convert to_remove_fork_catchpoint
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
527 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
528 int (*to_follow_fork) (struct target_ops *, int, int);
529 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
530 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
531 int (*to_set_syscall_catchpoint) (struct target_ops *,
532 int, int, int, int, int *);
533 int (*to_has_exited) (struct target_ops *, int, int, int *);
534 void (*to_mourn_inferior) (struct target_ops *);
535 int (*to_can_run) (struct target_ops *);
536
537 /* Documentation of this routine is provided with the corresponding
538 target_* macro. */
539 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
540
541 /* Documentation of this routine is provided with the
542 corresponding target_* function. */
543 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
544
545 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
546 void (*to_find_new_threads) (struct target_ops *);
547 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
548 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
549 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
550 void (*to_stop) (struct target_ops *, ptid_t);
551 void (*to_rcmd) (struct target_ops *,
552 char *command, struct ui_file *output)
553 TARGET_DEFAULT_FUNC (default_rcmd);
554 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
555 void (*to_log_command) (struct target_ops *, const char *);
556 struct target_section_table *(*to_get_section_table) (struct target_ops *);
557 enum strata to_stratum;
558 int (*to_has_all_memory) (struct target_ops *);
559 int (*to_has_memory) (struct target_ops *);
560 int (*to_has_stack) (struct target_ops *);
561 int (*to_has_registers) (struct target_ops *);
562 int (*to_has_execution) (struct target_ops *, ptid_t);
563 int to_has_thread_control; /* control thread execution */
564 int to_attach_no_wait;
565 /* ASYNC target controls */
566 int (*to_can_async_p) (struct target_ops *)
567 TARGET_DEFAULT_FUNC (find_default_can_async_p);
568 int (*to_is_async_p) (struct target_ops *)
569 TARGET_DEFAULT_FUNC (find_default_is_async_p);
570 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
571 TARGET_DEFAULT_NORETURN (tcomplain ());
572 int (*to_supports_non_stop) (struct target_ops *);
573 /* find_memory_regions support method for gcore */
574 int (*to_find_memory_regions) (struct target_ops *,
575 find_memory_region_ftype func, void *data);
576 /* make_corefile_notes support method for gcore */
577 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
578 /* get_bookmark support method for bookmarks */
579 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
580 /* goto_bookmark support method for bookmarks */
581 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
582 /* Return the thread-local address at OFFSET in the
583 thread-local storage for the thread PTID and the shared library
584 or executable file given by OBJFILE. If that block of
585 thread-local storage hasn't been allocated yet, this function
586 may return an error. */
587 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
588 ptid_t ptid,
589 CORE_ADDR load_module_addr,
590 CORE_ADDR offset);
591
592 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
593 OBJECT. The OFFSET, for a seekable object, specifies the
594 starting point. The ANNEX can be used to provide additional
595 data-specific information to the target.
596
597 Return the transferred status, error or OK (an
598 'enum target_xfer_status' value). Save the number of bytes
599 actually transferred in *XFERED_LEN if transfer is successful
600 (TARGET_XFER_OK) or the number unavailable bytes if the requested
601 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
602 smaller than LEN does not indicate the end of the object, only
603 the end of the transfer; higher level code should continue
604 transferring if desired. This is handled in target.c.
605
606 The interface does not support a "retry" mechanism. Instead it
607 assumes that at least one byte will be transfered on each
608 successful call.
609
610 NOTE: cagney/2003-10-17: The current interface can lead to
611 fragmented transfers. Lower target levels should not implement
612 hacks, such as enlarging the transfer, in an attempt to
613 compensate for this. Instead, the target stack should be
614 extended so that it implements supply/collect methods and a
615 look-aside object cache. With that available, the lowest
616 target can safely and freely "push" data up the stack.
617
618 See target_read and target_write for more information. One,
619 and only one, of readbuf or writebuf must be non-NULL. */
620
621 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
622 enum target_object object,
623 const char *annex,
624 gdb_byte *readbuf,
625 const gdb_byte *writebuf,
626 ULONGEST offset, ULONGEST len,
627 ULONGEST *xfered_len)
628 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
629
630 /* Returns the memory map for the target. A return value of NULL
631 means that no memory map is available. If a memory address
632 does not fall within any returned regions, it's assumed to be
633 RAM. The returned memory regions should not overlap.
634
635 The order of regions does not matter; target_memory_map will
636 sort regions by starting address. For that reason, this
637 function should not be called directly except via
638 target_memory_map.
639
640 This method should not cache data; if the memory map could
641 change unexpectedly, it should be invalidated, and higher
642 layers will re-fetch it. */
643 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
644
645 /* Erases the region of flash memory starting at ADDRESS, of
646 length LENGTH.
647
648 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
649 on flash block boundaries, as reported by 'to_memory_map'. */
650 void (*to_flash_erase) (struct target_ops *,
651 ULONGEST address, LONGEST length);
652
653 /* Finishes a flash memory write sequence. After this operation
654 all flash memory should be available for writing and the result
655 of reading from areas written by 'to_flash_write' should be
656 equal to what was written. */
657 void (*to_flash_done) (struct target_ops *);
658
659 /* Describe the architecture-specific features of this target.
660 Returns the description found, or NULL if no description
661 was available. */
662 const struct target_desc *(*to_read_description) (struct target_ops *ops);
663
664 /* Build the PTID of the thread on which a given task is running,
665 based on LWP and THREAD. These values are extracted from the
666 task Private_Data section of the Ada Task Control Block, and
667 their interpretation depends on the target. */
668 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
669 long lwp, long thread);
670
671 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
672 Return 0 if *READPTR is already at the end of the buffer.
673 Return -1 if there is insufficient buffer for a whole entry.
674 Return 1 if an entry was read into *TYPEP and *VALP. */
675 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
676 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
677
678 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
679 sequence of bytes in PATTERN with length PATTERN_LEN.
680
681 The result is 1 if found, 0 if not found, and -1 if there was an error
682 requiring halting of the search (e.g. memory read error).
683 If the pattern is found the address is recorded in FOUND_ADDRP. */
684 int (*to_search_memory) (struct target_ops *ops,
685 CORE_ADDR start_addr, ULONGEST search_space_len,
686 const gdb_byte *pattern, ULONGEST pattern_len,
687 CORE_ADDR *found_addrp);
688
689 /* Can target execute in reverse? */
690 int (*to_can_execute_reverse) (struct target_ops *);
691
692 /* The direction the target is currently executing. Must be
693 implemented on targets that support reverse execution and async
694 mode. The default simply returns forward execution. */
695 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
696
697 /* Does this target support debugging multiple processes
698 simultaneously? */
699 int (*to_supports_multi_process) (struct target_ops *);
700
701 /* Does this target support enabling and disabling tracepoints while a trace
702 experiment is running? */
703 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
704
705 /* Does this target support disabling address space randomization? */
706 int (*to_supports_disable_randomization) (struct target_ops *);
707
708 /* Does this target support the tracenz bytecode for string collection? */
709 int (*to_supports_string_tracing) (struct target_ops *);
710
711 /* Does this target support evaluation of breakpoint conditions on its
712 end? */
713 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
714
715 /* Does this target support evaluation of breakpoint commands on its
716 end? */
717 int (*to_can_run_breakpoint_commands) (struct target_ops *);
718
719 /* Determine current architecture of thread PTID.
720
721 The target is supposed to determine the architecture of the code where
722 the target is currently stopped at (on Cell, if a target is in spu_run,
723 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
724 This is architecture used to perform decr_pc_after_break adjustment,
725 and also determines the frame architecture of the innermost frame.
726 ptrace operations need to operate according to target_gdbarch ().
727
728 The default implementation always returns target_gdbarch (). */
729 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
730
731 /* Determine current address space of thread PTID.
732
733 The default implementation always returns the inferior's
734 address space. */
735 struct address_space *(*to_thread_address_space) (struct target_ops *,
736 ptid_t);
737
738 /* Target file operations. */
739
740 /* Open FILENAME on the target, using FLAGS and MODE. Return a
741 target file descriptor, or -1 if an error occurs (and set
742 *TARGET_ERRNO). */
743 int (*to_fileio_open) (struct target_ops *,
744 const char *filename, int flags, int mode,
745 int *target_errno);
746
747 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
748 Return the number of bytes written, or -1 if an error occurs
749 (and set *TARGET_ERRNO). */
750 int (*to_fileio_pwrite) (struct target_ops *,
751 int fd, const gdb_byte *write_buf, int len,
752 ULONGEST offset, int *target_errno);
753
754 /* Read up to LEN bytes FD on the target into READ_BUF.
755 Return the number of bytes read, or -1 if an error occurs
756 (and set *TARGET_ERRNO). */
757 int (*to_fileio_pread) (struct target_ops *,
758 int fd, gdb_byte *read_buf, int len,
759 ULONGEST offset, int *target_errno);
760
761 /* Close FD on the target. Return 0, or -1 if an error occurs
762 (and set *TARGET_ERRNO). */
763 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
764
765 /* Unlink FILENAME on the target. Return 0, or -1 if an error
766 occurs (and set *TARGET_ERRNO). */
767 int (*to_fileio_unlink) (struct target_ops *,
768 const char *filename, int *target_errno);
769
770 /* Read value of symbolic link FILENAME on the target. Return a
771 null-terminated string allocated via xmalloc, or NULL if an error
772 occurs (and set *TARGET_ERRNO). */
773 char *(*to_fileio_readlink) (struct target_ops *,
774 const char *filename, int *target_errno);
775
776
777 /* Implement the "info proc" command. */
778 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
779
780 /* Tracepoint-related operations. */
781
782 /* Prepare the target for a tracing run. */
783 void (*to_trace_init) (struct target_ops *);
784
785 /* Send full details of a tracepoint location to the target. */
786 void (*to_download_tracepoint) (struct target_ops *,
787 struct bp_location *location);
788
789 /* Is the target able to download tracepoint locations in current
790 state? */
791 int (*to_can_download_tracepoint) (struct target_ops *);
792
793 /* Send full details of a trace state variable to the target. */
794 void (*to_download_trace_state_variable) (struct target_ops *,
795 struct trace_state_variable *tsv);
796
797 /* Enable a tracepoint on the target. */
798 void (*to_enable_tracepoint) (struct target_ops *,
799 struct bp_location *location);
800
801 /* Disable a tracepoint on the target. */
802 void (*to_disable_tracepoint) (struct target_ops *,
803 struct bp_location *location);
804
805 /* Inform the target info of memory regions that are readonly
806 (such as text sections), and so it should return data from
807 those rather than look in the trace buffer. */
808 void (*to_trace_set_readonly_regions) (struct target_ops *);
809
810 /* Start a trace run. */
811 void (*to_trace_start) (struct target_ops *);
812
813 /* Get the current status of a tracing run. */
814 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
815
816 void (*to_get_tracepoint_status) (struct target_ops *,
817 struct breakpoint *tp,
818 struct uploaded_tp *utp);
819
820 /* Stop a trace run. */
821 void (*to_trace_stop) (struct target_ops *);
822
823 /* Ask the target to find a trace frame of the given type TYPE,
824 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
825 number of the trace frame, and also the tracepoint number at
826 TPP. If no trace frame matches, return -1. May throw if the
827 operation fails. */
828 int (*to_trace_find) (struct target_ops *,
829 enum trace_find_type type, int num,
830 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
831
832 /* Get the value of the trace state variable number TSV, returning
833 1 if the value is known and writing the value itself into the
834 location pointed to by VAL, else returning 0. */
835 int (*to_get_trace_state_variable_value) (struct target_ops *,
836 int tsv, LONGEST *val);
837
838 int (*to_save_trace_data) (struct target_ops *, const char *filename);
839
840 int (*to_upload_tracepoints) (struct target_ops *,
841 struct uploaded_tp **utpp);
842
843 int (*to_upload_trace_state_variables) (struct target_ops *,
844 struct uploaded_tsv **utsvp);
845
846 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
847 ULONGEST offset, LONGEST len);
848
849 /* Get the minimum length of instruction on which a fast tracepoint
850 may be set on the target. If this operation is unsupported,
851 return -1. If for some reason the minimum length cannot be
852 determined, return 0. */
853 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
854
855 /* Set the target's tracing behavior in response to unexpected
856 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
857 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
858 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
859 /* Set the size of trace buffer in the target. */
860 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
861
862 /* Add/change textual notes about the trace run, returning 1 if
863 successful, 0 otherwise. */
864 int (*to_set_trace_notes) (struct target_ops *,
865 const char *user, const char *notes,
866 const char *stopnotes);
867
868 /* Return the processor core that thread PTID was last seen on.
869 This information is updated only when:
870 - update_thread_list is called
871 - thread stops
872 If the core cannot be determined -- either for the specified
873 thread, or right now, or in this debug session, or for this
874 target -- return -1. */
875 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
876
877 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
878 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
879 a match, 0 if there's a mismatch, and -1 if an error is
880 encountered while reading memory. */
881 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
882 CORE_ADDR memaddr, ULONGEST size);
883
884 /* Return the address of the start of the Thread Information Block
885 a Windows OS specific feature. */
886 int (*to_get_tib_address) (struct target_ops *,
887 ptid_t ptid, CORE_ADDR *addr);
888
889 /* Send the new settings of write permission variables. */
890 void (*to_set_permissions) (struct target_ops *);
891
892 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
893 with its details. Return 1 on success, 0 on failure. */
894 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
895 struct static_tracepoint_marker *marker);
896
897 /* Return a vector of all tracepoints markers string id ID, or all
898 markers if ID is NULL. */
899 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
900 (struct target_ops *, const char *id);
901
902 /* Return a traceframe info object describing the current
903 traceframe's contents. If the target doesn't support
904 traceframe info, return NULL. If the current traceframe is not
905 selected (the current traceframe number is -1), the target can
906 choose to return either NULL or an empty traceframe info. If
907 NULL is returned, for example in remote target, GDB will read
908 from the live inferior. If an empty traceframe info is
909 returned, for example in tfile target, which means the
910 traceframe info is available, but the requested memory is not
911 available in it. GDB will try to see if the requested memory
912 is available in the read-only sections. This method should not
913 cache data; higher layers take care of caching, invalidating,
914 and re-fetching when necessary. */
915 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
916
917 /* Ask the target to use or not to use agent according to USE. Return 1
918 successful, 0 otherwise. */
919 int (*to_use_agent) (struct target_ops *, int use);
920
921 /* Is the target able to use agent in current state? */
922 int (*to_can_use_agent) (struct target_ops *);
923
924 /* Check whether the target supports branch tracing. */
925 int (*to_supports_btrace) (struct target_ops *)
926 TARGET_DEFAULT_RETURN (0);
927
928 /* Enable branch tracing for PTID and allocate a branch trace target
929 information struct for reading and for disabling branch trace. */
930 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
931 ptid_t ptid);
932
933 /* Disable branch tracing and deallocate TINFO. */
934 void (*to_disable_btrace) (struct target_ops *,
935 struct btrace_target_info *tinfo);
936
937 /* Disable branch tracing and deallocate TINFO. This function is similar
938 to to_disable_btrace, except that it is called during teardown and is
939 only allowed to perform actions that are safe. A counter-example would
940 be attempting to talk to a remote target. */
941 void (*to_teardown_btrace) (struct target_ops *,
942 struct btrace_target_info *tinfo);
943
944 /* Read branch trace data for the thread indicated by BTINFO into DATA.
945 DATA is cleared before new trace is added.
946 The branch trace will start with the most recent block and continue
947 towards older blocks. */
948 enum btrace_error (*to_read_btrace) (struct target_ops *self,
949 VEC (btrace_block_s) **data,
950 struct btrace_target_info *btinfo,
951 enum btrace_read_type type);
952
953 /* Stop trace recording. */
954 void (*to_stop_recording) (struct target_ops *);
955
956 /* Print information about the recording. */
957 void (*to_info_record) (struct target_ops *);
958
959 /* Save the recorded execution trace into a file. */
960 void (*to_save_record) (struct target_ops *, const char *filename);
961
962 /* Delete the recorded execution trace from the current position onwards. */
963 void (*to_delete_record) (struct target_ops *);
964
965 /* Query if the record target is currently replaying. */
966 int (*to_record_is_replaying) (struct target_ops *);
967
968 /* Go to the begin of the execution trace. */
969 void (*to_goto_record_begin) (struct target_ops *);
970
971 /* Go to the end of the execution trace. */
972 void (*to_goto_record_end) (struct target_ops *);
973
974 /* Go to a specific location in the recorded execution trace. */
975 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
976
977 /* Disassemble SIZE instructions in the recorded execution trace from
978 the current position.
979 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
980 disassemble SIZE succeeding instructions. */
981 void (*to_insn_history) (struct target_ops *, int size, int flags);
982
983 /* Disassemble SIZE instructions in the recorded execution trace around
984 FROM.
985 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
986 disassemble SIZE instructions after FROM. */
987 void (*to_insn_history_from) (struct target_ops *,
988 ULONGEST from, int size, int flags);
989
990 /* Disassemble a section of the recorded execution trace from instruction
991 BEGIN (inclusive) to instruction END (inclusive). */
992 void (*to_insn_history_range) (struct target_ops *,
993 ULONGEST begin, ULONGEST end, int flags);
994
995 /* Print a function trace of the recorded execution trace.
996 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
997 succeeding functions. */
998 void (*to_call_history) (struct target_ops *, int size, int flags);
999
1000 /* Print a function trace of the recorded execution trace starting
1001 at function FROM.
1002 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1003 SIZE functions after FROM. */
1004 void (*to_call_history_from) (struct target_ops *,
1005 ULONGEST begin, int size, int flags);
1006
1007 /* Print a function trace of an execution trace section from function BEGIN
1008 (inclusive) to function END (inclusive). */
1009 void (*to_call_history_range) (struct target_ops *,
1010 ULONGEST begin, ULONGEST end, int flags);
1011
1012 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1013 non-empty annex. */
1014 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1015
1016 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1017 it is not used. */
1018 const struct frame_unwind *to_get_unwinder;
1019 const struct frame_unwind *to_get_tailcall_unwinder;
1020
1021 /* Return the number of bytes by which the PC needs to be decremented
1022 after executing a breakpoint instruction.
1023 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1024 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1025 struct gdbarch *gdbarch);
1026
1027 int to_magic;
1028 /* Need sub-structure for target machine related rather than comm related?
1029 */
1030 };
1031
1032 /* Magic number for checking ops size. If a struct doesn't end with this
1033 number, somebody changed the declaration but didn't change all the
1034 places that initialize one. */
1035
1036 #define OPS_MAGIC 3840
1037
1038 /* The ops structure for our "current" target process. This should
1039 never be NULL. If there is no target, it points to the dummy_target. */
1040
1041 extern struct target_ops current_target;
1042
1043 /* Define easy words for doing these operations on our current target. */
1044
1045 #define target_shortname (current_target.to_shortname)
1046 #define target_longname (current_target.to_longname)
1047
1048 /* Does whatever cleanup is required for a target that we are no
1049 longer going to be calling. This routine is automatically always
1050 called after popping the target off the target stack - the target's
1051 own methods are no longer available through the target vector.
1052 Closing file descriptors and freeing all memory allocated memory are
1053 typical things it should do. */
1054
1055 void target_close (struct target_ops *targ);
1056
1057 /* Attaches to a process on the target side. Arguments are as passed
1058 to the `attach' command by the user. This routine can be called
1059 when the target is not on the target-stack, if the target_can_run
1060 routine returns 1; in that case, it must push itself onto the stack.
1061 Upon exit, the target should be ready for normal operations, and
1062 should be ready to deliver the status of the process immediately
1063 (without waiting) to an upcoming target_wait call. */
1064
1065 void target_attach (char *, int);
1066
1067 /* Some targets don't generate traps when attaching to the inferior,
1068 or their target_attach implementation takes care of the waiting.
1069 These targets must set to_attach_no_wait. */
1070
1071 #define target_attach_no_wait \
1072 (current_target.to_attach_no_wait)
1073
1074 /* The target_attach operation places a process under debugger control,
1075 and stops the process.
1076
1077 This operation provides a target-specific hook that allows the
1078 necessary bookkeeping to be performed after an attach completes. */
1079 #define target_post_attach(pid) \
1080 (*current_target.to_post_attach) (&current_target, pid)
1081
1082 /* Takes a program previously attached to and detaches it.
1083 The program may resume execution (some targets do, some don't) and will
1084 no longer stop on signals, etc. We better not have left any breakpoints
1085 in the program or it'll die when it hits one. ARGS is arguments
1086 typed by the user (e.g. a signal to send the process). FROM_TTY
1087 says whether to be verbose or not. */
1088
1089 extern void target_detach (const char *, int);
1090
1091 /* Disconnect from the current target without resuming it (leaving it
1092 waiting for a debugger). */
1093
1094 extern void target_disconnect (char *, int);
1095
1096 /* Resume execution of the target process PTID (or a group of
1097 threads). STEP says whether to single-step or to run free; SIGGNAL
1098 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1099 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1100 PTID means `step/resume only this process id'. A wildcard PTID
1101 (all threads, or all threads of process) means `step/resume
1102 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1103 matches) resume with their 'thread->suspend.stop_signal' signal
1104 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1105 if in "no pass" state. */
1106
1107 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1108
1109 /* Wait for process pid to do something. PTID = -1 to wait for any
1110 pid to do something. Return pid of child, or -1 in case of error;
1111 store status through argument pointer STATUS. Note that it is
1112 _NOT_ OK to throw_exception() out of target_wait() without popping
1113 the debugging target from the stack; GDB isn't prepared to get back
1114 to the prompt with a debugging target but without the frame cache,
1115 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1116 options. */
1117
1118 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1119 int options);
1120
1121 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1122
1123 extern void target_fetch_registers (struct regcache *regcache, int regno);
1124
1125 /* Store at least register REGNO, or all regs if REGNO == -1.
1126 It can store as many registers as it wants to, so target_prepare_to_store
1127 must have been previously called. Calls error() if there are problems. */
1128
1129 extern void target_store_registers (struct regcache *regcache, int regs);
1130
1131 /* Get ready to modify the registers array. On machines which store
1132 individual registers, this doesn't need to do anything. On machines
1133 which store all the registers in one fell swoop, this makes sure
1134 that REGISTERS contains all the registers from the program being
1135 debugged. */
1136
1137 #define target_prepare_to_store(regcache) \
1138 (*current_target.to_prepare_to_store) (&current_target, regcache)
1139
1140 /* Determine current address space of thread PTID. */
1141
1142 struct address_space *target_thread_address_space (ptid_t);
1143
1144 /* Implement the "info proc" command. This returns one if the request
1145 was handled, and zero otherwise. It can also throw an exception if
1146 an error was encountered while attempting to handle the
1147 request. */
1148
1149 int target_info_proc (char *, enum info_proc_what);
1150
1151 /* Returns true if this target can debug multiple processes
1152 simultaneously. */
1153
1154 #define target_supports_multi_process() \
1155 (*current_target.to_supports_multi_process) (&current_target)
1156
1157 /* Returns true if this target can disable address space randomization. */
1158
1159 int target_supports_disable_randomization (void);
1160
1161 /* Returns true if this target can enable and disable tracepoints
1162 while a trace experiment is running. */
1163
1164 #define target_supports_enable_disable_tracepoint() \
1165 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1166
1167 #define target_supports_string_tracing() \
1168 (*current_target.to_supports_string_tracing) (&current_target)
1169
1170 /* Returns true if this target can handle breakpoint conditions
1171 on its end. */
1172
1173 #define target_supports_evaluation_of_breakpoint_conditions() \
1174 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1175
1176 /* Returns true if this target can handle breakpoint commands
1177 on its end. */
1178
1179 #define target_can_run_breakpoint_commands() \
1180 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1181
1182 extern int target_read_string (CORE_ADDR, char **, int, int *);
1183
1184 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1185 ssize_t len);
1186
1187 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1188 ssize_t len);
1189
1190 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1191
1192 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1193
1194 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1195 ssize_t len);
1196
1197 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1198 ssize_t len);
1199
1200 /* Fetches the target's memory map. If one is found it is sorted
1201 and returned, after some consistency checking. Otherwise, NULL
1202 is returned. */
1203 VEC(mem_region_s) *target_memory_map (void);
1204
1205 /* Erase the specified flash region. */
1206 void target_flash_erase (ULONGEST address, LONGEST length);
1207
1208 /* Finish a sequence of flash operations. */
1209 void target_flash_done (void);
1210
1211 /* Describes a request for a memory write operation. */
1212 struct memory_write_request
1213 {
1214 /* Begining address that must be written. */
1215 ULONGEST begin;
1216 /* Past-the-end address. */
1217 ULONGEST end;
1218 /* The data to write. */
1219 gdb_byte *data;
1220 /* A callback baton for progress reporting for this request. */
1221 void *baton;
1222 };
1223 typedef struct memory_write_request memory_write_request_s;
1224 DEF_VEC_O(memory_write_request_s);
1225
1226 /* Enumeration specifying different flash preservation behaviour. */
1227 enum flash_preserve_mode
1228 {
1229 flash_preserve,
1230 flash_discard
1231 };
1232
1233 /* Write several memory blocks at once. This version can be more
1234 efficient than making several calls to target_write_memory, in
1235 particular because it can optimize accesses to flash memory.
1236
1237 Moreover, this is currently the only memory access function in gdb
1238 that supports writing to flash memory, and it should be used for
1239 all cases where access to flash memory is desirable.
1240
1241 REQUESTS is the vector (see vec.h) of memory_write_request.
1242 PRESERVE_FLASH_P indicates what to do with blocks which must be
1243 erased, but not completely rewritten.
1244 PROGRESS_CB is a function that will be periodically called to provide
1245 feedback to user. It will be called with the baton corresponding
1246 to the request currently being written. It may also be called
1247 with a NULL baton, when preserved flash sectors are being rewritten.
1248
1249 The function returns 0 on success, and error otherwise. */
1250 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1251 enum flash_preserve_mode preserve_flash_p,
1252 void (*progress_cb) (ULONGEST, void *));
1253
1254 /* Print a line about the current target. */
1255
1256 #define target_files_info() \
1257 (*current_target.to_files_info) (&current_target)
1258
1259 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1260 the target machine. Returns 0 for success, and returns non-zero or
1261 throws an error (with a detailed failure reason error code and
1262 message) otherwise. */
1263
1264 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1265 struct bp_target_info *bp_tgt);
1266
1267 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1268 machine. Result is 0 for success, non-zero for error. */
1269
1270 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1271 struct bp_target_info *bp_tgt);
1272
1273 /* Initialize the terminal settings we record for the inferior,
1274 before we actually run the inferior. */
1275
1276 #define target_terminal_init() \
1277 (*current_target.to_terminal_init) (&current_target)
1278
1279 /* Put the inferior's terminal settings into effect.
1280 This is preparation for starting or resuming the inferior. */
1281
1282 extern void target_terminal_inferior (void);
1283
1284 /* Put some of our terminal settings into effect,
1285 enough to get proper results from our output,
1286 but do not change into or out of RAW mode
1287 so that no input is discarded.
1288
1289 After doing this, either terminal_ours or terminal_inferior
1290 should be called to get back to a normal state of affairs. */
1291
1292 #define target_terminal_ours_for_output() \
1293 (*current_target.to_terminal_ours_for_output) (&current_target)
1294
1295 /* Put our terminal settings into effect.
1296 First record the inferior's terminal settings
1297 so they can be restored properly later. */
1298
1299 #define target_terminal_ours() \
1300 (*current_target.to_terminal_ours) (&current_target)
1301
1302 /* Save our terminal settings.
1303 This is called from TUI after entering or leaving the curses
1304 mode. Since curses modifies our terminal this call is here
1305 to take this change into account. */
1306
1307 #define target_terminal_save_ours() \
1308 (*current_target.to_terminal_save_ours) (&current_target)
1309
1310 /* Print useful information about our terminal status, if such a thing
1311 exists. */
1312
1313 #define target_terminal_info(arg, from_tty) \
1314 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1315
1316 /* Kill the inferior process. Make it go away. */
1317
1318 extern void target_kill (void);
1319
1320 /* Load an executable file into the target process. This is expected
1321 to not only bring new code into the target process, but also to
1322 update GDB's symbol tables to match.
1323
1324 ARG contains command-line arguments, to be broken down with
1325 buildargv (). The first non-switch argument is the filename to
1326 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1327 0)), which is an offset to apply to the load addresses of FILE's
1328 sections. The target may define switches, or other non-switch
1329 arguments, as it pleases. */
1330
1331 extern void target_load (char *arg, int from_tty);
1332
1333 /* Start an inferior process and set inferior_ptid to its pid.
1334 EXEC_FILE is the file to run.
1335 ALLARGS is a string containing the arguments to the program.
1336 ENV is the environment vector to pass. Errors reported with error().
1337 On VxWorks and various standalone systems, we ignore exec_file. */
1338
1339 void target_create_inferior (char *exec_file, char *args,
1340 char **env, int from_tty);
1341
1342 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1343 notification of inferior events such as fork and vork immediately
1344 after the inferior is created. (This because of how gdb gets an
1345 inferior created via invoking a shell to do it. In such a scenario,
1346 if the shell init file has commands in it, the shell will fork and
1347 exec for each of those commands, and we will see each such fork
1348 event. Very bad.)
1349
1350 Such targets will supply an appropriate definition for this function. */
1351
1352 #define target_post_startup_inferior(ptid) \
1353 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1354
1355 /* On some targets, we can catch an inferior fork or vfork event when
1356 it occurs. These functions insert/remove an already-created
1357 catchpoint for such events. They return 0 for success, 1 if the
1358 catchpoint type is not supported and -1 for failure. */
1359
1360 #define target_insert_fork_catchpoint(pid) \
1361 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1362
1363 #define target_remove_fork_catchpoint(pid) \
1364 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1365
1366 #define target_insert_vfork_catchpoint(pid) \
1367 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1368
1369 #define target_remove_vfork_catchpoint(pid) \
1370 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1371
1372 /* If the inferior forks or vforks, this function will be called at
1373 the next resume in order to perform any bookkeeping and fiddling
1374 necessary to continue debugging either the parent or child, as
1375 requested, and releasing the other. Information about the fork
1376 or vfork event is available via get_last_target_status ().
1377 This function returns 1 if the inferior should not be resumed
1378 (i.e. there is another event pending). */
1379
1380 int target_follow_fork (int follow_child, int detach_fork);
1381
1382 /* On some targets, we can catch an inferior exec event when it
1383 occurs. These functions insert/remove an already-created
1384 catchpoint for such events. They return 0 for success, 1 if the
1385 catchpoint type is not supported and -1 for failure. */
1386
1387 #define target_insert_exec_catchpoint(pid) \
1388 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1389
1390 #define target_remove_exec_catchpoint(pid) \
1391 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1392
1393 /* Syscall catch.
1394
1395 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1396 If NEEDED is zero, it means the target can disable the mechanism to
1397 catch system calls because there are no more catchpoints of this type.
1398
1399 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1400 being requested. In this case, both TABLE_SIZE and TABLE should
1401 be ignored.
1402
1403 TABLE_SIZE is the number of elements in TABLE. It only matters if
1404 ANY_COUNT is zero.
1405
1406 TABLE is an array of ints, indexed by syscall number. An element in
1407 this array is nonzero if that syscall should be caught. This argument
1408 only matters if ANY_COUNT is zero.
1409
1410 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1411 for failure. */
1412
1413 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1414 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1415 pid, needed, any_count, \
1416 table_size, table)
1417
1418 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1419 exit code of PID, if any. */
1420
1421 #define target_has_exited(pid,wait_status,exit_status) \
1422 (*current_target.to_has_exited) (&current_target, \
1423 pid,wait_status,exit_status)
1424
1425 /* The debugger has completed a blocking wait() call. There is now
1426 some process event that must be processed. This function should
1427 be defined by those targets that require the debugger to perform
1428 cleanup or internal state changes in response to the process event. */
1429
1430 /* The inferior process has died. Do what is right. */
1431
1432 void target_mourn_inferior (void);
1433
1434 /* Does target have enough data to do a run or attach command? */
1435
1436 #define target_can_run(t) \
1437 ((t)->to_can_run) (t)
1438
1439 /* Set list of signals to be handled in the target.
1440
1441 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1442 (enum gdb_signal). For every signal whose entry in this array is
1443 non-zero, the target is allowed -but not required- to skip reporting
1444 arrival of the signal to the GDB core by returning from target_wait,
1445 and to pass the signal directly to the inferior instead.
1446
1447 However, if the target is hardware single-stepping a thread that is
1448 about to receive a signal, it needs to be reported in any case, even
1449 if mentioned in a previous target_pass_signals call. */
1450
1451 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1452
1453 /* Set list of signals the target may pass to the inferior. This
1454 directly maps to the "handle SIGNAL pass/nopass" setting.
1455
1456 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1457 number (enum gdb_signal). For every signal whose entry in this
1458 array is non-zero, the target is allowed to pass the signal to the
1459 inferior. Signals not present in the array shall be silently
1460 discarded. This does not influence whether to pass signals to the
1461 inferior as a result of a target_resume call. This is useful in
1462 scenarios where the target needs to decide whether to pass or not a
1463 signal to the inferior without GDB core involvement, such as for
1464 example, when detaching (as threads may have been suspended with
1465 pending signals not reported to GDB). */
1466
1467 extern void target_program_signals (int nsig, unsigned char *program_signals);
1468
1469 /* Check to see if a thread is still alive. */
1470
1471 extern int target_thread_alive (ptid_t ptid);
1472
1473 /* Query for new threads and add them to the thread list. */
1474
1475 extern void target_find_new_threads (void);
1476
1477 /* Make target stop in a continuable fashion. (For instance, under
1478 Unix, this should act like SIGSTOP). This function is normally
1479 used by GUIs to implement a stop button. */
1480
1481 extern void target_stop (ptid_t ptid);
1482
1483 /* Send the specified COMMAND to the target's monitor
1484 (shell,interpreter) for execution. The result of the query is
1485 placed in OUTBUF. */
1486
1487 #define target_rcmd(command, outbuf) \
1488 (*current_target.to_rcmd) (&current_target, command, outbuf)
1489
1490
1491 /* Does the target include all of memory, or only part of it? This
1492 determines whether we look up the target chain for other parts of
1493 memory if this target can't satisfy a request. */
1494
1495 extern int target_has_all_memory_1 (void);
1496 #define target_has_all_memory target_has_all_memory_1 ()
1497
1498 /* Does the target include memory? (Dummy targets don't.) */
1499
1500 extern int target_has_memory_1 (void);
1501 #define target_has_memory target_has_memory_1 ()
1502
1503 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1504 we start a process.) */
1505
1506 extern int target_has_stack_1 (void);
1507 #define target_has_stack target_has_stack_1 ()
1508
1509 /* Does the target have registers? (Exec files don't.) */
1510
1511 extern int target_has_registers_1 (void);
1512 #define target_has_registers target_has_registers_1 ()
1513
1514 /* Does the target have execution? Can we make it jump (through
1515 hoops), or pop its stack a few times? This means that the current
1516 target is currently executing; for some targets, that's the same as
1517 whether or not the target is capable of execution, but there are
1518 also targets which can be current while not executing. In that
1519 case this will become true after target_create_inferior or
1520 target_attach. */
1521
1522 extern int target_has_execution_1 (ptid_t);
1523
1524 /* Like target_has_execution_1, but always passes inferior_ptid. */
1525
1526 extern int target_has_execution_current (void);
1527
1528 #define target_has_execution target_has_execution_current ()
1529
1530 /* Default implementations for process_stratum targets. Return true
1531 if there's a selected inferior, false otherwise. */
1532
1533 extern int default_child_has_all_memory (struct target_ops *ops);
1534 extern int default_child_has_memory (struct target_ops *ops);
1535 extern int default_child_has_stack (struct target_ops *ops);
1536 extern int default_child_has_registers (struct target_ops *ops);
1537 extern int default_child_has_execution (struct target_ops *ops,
1538 ptid_t the_ptid);
1539
1540 /* Can the target support the debugger control of thread execution?
1541 Can it lock the thread scheduler? */
1542
1543 #define target_can_lock_scheduler \
1544 (current_target.to_has_thread_control & tc_schedlock)
1545
1546 /* Should the target enable async mode if it is supported? Temporary
1547 cludge until async mode is a strict superset of sync mode. */
1548 extern int target_async_permitted;
1549
1550 /* Can the target support asynchronous execution? */
1551 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1552
1553 /* Is the target in asynchronous execution mode? */
1554 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1555
1556 int target_supports_non_stop (void);
1557
1558 /* Put the target in async mode with the specified callback function. */
1559 #define target_async(CALLBACK,CONTEXT) \
1560 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1561
1562 #define target_execution_direction() \
1563 (current_target.to_execution_direction (&current_target))
1564
1565 /* Converts a process id to a string. Usually, the string just contains
1566 `process xyz', but on some systems it may contain
1567 `process xyz thread abc'. */
1568
1569 extern char *target_pid_to_str (ptid_t ptid);
1570
1571 extern char *normal_pid_to_str (ptid_t ptid);
1572
1573 /* Return a short string describing extra information about PID,
1574 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1575 is okay. */
1576
1577 #define target_extra_thread_info(TP) \
1578 (current_target.to_extra_thread_info (&current_target, TP))
1579
1580 /* Return the thread's name. A NULL result means that the target
1581 could not determine this thread's name. */
1582
1583 extern char *target_thread_name (struct thread_info *);
1584
1585 /* Attempts to find the pathname of the executable file
1586 that was run to create a specified process.
1587
1588 The process PID must be stopped when this operation is used.
1589
1590 If the executable file cannot be determined, NULL is returned.
1591
1592 Else, a pointer to a character string containing the pathname
1593 is returned. This string should be copied into a buffer by
1594 the client if the string will not be immediately used, or if
1595 it must persist. */
1596
1597 #define target_pid_to_exec_file(pid) \
1598 (current_target.to_pid_to_exec_file) (&current_target, pid)
1599
1600 /* See the to_thread_architecture description in struct target_ops. */
1601
1602 #define target_thread_architecture(ptid) \
1603 (current_target.to_thread_architecture (&current_target, ptid))
1604
1605 /*
1606 * Iterator function for target memory regions.
1607 * Calls a callback function once for each memory region 'mapped'
1608 * in the child process. Defined as a simple macro rather than
1609 * as a function macro so that it can be tested for nullity.
1610 */
1611
1612 #define target_find_memory_regions(FUNC, DATA) \
1613 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1614
1615 /*
1616 * Compose corefile .note section.
1617 */
1618
1619 #define target_make_corefile_notes(BFD, SIZE_P) \
1620 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1621
1622 /* Bookmark interfaces. */
1623 #define target_get_bookmark(ARGS, FROM_TTY) \
1624 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1625
1626 #define target_goto_bookmark(ARG, FROM_TTY) \
1627 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1628
1629 /* Hardware watchpoint interfaces. */
1630
1631 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1632 write). Only the INFERIOR_PTID task is being queried. */
1633
1634 #define target_stopped_by_watchpoint() \
1635 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1636
1637 /* Non-zero if we have steppable watchpoints */
1638
1639 #define target_have_steppable_watchpoint \
1640 (current_target.to_have_steppable_watchpoint)
1641
1642 /* Non-zero if we have continuable watchpoints */
1643
1644 #define target_have_continuable_watchpoint \
1645 (current_target.to_have_continuable_watchpoint)
1646
1647 /* Provide defaults for hardware watchpoint functions. */
1648
1649 /* If the *_hw_beakpoint functions have not been defined
1650 elsewhere use the definitions in the target vector. */
1651
1652 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1653 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1654 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1655 (including this one?). OTHERTYPE is who knows what... */
1656
1657 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1658 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1659 TYPE, CNT, OTHERTYPE);
1660
1661 /* Returns the number of debug registers needed to watch the given
1662 memory region, or zero if not supported. */
1663
1664 #define target_region_ok_for_hw_watchpoint(addr, len) \
1665 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1666 addr, len)
1667
1668
1669 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1670 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1671 COND is the expression for its condition, or NULL if there's none.
1672 Returns 0 for success, 1 if the watchpoint type is not supported,
1673 -1 for failure. */
1674
1675 #define target_insert_watchpoint(addr, len, type, cond) \
1676 (*current_target.to_insert_watchpoint) (&current_target, \
1677 addr, len, type, cond)
1678
1679 #define target_remove_watchpoint(addr, len, type, cond) \
1680 (*current_target.to_remove_watchpoint) (&current_target, \
1681 addr, len, type, cond)
1682
1683 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1684 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1685 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1686 masked watchpoints are not supported, -1 for failure. */
1687
1688 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1689
1690 /* Remove a masked watchpoint at ADDR with the mask MASK.
1691 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1692 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1693 for failure. */
1694
1695 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1696
1697 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1698 the target machine. Returns 0 for success, and returns non-zero or
1699 throws an error (with a detailed failure reason error code and
1700 message) otherwise. */
1701
1702 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1703 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1704 gdbarch, bp_tgt)
1705
1706 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1707 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1708 gdbarch, bp_tgt)
1709
1710 /* Return number of debug registers needed for a ranged breakpoint,
1711 or -1 if ranged breakpoints are not supported. */
1712
1713 extern int target_ranged_break_num_registers (void);
1714
1715 /* Return non-zero if target knows the data address which triggered this
1716 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1717 INFERIOR_PTID task is being queried. */
1718 #define target_stopped_data_address(target, addr_p) \
1719 (*target.to_stopped_data_address) (target, addr_p)
1720
1721 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1722 LENGTH bytes beginning at START. */
1723 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1724 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1725
1726 /* Return non-zero if the target is capable of using hardware to evaluate
1727 the condition expression. In this case, if the condition is false when
1728 the watched memory location changes, execution may continue without the
1729 debugger being notified.
1730
1731 Due to limitations in the hardware implementation, it may be capable of
1732 avoiding triggering the watchpoint in some cases where the condition
1733 expression is false, but may report some false positives as well.
1734 For this reason, GDB will still evaluate the condition expression when
1735 the watchpoint triggers. */
1736 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1737 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1738 addr, len, type, cond)
1739
1740 /* Return number of debug registers needed for a masked watchpoint,
1741 -1 if masked watchpoints are not supported or -2 if the given address
1742 and mask combination cannot be used. */
1743
1744 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1745
1746 /* Target can execute in reverse? */
1747 #define target_can_execute_reverse \
1748 (current_target.to_can_execute_reverse ? \
1749 current_target.to_can_execute_reverse (&current_target) : 0)
1750
1751 extern const struct target_desc *target_read_description (struct target_ops *);
1752
1753 #define target_get_ada_task_ptid(lwp, tid) \
1754 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1755
1756 /* Utility implementation of searching memory. */
1757 extern int simple_search_memory (struct target_ops* ops,
1758 CORE_ADDR start_addr,
1759 ULONGEST search_space_len,
1760 const gdb_byte *pattern,
1761 ULONGEST pattern_len,
1762 CORE_ADDR *found_addrp);
1763
1764 /* Main entry point for searching memory. */
1765 extern int target_search_memory (CORE_ADDR start_addr,
1766 ULONGEST search_space_len,
1767 const gdb_byte *pattern,
1768 ULONGEST pattern_len,
1769 CORE_ADDR *found_addrp);
1770
1771 /* Target file operations. */
1772
1773 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1774 target file descriptor, or -1 if an error occurs (and set
1775 *TARGET_ERRNO). */
1776 extern int target_fileio_open (const char *filename, int flags, int mode,
1777 int *target_errno);
1778
1779 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1780 Return the number of bytes written, or -1 if an error occurs
1781 (and set *TARGET_ERRNO). */
1782 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1783 ULONGEST offset, int *target_errno);
1784
1785 /* Read up to LEN bytes FD on the target into READ_BUF.
1786 Return the number of bytes read, or -1 if an error occurs
1787 (and set *TARGET_ERRNO). */
1788 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1789 ULONGEST offset, int *target_errno);
1790
1791 /* Close FD on the target. Return 0, or -1 if an error occurs
1792 (and set *TARGET_ERRNO). */
1793 extern int target_fileio_close (int fd, int *target_errno);
1794
1795 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1796 occurs (and set *TARGET_ERRNO). */
1797 extern int target_fileio_unlink (const char *filename, int *target_errno);
1798
1799 /* Read value of symbolic link FILENAME on the target. Return a
1800 null-terminated string allocated via xmalloc, or NULL if an error
1801 occurs (and set *TARGET_ERRNO). */
1802 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1803
1804 /* Read target file FILENAME. The return value will be -1 if the transfer
1805 fails or is not supported; 0 if the object is empty; or the length
1806 of the object otherwise. If a positive value is returned, a
1807 sufficiently large buffer will be allocated using xmalloc and
1808 returned in *BUF_P containing the contents of the object.
1809
1810 This method should be used for objects sufficiently small to store
1811 in a single xmalloc'd buffer, when no fixed bound on the object's
1812 size is known in advance. */
1813 extern LONGEST target_fileio_read_alloc (const char *filename,
1814 gdb_byte **buf_p);
1815
1816 /* Read target file FILENAME. The result is NUL-terminated and
1817 returned as a string, allocated using xmalloc. If an error occurs
1818 or the transfer is unsupported, NULL is returned. Empty objects
1819 are returned as allocated but empty strings. A warning is issued
1820 if the result contains any embedded NUL bytes. */
1821 extern char *target_fileio_read_stralloc (const char *filename);
1822
1823
1824 /* Tracepoint-related operations. */
1825
1826 #define target_trace_init() \
1827 (*current_target.to_trace_init) (&current_target)
1828
1829 #define target_download_tracepoint(t) \
1830 (*current_target.to_download_tracepoint) (&current_target, t)
1831
1832 #define target_can_download_tracepoint() \
1833 (*current_target.to_can_download_tracepoint) (&current_target)
1834
1835 #define target_download_trace_state_variable(tsv) \
1836 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1837
1838 #define target_enable_tracepoint(loc) \
1839 (*current_target.to_enable_tracepoint) (&current_target, loc)
1840
1841 #define target_disable_tracepoint(loc) \
1842 (*current_target.to_disable_tracepoint) (&current_target, loc)
1843
1844 #define target_trace_start() \
1845 (*current_target.to_trace_start) (&current_target)
1846
1847 #define target_trace_set_readonly_regions() \
1848 (*current_target.to_trace_set_readonly_regions) (&current_target)
1849
1850 #define target_get_trace_status(ts) \
1851 (*current_target.to_get_trace_status) (&current_target, ts)
1852
1853 #define target_get_tracepoint_status(tp,utp) \
1854 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1855
1856 #define target_trace_stop() \
1857 (*current_target.to_trace_stop) (&current_target)
1858
1859 #define target_trace_find(type,num,addr1,addr2,tpp) \
1860 (*current_target.to_trace_find) (&current_target, \
1861 (type), (num), (addr1), (addr2), (tpp))
1862
1863 #define target_get_trace_state_variable_value(tsv,val) \
1864 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1865 (tsv), (val))
1866
1867 #define target_save_trace_data(filename) \
1868 (*current_target.to_save_trace_data) (&current_target, filename)
1869
1870 #define target_upload_tracepoints(utpp) \
1871 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1872
1873 #define target_upload_trace_state_variables(utsvp) \
1874 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1875
1876 #define target_get_raw_trace_data(buf,offset,len) \
1877 (*current_target.to_get_raw_trace_data) (&current_target, \
1878 (buf), (offset), (len))
1879
1880 #define target_get_min_fast_tracepoint_insn_len() \
1881 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1882
1883 #define target_set_disconnected_tracing(val) \
1884 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1885
1886 #define target_set_circular_trace_buffer(val) \
1887 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1888
1889 #define target_set_trace_buffer_size(val) \
1890 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1891
1892 #define target_set_trace_notes(user,notes,stopnotes) \
1893 (*current_target.to_set_trace_notes) (&current_target, \
1894 (user), (notes), (stopnotes))
1895
1896 #define target_get_tib_address(ptid, addr) \
1897 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1898
1899 #define target_set_permissions() \
1900 (*current_target.to_set_permissions) (&current_target)
1901
1902 #define target_static_tracepoint_marker_at(addr, marker) \
1903 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1904 addr, marker)
1905
1906 #define target_static_tracepoint_markers_by_strid(marker_id) \
1907 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1908 marker_id)
1909
1910 #define target_traceframe_info() \
1911 (*current_target.to_traceframe_info) (&current_target)
1912
1913 #define target_use_agent(use) \
1914 (*current_target.to_use_agent) (&current_target, use)
1915
1916 #define target_can_use_agent() \
1917 (*current_target.to_can_use_agent) (&current_target)
1918
1919 #define target_augmented_libraries_svr4_read() \
1920 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1921
1922 /* Command logging facility. */
1923
1924 #define target_log_command(p) \
1925 do \
1926 if (current_target.to_log_command) \
1927 (*current_target.to_log_command) (&current_target, \
1928 p); \
1929 while (0)
1930
1931
1932 extern int target_core_of_thread (ptid_t ptid);
1933
1934 /* See to_get_unwinder in struct target_ops. */
1935 extern const struct frame_unwind *target_get_unwinder (void);
1936
1937 /* See to_get_tailcall_unwinder in struct target_ops. */
1938 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1939
1940 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1941 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1942 if there's a mismatch, and -1 if an error is encountered while
1943 reading memory. Throws an error if the functionality is found not
1944 to be supported by the current target. */
1945 int target_verify_memory (const gdb_byte *data,
1946 CORE_ADDR memaddr, ULONGEST size);
1947
1948 /* Routines for maintenance of the target structures...
1949
1950 complete_target_initialization: Finalize a target_ops by filling in
1951 any fields needed by the target implementation.
1952
1953 add_target: Add a target to the list of all possible targets.
1954
1955 push_target: Make this target the top of the stack of currently used
1956 targets, within its particular stratum of the stack. Result
1957 is 0 if now atop the stack, nonzero if not on top (maybe
1958 should warn user).
1959
1960 unpush_target: Remove this from the stack of currently used targets,
1961 no matter where it is on the list. Returns 0 if no
1962 change, 1 if removed from stack. */
1963
1964 extern void add_target (struct target_ops *);
1965
1966 extern void add_target_with_completer (struct target_ops *t,
1967 completer_ftype *completer);
1968
1969 extern void complete_target_initialization (struct target_ops *t);
1970
1971 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1972 for maintaining backwards compatibility when renaming targets. */
1973
1974 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1975
1976 extern void push_target (struct target_ops *);
1977
1978 extern int unpush_target (struct target_ops *);
1979
1980 extern void target_pre_inferior (int);
1981
1982 extern void target_preopen (int);
1983
1984 /* Does whatever cleanup is required to get rid of all pushed targets. */
1985 extern void pop_all_targets (void);
1986
1987 /* Like pop_all_targets, but pops only targets whose stratum is
1988 strictly above ABOVE_STRATUM. */
1989 extern void pop_all_targets_above (enum strata above_stratum);
1990
1991 extern int target_is_pushed (struct target_ops *t);
1992
1993 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1994 CORE_ADDR offset);
1995
1996 /* Struct target_section maps address ranges to file sections. It is
1997 mostly used with BFD files, but can be used without (e.g. for handling
1998 raw disks, or files not in formats handled by BFD). */
1999
2000 struct target_section
2001 {
2002 CORE_ADDR addr; /* Lowest address in section */
2003 CORE_ADDR endaddr; /* 1+highest address in section */
2004
2005 struct bfd_section *the_bfd_section;
2006
2007 /* The "owner" of the section.
2008 It can be any unique value. It is set by add_target_sections
2009 and used by remove_target_sections.
2010 For example, for executables it is a pointer to exec_bfd and
2011 for shlibs it is the so_list pointer. */
2012 void *owner;
2013 };
2014
2015 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2016
2017 struct target_section_table
2018 {
2019 struct target_section *sections;
2020 struct target_section *sections_end;
2021 };
2022
2023 /* Return the "section" containing the specified address. */
2024 struct target_section *target_section_by_addr (struct target_ops *target,
2025 CORE_ADDR addr);
2026
2027 /* Return the target section table this target (or the targets
2028 beneath) currently manipulate. */
2029
2030 extern struct target_section_table *target_get_section_table
2031 (struct target_ops *target);
2032
2033 /* From mem-break.c */
2034
2035 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2036 struct bp_target_info *);
2037
2038 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2039 struct bp_target_info *);
2040
2041 extern int default_memory_remove_breakpoint (struct gdbarch *,
2042 struct bp_target_info *);
2043
2044 extern int default_memory_insert_breakpoint (struct gdbarch *,
2045 struct bp_target_info *);
2046
2047
2048 /* From target.c */
2049
2050 extern void initialize_targets (void);
2051
2052 extern void noprocess (void) ATTRIBUTE_NORETURN;
2053
2054 extern void target_require_runnable (void);
2055
2056 extern void find_default_attach (struct target_ops *, char *, int);
2057
2058 extern void find_default_create_inferior (struct target_ops *,
2059 char *, char *, char **, int);
2060
2061 extern struct target_ops *find_target_beneath (struct target_ops *);
2062
2063 /* Find the target at STRATUM. If no target is at that stratum,
2064 return NULL. */
2065
2066 struct target_ops *find_target_at (enum strata stratum);
2067
2068 /* Read OS data object of type TYPE from the target, and return it in
2069 XML format. The result is NUL-terminated and returned as a string,
2070 allocated using xmalloc. If an error occurs or the transfer is
2071 unsupported, NULL is returned. Empty objects are returned as
2072 allocated but empty strings. */
2073
2074 extern char *target_get_osdata (const char *type);
2075
2076 \f
2077 /* Stuff that should be shared among the various remote targets. */
2078
2079 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2080 information (higher values, more information). */
2081 extern int remote_debug;
2082
2083 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2084 extern int baud_rate;
2085 /* Timeout limit for response from target. */
2086 extern int remote_timeout;
2087
2088 \f
2089
2090 /* Set the show memory breakpoints mode to show, and installs a cleanup
2091 to restore it back to the current value. */
2092 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2093
2094 extern int may_write_registers;
2095 extern int may_write_memory;
2096 extern int may_insert_breakpoints;
2097 extern int may_insert_tracepoints;
2098 extern int may_insert_fast_tracepoints;
2099 extern int may_stop;
2100
2101 extern void update_target_permissions (void);
2102
2103 \f
2104 /* Imported from machine dependent code. */
2105
2106 /* Blank target vector entries are initialized to target_ignore. */
2107 void target_ignore (void);
2108
2109 /* See to_supports_btrace in struct target_ops. */
2110 #define target_supports_btrace() \
2111 (current_target.to_supports_btrace (&current_target))
2112
2113 /* See to_enable_btrace in struct target_ops. */
2114 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2115
2116 /* See to_disable_btrace in struct target_ops. */
2117 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2118
2119 /* See to_teardown_btrace in struct target_ops. */
2120 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2121
2122 /* See to_read_btrace in struct target_ops. */
2123 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2124 struct btrace_target_info *,
2125 enum btrace_read_type);
2126
2127 /* See to_stop_recording in struct target_ops. */
2128 extern void target_stop_recording (void);
2129
2130 /* See to_info_record in struct target_ops. */
2131 extern void target_info_record (void);
2132
2133 /* See to_save_record in struct target_ops. */
2134 extern void target_save_record (const char *filename);
2135
2136 /* Query if the target supports deleting the execution log. */
2137 extern int target_supports_delete_record (void);
2138
2139 /* See to_delete_record in struct target_ops. */
2140 extern void target_delete_record (void);
2141
2142 /* See to_record_is_replaying in struct target_ops. */
2143 extern int target_record_is_replaying (void);
2144
2145 /* See to_goto_record_begin in struct target_ops. */
2146 extern void target_goto_record_begin (void);
2147
2148 /* See to_goto_record_end in struct target_ops. */
2149 extern void target_goto_record_end (void);
2150
2151 /* See to_goto_record in struct target_ops. */
2152 extern void target_goto_record (ULONGEST insn);
2153
2154 /* See to_insn_history. */
2155 extern void target_insn_history (int size, int flags);
2156
2157 /* See to_insn_history_from. */
2158 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2159
2160 /* See to_insn_history_range. */
2161 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2162
2163 /* See to_call_history. */
2164 extern void target_call_history (int size, int flags);
2165
2166 /* See to_call_history_from. */
2167 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2168
2169 /* See to_call_history_range. */
2170 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2171
2172 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2173 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2174 struct gdbarch *gdbarch);
2175
2176 /* See to_decr_pc_after_break. */
2177 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2178
2179 #endif /* !defined (TARGET_H) */
This page took 0.091219 seconds and 4 git commands to generate.