6a1ec926ff7adfa709d4557af24b5b6bd550089f
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38 struct static_tracepoint_marker;
39
40 struct expression;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "bfd.h"
62 #include "symtab.h"
63 #include "memattr.h"
64 #include "vec.h"
65 #include "gdb_signals.h"
66
67 enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77 enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83 /* Stuff for target_wait. */
84
85 /* Generally, what has the program done? */
86 enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. This way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156 struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173 /* Options that can be passed to target_wait. */
174
175 /* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178 #define TARGET_WNOHANG 1
179
180 /* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186 struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195 /* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199 /* Possible types of events that the inferior handler will have to
200 deal with. */
201 enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220 \f
221 /* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224 enum target_object
225 {
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* Possible future objects: TARGET_OBJECT_FILE, ... */
270 };
271
272 /* Enumeration of the kinds of traceframe searches that a target may
273 be able to perform. */
274
275 enum trace_find_type
276 {
277 tfind_number,
278 tfind_pc,
279 tfind_tp,
280 tfind_range,
281 tfind_outside,
282 };
283
284 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
285 DEF_VEC_P(static_tracepoint_marker_p);
286
287 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
288 OBJECT. The OFFSET, for a seekable object, specifies the
289 starting point. The ANNEX can be used to provide additional
290 data-specific information to the target.
291
292 Return the number of bytes actually transfered, or -1 if the
293 transfer is not supported or otherwise fails. Return of a positive
294 value less than LEN indicates that no further transfer is possible.
295 Unlike the raw to_xfer_partial interface, callers of these
296 functions do not need to retry partial transfers. */
297
298 extern LONGEST target_read (struct target_ops *ops,
299 enum target_object object,
300 const char *annex, gdb_byte *buf,
301 ULONGEST offset, LONGEST len);
302
303 struct memory_read_result
304 {
305 /* First address that was read. */
306 ULONGEST begin;
307 /* Past-the-end address. */
308 ULONGEST end;
309 /* The data. */
310 gdb_byte *data;
311 };
312 typedef struct memory_read_result memory_read_result_s;
313 DEF_VEC_O(memory_read_result_s);
314
315 extern void free_memory_read_result_vector (void *);
316
317 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
318 ULONGEST offset,
319 LONGEST len);
320
321 extern LONGEST target_write (struct target_ops *ops,
322 enum target_object object,
323 const char *annex, const gdb_byte *buf,
324 ULONGEST offset, LONGEST len);
325
326 /* Similar to target_write, except that it also calls PROGRESS with
327 the number of bytes written and the opaque BATON after every
328 successful partial write (and before the first write). This is
329 useful for progress reporting and user interaction while writing
330 data. To abort the transfer, the progress callback can throw an
331 exception. */
332
333 LONGEST target_write_with_progress (struct target_ops *ops,
334 enum target_object object,
335 const char *annex, const gdb_byte *buf,
336 ULONGEST offset, LONGEST len,
337 void (*progress) (ULONGEST, void *),
338 void *baton);
339
340 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
341 be read using OPS. The return value will be -1 if the transfer
342 fails or is not supported; 0 if the object is empty; or the length
343 of the object otherwise. If a positive value is returned, a
344 sufficiently large buffer will be allocated using xmalloc and
345 returned in *BUF_P containing the contents of the object.
346
347 This method should be used for objects sufficiently small to store
348 in a single xmalloc'd buffer, when no fixed bound on the object's
349 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
350 through this function. */
351
352 extern LONGEST target_read_alloc (struct target_ops *ops,
353 enum target_object object,
354 const char *annex, gdb_byte **buf_p);
355
356 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
357 returned as a string, allocated using xmalloc. If an error occurs
358 or the transfer is unsupported, NULL is returned. Empty objects
359 are returned as allocated but empty strings. A warning is issued
360 if the result contains any embedded NUL bytes. */
361
362 extern char *target_read_stralloc (struct target_ops *ops,
363 enum target_object object,
364 const char *annex);
365
366 /* Wrappers to target read/write that perform memory transfers. They
367 throw an error if the memory transfer fails.
368
369 NOTE: cagney/2003-10-23: The naming schema is lifted from
370 "frame.h". The parameter order is lifted from get_frame_memory,
371 which in turn lifted it from read_memory. */
372
373 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
374 gdb_byte *buf, LONGEST len);
375 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
376 CORE_ADDR addr, int len,
377 enum bfd_endian byte_order);
378 \f
379 struct thread_info; /* fwd decl for parameter list below: */
380
381 struct target_ops
382 {
383 struct target_ops *beneath; /* To the target under this one. */
384 char *to_shortname; /* Name this target type */
385 char *to_longname; /* Name for printing */
386 char *to_doc; /* Documentation. Does not include trailing
387 newline, and starts with a one-line descrip-
388 tion (probably similar to to_longname). */
389 /* Per-target scratch pad. */
390 void *to_data;
391 /* The open routine takes the rest of the parameters from the
392 command, and (if successful) pushes a new target onto the
393 stack. Targets should supply this routine, if only to provide
394 an error message. */
395 void (*to_open) (char *, int);
396 /* Old targets with a static target vector provide "to_close".
397 New re-entrant targets provide "to_xclose" and that is expected
398 to xfree everything (including the "struct target_ops"). */
399 void (*to_xclose) (struct target_ops *targ, int quitting);
400 void (*to_close) (int);
401 void (*to_attach) (struct target_ops *ops, char *, int);
402 void (*to_post_attach) (int);
403 void (*to_detach) (struct target_ops *ops, char *, int);
404 void (*to_disconnect) (struct target_ops *, char *, int);
405 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
406 ptid_t (*to_wait) (struct target_ops *,
407 ptid_t, struct target_waitstatus *, int);
408 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
409 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
410 void (*to_prepare_to_store) (struct regcache *);
411
412 /* Transfer LEN bytes of memory between GDB address MYADDR and
413 target address MEMADDR. If WRITE, transfer them to the target, else
414 transfer them from the target. TARGET is the target from which we
415 get this function.
416
417 Return value, N, is one of the following:
418
419 0 means that we can't handle this. If errno has been set, it is the
420 error which prevented us from doing it (FIXME: What about bfd_error?).
421
422 positive (call it N) means that we have transferred N bytes
423 starting at MEMADDR. We might be able to handle more bytes
424 beyond this length, but no promises.
425
426 negative (call its absolute value N) means that we cannot
427 transfer right at MEMADDR, but we could transfer at least
428 something at MEMADDR + N.
429
430 NOTE: cagney/2004-10-01: This has been entirely superseeded by
431 to_xfer_partial and inferior inheritance. */
432
433 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
434 int len, int write,
435 struct mem_attrib *attrib,
436 struct target_ops *target);
437
438 void (*to_files_info) (struct target_ops *);
439 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
440 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
441 int (*to_can_use_hw_breakpoint) (int, int, int);
442 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
443 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
444
445 /* Documentation of what the two routines below are expected to do is
446 provided with the corresponding target_* macros. */
447 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
448 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
449
450 int (*to_stopped_by_watchpoint) (void);
451 int to_have_steppable_watchpoint;
452 int to_have_continuable_watchpoint;
453 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
454 int (*to_watchpoint_addr_within_range) (struct target_ops *,
455 CORE_ADDR, CORE_ADDR, int);
456 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
457 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
458 struct expression *);
459 void (*to_terminal_init) (void);
460 void (*to_terminal_inferior) (void);
461 void (*to_terminal_ours_for_output) (void);
462 void (*to_terminal_ours) (void);
463 void (*to_terminal_save_ours) (void);
464 void (*to_terminal_info) (char *, int);
465 void (*to_kill) (struct target_ops *);
466 void (*to_load) (char *, int);
467 int (*to_lookup_symbol) (char *, CORE_ADDR *);
468 void (*to_create_inferior) (struct target_ops *,
469 char *, char *, char **, int);
470 void (*to_post_startup_inferior) (ptid_t);
471 void (*to_insert_fork_catchpoint) (int);
472 int (*to_remove_fork_catchpoint) (int);
473 void (*to_insert_vfork_catchpoint) (int);
474 int (*to_remove_vfork_catchpoint) (int);
475 int (*to_follow_fork) (struct target_ops *, int);
476 void (*to_insert_exec_catchpoint) (int);
477 int (*to_remove_exec_catchpoint) (int);
478 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
479 int (*to_has_exited) (int, int, int *);
480 void (*to_mourn_inferior) (struct target_ops *);
481 int (*to_can_run) (void);
482 void (*to_notice_signals) (ptid_t ptid);
483 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
484 void (*to_find_new_threads) (struct target_ops *);
485 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
486 char *(*to_extra_thread_info) (struct thread_info *);
487 void (*to_stop) (ptid_t);
488 void (*to_rcmd) (char *command, struct ui_file *output);
489 char *(*to_pid_to_exec_file) (int pid);
490 void (*to_log_command) (const char *);
491 struct target_section_table *(*to_get_section_table) (struct target_ops *);
492 enum strata to_stratum;
493 int (*to_has_all_memory) (struct target_ops *);
494 int (*to_has_memory) (struct target_ops *);
495 int (*to_has_stack) (struct target_ops *);
496 int (*to_has_registers) (struct target_ops *);
497 int (*to_has_execution) (struct target_ops *);
498 int to_has_thread_control; /* control thread execution */
499 int to_attach_no_wait;
500 /* ASYNC target controls */
501 int (*to_can_async_p) (void);
502 int (*to_is_async_p) (void);
503 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
504 int (*to_async_mask) (int);
505 int (*to_supports_non_stop) (void);
506 /* find_memory_regions support method for gcore */
507 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
508 /* make_corefile_notes support method for gcore */
509 char * (*to_make_corefile_notes) (bfd *, int *);
510 /* get_bookmark support method for bookmarks */
511 gdb_byte * (*to_get_bookmark) (char *, int);
512 /* goto_bookmark support method for bookmarks */
513 void (*to_goto_bookmark) (gdb_byte *, int);
514 /* Return the thread-local address at OFFSET in the
515 thread-local storage for the thread PTID and the shared library
516 or executable file given by OBJFILE. If that block of
517 thread-local storage hasn't been allocated yet, this function
518 may return an error. */
519 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
520 ptid_t ptid,
521 CORE_ADDR load_module_addr,
522 CORE_ADDR offset);
523
524 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
525 OBJECT. The OFFSET, for a seekable object, specifies the
526 starting point. The ANNEX can be used to provide additional
527 data-specific information to the target.
528
529 Return the number of bytes actually transfered, zero when no
530 further transfer is possible, and -1 when the transfer is not
531 supported. Return of a positive value smaller than LEN does
532 not indicate the end of the object, only the end of the
533 transfer; higher level code should continue transferring if
534 desired. This is handled in target.c.
535
536 The interface does not support a "retry" mechanism. Instead it
537 assumes that at least one byte will be transfered on each
538 successful call.
539
540 NOTE: cagney/2003-10-17: The current interface can lead to
541 fragmented transfers. Lower target levels should not implement
542 hacks, such as enlarging the transfer, in an attempt to
543 compensate for this. Instead, the target stack should be
544 extended so that it implements supply/collect methods and a
545 look-aside object cache. With that available, the lowest
546 target can safely and freely "push" data up the stack.
547
548 See target_read and target_write for more information. One,
549 and only one, of readbuf or writebuf must be non-NULL. */
550
551 LONGEST (*to_xfer_partial) (struct target_ops *ops,
552 enum target_object object, const char *annex,
553 gdb_byte *readbuf, const gdb_byte *writebuf,
554 ULONGEST offset, LONGEST len);
555
556 /* Returns the memory map for the target. A return value of NULL
557 means that no memory map is available. If a memory address
558 does not fall within any returned regions, it's assumed to be
559 RAM. The returned memory regions should not overlap.
560
561 The order of regions does not matter; target_memory_map will
562 sort regions by starting address. For that reason, this
563 function should not be called directly except via
564 target_memory_map.
565
566 This method should not cache data; if the memory map could
567 change unexpectedly, it should be invalidated, and higher
568 layers will re-fetch it. */
569 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
570
571 /* Erases the region of flash memory starting at ADDRESS, of
572 length LENGTH.
573
574 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
575 on flash block boundaries, as reported by 'to_memory_map'. */
576 void (*to_flash_erase) (struct target_ops *,
577 ULONGEST address, LONGEST length);
578
579 /* Finishes a flash memory write sequence. After this operation
580 all flash memory should be available for writing and the result
581 of reading from areas written by 'to_flash_write' should be
582 equal to what was written. */
583 void (*to_flash_done) (struct target_ops *);
584
585 /* Describe the architecture-specific features of this target.
586 Returns the description found, or NULL if no description
587 was available. */
588 const struct target_desc *(*to_read_description) (struct target_ops *ops);
589
590 /* Build the PTID of the thread on which a given task is running,
591 based on LWP and THREAD. These values are extracted from the
592 task Private_Data section of the Ada Task Control Block, and
593 their interpretation depends on the target. */
594 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
595
596 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
597 Return 0 if *READPTR is already at the end of the buffer.
598 Return -1 if there is insufficient buffer for a whole entry.
599 Return 1 if an entry was read into *TYPEP and *VALP. */
600 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
601 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
602
603 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
604 sequence of bytes in PATTERN with length PATTERN_LEN.
605
606 The result is 1 if found, 0 if not found, and -1 if there was an error
607 requiring halting of the search (e.g. memory read error).
608 If the pattern is found the address is recorded in FOUND_ADDRP. */
609 int (*to_search_memory) (struct target_ops *ops,
610 CORE_ADDR start_addr, ULONGEST search_space_len,
611 const gdb_byte *pattern, ULONGEST pattern_len,
612 CORE_ADDR *found_addrp);
613
614 /* Can target execute in reverse? */
615 int (*to_can_execute_reverse) (void);
616
617 /* Does this target support debugging multiple processes
618 simultaneously? */
619 int (*to_supports_multi_process) (void);
620
621 /* Determine current architecture of thread PTID.
622
623 The target is supposed to determine the architecture of the code where
624 the target is currently stopped at (on Cell, if a target is in spu_run,
625 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
626 This is architecture used to perform decr_pc_after_break adjustment,
627 and also determines the frame architecture of the innermost frame.
628 ptrace operations need to operate according to target_gdbarch.
629
630 The default implementation always returns target_gdbarch. */
631 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
632
633 /* Determine current address space of thread PTID.
634
635 The default implementation always returns the inferior's
636 address space. */
637 struct address_space *(*to_thread_address_space) (struct target_ops *,
638 ptid_t);
639
640 /* Tracepoint-related operations. */
641
642 /* Prepare the target for a tracing run. */
643 void (*to_trace_init) (void);
644
645 /* Send full details of a tracepoint to the target. */
646 void (*to_download_tracepoint) (struct breakpoint *t);
647
648 /* Send full details of a trace state variable to the target. */
649 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
650
651 /* Inform the target info of memory regions that are readonly
652 (such as text sections), and so it should return data from
653 those rather than look in the trace buffer. */
654 void (*to_trace_set_readonly_regions) (void);
655
656 /* Start a trace run. */
657 void (*to_trace_start) (void);
658
659 /* Get the current status of a tracing run. */
660 int (*to_get_trace_status) (struct trace_status *ts);
661
662 /* Stop a trace run. */
663 void (*to_trace_stop) (void);
664
665 /* Ask the target to find a trace frame of the given type TYPE,
666 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
667 number of the trace frame, and also the tracepoint number at
668 TPP. If no trace frame matches, return -1. May throw if the
669 operation fails. */
670 int (*to_trace_find) (enum trace_find_type type, int num,
671 ULONGEST addr1, ULONGEST addr2, int *tpp);
672
673 /* Get the value of the trace state variable number TSV, returning
674 1 if the value is known and writing the value itself into the
675 location pointed to by VAL, else returning 0. */
676 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
677
678 int (*to_save_trace_data) (const char *filename);
679
680 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
681
682 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
683
684 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
685 ULONGEST offset, LONGEST len);
686
687 /* Set the target's tracing behavior in response to unexpected
688 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
689 void (*to_set_disconnected_tracing) (int val);
690 void (*to_set_circular_trace_buffer) (int val);
691
692 /* Return the processor core that thread PTID was last seen on.
693 This information is updated only when:
694 - update_thread_list is called
695 - thread stops
696 If the core cannot be determined -- either for the specified thread, or
697 right now, or in this debug session, or for this target -- return -1. */
698 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
699
700 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
701 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
702 a match, 0 if there's a mismatch, and -1 if an error is
703 encountered while reading memory. */
704 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
705 CORE_ADDR memaddr, ULONGEST size);
706
707 /* Return the address of the start of the Thread Information Block
708 a Windows OS specific feature. */
709 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
710
711 /* Send the new settings of write permission variables. */
712 void (*to_set_permissions) (void);
713
714 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
715 with its details. Return 1 on success, 0 on failure. */
716 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
717 struct static_tracepoint_marker *marker);
718
719 /* Return a vector of all tracepoints markers string id ID, or all
720 markers if ID is NULL. */
721 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
722 (const char *id);
723
724 int to_magic;
725 /* Need sub-structure for target machine related rather than comm related?
726 */
727 };
728
729 /* Magic number for checking ops size. If a struct doesn't end with this
730 number, somebody changed the declaration but didn't change all the
731 places that initialize one. */
732
733 #define OPS_MAGIC 3840
734
735 /* The ops structure for our "current" target process. This should
736 never be NULL. If there is no target, it points to the dummy_target. */
737
738 extern struct target_ops current_target;
739
740 /* Define easy words for doing these operations on our current target. */
741
742 #define target_shortname (current_target.to_shortname)
743 #define target_longname (current_target.to_longname)
744
745 /* Does whatever cleanup is required for a target that we are no
746 longer going to be calling. QUITTING indicates that GDB is exiting
747 and should not get hung on an error (otherwise it is important to
748 perform clean termination, even if it takes a while). This routine
749 is automatically always called when popping the target off the
750 target stack (to_beneath is undefined). Closing file descriptors
751 and freeing all memory allocated memory are typical things it
752 should do. */
753
754 void target_close (struct target_ops *targ, int quitting);
755
756 /* Attaches to a process on the target side. Arguments are as passed
757 to the `attach' command by the user. This routine can be called
758 when the target is not on the target-stack, if the target_can_run
759 routine returns 1; in that case, it must push itself onto the stack.
760 Upon exit, the target should be ready for normal operations, and
761 should be ready to deliver the status of the process immediately
762 (without waiting) to an upcoming target_wait call. */
763
764 void target_attach (char *, int);
765
766 /* Some targets don't generate traps when attaching to the inferior,
767 or their target_attach implementation takes care of the waiting.
768 These targets must set to_attach_no_wait. */
769
770 #define target_attach_no_wait \
771 (current_target.to_attach_no_wait)
772
773 /* The target_attach operation places a process under debugger control,
774 and stops the process.
775
776 This operation provides a target-specific hook that allows the
777 necessary bookkeeping to be performed after an attach completes. */
778 #define target_post_attach(pid) \
779 (*current_target.to_post_attach) (pid)
780
781 /* Takes a program previously attached to and detaches it.
782 The program may resume execution (some targets do, some don't) and will
783 no longer stop on signals, etc. We better not have left any breakpoints
784 in the program or it'll die when it hits one. ARGS is arguments
785 typed by the user (e.g. a signal to send the process). FROM_TTY
786 says whether to be verbose or not. */
787
788 extern void target_detach (char *, int);
789
790 /* Disconnect from the current target without resuming it (leaving it
791 waiting for a debugger). */
792
793 extern void target_disconnect (char *, int);
794
795 /* Resume execution of the target process PTID. STEP says whether to
796 single-step or to run free; SIGGNAL is the signal to be given to
797 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
798 pass TARGET_SIGNAL_DEFAULT. */
799
800 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
801
802 /* Wait for process pid to do something. PTID = -1 to wait for any
803 pid to do something. Return pid of child, or -1 in case of error;
804 store status through argument pointer STATUS. Note that it is
805 _NOT_ OK to throw_exception() out of target_wait() without popping
806 the debugging target from the stack; GDB isn't prepared to get back
807 to the prompt with a debugging target but without the frame cache,
808 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
809 options. */
810
811 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
812 int options);
813
814 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
815
816 extern void target_fetch_registers (struct regcache *regcache, int regno);
817
818 /* Store at least register REGNO, or all regs if REGNO == -1.
819 It can store as many registers as it wants to, so target_prepare_to_store
820 must have been previously called. Calls error() if there are problems. */
821
822 extern void target_store_registers (struct regcache *regcache, int regs);
823
824 /* Get ready to modify the registers array. On machines which store
825 individual registers, this doesn't need to do anything. On machines
826 which store all the registers in one fell swoop, this makes sure
827 that REGISTERS contains all the registers from the program being
828 debugged. */
829
830 #define target_prepare_to_store(regcache) \
831 (*current_target.to_prepare_to_store) (regcache)
832
833 /* Determine current address space of thread PTID. */
834
835 struct address_space *target_thread_address_space (ptid_t);
836
837 /* Returns true if this target can debug multiple processes
838 simultaneously. */
839
840 #define target_supports_multi_process() \
841 (*current_target.to_supports_multi_process) ()
842
843 /* Invalidate all target dcaches. */
844 extern void target_dcache_invalidate (void);
845
846 extern int target_read_string (CORE_ADDR, char **, int, int *);
847
848 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
849
850 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
851
852 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
853 int len);
854
855 /* Fetches the target's memory map. If one is found it is sorted
856 and returned, after some consistency checking. Otherwise, NULL
857 is returned. */
858 VEC(mem_region_s) *target_memory_map (void);
859
860 /* Erase the specified flash region. */
861 void target_flash_erase (ULONGEST address, LONGEST length);
862
863 /* Finish a sequence of flash operations. */
864 void target_flash_done (void);
865
866 /* Describes a request for a memory write operation. */
867 struct memory_write_request
868 {
869 /* Begining address that must be written. */
870 ULONGEST begin;
871 /* Past-the-end address. */
872 ULONGEST end;
873 /* The data to write. */
874 gdb_byte *data;
875 /* A callback baton for progress reporting for this request. */
876 void *baton;
877 };
878 typedef struct memory_write_request memory_write_request_s;
879 DEF_VEC_O(memory_write_request_s);
880
881 /* Enumeration specifying different flash preservation behaviour. */
882 enum flash_preserve_mode
883 {
884 flash_preserve,
885 flash_discard
886 };
887
888 /* Write several memory blocks at once. This version can be more
889 efficient than making several calls to target_write_memory, in
890 particular because it can optimize accesses to flash memory.
891
892 Moreover, this is currently the only memory access function in gdb
893 that supports writing to flash memory, and it should be used for
894 all cases where access to flash memory is desirable.
895
896 REQUESTS is the vector (see vec.h) of memory_write_request.
897 PRESERVE_FLASH_P indicates what to do with blocks which must be
898 erased, but not completely rewritten.
899 PROGRESS_CB is a function that will be periodically called to provide
900 feedback to user. It will be called with the baton corresponding
901 to the request currently being written. It may also be called
902 with a NULL baton, when preserved flash sectors are being rewritten.
903
904 The function returns 0 on success, and error otherwise. */
905 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
906 enum flash_preserve_mode preserve_flash_p,
907 void (*progress_cb) (ULONGEST, void *));
908
909 /* From infrun.c. */
910
911 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
912
913 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
914
915 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
916
917 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
918
919 /* Print a line about the current target. */
920
921 #define target_files_info() \
922 (*current_target.to_files_info) (&current_target)
923
924 /* Insert a breakpoint at address BP_TGT->placed_address in the target
925 machine. Result is 0 for success, or an errno value. */
926
927 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
928 struct bp_target_info *bp_tgt);
929
930 /* Remove a breakpoint at address BP_TGT->placed_address in the target
931 machine. Result is 0 for success, or an errno value. */
932
933 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
934 struct bp_target_info *bp_tgt);
935
936 /* Initialize the terminal settings we record for the inferior,
937 before we actually run the inferior. */
938
939 #define target_terminal_init() \
940 (*current_target.to_terminal_init) ()
941
942 /* Put the inferior's terminal settings into effect.
943 This is preparation for starting or resuming the inferior. */
944
945 extern void target_terminal_inferior (void);
946
947 /* Put some of our terminal settings into effect,
948 enough to get proper results from our output,
949 but do not change into or out of RAW mode
950 so that no input is discarded.
951
952 After doing this, either terminal_ours or terminal_inferior
953 should be called to get back to a normal state of affairs. */
954
955 #define target_terminal_ours_for_output() \
956 (*current_target.to_terminal_ours_for_output) ()
957
958 /* Put our terminal settings into effect.
959 First record the inferior's terminal settings
960 so they can be restored properly later. */
961
962 #define target_terminal_ours() \
963 (*current_target.to_terminal_ours) ()
964
965 /* Save our terminal settings.
966 This is called from TUI after entering or leaving the curses
967 mode. Since curses modifies our terminal this call is here
968 to take this change into account. */
969
970 #define target_terminal_save_ours() \
971 (*current_target.to_terminal_save_ours) ()
972
973 /* Print useful information about our terminal status, if such a thing
974 exists. */
975
976 #define target_terminal_info(arg, from_tty) \
977 (*current_target.to_terminal_info) (arg, from_tty)
978
979 /* Kill the inferior process. Make it go away. */
980
981 extern void target_kill (void);
982
983 /* Load an executable file into the target process. This is expected
984 to not only bring new code into the target process, but also to
985 update GDB's symbol tables to match.
986
987 ARG contains command-line arguments, to be broken down with
988 buildargv (). The first non-switch argument is the filename to
989 load, FILE; the second is a number (as parsed by strtoul (..., ...,
990 0)), which is an offset to apply to the load addresses of FILE's
991 sections. The target may define switches, or other non-switch
992 arguments, as it pleases. */
993
994 extern void target_load (char *arg, int from_tty);
995
996 /* Look up a symbol in the target's symbol table. NAME is the symbol
997 name. ADDRP is a CORE_ADDR * pointing to where the value of the
998 symbol should be returned. The result is 0 if successful, nonzero
999 if the symbol does not exist in the target environment. This
1000 function should not call error() if communication with the target
1001 is interrupted, since it is called from symbol reading, but should
1002 return nonzero, possibly doing a complain(). */
1003
1004 #define target_lookup_symbol(name, addrp) \
1005 (*current_target.to_lookup_symbol) (name, addrp)
1006
1007 /* Start an inferior process and set inferior_ptid to its pid.
1008 EXEC_FILE is the file to run.
1009 ALLARGS is a string containing the arguments to the program.
1010 ENV is the environment vector to pass. Errors reported with error().
1011 On VxWorks and various standalone systems, we ignore exec_file. */
1012
1013 void target_create_inferior (char *exec_file, char *args,
1014 char **env, int from_tty);
1015
1016 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1017 notification of inferior events such as fork and vork immediately
1018 after the inferior is created. (This because of how gdb gets an
1019 inferior created via invoking a shell to do it. In such a scenario,
1020 if the shell init file has commands in it, the shell will fork and
1021 exec for each of those commands, and we will see each such fork
1022 event. Very bad.)
1023
1024 Such targets will supply an appropriate definition for this function. */
1025
1026 #define target_post_startup_inferior(ptid) \
1027 (*current_target.to_post_startup_inferior) (ptid)
1028
1029 /* On some targets, we can catch an inferior fork or vfork event when
1030 it occurs. These functions insert/remove an already-created
1031 catchpoint for such events. */
1032
1033 #define target_insert_fork_catchpoint(pid) \
1034 (*current_target.to_insert_fork_catchpoint) (pid)
1035
1036 #define target_remove_fork_catchpoint(pid) \
1037 (*current_target.to_remove_fork_catchpoint) (pid)
1038
1039 #define target_insert_vfork_catchpoint(pid) \
1040 (*current_target.to_insert_vfork_catchpoint) (pid)
1041
1042 #define target_remove_vfork_catchpoint(pid) \
1043 (*current_target.to_remove_vfork_catchpoint) (pid)
1044
1045 /* If the inferior forks or vforks, this function will be called at
1046 the next resume in order to perform any bookkeeping and fiddling
1047 necessary to continue debugging either the parent or child, as
1048 requested, and releasing the other. Information about the fork
1049 or vfork event is available via get_last_target_status ().
1050 This function returns 1 if the inferior should not be resumed
1051 (i.e. there is another event pending). */
1052
1053 int target_follow_fork (int follow_child);
1054
1055 /* On some targets, we can catch an inferior exec event when it
1056 occurs. These functions insert/remove an already-created
1057 catchpoint for such events. */
1058
1059 #define target_insert_exec_catchpoint(pid) \
1060 (*current_target.to_insert_exec_catchpoint) (pid)
1061
1062 #define target_remove_exec_catchpoint(pid) \
1063 (*current_target.to_remove_exec_catchpoint) (pid)
1064
1065 /* Syscall catch.
1066
1067 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1068 If NEEDED is zero, it means the target can disable the mechanism to
1069 catch system calls because there are no more catchpoints of this type.
1070
1071 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1072 being requested. In this case, both TABLE_SIZE and TABLE should
1073 be ignored.
1074
1075 TABLE_SIZE is the number of elements in TABLE. It only matters if
1076 ANY_COUNT is zero.
1077
1078 TABLE is an array of ints, indexed by syscall number. An element in
1079 this array is nonzero if that syscall should be caught. This argument
1080 only matters if ANY_COUNT is zero. */
1081
1082 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1083 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1084 table_size, table)
1085
1086 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1087 exit code of PID, if any. */
1088
1089 #define target_has_exited(pid,wait_status,exit_status) \
1090 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1091
1092 /* The debugger has completed a blocking wait() call. There is now
1093 some process event that must be processed. This function should
1094 be defined by those targets that require the debugger to perform
1095 cleanup or internal state changes in response to the process event. */
1096
1097 /* The inferior process has died. Do what is right. */
1098
1099 void target_mourn_inferior (void);
1100
1101 /* Does target have enough data to do a run or attach command? */
1102
1103 #define target_can_run(t) \
1104 ((t)->to_can_run) ()
1105
1106 /* post process changes to signal handling in the inferior. */
1107
1108 #define target_notice_signals(ptid) \
1109 (*current_target.to_notice_signals) (ptid)
1110
1111 /* Check to see if a thread is still alive. */
1112
1113 extern int target_thread_alive (ptid_t ptid);
1114
1115 /* Query for new threads and add them to the thread list. */
1116
1117 extern void target_find_new_threads (void);
1118
1119 /* Make target stop in a continuable fashion. (For instance, under
1120 Unix, this should act like SIGSTOP). This function is normally
1121 used by GUIs to implement a stop button. */
1122
1123 extern void target_stop (ptid_t ptid);
1124
1125 /* Send the specified COMMAND to the target's monitor
1126 (shell,interpreter) for execution. The result of the query is
1127 placed in OUTBUF. */
1128
1129 #define target_rcmd(command, outbuf) \
1130 (*current_target.to_rcmd) (command, outbuf)
1131
1132
1133 /* Does the target include all of memory, or only part of it? This
1134 determines whether we look up the target chain for other parts of
1135 memory if this target can't satisfy a request. */
1136
1137 extern int target_has_all_memory_1 (void);
1138 #define target_has_all_memory target_has_all_memory_1 ()
1139
1140 /* Does the target include memory? (Dummy targets don't.) */
1141
1142 extern int target_has_memory_1 (void);
1143 #define target_has_memory target_has_memory_1 ()
1144
1145 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1146 we start a process.) */
1147
1148 extern int target_has_stack_1 (void);
1149 #define target_has_stack target_has_stack_1 ()
1150
1151 /* Does the target have registers? (Exec files don't.) */
1152
1153 extern int target_has_registers_1 (void);
1154 #define target_has_registers target_has_registers_1 ()
1155
1156 /* Does the target have execution? Can we make it jump (through
1157 hoops), or pop its stack a few times? This means that the current
1158 target is currently executing; for some targets, that's the same as
1159 whether or not the target is capable of execution, but there are
1160 also targets which can be current while not executing. In that
1161 case this will become true after target_create_inferior or
1162 target_attach. */
1163
1164 extern int target_has_execution_1 (void);
1165 #define target_has_execution target_has_execution_1 ()
1166
1167 /* Default implementations for process_stratum targets. Return true
1168 if there's a selected inferior, false otherwise. */
1169
1170 extern int default_child_has_all_memory (struct target_ops *ops);
1171 extern int default_child_has_memory (struct target_ops *ops);
1172 extern int default_child_has_stack (struct target_ops *ops);
1173 extern int default_child_has_registers (struct target_ops *ops);
1174 extern int default_child_has_execution (struct target_ops *ops);
1175
1176 /* Can the target support the debugger control of thread execution?
1177 Can it lock the thread scheduler? */
1178
1179 #define target_can_lock_scheduler \
1180 (current_target.to_has_thread_control & tc_schedlock)
1181
1182 /* Should the target enable async mode if it is supported? Temporary
1183 cludge until async mode is a strict superset of sync mode. */
1184 extern int target_async_permitted;
1185
1186 /* Can the target support asynchronous execution? */
1187 #define target_can_async_p() (current_target.to_can_async_p ())
1188
1189 /* Is the target in asynchronous execution mode? */
1190 #define target_is_async_p() (current_target.to_is_async_p ())
1191
1192 int target_supports_non_stop (void);
1193
1194 /* Put the target in async mode with the specified callback function. */
1195 #define target_async(CALLBACK,CONTEXT) \
1196 (current_target.to_async ((CALLBACK), (CONTEXT)))
1197
1198 /* This is to be used ONLY within call_function_by_hand(). It provides
1199 a workaround, to have inferior function calls done in sychronous
1200 mode, even though the target is asynchronous. After
1201 target_async_mask(0) is called, calls to target_can_async_p() will
1202 return FALSE , so that target_resume() will not try to start the
1203 target asynchronously. After the inferior stops, we IMMEDIATELY
1204 restore the previous nature of the target, by calling
1205 target_async_mask(1). After that, target_can_async_p() will return
1206 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1207
1208 FIXME ezannoni 1999-12-13: we won't need this once we move
1209 the turning async on and off to the single execution commands,
1210 from where it is done currently, in remote_resume(). */
1211
1212 #define target_async_mask(MASK) \
1213 (current_target.to_async_mask (MASK))
1214
1215 /* Converts a process id to a string. Usually, the string just contains
1216 `process xyz', but on some systems it may contain
1217 `process xyz thread abc'. */
1218
1219 extern char *target_pid_to_str (ptid_t ptid);
1220
1221 extern char *normal_pid_to_str (ptid_t ptid);
1222
1223 /* Return a short string describing extra information about PID,
1224 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1225 is okay. */
1226
1227 #define target_extra_thread_info(TP) \
1228 (current_target.to_extra_thread_info (TP))
1229
1230 /* Attempts to find the pathname of the executable file
1231 that was run to create a specified process.
1232
1233 The process PID must be stopped when this operation is used.
1234
1235 If the executable file cannot be determined, NULL is returned.
1236
1237 Else, a pointer to a character string containing the pathname
1238 is returned. This string should be copied into a buffer by
1239 the client if the string will not be immediately used, or if
1240 it must persist. */
1241
1242 #define target_pid_to_exec_file(pid) \
1243 (current_target.to_pid_to_exec_file) (pid)
1244
1245 /* See the to_thread_architecture description in struct target_ops. */
1246
1247 #define target_thread_architecture(ptid) \
1248 (current_target.to_thread_architecture (&current_target, ptid))
1249
1250 /*
1251 * Iterator function for target memory regions.
1252 * Calls a callback function once for each memory region 'mapped'
1253 * in the child process. Defined as a simple macro rather than
1254 * as a function macro so that it can be tested for nullity.
1255 */
1256
1257 #define target_find_memory_regions(FUNC, DATA) \
1258 (current_target.to_find_memory_regions) (FUNC, DATA)
1259
1260 /*
1261 * Compose corefile .note section.
1262 */
1263
1264 #define target_make_corefile_notes(BFD, SIZE_P) \
1265 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1266
1267 /* Bookmark interfaces. */
1268 #define target_get_bookmark(ARGS, FROM_TTY) \
1269 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1270
1271 #define target_goto_bookmark(ARG, FROM_TTY) \
1272 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1273
1274 /* Hardware watchpoint interfaces. */
1275
1276 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1277 write). Only the INFERIOR_PTID task is being queried. */
1278
1279 #define target_stopped_by_watchpoint \
1280 (*current_target.to_stopped_by_watchpoint)
1281
1282 /* Non-zero if we have steppable watchpoints */
1283
1284 #define target_have_steppable_watchpoint \
1285 (current_target.to_have_steppable_watchpoint)
1286
1287 /* Non-zero if we have continuable watchpoints */
1288
1289 #define target_have_continuable_watchpoint \
1290 (current_target.to_have_continuable_watchpoint)
1291
1292 /* Provide defaults for hardware watchpoint functions. */
1293
1294 /* If the *_hw_beakpoint functions have not been defined
1295 elsewhere use the definitions in the target vector. */
1296
1297 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1298 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1299 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1300 (including this one?). OTHERTYPE is who knows what... */
1301
1302 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1303 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1304
1305 #define target_region_ok_for_hw_watchpoint(addr, len) \
1306 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1307
1308
1309 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1310 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1311 COND is the expression for its condition, or NULL if there's none.
1312 Returns 0 for success, 1 if the watchpoint type is not supported,
1313 -1 for failure. */
1314
1315 #define target_insert_watchpoint(addr, len, type, cond) \
1316 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1317
1318 #define target_remove_watchpoint(addr, len, type, cond) \
1319 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1320
1321 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1322 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1323
1324 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1325 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1326
1327 /* Return non-zero if target knows the data address which triggered this
1328 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1329 INFERIOR_PTID task is being queried. */
1330 #define target_stopped_data_address(target, addr_p) \
1331 (*target.to_stopped_data_address) (target, addr_p)
1332
1333 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1334 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1335
1336 /* Return non-zero if the target is capable of using hardware to evaluate
1337 the condition expression. In this case, if the condition is false when
1338 the watched memory location changes, execution may continue without the
1339 debugger being notified.
1340
1341 Due to limitations in the hardware implementation, it may be capable of
1342 avoiding triggering the watchpoint in some cases where the condition
1343 expression is false, but may report some false positives as well.
1344 For this reason, GDB will still evaluate the condition expression when
1345 the watchpoint triggers. */
1346 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1347 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1348
1349 /* Target can execute in reverse? */
1350 #define target_can_execute_reverse \
1351 (current_target.to_can_execute_reverse ? \
1352 current_target.to_can_execute_reverse () : 0)
1353
1354 extern const struct target_desc *target_read_description (struct target_ops *);
1355
1356 #define target_get_ada_task_ptid(lwp, tid) \
1357 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1358
1359 /* Utility implementation of searching memory. */
1360 extern int simple_search_memory (struct target_ops* ops,
1361 CORE_ADDR start_addr,
1362 ULONGEST search_space_len,
1363 const gdb_byte *pattern,
1364 ULONGEST pattern_len,
1365 CORE_ADDR *found_addrp);
1366
1367 /* Main entry point for searching memory. */
1368 extern int target_search_memory (CORE_ADDR start_addr,
1369 ULONGEST search_space_len,
1370 const gdb_byte *pattern,
1371 ULONGEST pattern_len,
1372 CORE_ADDR *found_addrp);
1373
1374 /* Tracepoint-related operations. */
1375
1376 #define target_trace_init() \
1377 (*current_target.to_trace_init) ()
1378
1379 #define target_download_tracepoint(t) \
1380 (*current_target.to_download_tracepoint) (t)
1381
1382 #define target_download_trace_state_variable(tsv) \
1383 (*current_target.to_download_trace_state_variable) (tsv)
1384
1385 #define target_trace_start() \
1386 (*current_target.to_trace_start) ()
1387
1388 #define target_trace_set_readonly_regions() \
1389 (*current_target.to_trace_set_readonly_regions) ()
1390
1391 #define target_get_trace_status(ts) \
1392 (*current_target.to_get_trace_status) (ts)
1393
1394 #define target_trace_stop() \
1395 (*current_target.to_trace_stop) ()
1396
1397 #define target_trace_find(type,num,addr1,addr2,tpp) \
1398 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1399
1400 #define target_get_trace_state_variable_value(tsv,val) \
1401 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1402
1403 #define target_save_trace_data(filename) \
1404 (*current_target.to_save_trace_data) (filename)
1405
1406 #define target_upload_tracepoints(utpp) \
1407 (*current_target.to_upload_tracepoints) (utpp)
1408
1409 #define target_upload_trace_state_variables(utsvp) \
1410 (*current_target.to_upload_trace_state_variables) (utsvp)
1411
1412 #define target_get_raw_trace_data(buf,offset,len) \
1413 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1414
1415 #define target_set_disconnected_tracing(val) \
1416 (*current_target.to_set_disconnected_tracing) (val)
1417
1418 #define target_set_circular_trace_buffer(val) \
1419 (*current_target.to_set_circular_trace_buffer) (val)
1420
1421 #define target_get_tib_address(ptid, addr) \
1422 (*current_target.to_get_tib_address) ((ptid), (addr))
1423
1424 #define target_set_permissions() \
1425 (*current_target.to_set_permissions) ()
1426
1427 #define target_static_tracepoint_marker_at(addr, marker) \
1428 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1429
1430 #define target_static_tracepoint_markers_by_strid(marker_id) \
1431 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1432
1433 /* Command logging facility. */
1434
1435 #define target_log_command(p) \
1436 do \
1437 if (current_target.to_log_command) \
1438 (*current_target.to_log_command) (p); \
1439 while (0)
1440
1441
1442 extern int target_core_of_thread (ptid_t ptid);
1443
1444 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1445 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1446 if there's a mismatch, and -1 if an error is encountered while
1447 reading memory. Throws an error if the functionality is found not
1448 to be supported by the current target. */
1449 int target_verify_memory (const gdb_byte *data,
1450 CORE_ADDR memaddr, ULONGEST size);
1451
1452 /* Routines for maintenance of the target structures...
1453
1454 add_target: Add a target to the list of all possible targets.
1455
1456 push_target: Make this target the top of the stack of currently used
1457 targets, within its particular stratum of the stack. Result
1458 is 0 if now atop the stack, nonzero if not on top (maybe
1459 should warn user).
1460
1461 unpush_target: Remove this from the stack of currently used targets,
1462 no matter where it is on the list. Returns 0 if no
1463 change, 1 if removed from stack.
1464
1465 pop_target: Remove the top thing on the stack of current targets. */
1466
1467 extern void add_target (struct target_ops *);
1468
1469 extern void push_target (struct target_ops *);
1470
1471 extern int unpush_target (struct target_ops *);
1472
1473 extern void target_pre_inferior (int);
1474
1475 extern void target_preopen (int);
1476
1477 extern void pop_target (void);
1478
1479 /* Does whatever cleanup is required to get rid of all pushed targets.
1480 QUITTING is propagated to target_close; it indicates that GDB is
1481 exiting and should not get hung on an error (otherwise it is
1482 important to perform clean termination, even if it takes a
1483 while). */
1484 extern void pop_all_targets (int quitting);
1485
1486 /* Like pop_all_targets, but pops only targets whose stratum is
1487 strictly above ABOVE_STRATUM. */
1488 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1489
1490 extern int target_is_pushed (struct target_ops *t);
1491
1492 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1493 CORE_ADDR offset);
1494
1495 /* Struct target_section maps address ranges to file sections. It is
1496 mostly used with BFD files, but can be used without (e.g. for handling
1497 raw disks, or files not in formats handled by BFD). */
1498
1499 struct target_section
1500 {
1501 CORE_ADDR addr; /* Lowest address in section */
1502 CORE_ADDR endaddr; /* 1+highest address in section */
1503
1504 struct bfd_section *the_bfd_section;
1505
1506 bfd *bfd; /* BFD file pointer */
1507 };
1508
1509 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1510
1511 struct target_section_table
1512 {
1513 struct target_section *sections;
1514 struct target_section *sections_end;
1515 };
1516
1517 /* Return the "section" containing the specified address. */
1518 struct target_section *target_section_by_addr (struct target_ops *target,
1519 CORE_ADDR addr);
1520
1521 /* Return the target section table this target (or the targets
1522 beneath) currently manipulate. */
1523
1524 extern struct target_section_table *target_get_section_table
1525 (struct target_ops *target);
1526
1527 /* From mem-break.c */
1528
1529 extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1530
1531 extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1532
1533 extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1534
1535 extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1536
1537
1538 /* From target.c */
1539
1540 extern void initialize_targets (void);
1541
1542 extern void noprocess (void) ATTRIBUTE_NORETURN;
1543
1544 extern void target_require_runnable (void);
1545
1546 extern void find_default_attach (struct target_ops *, char *, int);
1547
1548 extern void find_default_create_inferior (struct target_ops *,
1549 char *, char *, char **, int);
1550
1551 extern struct target_ops *find_run_target (void);
1552
1553 extern struct target_ops *find_target_beneath (struct target_ops *);
1554
1555 /* Read OS data object of type TYPE from the target, and return it in
1556 XML format. The result is NUL-terminated and returned as a string,
1557 allocated using xmalloc. If an error occurs or the transfer is
1558 unsupported, NULL is returned. Empty objects are returned as
1559 allocated but empty strings. */
1560
1561 extern char *target_get_osdata (const char *type);
1562
1563 \f
1564 /* Stuff that should be shared among the various remote targets. */
1565
1566 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1567 information (higher values, more information). */
1568 extern int remote_debug;
1569
1570 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1571 extern int baud_rate;
1572 /* Timeout limit for response from target. */
1573 extern int remote_timeout;
1574
1575 \f
1576 /* Functions for helping to write a native target. */
1577
1578 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1579 extern void store_waitstatus (struct target_waitstatus *, int);
1580
1581 /* These are in common/signals.c, but they're only used by gdb. */
1582 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1583 int);
1584 extern int default_target_signal_to_host (struct gdbarch *,
1585 enum target_signal);
1586
1587 /* Convert from a number used in a GDB command to an enum target_signal. */
1588 extern enum target_signal target_signal_from_command (int);
1589 /* End of files in common/signals.c. */
1590
1591 /* Set the show memory breakpoints mode to show, and installs a cleanup
1592 to restore it back to the current value. */
1593 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1594
1595 extern int may_write_registers;
1596 extern int may_write_memory;
1597 extern int may_insert_breakpoints;
1598 extern int may_insert_tracepoints;
1599 extern int may_insert_fast_tracepoints;
1600 extern int may_stop;
1601
1602 extern void update_target_permissions (void);
1603
1604 \f
1605 /* Imported from machine dependent code */
1606
1607 /* Blank target vector entries are initialized to target_ignore. */
1608 void target_ignore (void);
1609
1610 extern struct target_ops deprecated_child_ops;
1611
1612 #endif /* !defined (TARGET_H) */
This page took 0.065073 seconds and 4 git commands to generate.