top (maybe
1908 should warn user).
1909
1910 unpush_target: Remove this from the stack of currently used targets,
1911 no matter where it is on the list. Returns 0 if no
1912 change, 1 if removed from stack. */
1913
1914 extern void add_target (struct target_ops *);
1915
1916 extern void add_target_with_completer (struct target_ops *t,
1917 completer_ftype *completer);
1918
1919 extern void complete_target_initialization (struct target_ops *t);
1920
1921 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1922 for maintaining backwards compatibility when renaming targets. */
1923
1924 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1925
1926 extern void push_target (struct target_ops *);
1927
1928 extern int unpush_target (struct target_ops *);
1929
1930 extern void target_pre_inferior (int);
1931
1932 extern void target_preopen (int);
1933
1934 /* Does whatever cleanup is required to get rid of all pushed targets. */
1935 extern void pop_all_targets (void);
1936
1937 /* Like pop_all_targets, but pops only targets whose stratum is
1938 strictly above ABOVE_STRATUM. */
1939 extern void pop_all_targets_above (enum strata above_stratum);
1940
1941 extern int target_is_pushed (struct target_ops *t);
1942
1943 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1944 CORE_ADDR offset);
1945
1946 /* Struct target_section maps address ranges to file sections. It is
1947 mostly used with BFD files, but can be used without (e.g. for handling
1948 raw disks, or files not in formats handled by BFD). */
1949
1950 struct target_section
1951 {
1952 CORE_ADDR addr; /* Lowest address in section */
1953 CORE_ADDR endaddr; /* 1+highest address in section */
1954
1955 struct bfd_section *the_bfd_section;
1956
1957 /* The "owner" of the section.
1958 It can be any unique value. It is set by add_target_sections
1959 and used by remove_target_sections.
1960 For example, for executables it is a pointer to exec_bfd and
1961 for shlibs it is the so_list pointer. */
1962 void *owner;
1963 };
1964
1965 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1966
1967 struct target_section_table
1968 {
1969 struct target_section *sections;
1970 struct target_section *sections_end;
1971 };
1972
1973 /* Return the "section" containing the specified address. */
1974 struct target_section *target_section_by_addr (struct target_ops *target,
1975 CORE_ADDR addr);
1976
1977 /* Return the target section table this target (or the targets
1978 beneath) currently manipulate. */
1979
1980 extern struct target_section_table *target_get_section_table
1981 (struct target_ops *target);
1982
1983 /* From mem-break.c */
1984
1985 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1986 struct bp_target_info *);
1987
1988 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1989 struct bp_target_info *);
1990
1991 extern int default_memory_remove_breakpoint (struct gdbarch *,
1992 struct bp_target_info *);
1993
1994 extern int default_memory_insert_breakpoint (struct gdbarch *,
1995 struct bp_target_info *);
1996
1997
1998 /* From target.c */
1999
2000 extern void initialize_targets (void);
2001
2002 extern void noprocess (void) ATTRIBUTE_NORETURN;
2003
2004 extern void target_require_runnable (void);
2005
2006 extern void find_default_attach (struct target_ops *, char *, int);
2007
2008 extern void find_default_create_inferior (struct target_ops *,
2009 char *, char *, char **, int);
2010
2011 extern struct target_ops *find_target_beneath (struct target_ops *);
2012
2013 /* Find the target at STRATUM. If no target is at that stratum,
2014 return NULL. */
2015
2016 struct target_ops *find_target_at (enum strata stratum);
2017
2018 /* Read OS data object of type TYPE from the target, and return it in
2019 XML format. The result is NUL-terminated and returned as a string,
2020 allocated using xmalloc. If an error occurs or the transfer is
2021 unsupported, NULL is returned. Empty objects are returned as
2022 allocated but empty strings. */
2023
2024 extern char *target_get_osdata (const char *type);
2025
2026 \f
2027 /* Stuff that should be shared among the various remote targets. */
2028
2029 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2030 information (higher values, more information). */
2031 extern int remote_debug;
2032
2033 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2034 extern int baud_rate;
2035 /* Timeout limit for response from target. */
2036 extern int remote_timeout;
2037
2038 \f
2039
2040 /* Set the show memory breakpoints mode to show, and installs a cleanup
2041 to restore it back to the current value. */
2042 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2043
2044 extern int may_write_registers;
2045 extern int may_write_memory;
2046 extern int may_insert_breakpoints;
2047 extern int may_insert_tracepoints;
2048 extern int may_insert_fast_tracepoints;
2049 extern int may_stop;
2050
2051 extern void update_target_permissions (void);
2052
2053 \f
2054 /* Imported from machine dependent code. */
2055
2056 /* Blank target vector entries are initialized to target_ignore. */
2057 void target_ignore (void);
2058
2059 /* See to_supports_btrace in struct target_ops. */
2060 #define target_supports_btrace() \
2061 (current_target.to_supports_btrace (&current_target))
2062
2063 /* See to_enable_btrace in struct target_ops. */
2064 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2065
2066 /* See to_disable_btrace in struct target_ops. */
2067 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2068
2069 /* See to_teardown_btrace in struct target_ops. */
2070 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2071
2072 /* See to_read_btrace in struct target_ops. */
2073 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2074 struct btrace_target_info *,
2075 enum btrace_read_type);
2076
2077 /* See to_stop_recording in struct target_ops. */
2078 extern void target_stop_recording (void);
2079
2080 /* See to_info_record in struct target_ops. */
2081 extern void target_info_record (void);
2082
2083 /* See to_save_record in struct target_ops. */
2084 extern void target_save_record (const char *filename);
2085
2086 /* Query if the target supports deleting the execution log. */
2087 extern int target_supports_delete_record (void);
2088
2089 /* See to_delete_record in struct target_ops. */
2090 extern void target_delete_record (void);
2091
2092 /* See to_record_is_replaying in struct target_ops. */
2093 extern int target_record_is_replaying (void);
2094
2095 /* See to_goto_record_begin in struct target_ops. */
2096 extern void target_goto_record_begin (void);
2097
2098 /* See to_goto_record_end in struct target_ops. */
2099 extern void target_goto_record_end (void);
2100
2101 /* See to_goto_record in struct target_ops. */
2102 extern void target_goto_record (ULONGEST insn);
2103
2104 /* See to_insn_history. */
2105 extern void target_insn_history (int size, int flags);
2106
2107 /* See to_insn_history_from. */
2108 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2109
2110 /* See to_insn_history_range. */
2111 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2112
2113 /* See to_call_history. */
2114 extern void target_call_history (int size, int flags);
2115
2116 /* See to_call_history_from. */
2117 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2118
2119 /* See to_call_history_range. */
2120 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2121
2122 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2123 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2124 struct gdbarch *gdbarch);
2125
2126 /* See to_decr_pc_after_break. */
2127 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2128
2129 #endif /* !defined (TARGET_H) */
This page took 0.074843 seconds and 4 git commands to generate.