Fix extraneous complaints about missing expected TLS relocation.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45
46 /* This include file defines the interface between the main part
47 of the debugger, and the part which is target-specific, or
48 specific to the communications interface between us and the
49 target.
50
51 A TARGET is an interface between the debugger and a particular
52 kind of file or process. Targets can be STACKED in STRATA,
53 so that more than one target can potentially respond to a request.
54 In particular, memory accesses will walk down the stack of targets
55 until they find a target that is interested in handling that particular
56 address. STRATA are artificial boundaries on the stack, within
57 which particular kinds of targets live. Strata exist so that
58 people don't get confused by pushing e.g. a process target and then
59 a file target, and wondering why they can't see the current values
60 of variables any more (the file target is handling them and they
61 never get to the process target). So when you push a file target,
62 it goes into the file stratum, which is always below the process
63 stratum. */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "command.h"
76
77 #include "break-common.h" /* For enum target_hw_bp_type. */
78
79 enum strata
80 {
81 dummy_stratum, /* The lowest of the low */
82 file_stratum, /* Executable files, etc */
83 process_stratum, /* Executing processes or core dump files */
84 thread_stratum, /* Executing threads */
85 record_stratum, /* Support record debugging */
86 arch_stratum /* Architecture overrides */
87 };
88
89 enum thread_control_capabilities
90 {
91 tc_none = 0, /* Default: can't control thread execution. */
92 tc_schedlock = 1, /* Can lock the thread scheduler. */
93 };
94
95 /* The structure below stores information about a system call.
96 It is basically used in the "catch syscall" command, and in
97 every function that gives information about a system call.
98
99 It's also good to mention that its fields represent everything
100 that we currently know about a syscall in GDB. */
101 struct syscall
102 {
103 /* The syscall number. */
104 int number;
105
106 /* The syscall name. */
107 const char *name;
108 };
109
110 /* Return a pretty printed form of target_waitstatus.
111 Space for the result is malloc'd, caller must free. */
112 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE,
203 /* Branch trace configuration, in XML format. */
204 TARGET_OBJECT_BTRACE_CONF,
205 /* The pathname of the executable file that was run to create
206 a specified process. ANNEX should be a string representation
207 of the process ID of the process in question, in hexadecimal
208 format. */
209 TARGET_OBJECT_EXEC_FILE,
210 /* Possible future objects: TARGET_OBJECT_FILE, ... */
211 };
212
213 /* Possible values returned by target_xfer_partial, etc. */
214
215 enum target_xfer_status
216 {
217 /* Some bytes are transferred. */
218 TARGET_XFER_OK = 1,
219
220 /* No further transfer is possible. */
221 TARGET_XFER_EOF = 0,
222
223 /* The piece of the object requested is unavailable. */
224 TARGET_XFER_UNAVAILABLE = 2,
225
226 /* Generic I/O error. Note that it's important that this is '-1',
227 as we still have target_xfer-related code returning hardcoded
228 '-1' on error. */
229 TARGET_XFER_E_IO = -1,
230
231 /* Keep list in sync with target_xfer_status_to_string. */
232 };
233
234 /* Return the string form of STATUS. */
235
236 extern const char *
237 target_xfer_status_to_string (enum target_xfer_status status);
238
239 /* Enumeration of the kinds of traceframe searches that a target may
240 be able to perform. */
241
242 enum trace_find_type
243 {
244 tfind_number,
245 tfind_pc,
246 tfind_tp,
247 tfind_range,
248 tfind_outside,
249 };
250
251 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
252 DEF_VEC_P(static_tracepoint_marker_p);
253
254 typedef enum target_xfer_status
255 target_xfer_partial_ftype (struct target_ops *ops,
256 enum target_object object,
257 const char *annex,
258 gdb_byte *readbuf,
259 const gdb_byte *writebuf,
260 ULONGEST offset,
261 ULONGEST len,
262 ULONGEST *xfered_len);
263
264 enum target_xfer_status
265 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
266 const gdb_byte *writebuf, ULONGEST memaddr,
267 LONGEST len, ULONGEST *xfered_len);
268
269 /* Request that OPS transfer up to LEN addressable units of the target's
270 OBJECT. When reading from a memory object, the size of an addressable unit
271 is architecture dependent and can be found using
272 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
273 byte long. BUF should point to a buffer large enough to hold the read data,
274 taking into account the addressable unit size. The OFFSET, for a seekable
275 object, specifies the starting point. The ANNEX can be used to provide
276 additional data-specific information to the target.
277
278 Return the number of addressable units actually transferred, or a negative
279 error code (an 'enum target_xfer_error' value) if the transfer is not
280 supported or otherwise fails. Return of a positive value less than
281 LEN indicates that no further transfer is possible. Unlike the raw
282 to_xfer_partial interface, callers of these functions do not need
283 to retry partial transfers. */
284
285 extern LONGEST target_read (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 struct memory_read_result
291 {
292 /* First address that was read. */
293 ULONGEST begin;
294 /* Past-the-end address. */
295 ULONGEST end;
296 /* The data. */
297 gdb_byte *data;
298 };
299 typedef struct memory_read_result memory_read_result_s;
300 DEF_VEC_O(memory_read_result_s);
301
302 extern void free_memory_read_result_vector (void *);
303
304 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
305 const ULONGEST offset,
306 const LONGEST len);
307
308 /* Request that OPS transfer up to LEN addressable units from BUF to the
309 target's OBJECT. When writing to a memory object, the addressable unit
310 size is architecture dependent and can be found using
311 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
312 byte long. The OFFSET, for a seekable object, specifies the starting point.
313 The ANNEX can be used to provide additional data-specific information to
314 the target.
315
316 Return the number of addressable units actually transferred, or a negative
317 error code (an 'enum target_xfer_status' value) if the transfer is not
318 supported or otherwise fails. Return of a positive value less than
319 LEN indicates that no further transfer is possible. Unlike the raw
320 to_xfer_partial interface, callers of these functions do not need to
321 retry partial transfers. */
322
323 extern LONGEST target_write (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len);
327
328 /* Similar to target_write, except that it also calls PROGRESS with
329 the number of bytes written and the opaque BATON after every
330 successful partial write (and before the first write). This is
331 useful for progress reporting and user interaction while writing
332 data. To abort the transfer, the progress callback can throw an
333 exception. */
334
335 LONGEST target_write_with_progress (struct target_ops *ops,
336 enum target_object object,
337 const char *annex, const gdb_byte *buf,
338 ULONGEST offset, LONGEST len,
339 void (*progress) (ULONGEST, void *),
340 void *baton);
341
342 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
343 be read using OPS. The return value will be -1 if the transfer
344 fails or is not supported; 0 if the object is empty; or the length
345 of the object otherwise. If a positive value is returned, a
346 sufficiently large buffer will be allocated using xmalloc and
347 returned in *BUF_P containing the contents of the object.
348
349 This method should be used for objects sufficiently small to store
350 in a single xmalloc'd buffer, when no fixed bound on the object's
351 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
352 through this function. */
353
354 extern LONGEST target_read_alloc (struct target_ops *ops,
355 enum target_object object,
356 const char *annex, gdb_byte **buf_p);
357
358 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
359 returned as a string, allocated using xmalloc. If an error occurs
360 or the transfer is unsupported, NULL is returned. Empty objects
361 are returned as allocated but empty strings. A warning is issued
362 if the result contains any embedded NUL bytes. */
363
364 extern char *target_read_stralloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex);
367
368 /* See target_ops->to_xfer_partial. */
369 extern target_xfer_partial_ftype target_xfer_partial;
370
371 /* Wrappers to target read/write that perform memory transfers. They
372 throw an error if the memory transfer fails.
373
374 NOTE: cagney/2003-10-23: The naming schema is lifted from
375 "frame.h". The parameter order is lifted from get_frame_memory,
376 which in turn lifted it from read_memory. */
377
378 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
379 gdb_byte *buf, LONGEST len);
380 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
381 CORE_ADDR addr, int len,
382 enum bfd_endian byte_order);
383 \f
384 struct thread_info; /* fwd decl for parameter list below: */
385
386 /* The type of the callback to the to_async method. */
387
388 typedef void async_callback_ftype (enum inferior_event_type event_type,
389 void *context);
390
391 /* Normally target debug printing is purely type-based. However,
392 sometimes it is necessary to override the debug printing on a
393 per-argument basis. This macro can be used, attribute-style, to
394 name the target debug printing function for a particular method
395 argument. FUNC is the name of the function. The macro's
396 definition is empty because it is only used by the
397 make-target-delegates script. */
398
399 #define TARGET_DEBUG_PRINTER(FUNC)
400
401 /* These defines are used to mark target_ops methods. The script
402 make-target-delegates scans these and auto-generates the base
403 method implementations. There are four macros that can be used:
404
405 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
406 does nothing. This is only valid if the method return type is
407 'void'.
408
409 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
410 'tcomplain ()'. The base method simply makes this call, which is
411 assumed not to return.
412
413 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
414 base method returns this expression's value.
415
416 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
417 make-target-delegates does not generate a base method in this case,
418 but instead uses the argument function as the base method. */
419
420 #define TARGET_DEFAULT_IGNORE()
421 #define TARGET_DEFAULT_NORETURN(ARG)
422 #define TARGET_DEFAULT_RETURN(ARG)
423 #define TARGET_DEFAULT_FUNC(ARG)
424
425 struct target_ops
426 {
427 struct target_ops *beneath; /* To the target under this one. */
428 const char *to_shortname; /* Name this target type */
429 const char *to_longname; /* Name for printing */
430 const char *to_doc; /* Documentation. Does not include trailing
431 newline, and starts with a one-line descrip-
432 tion (probably similar to to_longname). */
433 /* Per-target scratch pad. */
434 void *to_data;
435 /* The open routine takes the rest of the parameters from the
436 command, and (if successful) pushes a new target onto the
437 stack. Targets should supply this routine, if only to provide
438 an error message. */
439 void (*to_open) (const char *, int);
440 /* Old targets with a static target vector provide "to_close".
441 New re-entrant targets provide "to_xclose" and that is expected
442 to xfree everything (including the "struct target_ops"). */
443 void (*to_xclose) (struct target_ops *targ);
444 void (*to_close) (struct target_ops *);
445 /* Attaches to a process on the target side. Arguments are as
446 passed to the `attach' command by the user. This routine can
447 be called when the target is not on the target-stack, if the
448 target_can_run routine returns 1; in that case, it must push
449 itself onto the stack. Upon exit, the target should be ready
450 for normal operations, and should be ready to deliver the
451 status of the process immediately (without waiting) to an
452 upcoming target_wait call. */
453 void (*to_attach) (struct target_ops *ops, const char *, int);
454 void (*to_post_attach) (struct target_ops *, int)
455 TARGET_DEFAULT_IGNORE ();
456 void (*to_detach) (struct target_ops *ops, const char *, int)
457 TARGET_DEFAULT_IGNORE ();
458 void (*to_disconnect) (struct target_ops *, const char *, int)
459 TARGET_DEFAULT_NORETURN (tcomplain ());
460 void (*to_resume) (struct target_ops *, ptid_t,
461 int TARGET_DEBUG_PRINTER (target_debug_print_step),
462 enum gdb_signal)
463 TARGET_DEFAULT_NORETURN (noprocess ());
464 ptid_t (*to_wait) (struct target_ops *,
465 ptid_t, struct target_waitstatus *,
466 int TARGET_DEBUG_PRINTER (target_debug_print_options))
467 TARGET_DEFAULT_FUNC (default_target_wait);
468 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
469 TARGET_DEFAULT_IGNORE ();
470 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
471 TARGET_DEFAULT_NORETURN (noprocess ());
472 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
473 TARGET_DEFAULT_NORETURN (noprocess ());
474
475 void (*to_files_info) (struct target_ops *)
476 TARGET_DEFAULT_IGNORE ();
477 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
478 struct bp_target_info *)
479 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
480 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
481 struct bp_target_info *)
482 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
483
484 /* Returns true if the target stopped because it executed a
485 software breakpoint. This is necessary for correct background
486 execution / non-stop mode operation, and for correct PC
487 adjustment on targets where the PC needs to be adjusted when a
488 software breakpoint triggers. In these modes, by the time GDB
489 processes a breakpoint event, the breakpoint may already be
490 done from the target, so GDB needs to be able to tell whether
491 it should ignore the event and whether it should adjust the PC.
492 See adjust_pc_after_break. */
493 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
494 TARGET_DEFAULT_RETURN (0);
495 /* Returns true if the above method is supported. */
496 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498
499 /* Returns true if the target stopped for a hardware breakpoint.
500 Likewise, if the target supports hardware breakpoints, this
501 method is necessary for correct background execution / non-stop
502 mode operation. Even though hardware breakpoints do not
503 require PC adjustment, GDB needs to be able to tell whether the
504 hardware breakpoint event is a delayed event for a breakpoint
505 that is already gone and should thus be ignored. */
506 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
507 TARGET_DEFAULT_RETURN (0);
508 /* Returns true if the above method is supported. */
509 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
510 TARGET_DEFAULT_RETURN (0);
511
512 int (*to_can_use_hw_breakpoint) (struct target_ops *,
513 enum bptype, int, int)
514 TARGET_DEFAULT_RETURN (0);
515 int (*to_ranged_break_num_registers) (struct target_ops *)
516 TARGET_DEFAULT_RETURN (-1);
517 int (*to_insert_hw_breakpoint) (struct target_ops *,
518 struct gdbarch *, struct bp_target_info *)
519 TARGET_DEFAULT_RETURN (-1);
520 int (*to_remove_hw_breakpoint) (struct target_ops *,
521 struct gdbarch *, struct bp_target_info *)
522 TARGET_DEFAULT_RETURN (-1);
523
524 /* Documentation of what the two routines below are expected to do is
525 provided with the corresponding target_* macros. */
526 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
527 enum target_hw_bp_type, struct expression *)
528 TARGET_DEFAULT_RETURN (-1);
529 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
530 enum target_hw_bp_type, struct expression *)
531 TARGET_DEFAULT_RETURN (-1);
532
533 int (*to_insert_mask_watchpoint) (struct target_ops *,
534 CORE_ADDR, CORE_ADDR,
535 enum target_hw_bp_type)
536 TARGET_DEFAULT_RETURN (1);
537 int (*to_remove_mask_watchpoint) (struct target_ops *,
538 CORE_ADDR, CORE_ADDR,
539 enum target_hw_bp_type)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_stopped_by_watchpoint) (struct target_ops *)
542 TARGET_DEFAULT_RETURN (0);
543 int to_have_steppable_watchpoint;
544 int to_have_continuable_watchpoint;
545 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
546 TARGET_DEFAULT_RETURN (0);
547 int (*to_watchpoint_addr_within_range) (struct target_ops *,
548 CORE_ADDR, CORE_ADDR, int)
549 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
554 CORE_ADDR, int)
555 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
556
557 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
558 CORE_ADDR, int, int,
559 struct expression *)
560 TARGET_DEFAULT_RETURN (0);
561 int (*to_masked_watch_num_registers) (struct target_ops *,
562 CORE_ADDR, CORE_ADDR)
563 TARGET_DEFAULT_RETURN (-1);
564
565 /* Return 1 for sure target can do single step. Return -1 for
566 unknown. Return 0 for target can't do. */
567 int (*to_can_do_single_step) (struct target_ops *)
568 TARGET_DEFAULT_RETURN (-1);
569
570 void (*to_terminal_init) (struct target_ops *)
571 TARGET_DEFAULT_IGNORE ();
572 void (*to_terminal_inferior) (struct target_ops *)
573 TARGET_DEFAULT_IGNORE ();
574 void (*to_terminal_ours_for_output) (struct target_ops *)
575 TARGET_DEFAULT_IGNORE ();
576 void (*to_terminal_ours) (struct target_ops *)
577 TARGET_DEFAULT_IGNORE ();
578 void (*to_terminal_info) (struct target_ops *, const char *, int)
579 TARGET_DEFAULT_FUNC (default_terminal_info);
580 void (*to_kill) (struct target_ops *)
581 TARGET_DEFAULT_NORETURN (noprocess ());
582 void (*to_load) (struct target_ops *, const char *, int)
583 TARGET_DEFAULT_NORETURN (tcomplain ());
584 /* Start an inferior process and set inferior_ptid to its pid.
585 EXEC_FILE is the file to run.
586 ALLARGS is a string containing the arguments to the program.
587 ENV is the environment vector to pass. Errors reported with error().
588 On VxWorks and various standalone systems, we ignore exec_file. */
589 void (*to_create_inferior) (struct target_ops *,
590 char *, char *, char **, int);
591 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
592 TARGET_DEFAULT_IGNORE ();
593 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
594 TARGET_DEFAULT_RETURN (1);
595 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
596 TARGET_DEFAULT_RETURN (1);
597 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
598 TARGET_DEFAULT_RETURN (1);
599 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
600 TARGET_DEFAULT_RETURN (1);
601 int (*to_follow_fork) (struct target_ops *, int, int)
602 TARGET_DEFAULT_FUNC (default_follow_fork);
603 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
604 TARGET_DEFAULT_RETURN (1);
605 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
606 TARGET_DEFAULT_RETURN (1);
607 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
608 TARGET_DEFAULT_IGNORE ();
609 int (*to_set_syscall_catchpoint) (struct target_ops *,
610 int, int, int, int, int *)
611 TARGET_DEFAULT_RETURN (1);
612 int (*to_has_exited) (struct target_ops *, int, int, int *)
613 TARGET_DEFAULT_RETURN (0);
614 void (*to_mourn_inferior) (struct target_ops *)
615 TARGET_DEFAULT_FUNC (default_mourn_inferior);
616 /* Note that to_can_run is special and can be invoked on an
617 unpushed target. Targets defining this method must also define
618 to_can_async_p and to_supports_non_stop. */
619 int (*to_can_run) (struct target_ops *)
620 TARGET_DEFAULT_RETURN (0);
621
622 /* Documentation of this routine is provided with the corresponding
623 target_* macro. */
624 void (*to_pass_signals) (struct target_ops *, int,
625 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
626 TARGET_DEFAULT_IGNORE ();
627
628 /* Documentation of this routine is provided with the
629 corresponding target_* function. */
630 void (*to_program_signals) (struct target_ops *, int,
631 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
632 TARGET_DEFAULT_IGNORE ();
633
634 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
635 TARGET_DEFAULT_RETURN (0);
636 void (*to_update_thread_list) (struct target_ops *)
637 TARGET_DEFAULT_IGNORE ();
638 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
639 TARGET_DEFAULT_FUNC (default_pid_to_str);
640 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
641 TARGET_DEFAULT_RETURN (NULL);
642 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
643 TARGET_DEFAULT_RETURN (NULL);
644 void (*to_stop) (struct target_ops *, ptid_t)
645 TARGET_DEFAULT_IGNORE ();
646 void (*to_interrupt) (struct target_ops *, ptid_t)
647 TARGET_DEFAULT_IGNORE ();
648 void (*to_pass_ctrlc) (struct target_ops *)
649 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
650 void (*to_rcmd) (struct target_ops *,
651 const char *command, struct ui_file *output)
652 TARGET_DEFAULT_FUNC (default_rcmd);
653 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
654 TARGET_DEFAULT_RETURN (NULL);
655 void (*to_log_command) (struct target_ops *, const char *)
656 TARGET_DEFAULT_IGNORE ();
657 struct target_section_table *(*to_get_section_table) (struct target_ops *)
658 TARGET_DEFAULT_RETURN (NULL);
659 enum strata to_stratum;
660 int (*to_has_all_memory) (struct target_ops *);
661 int (*to_has_memory) (struct target_ops *);
662 int (*to_has_stack) (struct target_ops *);
663 int (*to_has_registers) (struct target_ops *);
664 int (*to_has_execution) (struct target_ops *, ptid_t);
665 int to_has_thread_control; /* control thread execution */
666 int to_attach_no_wait;
667 /* This method must be implemented in some situations. See the
668 comment on 'to_can_run'. */
669 int (*to_can_async_p) (struct target_ops *)
670 TARGET_DEFAULT_RETURN (0);
671 int (*to_is_async_p) (struct target_ops *)
672 TARGET_DEFAULT_RETURN (0);
673 void (*to_async) (struct target_ops *, int)
674 TARGET_DEFAULT_NORETURN (tcomplain ());
675 void (*to_thread_events) (struct target_ops *, int)
676 TARGET_DEFAULT_IGNORE ();
677 /* This method must be implemented in some situations. See the
678 comment on 'to_can_run'. */
679 int (*to_supports_non_stop) (struct target_ops *)
680 TARGET_DEFAULT_RETURN (0);
681 /* Return true if the target operates in non-stop mode even with
682 "set non-stop off". */
683 int (*to_always_non_stop_p) (struct target_ops *)
684 TARGET_DEFAULT_RETURN (0);
685 /* find_memory_regions support method for gcore */
686 int (*to_find_memory_regions) (struct target_ops *,
687 find_memory_region_ftype func, void *data)
688 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
689 /* make_corefile_notes support method for gcore */
690 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
691 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
692 /* get_bookmark support method for bookmarks */
693 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
694 TARGET_DEFAULT_NORETURN (tcomplain ());
695 /* goto_bookmark support method for bookmarks */
696 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
697 TARGET_DEFAULT_NORETURN (tcomplain ());
698 /* Return the thread-local address at OFFSET in the
699 thread-local storage for the thread PTID and the shared library
700 or executable file given by OBJFILE. If that block of
701 thread-local storage hasn't been allocated yet, this function
702 may return an error. LOAD_MODULE_ADDR may be zero for statically
703 linked multithreaded inferiors. */
704 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
705 ptid_t ptid,
706 CORE_ADDR load_module_addr,
707 CORE_ADDR offset)
708 TARGET_DEFAULT_NORETURN (generic_tls_error ());
709
710 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
711 OBJECT. The OFFSET, for a seekable object, specifies the
712 starting point. The ANNEX can be used to provide additional
713 data-specific information to the target.
714
715 Return the transferred status, error or OK (an
716 'enum target_xfer_status' value). Save the number of bytes
717 actually transferred in *XFERED_LEN if transfer is successful
718 (TARGET_XFER_OK) or the number unavailable bytes if the requested
719 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
720 smaller than LEN does not indicate the end of the object, only
721 the end of the transfer; higher level code should continue
722 transferring if desired. This is handled in target.c.
723
724 The interface does not support a "retry" mechanism. Instead it
725 assumes that at least one byte will be transfered on each
726 successful call.
727
728 NOTE: cagney/2003-10-17: The current interface can lead to
729 fragmented transfers. Lower target levels should not implement
730 hacks, such as enlarging the transfer, in an attempt to
731 compensate for this. Instead, the target stack should be
732 extended so that it implements supply/collect methods and a
733 look-aside object cache. With that available, the lowest
734 target can safely and freely "push" data up the stack.
735
736 See target_read and target_write for more information. One,
737 and only one, of readbuf or writebuf must be non-NULL. */
738
739 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
740 enum target_object object,
741 const char *annex,
742 gdb_byte *readbuf,
743 const gdb_byte *writebuf,
744 ULONGEST offset, ULONGEST len,
745 ULONGEST *xfered_len)
746 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
747
748 /* Return the limit on the size of any single memory transfer
749 for the target. */
750
751 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
752 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
753
754 /* Returns the memory map for the target. A return value of NULL
755 means that no memory map is available. If a memory address
756 does not fall within any returned regions, it's assumed to be
757 RAM. The returned memory regions should not overlap.
758
759 The order of regions does not matter; target_memory_map will
760 sort regions by starting address. For that reason, this
761 function should not be called directly except via
762 target_memory_map.
763
764 This method should not cache data; if the memory map could
765 change unexpectedly, it should be invalidated, and higher
766 layers will re-fetch it. */
767 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
768 TARGET_DEFAULT_RETURN (NULL);
769
770 /* Erases the region of flash memory starting at ADDRESS, of
771 length LENGTH.
772
773 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
774 on flash block boundaries, as reported by 'to_memory_map'. */
775 void (*to_flash_erase) (struct target_ops *,
776 ULONGEST address, LONGEST length)
777 TARGET_DEFAULT_NORETURN (tcomplain ());
778
779 /* Finishes a flash memory write sequence. After this operation
780 all flash memory should be available for writing and the result
781 of reading from areas written by 'to_flash_write' should be
782 equal to what was written. */
783 void (*to_flash_done) (struct target_ops *)
784 TARGET_DEFAULT_NORETURN (tcomplain ());
785
786 /* Describe the architecture-specific features of this target. If
787 OPS doesn't have a description, this should delegate to the
788 "beneath" target. Returns the description found, or NULL if no
789 description was available. */
790 const struct target_desc *(*to_read_description) (struct target_ops *ops)
791 TARGET_DEFAULT_RETURN (NULL);
792
793 /* Build the PTID of the thread on which a given task is running,
794 based on LWP and THREAD. These values are extracted from the
795 task Private_Data section of the Ada Task Control Block, and
796 their interpretation depends on the target. */
797 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
798 long lwp, long thread)
799 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
800
801 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
802 Return 0 if *READPTR is already at the end of the buffer.
803 Return -1 if there is insufficient buffer for a whole entry.
804 Return 1 if an entry was read into *TYPEP and *VALP. */
805 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
806 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
807 TARGET_DEFAULT_FUNC (default_auxv_parse);
808
809 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
810 sequence of bytes in PATTERN with length PATTERN_LEN.
811
812 The result is 1 if found, 0 if not found, and -1 if there was an error
813 requiring halting of the search (e.g. memory read error).
814 If the pattern is found the address is recorded in FOUND_ADDRP. */
815 int (*to_search_memory) (struct target_ops *ops,
816 CORE_ADDR start_addr, ULONGEST search_space_len,
817 const gdb_byte *pattern, ULONGEST pattern_len,
818 CORE_ADDR *found_addrp)
819 TARGET_DEFAULT_FUNC (default_search_memory);
820
821 /* Can target execute in reverse? */
822 int (*to_can_execute_reverse) (struct target_ops *)
823 TARGET_DEFAULT_RETURN (0);
824
825 /* The direction the target is currently executing. Must be
826 implemented on targets that support reverse execution and async
827 mode. The default simply returns forward execution. */
828 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
829 TARGET_DEFAULT_FUNC (default_execution_direction);
830
831 /* Does this target support debugging multiple processes
832 simultaneously? */
833 int (*to_supports_multi_process) (struct target_ops *)
834 TARGET_DEFAULT_RETURN (0);
835
836 /* Does this target support enabling and disabling tracepoints while a trace
837 experiment is running? */
838 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
839 TARGET_DEFAULT_RETURN (0);
840
841 /* Does this target support disabling address space randomization? */
842 int (*to_supports_disable_randomization) (struct target_ops *);
843
844 /* Does this target support the tracenz bytecode for string collection? */
845 int (*to_supports_string_tracing) (struct target_ops *)
846 TARGET_DEFAULT_RETURN (0);
847
848 /* Does this target support evaluation of breakpoint conditions on its
849 end? */
850 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
851 TARGET_DEFAULT_RETURN (0);
852
853 /* Does this target support evaluation of breakpoint commands on its
854 end? */
855 int (*to_can_run_breakpoint_commands) (struct target_ops *)
856 TARGET_DEFAULT_RETURN (0);
857
858 /* Determine current architecture of thread PTID.
859
860 The target is supposed to determine the architecture of the code where
861 the target is currently stopped at (on Cell, if a target is in spu_run,
862 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
863 This is architecture used to perform decr_pc_after_break adjustment,
864 and also determines the frame architecture of the innermost frame.
865 ptrace operations need to operate according to target_gdbarch ().
866
867 The default implementation always returns target_gdbarch (). */
868 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
869 TARGET_DEFAULT_FUNC (default_thread_architecture);
870
871 /* Determine current address space of thread PTID.
872
873 The default implementation always returns the inferior's
874 address space. */
875 struct address_space *(*to_thread_address_space) (struct target_ops *,
876 ptid_t)
877 TARGET_DEFAULT_FUNC (default_thread_address_space);
878
879 /* Target file operations. */
880
881 /* Return nonzero if the filesystem seen by the current inferior
882 is the local filesystem, zero otherwise. */
883 int (*to_filesystem_is_local) (struct target_ops *)
884 TARGET_DEFAULT_RETURN (1);
885
886 /* Open FILENAME on the target, in the filesystem as seen by INF,
887 using FLAGS and MODE. If INF is NULL, use the filesystem seen
888 by the debugger (GDB or, for remote targets, the remote stub).
889 If WARN_IF_SLOW is nonzero, print a warning message if the file
890 is being accessed over a link that may be slow. Return a
891 target file descriptor, or -1 if an error occurs (and set
892 *TARGET_ERRNO). */
893 int (*to_fileio_open) (struct target_ops *,
894 struct inferior *inf, const char *filename,
895 int flags, int mode, int warn_if_slow,
896 int *target_errno);
897
898 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
899 Return the number of bytes written, or -1 if an error occurs
900 (and set *TARGET_ERRNO). */
901 int (*to_fileio_pwrite) (struct target_ops *,
902 int fd, const gdb_byte *write_buf, int len,
903 ULONGEST offset, int *target_errno);
904
905 /* Read up to LEN bytes FD on the target into READ_BUF.
906 Return the number of bytes read, or -1 if an error occurs
907 (and set *TARGET_ERRNO). */
908 int (*to_fileio_pread) (struct target_ops *,
909 int fd, gdb_byte *read_buf, int len,
910 ULONGEST offset, int *target_errno);
911
912 /* Get information about the file opened as FD and put it in
913 SB. Return 0 on success, or -1 if an error occurs (and set
914 *TARGET_ERRNO). */
915 int (*to_fileio_fstat) (struct target_ops *,
916 int fd, struct stat *sb, int *target_errno);
917
918 /* Close FD on the target. Return 0, or -1 if an error occurs
919 (and set *TARGET_ERRNO). */
920 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
921
922 /* Unlink FILENAME on the target, in the filesystem as seen by
923 INF. If INF is NULL, use the filesystem seen by the debugger
924 (GDB or, for remote targets, the remote stub). Return 0, or
925 -1 if an error occurs (and set *TARGET_ERRNO). */
926 int (*to_fileio_unlink) (struct target_ops *,
927 struct inferior *inf,
928 const char *filename,
929 int *target_errno);
930
931 /* Read value of symbolic link FILENAME on the target, in the
932 filesystem as seen by INF. If INF is NULL, use the filesystem
933 seen by the debugger (GDB or, for remote targets, the remote
934 stub). Return a null-terminated string allocated via xmalloc,
935 or NULL if an error occurs (and set *TARGET_ERRNO). */
936 char *(*to_fileio_readlink) (struct target_ops *,
937 struct inferior *inf,
938 const char *filename,
939 int *target_errno);
940
941
942 /* Implement the "info proc" command. */
943 void (*to_info_proc) (struct target_ops *, const char *,
944 enum info_proc_what);
945
946 /* Tracepoint-related operations. */
947
948 /* Prepare the target for a tracing run. */
949 void (*to_trace_init) (struct target_ops *)
950 TARGET_DEFAULT_NORETURN (tcomplain ());
951
952 /* Send full details of a tracepoint location to the target. */
953 void (*to_download_tracepoint) (struct target_ops *,
954 struct bp_location *location)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
956
957 /* Is the target able to download tracepoint locations in current
958 state? */
959 int (*to_can_download_tracepoint) (struct target_ops *)
960 TARGET_DEFAULT_RETURN (0);
961
962 /* Send full details of a trace state variable to the target. */
963 void (*to_download_trace_state_variable) (struct target_ops *,
964 struct trace_state_variable *tsv)
965 TARGET_DEFAULT_NORETURN (tcomplain ());
966
967 /* Enable a tracepoint on the target. */
968 void (*to_enable_tracepoint) (struct target_ops *,
969 struct bp_location *location)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Disable a tracepoint on the target. */
973 void (*to_disable_tracepoint) (struct target_ops *,
974 struct bp_location *location)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Inform the target info of memory regions that are readonly
978 (such as text sections), and so it should return data from
979 those rather than look in the trace buffer. */
980 void (*to_trace_set_readonly_regions) (struct target_ops *)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Start a trace run. */
984 void (*to_trace_start) (struct target_ops *)
985 TARGET_DEFAULT_NORETURN (tcomplain ());
986
987 /* Get the current status of a tracing run. */
988 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
989 TARGET_DEFAULT_RETURN (-1);
990
991 void (*to_get_tracepoint_status) (struct target_ops *,
992 struct breakpoint *tp,
993 struct uploaded_tp *utp)
994 TARGET_DEFAULT_NORETURN (tcomplain ());
995
996 /* Stop a trace run. */
997 void (*to_trace_stop) (struct target_ops *)
998 TARGET_DEFAULT_NORETURN (tcomplain ());
999
1000 /* Ask the target to find a trace frame of the given type TYPE,
1001 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1002 number of the trace frame, and also the tracepoint number at
1003 TPP. If no trace frame matches, return -1. May throw if the
1004 operation fails. */
1005 int (*to_trace_find) (struct target_ops *,
1006 enum trace_find_type type, int num,
1007 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1008 TARGET_DEFAULT_RETURN (-1);
1009
1010 /* Get the value of the trace state variable number TSV, returning
1011 1 if the value is known and writing the value itself into the
1012 location pointed to by VAL, else returning 0. */
1013 int (*to_get_trace_state_variable_value) (struct target_ops *,
1014 int tsv, LONGEST *val)
1015 TARGET_DEFAULT_RETURN (0);
1016
1017 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1018 TARGET_DEFAULT_NORETURN (tcomplain ());
1019
1020 int (*to_upload_tracepoints) (struct target_ops *,
1021 struct uploaded_tp **utpp)
1022 TARGET_DEFAULT_RETURN (0);
1023
1024 int (*to_upload_trace_state_variables) (struct target_ops *,
1025 struct uploaded_tsv **utsvp)
1026 TARGET_DEFAULT_RETURN (0);
1027
1028 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1029 ULONGEST offset, LONGEST len)
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1031
1032 /* Get the minimum length of instruction on which a fast tracepoint
1033 may be set on the target. If this operation is unsupported,
1034 return -1. If for some reason the minimum length cannot be
1035 determined, return 0. */
1036 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1037 TARGET_DEFAULT_RETURN (-1);
1038
1039 /* Set the target's tracing behavior in response to unexpected
1040 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1041 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1042 TARGET_DEFAULT_IGNORE ();
1043 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1044 TARGET_DEFAULT_IGNORE ();
1045 /* Set the size of trace buffer in the target. */
1046 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1047 TARGET_DEFAULT_IGNORE ();
1048
1049 /* Add/change textual notes about the trace run, returning 1 if
1050 successful, 0 otherwise. */
1051 int (*to_set_trace_notes) (struct target_ops *,
1052 const char *user, const char *notes,
1053 const char *stopnotes)
1054 TARGET_DEFAULT_RETURN (0);
1055
1056 /* Return the processor core that thread PTID was last seen on.
1057 This information is updated only when:
1058 - update_thread_list is called
1059 - thread stops
1060 If the core cannot be determined -- either for the specified
1061 thread, or right now, or in this debug session, or for this
1062 target -- return -1. */
1063 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1064 TARGET_DEFAULT_RETURN (-1);
1065
1066 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1067 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1068 a match, 0 if there's a mismatch, and -1 if an error is
1069 encountered while reading memory. */
1070 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1071 CORE_ADDR memaddr, ULONGEST size)
1072 TARGET_DEFAULT_FUNC (default_verify_memory);
1073
1074 /* Return the address of the start of the Thread Information Block
1075 a Windows OS specific feature. */
1076 int (*to_get_tib_address) (struct target_ops *,
1077 ptid_t ptid, CORE_ADDR *addr)
1078 TARGET_DEFAULT_NORETURN (tcomplain ());
1079
1080 /* Send the new settings of write permission variables. */
1081 void (*to_set_permissions) (struct target_ops *)
1082 TARGET_DEFAULT_IGNORE ();
1083
1084 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1085 with its details. Return 1 on success, 0 on failure. */
1086 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1087 struct static_tracepoint_marker *marker)
1088 TARGET_DEFAULT_RETURN (0);
1089
1090 /* Return a vector of all tracepoints markers string id ID, or all
1091 markers if ID is NULL. */
1092 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1093 TARGET_DEFAULT_NORETURN (tcomplain ());
1094
1095 /* Return a traceframe info object describing the current
1096 traceframe's contents. This method should not cache data;
1097 higher layers take care of caching, invalidating, and
1098 re-fetching when necessary. */
1099 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1100 TARGET_DEFAULT_NORETURN (tcomplain ());
1101
1102 /* Ask the target to use or not to use agent according to USE. Return 1
1103 successful, 0 otherwise. */
1104 int (*to_use_agent) (struct target_ops *, int use)
1105 TARGET_DEFAULT_NORETURN (tcomplain ());
1106
1107 /* Is the target able to use agent in current state? */
1108 int (*to_can_use_agent) (struct target_ops *)
1109 TARGET_DEFAULT_RETURN (0);
1110
1111 /* Check whether the target supports branch tracing. */
1112 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1113 TARGET_DEFAULT_RETURN (0);
1114
1115 /* Enable branch tracing for PTID using CONF configuration.
1116 Return a branch trace target information struct for reading and for
1117 disabling branch trace. */
1118 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1119 ptid_t ptid,
1120 const struct btrace_config *conf)
1121 TARGET_DEFAULT_NORETURN (tcomplain ());
1122
1123 /* Disable branch tracing and deallocate TINFO. */
1124 void (*to_disable_btrace) (struct target_ops *,
1125 struct btrace_target_info *tinfo)
1126 TARGET_DEFAULT_NORETURN (tcomplain ());
1127
1128 /* Disable branch tracing and deallocate TINFO. This function is similar
1129 to to_disable_btrace, except that it is called during teardown and is
1130 only allowed to perform actions that are safe. A counter-example would
1131 be attempting to talk to a remote target. */
1132 void (*to_teardown_btrace) (struct target_ops *,
1133 struct btrace_target_info *tinfo)
1134 TARGET_DEFAULT_NORETURN (tcomplain ());
1135
1136 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1137 DATA is cleared before new trace is added. */
1138 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1139 struct btrace_data *data,
1140 struct btrace_target_info *btinfo,
1141 enum btrace_read_type type)
1142 TARGET_DEFAULT_NORETURN (tcomplain ());
1143
1144 /* Get the branch trace configuration. */
1145 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1146 const struct btrace_target_info *)
1147 TARGET_DEFAULT_RETURN (NULL);
1148
1149 /* Stop trace recording. */
1150 void (*to_stop_recording) (struct target_ops *)
1151 TARGET_DEFAULT_IGNORE ();
1152
1153 /* Print information about the recording. */
1154 void (*to_info_record) (struct target_ops *)
1155 TARGET_DEFAULT_IGNORE ();
1156
1157 /* Save the recorded execution trace into a file. */
1158 void (*to_save_record) (struct target_ops *, const char *filename)
1159 TARGET_DEFAULT_NORETURN (tcomplain ());
1160
1161 /* Delete the recorded execution trace from the current position
1162 onwards. */
1163 void (*to_delete_record) (struct target_ops *)
1164 TARGET_DEFAULT_NORETURN (tcomplain ());
1165
1166 /* Query if the record target is currently replaying PTID. */
1167 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1168 TARGET_DEFAULT_RETURN (0);
1169
1170 /* Query if the record target will replay PTID if it were resumed in
1171 execution direction DIR. */
1172 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1173 TARGET_DEFAULT_RETURN (0);
1174
1175 /* Stop replaying. */
1176 void (*to_record_stop_replaying) (struct target_ops *)
1177 TARGET_DEFAULT_IGNORE ();
1178
1179 /* Go to the begin of the execution trace. */
1180 void (*to_goto_record_begin) (struct target_ops *)
1181 TARGET_DEFAULT_NORETURN (tcomplain ());
1182
1183 /* Go to the end of the execution trace. */
1184 void (*to_goto_record_end) (struct target_ops *)
1185 TARGET_DEFAULT_NORETURN (tcomplain ());
1186
1187 /* Go to a specific location in the recorded execution trace. */
1188 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191 /* Disassemble SIZE instructions in the recorded execution trace from
1192 the current position.
1193 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1194 disassemble SIZE succeeding instructions. */
1195 void (*to_insn_history) (struct target_ops *, int size, int flags)
1196 TARGET_DEFAULT_NORETURN (tcomplain ());
1197
1198 /* Disassemble SIZE instructions in the recorded execution trace around
1199 FROM.
1200 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1201 disassemble SIZE instructions after FROM. */
1202 void (*to_insn_history_from) (struct target_ops *,
1203 ULONGEST from, int size, int flags)
1204 TARGET_DEFAULT_NORETURN (tcomplain ());
1205
1206 /* Disassemble a section of the recorded execution trace from instruction
1207 BEGIN (inclusive) to instruction END (inclusive). */
1208 void (*to_insn_history_range) (struct target_ops *,
1209 ULONGEST begin, ULONGEST end, int flags)
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1211
1212 /* Print a function trace of the recorded execution trace.
1213 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1214 succeeding functions. */
1215 void (*to_call_history) (struct target_ops *, int size, int flags)
1216 TARGET_DEFAULT_NORETURN (tcomplain ());
1217
1218 /* Print a function trace of the recorded execution trace starting
1219 at function FROM.
1220 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1221 SIZE functions after FROM. */
1222 void (*to_call_history_from) (struct target_ops *,
1223 ULONGEST begin, int size, int flags)
1224 TARGET_DEFAULT_NORETURN (tcomplain ());
1225
1226 /* Print a function trace of an execution trace section from function BEGIN
1227 (inclusive) to function END (inclusive). */
1228 void (*to_call_history_range) (struct target_ops *,
1229 ULONGEST begin, ULONGEST end, int flags)
1230 TARGET_DEFAULT_NORETURN (tcomplain ());
1231
1232 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1233 non-empty annex. */
1234 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1235 TARGET_DEFAULT_RETURN (0);
1236
1237 /* Those unwinders are tried before any other arch unwinders. If
1238 SELF doesn't have unwinders, it should delegate to the
1239 "beneath" target. */
1240 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1241 TARGET_DEFAULT_RETURN (NULL);
1242
1243 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1244 TARGET_DEFAULT_RETURN (NULL);
1245
1246 /* Prepare to generate a core file. */
1247 void (*to_prepare_to_generate_core) (struct target_ops *)
1248 TARGET_DEFAULT_IGNORE ();
1249
1250 /* Cleanup after generating a core file. */
1251 void (*to_done_generating_core) (struct target_ops *)
1252 TARGET_DEFAULT_IGNORE ();
1253
1254 int to_magic;
1255 /* Need sub-structure for target machine related rather than comm related?
1256 */
1257 };
1258
1259 /* Magic number for checking ops size. If a struct doesn't end with this
1260 number, somebody changed the declaration but didn't change all the
1261 places that initialize one. */
1262
1263 #define OPS_MAGIC 3840
1264
1265 /* The ops structure for our "current" target process. This should
1266 never be NULL. If there is no target, it points to the dummy_target. */
1267
1268 extern struct target_ops current_target;
1269
1270 /* Define easy words for doing these operations on our current target. */
1271
1272 #define target_shortname (current_target.to_shortname)
1273 #define target_longname (current_target.to_longname)
1274
1275 /* Does whatever cleanup is required for a target that we are no
1276 longer going to be calling. This routine is automatically always
1277 called after popping the target off the target stack - the target's
1278 own methods are no longer available through the target vector.
1279 Closing file descriptors and freeing all memory allocated memory are
1280 typical things it should do. */
1281
1282 void target_close (struct target_ops *targ);
1283
1284 /* Find the correct target to use for "attach". If a target on the
1285 current stack supports attaching, then it is returned. Otherwise,
1286 the default run target is returned. */
1287
1288 extern struct target_ops *find_attach_target (void);
1289
1290 /* Find the correct target to use for "run". If a target on the
1291 current stack supports creating a new inferior, then it is
1292 returned. Otherwise, the default run target is returned. */
1293
1294 extern struct target_ops *find_run_target (void);
1295
1296 /* Some targets don't generate traps when attaching to the inferior,
1297 or their target_attach implementation takes care of the waiting.
1298 These targets must set to_attach_no_wait. */
1299
1300 #define target_attach_no_wait \
1301 (current_target.to_attach_no_wait)
1302
1303 /* The target_attach operation places a process under debugger control,
1304 and stops the process.
1305
1306 This operation provides a target-specific hook that allows the
1307 necessary bookkeeping to be performed after an attach completes. */
1308 #define target_post_attach(pid) \
1309 (*current_target.to_post_attach) (&current_target, pid)
1310
1311 /* Display a message indicating we're about to detach from the current
1312 inferior process. */
1313
1314 extern void target_announce_detach (int from_tty);
1315
1316 /* Takes a program previously attached to and detaches it.
1317 The program may resume execution (some targets do, some don't) and will
1318 no longer stop on signals, etc. We better not have left any breakpoints
1319 in the program or it'll die when it hits one. ARGS is arguments
1320 typed by the user (e.g. a signal to send the process). FROM_TTY
1321 says whether to be verbose or not. */
1322
1323 extern void target_detach (const char *, int);
1324
1325 /* Disconnect from the current target without resuming it (leaving it
1326 waiting for a debugger). */
1327
1328 extern void target_disconnect (const char *, int);
1329
1330 /* Resume execution of the target process PTID (or a group of
1331 threads). STEP says whether to hardware single-step or to run free;
1332 SIGGNAL is the signal to be given to the target, or GDB_SIGNAL_0 for no
1333 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1334 PTID means `step/resume only this process id'. A wildcard PTID
1335 (all threads, or all threads of process) means `step/resume
1336 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1337 matches) resume with their 'thread->suspend.stop_signal' signal
1338 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1339 if in "no pass" state. */
1340
1341 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1342
1343 /* Wait for process pid to do something. PTID = -1 to wait for any
1344 pid to do something. Return pid of child, or -1 in case of error;
1345 store status through argument pointer STATUS. Note that it is
1346 _NOT_ OK to throw_exception() out of target_wait() without popping
1347 the debugging target from the stack; GDB isn't prepared to get back
1348 to the prompt with a debugging target but without the frame cache,
1349 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1350 options. */
1351
1352 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1353 int options);
1354
1355 /* The default target_ops::to_wait implementation. */
1356
1357 extern ptid_t default_target_wait (struct target_ops *ops,
1358 ptid_t ptid,
1359 struct target_waitstatus *status,
1360 int options);
1361
1362 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1363
1364 extern void target_fetch_registers (struct regcache *regcache, int regno);
1365
1366 /* Store at least register REGNO, or all regs if REGNO == -1.
1367 It can store as many registers as it wants to, so target_prepare_to_store
1368 must have been previously called. Calls error() if there are problems. */
1369
1370 extern void target_store_registers (struct regcache *regcache, int regs);
1371
1372 /* Get ready to modify the registers array. On machines which store
1373 individual registers, this doesn't need to do anything. On machines
1374 which store all the registers in one fell swoop, this makes sure
1375 that REGISTERS contains all the registers from the program being
1376 debugged. */
1377
1378 #define target_prepare_to_store(regcache) \
1379 (*current_target.to_prepare_to_store) (&current_target, regcache)
1380
1381 /* Determine current address space of thread PTID. */
1382
1383 struct address_space *target_thread_address_space (ptid_t);
1384
1385 /* Implement the "info proc" command. This returns one if the request
1386 was handled, and zero otherwise. It can also throw an exception if
1387 an error was encountered while attempting to handle the
1388 request. */
1389
1390 int target_info_proc (const char *, enum info_proc_what);
1391
1392 /* Returns true if this target can debug multiple processes
1393 simultaneously. */
1394
1395 #define target_supports_multi_process() \
1396 (*current_target.to_supports_multi_process) (&current_target)
1397
1398 /* Returns true if this target can disable address space randomization. */
1399
1400 int target_supports_disable_randomization (void);
1401
1402 /* Returns true if this target can enable and disable tracepoints
1403 while a trace experiment is running. */
1404
1405 #define target_supports_enable_disable_tracepoint() \
1406 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1407
1408 #define target_supports_string_tracing() \
1409 (*current_target.to_supports_string_tracing) (&current_target)
1410
1411 /* Returns true if this target can handle breakpoint conditions
1412 on its end. */
1413
1414 #define target_supports_evaluation_of_breakpoint_conditions() \
1415 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1416
1417 /* Returns true if this target can handle breakpoint commands
1418 on its end. */
1419
1420 #define target_can_run_breakpoint_commands() \
1421 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1422
1423 extern int target_read_string (CORE_ADDR, char **, int, int *);
1424
1425 /* For target_read_memory see target/target.h. */
1426
1427 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1428 ssize_t len);
1429
1430 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1431
1432 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1433
1434 /* For target_write_memory see target/target.h. */
1435
1436 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1437 ssize_t len);
1438
1439 /* Fetches the target's memory map. If one is found it is sorted
1440 and returned, after some consistency checking. Otherwise, NULL
1441 is returned. */
1442 VEC(mem_region_s) *target_memory_map (void);
1443
1444 /* Erase the specified flash region. */
1445 void target_flash_erase (ULONGEST address, LONGEST length);
1446
1447 /* Finish a sequence of flash operations. */
1448 void target_flash_done (void);
1449
1450 /* Describes a request for a memory write operation. */
1451 struct memory_write_request
1452 {
1453 /* Begining address that must be written. */
1454 ULONGEST begin;
1455 /* Past-the-end address. */
1456 ULONGEST end;
1457 /* The data to write. */
1458 gdb_byte *data;
1459 /* A callback baton for progress reporting for this request. */
1460 void *baton;
1461 };
1462 typedef struct memory_write_request memory_write_request_s;
1463 DEF_VEC_O(memory_write_request_s);
1464
1465 /* Enumeration specifying different flash preservation behaviour. */
1466 enum flash_preserve_mode
1467 {
1468 flash_preserve,
1469 flash_discard
1470 };
1471
1472 /* Write several memory blocks at once. This version can be more
1473 efficient than making several calls to target_write_memory, in
1474 particular because it can optimize accesses to flash memory.
1475
1476 Moreover, this is currently the only memory access function in gdb
1477 that supports writing to flash memory, and it should be used for
1478 all cases where access to flash memory is desirable.
1479
1480 REQUESTS is the vector (see vec.h) of memory_write_request.
1481 PRESERVE_FLASH_P indicates what to do with blocks which must be
1482 erased, but not completely rewritten.
1483 PROGRESS_CB is a function that will be periodically called to provide
1484 feedback to user. It will be called with the baton corresponding
1485 to the request currently being written. It may also be called
1486 with a NULL baton, when preserved flash sectors are being rewritten.
1487
1488 The function returns 0 on success, and error otherwise. */
1489 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1490 enum flash_preserve_mode preserve_flash_p,
1491 void (*progress_cb) (ULONGEST, void *));
1492
1493 /* Print a line about the current target. */
1494
1495 #define target_files_info() \
1496 (*current_target.to_files_info) (&current_target)
1497
1498 /* Insert a breakpoint at address BP_TGT->placed_address in
1499 the target machine. Returns 0 for success, and returns non-zero or
1500 throws an error (with a detailed failure reason error code and
1501 message) otherwise. */
1502
1503 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1504 struct bp_target_info *bp_tgt);
1505
1506 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1507 machine. Result is 0 for success, non-zero for error. */
1508
1509 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1510 struct bp_target_info *bp_tgt);
1511
1512 /* Returns true if the terminal settings of the inferior are in
1513 effect. */
1514
1515 extern int target_terminal_is_inferior (void);
1516
1517 /* Returns true if our terminal settings are in effect. */
1518
1519 extern int target_terminal_is_ours (void);
1520
1521 /* Initialize the terminal settings we record for the inferior,
1522 before we actually run the inferior. */
1523
1524 extern void target_terminal_init (void);
1525
1526 /* Put the inferior's terminal settings into effect. This is
1527 preparation for starting or resuming the inferior. This is a no-op
1528 unless called with the main UI as current UI. */
1529
1530 extern void target_terminal_inferior (void);
1531
1532 /* Put some of our terminal settings into effect, enough to get proper
1533 results from our output, but do not change into or out of RAW mode
1534 so that no input is discarded. This is a no-op if terminal_ours
1535 was most recently called. This is a no-op unless called with the main
1536 UI as current UI. */
1537
1538 extern void target_terminal_ours_for_output (void);
1539
1540 /* Put our terminal settings into effect. First record the inferior's
1541 terminal settings so they can be restored properly later. This is
1542 a no-op unless called with the main UI as current UI. */
1543
1544 extern void target_terminal_ours (void);
1545
1546 /* Return true if the target stack has a non-default
1547 "to_terminal_ours" method. */
1548
1549 extern int target_supports_terminal_ours (void);
1550
1551 /* Make a cleanup that restores the state of the terminal to the current
1552 state. */
1553 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1554
1555 /* Print useful information about our terminal status, if such a thing
1556 exists. */
1557
1558 #define target_terminal_info(arg, from_tty) \
1559 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1560
1561 /* Kill the inferior process. Make it go away. */
1562
1563 extern void target_kill (void);
1564
1565 /* Load an executable file into the target process. This is expected
1566 to not only bring new code into the target process, but also to
1567 update GDB's symbol tables to match.
1568
1569 ARG contains command-line arguments, to be broken down with
1570 buildargv (). The first non-switch argument is the filename to
1571 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1572 0)), which is an offset to apply to the load addresses of FILE's
1573 sections. The target may define switches, or other non-switch
1574 arguments, as it pleases. */
1575
1576 extern void target_load (const char *arg, int from_tty);
1577
1578 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1579 notification of inferior events such as fork and vork immediately
1580 after the inferior is created. (This because of how gdb gets an
1581 inferior created via invoking a shell to do it. In such a scenario,
1582 if the shell init file has commands in it, the shell will fork and
1583 exec for each of those commands, and we will see each such fork
1584 event. Very bad.)
1585
1586 Such targets will supply an appropriate definition for this function. */
1587
1588 #define target_post_startup_inferior(ptid) \
1589 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1590
1591 /* On some targets, we can catch an inferior fork or vfork event when
1592 it occurs. These functions insert/remove an already-created
1593 catchpoint for such events. They return 0 for success, 1 if the
1594 catchpoint type is not supported and -1 for failure. */
1595
1596 #define target_insert_fork_catchpoint(pid) \
1597 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1598
1599 #define target_remove_fork_catchpoint(pid) \
1600 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1601
1602 #define target_insert_vfork_catchpoint(pid) \
1603 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1604
1605 #define target_remove_vfork_catchpoint(pid) \
1606 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1607
1608 /* If the inferior forks or vforks, this function will be called at
1609 the next resume in order to perform any bookkeeping and fiddling
1610 necessary to continue debugging either the parent or child, as
1611 requested, and releasing the other. Information about the fork
1612 or vfork event is available via get_last_target_status ().
1613 This function returns 1 if the inferior should not be resumed
1614 (i.e. there is another event pending). */
1615
1616 int target_follow_fork (int follow_child, int detach_fork);
1617
1618 /* Handle the target-specific bookkeeping required when the inferior
1619 makes an exec call. INF is the exec'd inferior. */
1620
1621 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1622
1623 /* On some targets, we can catch an inferior exec event when it
1624 occurs. These functions insert/remove an already-created
1625 catchpoint for such events. They return 0 for success, 1 if the
1626 catchpoint type is not supported and -1 for failure. */
1627
1628 #define target_insert_exec_catchpoint(pid) \
1629 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1630
1631 #define target_remove_exec_catchpoint(pid) \
1632 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1633
1634 /* Syscall catch.
1635
1636 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1637 If NEEDED is zero, it means the target can disable the mechanism to
1638 catch system calls because there are no more catchpoints of this type.
1639
1640 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1641 being requested. In this case, both TABLE_SIZE and TABLE should
1642 be ignored.
1643
1644 TABLE_SIZE is the number of elements in TABLE. It only matters if
1645 ANY_COUNT is zero.
1646
1647 TABLE is an array of ints, indexed by syscall number. An element in
1648 this array is nonzero if that syscall should be caught. This argument
1649 only matters if ANY_COUNT is zero.
1650
1651 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1652 for failure. */
1653
1654 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1655 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1656 pid, needed, any_count, \
1657 table_size, table)
1658
1659 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1660 exit code of PID, if any. */
1661
1662 #define target_has_exited(pid,wait_status,exit_status) \
1663 (*current_target.to_has_exited) (&current_target, \
1664 pid,wait_status,exit_status)
1665
1666 /* The debugger has completed a blocking wait() call. There is now
1667 some process event that must be processed. This function should
1668 be defined by those targets that require the debugger to perform
1669 cleanup or internal state changes in response to the process event. */
1670
1671 /* The inferior process has died. Do what is right. */
1672
1673 void target_mourn_inferior (void);
1674
1675 /* Does target have enough data to do a run or attach command? */
1676
1677 #define target_can_run(t) \
1678 ((t)->to_can_run) (t)
1679
1680 /* Set list of signals to be handled in the target.
1681
1682 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1683 (enum gdb_signal). For every signal whose entry in this array is
1684 non-zero, the target is allowed -but not required- to skip reporting
1685 arrival of the signal to the GDB core by returning from target_wait,
1686 and to pass the signal directly to the inferior instead.
1687
1688 However, if the target is hardware single-stepping a thread that is
1689 about to receive a signal, it needs to be reported in any case, even
1690 if mentioned in a previous target_pass_signals call. */
1691
1692 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1693
1694 /* Set list of signals the target may pass to the inferior. This
1695 directly maps to the "handle SIGNAL pass/nopass" setting.
1696
1697 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1698 number (enum gdb_signal). For every signal whose entry in this
1699 array is non-zero, the target is allowed to pass the signal to the
1700 inferior. Signals not present in the array shall be silently
1701 discarded. This does not influence whether to pass signals to the
1702 inferior as a result of a target_resume call. This is useful in
1703 scenarios where the target needs to decide whether to pass or not a
1704 signal to the inferior without GDB core involvement, such as for
1705 example, when detaching (as threads may have been suspended with
1706 pending signals not reported to GDB). */
1707
1708 extern void target_program_signals (int nsig, unsigned char *program_signals);
1709
1710 /* Check to see if a thread is still alive. */
1711
1712 extern int target_thread_alive (ptid_t ptid);
1713
1714 /* Sync the target's threads with GDB's thread list. */
1715
1716 extern void target_update_thread_list (void);
1717
1718 /* Make target stop in a continuable fashion. (For instance, under
1719 Unix, this should act like SIGSTOP). Note that this function is
1720 asynchronous: it does not wait for the target to become stopped
1721 before returning. If this is the behavior you want please use
1722 target_stop_and_wait. */
1723
1724 extern void target_stop (ptid_t ptid);
1725
1726 /* Interrupt the target just like the user typed a ^C on the
1727 inferior's controlling terminal. (For instance, under Unix, this
1728 should act like SIGINT). This function is asynchronous. */
1729
1730 extern void target_interrupt (ptid_t ptid);
1731
1732 /* Pass a ^C, as determined to have been pressed by checking the quit
1733 flag, to the target. Normally calls target_interrupt, but remote
1734 targets may take the opportunity to detect the remote side is not
1735 responding and offer to disconnect. */
1736
1737 extern void target_pass_ctrlc (void);
1738
1739 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1740 target_interrupt. */
1741 extern void default_target_pass_ctrlc (struct target_ops *ops);
1742
1743 /* Send the specified COMMAND to the target's monitor
1744 (shell,interpreter) for execution. The result of the query is
1745 placed in OUTBUF. */
1746
1747 #define target_rcmd(command, outbuf) \
1748 (*current_target.to_rcmd) (&current_target, command, outbuf)
1749
1750
1751 /* Does the target include all of memory, or only part of it? This
1752 determines whether we look up the target chain for other parts of
1753 memory if this target can't satisfy a request. */
1754
1755 extern int target_has_all_memory_1 (void);
1756 #define target_has_all_memory target_has_all_memory_1 ()
1757
1758 /* Does the target include memory? (Dummy targets don't.) */
1759
1760 extern int target_has_memory_1 (void);
1761 #define target_has_memory target_has_memory_1 ()
1762
1763 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1764 we start a process.) */
1765
1766 extern int target_has_stack_1 (void);
1767 #define target_has_stack target_has_stack_1 ()
1768
1769 /* Does the target have registers? (Exec files don't.) */
1770
1771 extern int target_has_registers_1 (void);
1772 #define target_has_registers target_has_registers_1 ()
1773
1774 /* Does the target have execution? Can we make it jump (through
1775 hoops), or pop its stack a few times? This means that the current
1776 target is currently executing; for some targets, that's the same as
1777 whether or not the target is capable of execution, but there are
1778 also targets which can be current while not executing. In that
1779 case this will become true after to_create_inferior or
1780 to_attach. */
1781
1782 extern int target_has_execution_1 (ptid_t);
1783
1784 /* Like target_has_execution_1, but always passes inferior_ptid. */
1785
1786 extern int target_has_execution_current (void);
1787
1788 #define target_has_execution target_has_execution_current ()
1789
1790 /* Default implementations for process_stratum targets. Return true
1791 if there's a selected inferior, false otherwise. */
1792
1793 extern int default_child_has_all_memory (struct target_ops *ops);
1794 extern int default_child_has_memory (struct target_ops *ops);
1795 extern int default_child_has_stack (struct target_ops *ops);
1796 extern int default_child_has_registers (struct target_ops *ops);
1797 extern int default_child_has_execution (struct target_ops *ops,
1798 ptid_t the_ptid);
1799
1800 /* Can the target support the debugger control of thread execution?
1801 Can it lock the thread scheduler? */
1802
1803 #define target_can_lock_scheduler \
1804 (current_target.to_has_thread_control & tc_schedlock)
1805
1806 /* Controls whether async mode is permitted. */
1807 extern int target_async_permitted;
1808
1809 /* Can the target support asynchronous execution? */
1810 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1811
1812 /* Is the target in asynchronous execution mode? */
1813 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1814
1815 /* Enables/disabled async target events. */
1816 extern void target_async (int enable);
1817
1818 /* Enables/disables thread create and exit events. */
1819 extern void target_thread_events (int enable);
1820
1821 /* Whether support for controlling the target backends always in
1822 non-stop mode is enabled. */
1823 extern enum auto_boolean target_non_stop_enabled;
1824
1825 /* Is the target in non-stop mode? Some targets control the inferior
1826 in non-stop mode even with "set non-stop off". Always true if "set
1827 non-stop" is on. */
1828 extern int target_is_non_stop_p (void);
1829
1830 #define target_execution_direction() \
1831 (current_target.to_execution_direction (&current_target))
1832
1833 /* Converts a process id to a string. Usually, the string just contains
1834 `process xyz', but on some systems it may contain
1835 `process xyz thread abc'. */
1836
1837 extern char *target_pid_to_str (ptid_t ptid);
1838
1839 extern char *normal_pid_to_str (ptid_t ptid);
1840
1841 /* Return a short string describing extra information about PID,
1842 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1843 is okay. */
1844
1845 #define target_extra_thread_info(TP) \
1846 (current_target.to_extra_thread_info (&current_target, TP))
1847
1848 /* Return the thread's name, or NULL if the target is unable to determine it.
1849 The returned value must not be freed by the caller. */
1850
1851 extern const char *target_thread_name (struct thread_info *);
1852
1853 /* Attempts to find the pathname of the executable file
1854 that was run to create a specified process.
1855
1856 The process PID must be stopped when this operation is used.
1857
1858 If the executable file cannot be determined, NULL is returned.
1859
1860 Else, a pointer to a character string containing the pathname
1861 is returned. This string should be copied into a buffer by
1862 the client if the string will not be immediately used, or if
1863 it must persist. */
1864
1865 #define target_pid_to_exec_file(pid) \
1866 (current_target.to_pid_to_exec_file) (&current_target, pid)
1867
1868 /* See the to_thread_architecture description in struct target_ops. */
1869
1870 #define target_thread_architecture(ptid) \
1871 (current_target.to_thread_architecture (&current_target, ptid))
1872
1873 /*
1874 * Iterator function for target memory regions.
1875 * Calls a callback function once for each memory region 'mapped'
1876 * in the child process. Defined as a simple macro rather than
1877 * as a function macro so that it can be tested for nullity.
1878 */
1879
1880 #define target_find_memory_regions(FUNC, DATA) \
1881 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1882
1883 /*
1884 * Compose corefile .note section.
1885 */
1886
1887 #define target_make_corefile_notes(BFD, SIZE_P) \
1888 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1889
1890 /* Bookmark interfaces. */
1891 #define target_get_bookmark(ARGS, FROM_TTY) \
1892 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1893
1894 #define target_goto_bookmark(ARG, FROM_TTY) \
1895 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1896
1897 /* Hardware watchpoint interfaces. */
1898
1899 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1900 write). Only the INFERIOR_PTID task is being queried. */
1901
1902 #define target_stopped_by_watchpoint() \
1903 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1904
1905 /* Returns non-zero if the target stopped because it executed a
1906 software breakpoint instruction. */
1907
1908 #define target_stopped_by_sw_breakpoint() \
1909 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1910
1911 #define target_supports_stopped_by_sw_breakpoint() \
1912 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1913
1914 #define target_stopped_by_hw_breakpoint() \
1915 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1916
1917 #define target_supports_stopped_by_hw_breakpoint() \
1918 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1919
1920 /* Non-zero if we have steppable watchpoints */
1921
1922 #define target_have_steppable_watchpoint \
1923 (current_target.to_have_steppable_watchpoint)
1924
1925 /* Non-zero if we have continuable watchpoints */
1926
1927 #define target_have_continuable_watchpoint \
1928 (current_target.to_have_continuable_watchpoint)
1929
1930 /* Provide defaults for hardware watchpoint functions. */
1931
1932 /* If the *_hw_beakpoint functions have not been defined
1933 elsewhere use the definitions in the target vector. */
1934
1935 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1936 Returns negative if the target doesn't have enough hardware debug
1937 registers available. Return zero if hardware watchpoint of type
1938 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1939 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1940 CNT is the number of such watchpoints used so far, including this
1941 one. OTHERTYPE is the number of watchpoints of other types than
1942 this one used so far. */
1943
1944 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1945 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1946 TYPE, CNT, OTHERTYPE)
1947
1948 /* Returns the number of debug registers needed to watch the given
1949 memory region, or zero if not supported. */
1950
1951 #define target_region_ok_for_hw_watchpoint(addr, len) \
1952 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1953 addr, len)
1954
1955
1956 #define target_can_do_single_step() \
1957 (*current_target.to_can_do_single_step) (&current_target)
1958
1959 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1960 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1961 COND is the expression for its condition, or NULL if there's none.
1962 Returns 0 for success, 1 if the watchpoint type is not supported,
1963 -1 for failure. */
1964
1965 #define target_insert_watchpoint(addr, len, type, cond) \
1966 (*current_target.to_insert_watchpoint) (&current_target, \
1967 addr, len, type, cond)
1968
1969 #define target_remove_watchpoint(addr, len, type, cond) \
1970 (*current_target.to_remove_watchpoint) (&current_target, \
1971 addr, len, type, cond)
1972
1973 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1974 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1975 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1976 masked watchpoints are not supported, -1 for failure. */
1977
1978 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1979 enum target_hw_bp_type);
1980
1981 /* Remove a masked watchpoint at ADDR with the mask MASK.
1982 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1983 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1984 for failure. */
1985
1986 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1987 enum target_hw_bp_type);
1988
1989 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1990 the target machine. Returns 0 for success, and returns non-zero or
1991 throws an error (with a detailed failure reason error code and
1992 message) otherwise. */
1993
1994 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1995 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1996 gdbarch, bp_tgt)
1997
1998 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1999 (*current_target.to_remove_hw_breakpoint) (&current_target, \
2000 gdbarch, bp_tgt)
2001
2002 /* Return number of debug registers needed for a ranged breakpoint,
2003 or -1 if ranged breakpoints are not supported. */
2004
2005 extern int target_ranged_break_num_registers (void);
2006
2007 /* Return non-zero if target knows the data address which triggered this
2008 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2009 INFERIOR_PTID task is being queried. */
2010 #define target_stopped_data_address(target, addr_p) \
2011 (*(target)->to_stopped_data_address) (target, addr_p)
2012
2013 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2014 LENGTH bytes beginning at START. */
2015 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2016 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
2017
2018 /* Return non-zero if the target is capable of using hardware to evaluate
2019 the condition expression. In this case, if the condition is false when
2020 the watched memory location changes, execution may continue without the
2021 debugger being notified.
2022
2023 Due to limitations in the hardware implementation, it may be capable of
2024 avoiding triggering the watchpoint in some cases where the condition
2025 expression is false, but may report some false positives as well.
2026 For this reason, GDB will still evaluate the condition expression when
2027 the watchpoint triggers. */
2028 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2029 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2030 addr, len, type, cond)
2031
2032 /* Return number of debug registers needed for a masked watchpoint,
2033 -1 if masked watchpoints are not supported or -2 if the given address
2034 and mask combination cannot be used. */
2035
2036 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2037
2038 /* Target can execute in reverse? */
2039 #define target_can_execute_reverse \
2040 current_target.to_can_execute_reverse (&current_target)
2041
2042 extern const struct target_desc *target_read_description (struct target_ops *);
2043
2044 #define target_get_ada_task_ptid(lwp, tid) \
2045 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2046
2047 /* Utility implementation of searching memory. */
2048 extern int simple_search_memory (struct target_ops* ops,
2049 CORE_ADDR start_addr,
2050 ULONGEST search_space_len,
2051 const gdb_byte *pattern,
2052 ULONGEST pattern_len,
2053 CORE_ADDR *found_addrp);
2054
2055 /* Main entry point for searching memory. */
2056 extern int target_search_memory (CORE_ADDR start_addr,
2057 ULONGEST search_space_len,
2058 const gdb_byte *pattern,
2059 ULONGEST pattern_len,
2060 CORE_ADDR *found_addrp);
2061
2062 /* Target file operations. */
2063
2064 /* Return nonzero if the filesystem seen by the current inferior
2065 is the local filesystem, zero otherwise. */
2066 #define target_filesystem_is_local() \
2067 current_target.to_filesystem_is_local (&current_target)
2068
2069 /* Open FILENAME on the target, in the filesystem as seen by INF,
2070 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2071 by the debugger (GDB or, for remote targets, the remote stub).
2072 Return a target file descriptor, or -1 if an error occurs (and
2073 set *TARGET_ERRNO). */
2074 extern int target_fileio_open (struct inferior *inf,
2075 const char *filename, int flags,
2076 int mode, int *target_errno);
2077
2078 /* Like target_fileio_open, but print a warning message if the
2079 file is being accessed over a link that may be slow. */
2080 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2081 const char *filename,
2082 int flags,
2083 int mode,
2084 int *target_errno);
2085
2086 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2087 Return the number of bytes written, or -1 if an error occurs
2088 (and set *TARGET_ERRNO). */
2089 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2090 ULONGEST offset, int *target_errno);
2091
2092 /* Read up to LEN bytes FD on the target into READ_BUF.
2093 Return the number of bytes read, or -1 if an error occurs
2094 (and set *TARGET_ERRNO). */
2095 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2096 ULONGEST offset, int *target_errno);
2097
2098 /* Get information about the file opened as FD on the target
2099 and put it in SB. Return 0 on success, or -1 if an error
2100 occurs (and set *TARGET_ERRNO). */
2101 extern int target_fileio_fstat (int fd, struct stat *sb,
2102 int *target_errno);
2103
2104 /* Close FD on the target. Return 0, or -1 if an error occurs
2105 (and set *TARGET_ERRNO). */
2106 extern int target_fileio_close (int fd, int *target_errno);
2107
2108 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2109 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2110 for remote targets, the remote stub). Return 0, or -1 if an error
2111 occurs (and set *TARGET_ERRNO). */
2112 extern int target_fileio_unlink (struct inferior *inf,
2113 const char *filename,
2114 int *target_errno);
2115
2116 /* Read value of symbolic link FILENAME on the target, in the
2117 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2118 by the debugger (GDB or, for remote targets, the remote stub).
2119 Return a null-terminated string allocated via xmalloc, or NULL if
2120 an error occurs (and set *TARGET_ERRNO). */
2121 extern char *target_fileio_readlink (struct inferior *inf,
2122 const char *filename,
2123 int *target_errno);
2124
2125 /* Read target file FILENAME, in the filesystem as seen by INF. If
2126 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2127 remote targets, the remote stub). The return value will be -1 if
2128 the transfer fails or is not supported; 0 if the object is empty;
2129 or the length of the object otherwise. If a positive value is
2130 returned, a sufficiently large buffer will be allocated using
2131 xmalloc and returned in *BUF_P containing the contents of the
2132 object.
2133
2134 This method should be used for objects sufficiently small to store
2135 in a single xmalloc'd buffer, when no fixed bound on the object's
2136 size is known in advance. */
2137 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2138 const char *filename,
2139 gdb_byte **buf_p);
2140
2141 /* Read target file FILENAME, in the filesystem as seen by INF. If
2142 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2143 remote targets, the remote stub). The result is NUL-terminated and
2144 returned as a string, allocated using xmalloc. If an error occurs
2145 or the transfer is unsupported, NULL is returned. Empty objects
2146 are returned as allocated but empty strings. A warning is issued
2147 if the result contains any embedded NUL bytes. */
2148 extern char *target_fileio_read_stralloc (struct inferior *inf,
2149 const char *filename);
2150
2151
2152 /* Tracepoint-related operations. */
2153
2154 #define target_trace_init() \
2155 (*current_target.to_trace_init) (&current_target)
2156
2157 #define target_download_tracepoint(t) \
2158 (*current_target.to_download_tracepoint) (&current_target, t)
2159
2160 #define target_can_download_tracepoint() \
2161 (*current_target.to_can_download_tracepoint) (&current_target)
2162
2163 #define target_download_trace_state_variable(tsv) \
2164 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2165
2166 #define target_enable_tracepoint(loc) \
2167 (*current_target.to_enable_tracepoint) (&current_target, loc)
2168
2169 #define target_disable_tracepoint(loc) \
2170 (*current_target.to_disable_tracepoint) (&current_target, loc)
2171
2172 #define target_trace_start() \
2173 (*current_target.to_trace_start) (&current_target)
2174
2175 #define target_trace_set_readonly_regions() \
2176 (*current_target.to_trace_set_readonly_regions) (&current_target)
2177
2178 #define target_get_trace_status(ts) \
2179 (*current_target.to_get_trace_status) (&current_target, ts)
2180
2181 #define target_get_tracepoint_status(tp,utp) \
2182 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2183
2184 #define target_trace_stop() \
2185 (*current_target.to_trace_stop) (&current_target)
2186
2187 #define target_trace_find(type,num,addr1,addr2,tpp) \
2188 (*current_target.to_trace_find) (&current_target, \
2189 (type), (num), (addr1), (addr2), (tpp))
2190
2191 #define target_get_trace_state_variable_value(tsv,val) \
2192 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2193 (tsv), (val))
2194
2195 #define target_save_trace_data(filename) \
2196 (*current_target.to_save_trace_data) (&current_target, filename)
2197
2198 #define target_upload_tracepoints(utpp) \
2199 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2200
2201 #define target_upload_trace_state_variables(utsvp) \
2202 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2203
2204 #define target_get_raw_trace_data(buf,offset,len) \
2205 (*current_target.to_get_raw_trace_data) (&current_target, \
2206 (buf), (offset), (len))
2207
2208 #define target_get_min_fast_tracepoint_insn_len() \
2209 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2210
2211 #define target_set_disconnected_tracing(val) \
2212 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2213
2214 #define target_set_circular_trace_buffer(val) \
2215 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2216
2217 #define target_set_trace_buffer_size(val) \
2218 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2219
2220 #define target_set_trace_notes(user,notes,stopnotes) \
2221 (*current_target.to_set_trace_notes) (&current_target, \
2222 (user), (notes), (stopnotes))
2223
2224 #define target_get_tib_address(ptid, addr) \
2225 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2226
2227 #define target_set_permissions() \
2228 (*current_target.to_set_permissions) (&current_target)
2229
2230 #define target_static_tracepoint_marker_at(addr, marker) \
2231 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2232 addr, marker)
2233
2234 #define target_static_tracepoint_markers_by_strid(marker_id) \
2235 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2236 marker_id)
2237
2238 #define target_traceframe_info() \
2239 (*current_target.to_traceframe_info) (&current_target)
2240
2241 #define target_use_agent(use) \
2242 (*current_target.to_use_agent) (&current_target, use)
2243
2244 #define target_can_use_agent() \
2245 (*current_target.to_can_use_agent) (&current_target)
2246
2247 #define target_augmented_libraries_svr4_read() \
2248 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2249
2250 /* Command logging facility. */
2251
2252 #define target_log_command(p) \
2253 (*current_target.to_log_command) (&current_target, p)
2254
2255
2256 extern int target_core_of_thread (ptid_t ptid);
2257
2258 /* See to_get_unwinder in struct target_ops. */
2259 extern const struct frame_unwind *target_get_unwinder (void);
2260
2261 /* See to_get_tailcall_unwinder in struct target_ops. */
2262 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2263
2264 /* This implements basic memory verification, reading target memory
2265 and performing the comparison here (as opposed to accelerated
2266 verification making use of the qCRC packet, for example). */
2267
2268 extern int simple_verify_memory (struct target_ops* ops,
2269 const gdb_byte *data,
2270 CORE_ADDR memaddr, ULONGEST size);
2271
2272 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2273 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2274 if there's a mismatch, and -1 if an error is encountered while
2275 reading memory. Throws an error if the functionality is found not
2276 to be supported by the current target. */
2277 int target_verify_memory (const gdb_byte *data,
2278 CORE_ADDR memaddr, ULONGEST size);
2279
2280 /* Routines for maintenance of the target structures...
2281
2282 complete_target_initialization: Finalize a target_ops by filling in
2283 any fields needed by the target implementation. Unnecessary for
2284 targets which are registered via add_target, as this part gets
2285 taken care of then.
2286
2287 add_target: Add a target to the list of all possible targets.
2288 This only makes sense for targets that should be activated using
2289 the "target TARGET_NAME ..." command.
2290
2291 push_target: Make this target the top of the stack of currently used
2292 targets, within its particular stratum of the stack. Result
2293 is 0 if now atop the stack, nonzero if not on top (maybe
2294 should warn user).
2295
2296 unpush_target: Remove this from the stack of currently used targets,
2297 no matter where it is on the list. Returns 0 if no
2298 change, 1 if removed from stack. */
2299
2300 extern void add_target (struct target_ops *);
2301
2302 extern void add_target_with_completer (struct target_ops *t,
2303 completer_ftype *completer);
2304
2305 extern void complete_target_initialization (struct target_ops *t);
2306
2307 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2308 for maintaining backwards compatibility when renaming targets. */
2309
2310 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2311
2312 extern void push_target (struct target_ops *);
2313
2314 extern int unpush_target (struct target_ops *);
2315
2316 extern void target_pre_inferior (int);
2317
2318 extern void target_preopen (int);
2319
2320 /* Does whatever cleanup is required to get rid of all pushed targets. */
2321 extern void pop_all_targets (void);
2322
2323 /* Like pop_all_targets, but pops only targets whose stratum is at or
2324 above STRATUM. */
2325 extern void pop_all_targets_at_and_above (enum strata stratum);
2326
2327 /* Like pop_all_targets, but pops only targets whose stratum is
2328 strictly above ABOVE_STRATUM. */
2329 extern void pop_all_targets_above (enum strata above_stratum);
2330
2331 extern int target_is_pushed (struct target_ops *t);
2332
2333 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2334 CORE_ADDR offset);
2335
2336 /* Struct target_section maps address ranges to file sections. It is
2337 mostly used with BFD files, but can be used without (e.g. for handling
2338 raw disks, or files not in formats handled by BFD). */
2339
2340 struct target_section
2341 {
2342 CORE_ADDR addr; /* Lowest address in section */
2343 CORE_ADDR endaddr; /* 1+highest address in section */
2344
2345 struct bfd_section *the_bfd_section;
2346
2347 /* The "owner" of the section.
2348 It can be any unique value. It is set by add_target_sections
2349 and used by remove_target_sections.
2350 For example, for executables it is a pointer to exec_bfd and
2351 for shlibs it is the so_list pointer. */
2352 void *owner;
2353 };
2354
2355 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2356
2357 struct target_section_table
2358 {
2359 struct target_section *sections;
2360 struct target_section *sections_end;
2361 };
2362
2363 /* Return the "section" containing the specified address. */
2364 struct target_section *target_section_by_addr (struct target_ops *target,
2365 CORE_ADDR addr);
2366
2367 /* Return the target section table this target (or the targets
2368 beneath) currently manipulate. */
2369
2370 extern struct target_section_table *target_get_section_table
2371 (struct target_ops *target);
2372
2373 /* From mem-break.c */
2374
2375 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2376 struct bp_target_info *);
2377
2378 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2379 struct bp_target_info *);
2380
2381 /* Check whether the memory at the breakpoint's placed address still
2382 contains the expected breakpoint instruction. */
2383
2384 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2385 struct bp_target_info *bp_tgt);
2386
2387 extern int default_memory_remove_breakpoint (struct gdbarch *,
2388 struct bp_target_info *);
2389
2390 extern int default_memory_insert_breakpoint (struct gdbarch *,
2391 struct bp_target_info *);
2392
2393
2394 /* From target.c */
2395
2396 extern void initialize_targets (void);
2397
2398 extern void noprocess (void) ATTRIBUTE_NORETURN;
2399
2400 extern void target_require_runnable (void);
2401
2402 extern struct target_ops *find_target_beneath (struct target_ops *);
2403
2404 /* Find the target at STRATUM. If no target is at that stratum,
2405 return NULL. */
2406
2407 struct target_ops *find_target_at (enum strata stratum);
2408
2409 /* Read OS data object of type TYPE from the target, and return it in
2410 XML format. The result is NUL-terminated and returned as a string,
2411 allocated using xmalloc. If an error occurs or the transfer is
2412 unsupported, NULL is returned. Empty objects are returned as
2413 allocated but empty strings. */
2414
2415 extern char *target_get_osdata (const char *type);
2416
2417 \f
2418 /* Stuff that should be shared among the various remote targets. */
2419
2420 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2421 information (higher values, more information). */
2422 extern int remote_debug;
2423
2424 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2425 extern int baud_rate;
2426
2427 /* Parity for serial port */
2428 extern int serial_parity;
2429
2430 /* Timeout limit for response from target. */
2431 extern int remote_timeout;
2432
2433 \f
2434
2435 /* Set the show memory breakpoints mode to show, and installs a cleanup
2436 to restore it back to the current value. */
2437 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2438
2439 extern int may_write_registers;
2440 extern int may_write_memory;
2441 extern int may_insert_breakpoints;
2442 extern int may_insert_tracepoints;
2443 extern int may_insert_fast_tracepoints;
2444 extern int may_stop;
2445
2446 extern void update_target_permissions (void);
2447
2448 \f
2449 /* Imported from machine dependent code. */
2450
2451 /* See to_supports_btrace in struct target_ops. */
2452 extern int target_supports_btrace (enum btrace_format);
2453
2454 /* See to_enable_btrace in struct target_ops. */
2455 extern struct btrace_target_info *
2456 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2457
2458 /* See to_disable_btrace in struct target_ops. */
2459 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2460
2461 /* See to_teardown_btrace in struct target_ops. */
2462 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2463
2464 /* See to_read_btrace in struct target_ops. */
2465 extern enum btrace_error target_read_btrace (struct btrace_data *,
2466 struct btrace_target_info *,
2467 enum btrace_read_type);
2468
2469 /* See to_btrace_conf in struct target_ops. */
2470 extern const struct btrace_config *
2471 target_btrace_conf (const struct btrace_target_info *);
2472
2473 /* See to_stop_recording in struct target_ops. */
2474 extern void target_stop_recording (void);
2475
2476 /* See to_save_record in struct target_ops. */
2477 extern void target_save_record (const char *filename);
2478
2479 /* Query if the target supports deleting the execution log. */
2480 extern int target_supports_delete_record (void);
2481
2482 /* See to_delete_record in struct target_ops. */
2483 extern void target_delete_record (void);
2484
2485 /* See to_record_is_replaying in struct target_ops. */
2486 extern int target_record_is_replaying (ptid_t ptid);
2487
2488 /* See to_record_will_replay in struct target_ops. */
2489 extern int target_record_will_replay (ptid_t ptid, int dir);
2490
2491 /* See to_record_stop_replaying in struct target_ops. */
2492 extern void target_record_stop_replaying (void);
2493
2494 /* See to_goto_record_begin in struct target_ops. */
2495 extern void target_goto_record_begin (void);
2496
2497 /* See to_goto_record_end in struct target_ops. */
2498 extern void target_goto_record_end (void);
2499
2500 /* See to_goto_record in struct target_ops. */
2501 extern void target_goto_record (ULONGEST insn);
2502
2503 /* See to_insn_history. */
2504 extern void target_insn_history (int size, int flags);
2505
2506 /* See to_insn_history_from. */
2507 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2508
2509 /* See to_insn_history_range. */
2510 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2511
2512 /* See to_call_history. */
2513 extern void target_call_history (int size, int flags);
2514
2515 /* See to_call_history_from. */
2516 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2517
2518 /* See to_call_history_range. */
2519 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2520
2521 /* See to_prepare_to_generate_core. */
2522 extern void target_prepare_to_generate_core (void);
2523
2524 /* See to_done_generating_core. */
2525 extern void target_done_generating_core (void);
2526
2527 #endif /* !defined (TARGET_H) */
This page took 0.082904 seconds and 4 git commands to generate.