Remove C/C++ relevant code in Fortran specific file.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45
46 /* This include file defines the interface between the main part
47 of the debugger, and the part which is target-specific, or
48 specific to the communications interface between us and the
49 target.
50
51 A TARGET is an interface between the debugger and a particular
52 kind of file or process. Targets can be STACKED in STRATA,
53 so that more than one target can potentially respond to a request.
54 In particular, memory accesses will walk down the stack of targets
55 until they find a target that is interested in handling that particular
56 address. STRATA are artificial boundaries on the stack, within
57 which particular kinds of targets live. Strata exist so that
58 people don't get confused by pushing e.g. a process target and then
59 a file target, and wondering why they can't see the current values
60 of variables any more (the file target is handling them and they
61 never get to the process target). So when you push a file target,
62 it goes into the file stratum, which is always below the process
63 stratum. */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "record.h"
76 #include "command.h"
77 #include "disasm.h"
78
79 #include "break-common.h" /* For enum target_hw_bp_type. */
80
81 enum strata
82 {
83 dummy_stratum, /* The lowest of the low */
84 file_stratum, /* Executable files, etc */
85 process_stratum, /* Executing processes or core dump files */
86 thread_stratum, /* Executing threads */
87 record_stratum, /* Support record debugging */
88 arch_stratum /* Architecture overrides */
89 };
90
91 enum thread_control_capabilities
92 {
93 tc_none = 0, /* Default: can't control thread execution. */
94 tc_schedlock = 1, /* Can lock the thread scheduler. */
95 };
96
97 /* The structure below stores information about a system call.
98 It is basically used in the "catch syscall" command, and in
99 every function that gives information about a system call.
100
101 It's also good to mention that its fields represent everything
102 that we currently know about a syscall in GDB. */
103 struct syscall
104 {
105 /* The syscall number. */
106 int number;
107
108 /* The syscall name. */
109 const char *name;
110 };
111
112 /* Return a pretty printed form of TARGET_OPTIONS.
113 Space for the result is malloc'd, caller must free. */
114 extern char *target_options_to_string (int target_options);
115
116 /* Possible types of events that the inferior handler will have to
117 deal with. */
118 enum inferior_event_type
119 {
120 /* Process a normal inferior event which will result in target_wait
121 being called. */
122 INF_REG_EVENT,
123 /* We are called to do stuff after the inferior stops. */
124 INF_EXEC_COMPLETE,
125 };
126 \f
127 /* Target objects which can be transfered using target_read,
128 target_write, et cetera. */
129
130 enum target_object
131 {
132 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
133 TARGET_OBJECT_AVR,
134 /* SPU target specific transfer. See "spu-tdep.c". */
135 TARGET_OBJECT_SPU,
136 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
137 TARGET_OBJECT_MEMORY,
138 /* Memory, avoiding GDB's data cache and trusting the executable.
139 Target implementations of to_xfer_partial never need to handle
140 this object, and most callers should not use it. */
141 TARGET_OBJECT_RAW_MEMORY,
142 /* Memory known to be part of the target's stack. This is cached even
143 if it is not in a region marked as such, since it is known to be
144 "normal" RAM. */
145 TARGET_OBJECT_STACK_MEMORY,
146 /* Memory known to be part of the target code. This is cached even
147 if it is not in a region marked as such. */
148 TARGET_OBJECT_CODE_MEMORY,
149 /* Kernel Unwind Table. See "ia64-tdep.c". */
150 TARGET_OBJECT_UNWIND_TABLE,
151 /* Transfer auxilliary vector. */
152 TARGET_OBJECT_AUXV,
153 /* StackGhost cookie. See "sparc-tdep.c". */
154 TARGET_OBJECT_WCOOKIE,
155 /* Target memory map in XML format. */
156 TARGET_OBJECT_MEMORY_MAP,
157 /* Flash memory. This object can be used to write contents to
158 a previously erased flash memory. Using it without erasing
159 flash can have unexpected results. Addresses are physical
160 address on target, and not relative to flash start. */
161 TARGET_OBJECT_FLASH,
162 /* Available target-specific features, e.g. registers and coprocessors.
163 See "target-descriptions.c". ANNEX should never be empty. */
164 TARGET_OBJECT_AVAILABLE_FEATURES,
165 /* Currently loaded libraries, in XML format. */
166 TARGET_OBJECT_LIBRARIES,
167 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
168 TARGET_OBJECT_LIBRARIES_SVR4,
169 /* Currently loaded libraries specific to AIX systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_AIX,
171 /* Get OS specific data. The ANNEX specifies the type (running
172 processes, etc.). The data being transfered is expected to follow
173 the DTD specified in features/osdata.dtd. */
174 TARGET_OBJECT_OSDATA,
175 /* Extra signal info. Usually the contents of `siginfo_t' on unix
176 platforms. */
177 TARGET_OBJECT_SIGNAL_INFO,
178 /* The list of threads that are being debugged. */
179 TARGET_OBJECT_THREADS,
180 /* Collected static trace data. */
181 TARGET_OBJECT_STATIC_TRACE_DATA,
182 /* The HP-UX registers (those that can be obtained or modified by using
183 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
184 TARGET_OBJECT_HPUX_UREGS,
185 /* The HP-UX shared library linkage pointer. ANNEX should be a string
186 image of the code address whose linkage pointer we are looking for.
187
188 The size of the data transfered is always 8 bytes (the size of an
189 address on ia64). */
190 TARGET_OBJECT_HPUX_SOLIB_GOT,
191 /* Traceframe info, in XML format. */
192 TARGET_OBJECT_TRACEFRAME_INFO,
193 /* Load maps for FDPIC systems. */
194 TARGET_OBJECT_FDPIC,
195 /* Darwin dynamic linker info data. */
196 TARGET_OBJECT_DARWIN_DYLD_INFO,
197 /* OpenVMS Unwind Information Block. */
198 TARGET_OBJECT_OPENVMS_UIB,
199 /* Branch trace data, in XML format. */
200 TARGET_OBJECT_BTRACE,
201 /* Branch trace configuration, in XML format. */
202 TARGET_OBJECT_BTRACE_CONF,
203 /* The pathname of the executable file that was run to create
204 a specified process. ANNEX should be a string representation
205 of the process ID of the process in question, in hexadecimal
206 format. */
207 TARGET_OBJECT_EXEC_FILE,
208 /* Possible future objects: TARGET_OBJECT_FILE, ... */
209 };
210
211 /* Possible values returned by target_xfer_partial, etc. */
212
213 enum target_xfer_status
214 {
215 /* Some bytes are transferred. */
216 TARGET_XFER_OK = 1,
217
218 /* No further transfer is possible. */
219 TARGET_XFER_EOF = 0,
220
221 /* The piece of the object requested is unavailable. */
222 TARGET_XFER_UNAVAILABLE = 2,
223
224 /* Generic I/O error. Note that it's important that this is '-1',
225 as we still have target_xfer-related code returning hardcoded
226 '-1' on error. */
227 TARGET_XFER_E_IO = -1,
228
229 /* Keep list in sync with target_xfer_status_to_string. */
230 };
231
232 /* Return the string form of STATUS. */
233
234 extern const char *
235 target_xfer_status_to_string (enum target_xfer_status status);
236
237 /* Enumeration of the kinds of traceframe searches that a target may
238 be able to perform. */
239
240 enum trace_find_type
241 {
242 tfind_number,
243 tfind_pc,
244 tfind_tp,
245 tfind_range,
246 tfind_outside,
247 };
248
249 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
250 DEF_VEC_P(static_tracepoint_marker_p);
251
252 typedef enum target_xfer_status
253 target_xfer_partial_ftype (struct target_ops *ops,
254 enum target_object object,
255 const char *annex,
256 gdb_byte *readbuf,
257 const gdb_byte *writebuf,
258 ULONGEST offset,
259 ULONGEST len,
260 ULONGEST *xfered_len);
261
262 enum target_xfer_status
263 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
264 const gdb_byte *writebuf, ULONGEST memaddr,
265 LONGEST len, ULONGEST *xfered_len);
266
267 /* Request that OPS transfer up to LEN addressable units of the target's
268 OBJECT. When reading from a memory object, the size of an addressable unit
269 is architecture dependent and can be found using
270 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
271 byte long. BUF should point to a buffer large enough to hold the read data,
272 taking into account the addressable unit size. The OFFSET, for a seekable
273 object, specifies the starting point. The ANNEX can be used to provide
274 additional data-specific information to the target.
275
276 Return the number of addressable units actually transferred, or a negative
277 error code (an 'enum target_xfer_error' value) if the transfer is not
278 supported or otherwise fails. Return of a positive value less than
279 LEN indicates that no further transfer is possible. Unlike the raw
280 to_xfer_partial interface, callers of these functions do not need
281 to retry partial transfers. */
282
283 extern LONGEST target_read (struct target_ops *ops,
284 enum target_object object,
285 const char *annex, gdb_byte *buf,
286 ULONGEST offset, LONGEST len);
287
288 struct memory_read_result
289 {
290 /* First address that was read. */
291 ULONGEST begin;
292 /* Past-the-end address. */
293 ULONGEST end;
294 /* The data. */
295 gdb_byte *data;
296 };
297 typedef struct memory_read_result memory_read_result_s;
298 DEF_VEC_O(memory_read_result_s);
299
300 extern void free_memory_read_result_vector (void *);
301
302 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
303 const ULONGEST offset,
304 const LONGEST len);
305
306 /* Request that OPS transfer up to LEN addressable units from BUF to the
307 target's OBJECT. When writing to a memory object, the addressable unit
308 size is architecture dependent and can be found using
309 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
310 byte long. The OFFSET, for a seekable object, specifies the starting point.
311 The ANNEX can be used to provide additional data-specific information to
312 the target.
313
314 Return the number of addressable units actually transferred, or a negative
315 error code (an 'enum target_xfer_status' value) if the transfer is not
316 supported or otherwise fails. Return of a positive value less than
317 LEN indicates that no further transfer is possible. Unlike the raw
318 to_xfer_partial interface, callers of these functions do not need to
319 retry partial transfers. */
320
321 extern LONGEST target_write (struct target_ops *ops,
322 enum target_object object,
323 const char *annex, const gdb_byte *buf,
324 ULONGEST offset, LONGEST len);
325
326 /* Similar to target_write, except that it also calls PROGRESS with
327 the number of bytes written and the opaque BATON after every
328 successful partial write (and before the first write). This is
329 useful for progress reporting and user interaction while writing
330 data. To abort the transfer, the progress callback can throw an
331 exception. */
332
333 LONGEST target_write_with_progress (struct target_ops *ops,
334 enum target_object object,
335 const char *annex, const gdb_byte *buf,
336 ULONGEST offset, LONGEST len,
337 void (*progress) (ULONGEST, void *),
338 void *baton);
339
340 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
341 be read using OPS. The return value will be -1 if the transfer
342 fails or is not supported; 0 if the object is empty; or the length
343 of the object otherwise. If a positive value is returned, a
344 sufficiently large buffer will be allocated using xmalloc and
345 returned in *BUF_P containing the contents of the object.
346
347 This method should be used for objects sufficiently small to store
348 in a single xmalloc'd buffer, when no fixed bound on the object's
349 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
350 through this function. */
351
352 extern LONGEST target_read_alloc (struct target_ops *ops,
353 enum target_object object,
354 const char *annex, gdb_byte **buf_p);
355
356 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
357 returned as a string, allocated using xmalloc. If an error occurs
358 or the transfer is unsupported, NULL is returned. Empty objects
359 are returned as allocated but empty strings. A warning is issued
360 if the result contains any embedded NUL bytes. */
361
362 extern char *target_read_stralloc (struct target_ops *ops,
363 enum target_object object,
364 const char *annex);
365
366 /* See target_ops->to_xfer_partial. */
367 extern target_xfer_partial_ftype target_xfer_partial;
368
369 /* Wrappers to target read/write that perform memory transfers. They
370 throw an error if the memory transfer fails.
371
372 NOTE: cagney/2003-10-23: The naming schema is lifted from
373 "frame.h". The parameter order is lifted from get_frame_memory,
374 which in turn lifted it from read_memory. */
375
376 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
377 gdb_byte *buf, LONGEST len);
378 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
379 CORE_ADDR addr, int len,
380 enum bfd_endian byte_order);
381 \f
382 struct thread_info; /* fwd decl for parameter list below: */
383
384 /* The type of the callback to the to_async method. */
385
386 typedef void async_callback_ftype (enum inferior_event_type event_type,
387 void *context);
388
389 /* Normally target debug printing is purely type-based. However,
390 sometimes it is necessary to override the debug printing on a
391 per-argument basis. This macro can be used, attribute-style, to
392 name the target debug printing function for a particular method
393 argument. FUNC is the name of the function. The macro's
394 definition is empty because it is only used by the
395 make-target-delegates script. */
396
397 #define TARGET_DEBUG_PRINTER(FUNC)
398
399 /* These defines are used to mark target_ops methods. The script
400 make-target-delegates scans these and auto-generates the base
401 method implementations. There are four macros that can be used:
402
403 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
404 does nothing. This is only valid if the method return type is
405 'void'.
406
407 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
408 'tcomplain ()'. The base method simply makes this call, which is
409 assumed not to return.
410
411 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
412 base method returns this expression's value.
413
414 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
415 make-target-delegates does not generate a base method in this case,
416 but instead uses the argument function as the base method. */
417
418 #define TARGET_DEFAULT_IGNORE()
419 #define TARGET_DEFAULT_NORETURN(ARG)
420 #define TARGET_DEFAULT_RETURN(ARG)
421 #define TARGET_DEFAULT_FUNC(ARG)
422
423 struct target_ops
424 {
425 struct target_ops *beneath; /* To the target under this one. */
426 const char *to_shortname; /* Name this target type */
427 const char *to_longname; /* Name for printing */
428 const char *to_doc; /* Documentation. Does not include trailing
429 newline, and starts with a one-line descrip-
430 tion (probably similar to to_longname). */
431 /* Per-target scratch pad. */
432 void *to_data;
433 /* The open routine takes the rest of the parameters from the
434 command, and (if successful) pushes a new target onto the
435 stack. Targets should supply this routine, if only to provide
436 an error message. */
437 void (*to_open) (const char *, int);
438 /* Old targets with a static target vector provide "to_close".
439 New re-entrant targets provide "to_xclose" and that is expected
440 to xfree everything (including the "struct target_ops"). */
441 void (*to_xclose) (struct target_ops *targ);
442 void (*to_close) (struct target_ops *);
443 /* Attaches to a process on the target side. Arguments are as
444 passed to the `attach' command by the user. This routine can
445 be called when the target is not on the target-stack, if the
446 target_can_run routine returns 1; in that case, it must push
447 itself onto the stack. Upon exit, the target should be ready
448 for normal operations, and should be ready to deliver the
449 status of the process immediately (without waiting) to an
450 upcoming target_wait call. */
451 void (*to_attach) (struct target_ops *ops, const char *, int);
452 void (*to_post_attach) (struct target_ops *, int)
453 TARGET_DEFAULT_IGNORE ();
454 void (*to_detach) (struct target_ops *ops, const char *, int)
455 TARGET_DEFAULT_IGNORE ();
456 void (*to_disconnect) (struct target_ops *, const char *, int)
457 TARGET_DEFAULT_NORETURN (tcomplain ());
458 void (*to_resume) (struct target_ops *, ptid_t,
459 int TARGET_DEBUG_PRINTER (target_debug_print_step),
460 enum gdb_signal)
461 TARGET_DEFAULT_NORETURN (noprocess ());
462 void (*to_commit_resume) (struct target_ops *)
463 TARGET_DEFAULT_IGNORE ();
464 ptid_t (*to_wait) (struct target_ops *,
465 ptid_t, struct target_waitstatus *,
466 int TARGET_DEBUG_PRINTER (target_debug_print_options))
467 TARGET_DEFAULT_FUNC (default_target_wait);
468 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
469 TARGET_DEFAULT_IGNORE ();
470 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
471 TARGET_DEFAULT_NORETURN (noprocess ());
472 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
473 TARGET_DEFAULT_NORETURN (noprocess ());
474
475 void (*to_files_info) (struct target_ops *)
476 TARGET_DEFAULT_IGNORE ();
477 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
478 struct bp_target_info *)
479 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
480 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
481 struct bp_target_info *,
482 enum remove_bp_reason)
483 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
484
485 /* Returns true if the target stopped because it executed a
486 software breakpoint. This is necessary for correct background
487 execution / non-stop mode operation, and for correct PC
488 adjustment on targets where the PC needs to be adjusted when a
489 software breakpoint triggers. In these modes, by the time GDB
490 processes a breakpoint event, the breakpoint may already be
491 done from the target, so GDB needs to be able to tell whether
492 it should ignore the event and whether it should adjust the PC.
493 See adjust_pc_after_break. */
494 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
495 TARGET_DEFAULT_RETURN (0);
496 /* Returns true if the above method is supported. */
497 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
498 TARGET_DEFAULT_RETURN (0);
499
500 /* Returns true if the target stopped for a hardware breakpoint.
501 Likewise, if the target supports hardware breakpoints, this
502 method is necessary for correct background execution / non-stop
503 mode operation. Even though hardware breakpoints do not
504 require PC adjustment, GDB needs to be able to tell whether the
505 hardware breakpoint event is a delayed event for a breakpoint
506 that is already gone and should thus be ignored. */
507 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
508 TARGET_DEFAULT_RETURN (0);
509 /* Returns true if the above method is supported. */
510 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
511 TARGET_DEFAULT_RETURN (0);
512
513 int (*to_can_use_hw_breakpoint) (struct target_ops *,
514 enum bptype, int, int)
515 TARGET_DEFAULT_RETURN (0);
516 int (*to_ranged_break_num_registers) (struct target_ops *)
517 TARGET_DEFAULT_RETURN (-1);
518 int (*to_insert_hw_breakpoint) (struct target_ops *,
519 struct gdbarch *, struct bp_target_info *)
520 TARGET_DEFAULT_RETURN (-1);
521 int (*to_remove_hw_breakpoint) (struct target_ops *,
522 struct gdbarch *, struct bp_target_info *)
523 TARGET_DEFAULT_RETURN (-1);
524
525 /* Documentation of what the two routines below are expected to do is
526 provided with the corresponding target_* macros. */
527 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
528 enum target_hw_bp_type, struct expression *)
529 TARGET_DEFAULT_RETURN (-1);
530 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
531 enum target_hw_bp_type, struct expression *)
532 TARGET_DEFAULT_RETURN (-1);
533
534 int (*to_insert_mask_watchpoint) (struct target_ops *,
535 CORE_ADDR, CORE_ADDR,
536 enum target_hw_bp_type)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_remove_mask_watchpoint) (struct target_ops *,
539 CORE_ADDR, CORE_ADDR,
540 enum target_hw_bp_type)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_stopped_by_watchpoint) (struct target_ops *)
543 TARGET_DEFAULT_RETURN (0);
544 int to_have_steppable_watchpoint;
545 int to_have_continuable_watchpoint;
546 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
547 TARGET_DEFAULT_RETURN (0);
548 int (*to_watchpoint_addr_within_range) (struct target_ops *,
549 CORE_ADDR, CORE_ADDR, int)
550 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
551
552 /* Documentation of this routine is provided with the corresponding
553 target_* macro. */
554 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
555 CORE_ADDR, int)
556 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
557
558 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
559 CORE_ADDR, int, int,
560 struct expression *)
561 TARGET_DEFAULT_RETURN (0);
562 int (*to_masked_watch_num_registers) (struct target_ops *,
563 CORE_ADDR, CORE_ADDR)
564 TARGET_DEFAULT_RETURN (-1);
565
566 /* Return 1 for sure target can do single step. Return -1 for
567 unknown. Return 0 for target can't do. */
568 int (*to_can_do_single_step) (struct target_ops *)
569 TARGET_DEFAULT_RETURN (-1);
570
571 void (*to_terminal_init) (struct target_ops *)
572 TARGET_DEFAULT_IGNORE ();
573 void (*to_terminal_inferior) (struct target_ops *)
574 TARGET_DEFAULT_IGNORE ();
575 void (*to_terminal_ours_for_output) (struct target_ops *)
576 TARGET_DEFAULT_IGNORE ();
577 void (*to_terminal_ours) (struct target_ops *)
578 TARGET_DEFAULT_IGNORE ();
579 void (*to_terminal_info) (struct target_ops *, const char *, int)
580 TARGET_DEFAULT_FUNC (default_terminal_info);
581 void (*to_kill) (struct target_ops *)
582 TARGET_DEFAULT_NORETURN (noprocess ());
583 void (*to_load) (struct target_ops *, const char *, int)
584 TARGET_DEFAULT_NORETURN (tcomplain ());
585 /* Start an inferior process and set inferior_ptid to its pid.
586 EXEC_FILE is the file to run.
587 ALLARGS is a string containing the arguments to the program.
588 ENV is the environment vector to pass. Errors reported with error().
589 On VxWorks and various standalone systems, we ignore exec_file. */
590 void (*to_create_inferior) (struct target_ops *,
591 const char *, const std::string &,
592 char **, int);
593 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
594 TARGET_DEFAULT_IGNORE ();
595 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
596 TARGET_DEFAULT_RETURN (1);
597 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
598 TARGET_DEFAULT_RETURN (1);
599 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
600 TARGET_DEFAULT_RETURN (1);
601 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
602 TARGET_DEFAULT_RETURN (1);
603 int (*to_follow_fork) (struct target_ops *, int, int)
604 TARGET_DEFAULT_FUNC (default_follow_fork);
605 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
606 TARGET_DEFAULT_RETURN (1);
607 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
608 TARGET_DEFAULT_RETURN (1);
609 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
610 TARGET_DEFAULT_IGNORE ();
611 int (*to_set_syscall_catchpoint) (struct target_ops *,
612 int, int, int, int, int *)
613 TARGET_DEFAULT_RETURN (1);
614 int (*to_has_exited) (struct target_ops *, int, int, int *)
615 TARGET_DEFAULT_RETURN (0);
616 void (*to_mourn_inferior) (struct target_ops *)
617 TARGET_DEFAULT_FUNC (default_mourn_inferior);
618 /* Note that to_can_run is special and can be invoked on an
619 unpushed target. Targets defining this method must also define
620 to_can_async_p and to_supports_non_stop. */
621 int (*to_can_run) (struct target_ops *)
622 TARGET_DEFAULT_RETURN (0);
623
624 /* Documentation of this routine is provided with the corresponding
625 target_* macro. */
626 void (*to_pass_signals) (struct target_ops *, int,
627 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
628 TARGET_DEFAULT_IGNORE ();
629
630 /* Documentation of this routine is provided with the
631 corresponding target_* function. */
632 void (*to_program_signals) (struct target_ops *, int,
633 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
634 TARGET_DEFAULT_IGNORE ();
635
636 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
637 TARGET_DEFAULT_RETURN (0);
638 void (*to_update_thread_list) (struct target_ops *)
639 TARGET_DEFAULT_IGNORE ();
640 const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
641 TARGET_DEFAULT_FUNC (default_pid_to_str);
642 const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
643 TARGET_DEFAULT_RETURN (NULL);
644 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
645 TARGET_DEFAULT_RETURN (NULL);
646 void (*to_stop) (struct target_ops *, ptid_t)
647 TARGET_DEFAULT_IGNORE ();
648 void (*to_interrupt) (struct target_ops *, ptid_t)
649 TARGET_DEFAULT_IGNORE ();
650 void (*to_pass_ctrlc) (struct target_ops *)
651 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
652 void (*to_rcmd) (struct target_ops *,
653 const char *command, struct ui_file *output)
654 TARGET_DEFAULT_FUNC (default_rcmd);
655 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
656 TARGET_DEFAULT_RETURN (NULL);
657 void (*to_log_command) (struct target_ops *, const char *)
658 TARGET_DEFAULT_IGNORE ();
659 struct target_section_table *(*to_get_section_table) (struct target_ops *)
660 TARGET_DEFAULT_RETURN (NULL);
661 enum strata to_stratum;
662 int (*to_has_all_memory) (struct target_ops *);
663 int (*to_has_memory) (struct target_ops *);
664 int (*to_has_stack) (struct target_ops *);
665 int (*to_has_registers) (struct target_ops *);
666 int (*to_has_execution) (struct target_ops *, ptid_t);
667 int to_has_thread_control; /* control thread execution */
668 int to_attach_no_wait;
669 /* This method must be implemented in some situations. See the
670 comment on 'to_can_run'. */
671 int (*to_can_async_p) (struct target_ops *)
672 TARGET_DEFAULT_RETURN (0);
673 int (*to_is_async_p) (struct target_ops *)
674 TARGET_DEFAULT_RETURN (0);
675 void (*to_async) (struct target_ops *, int)
676 TARGET_DEFAULT_NORETURN (tcomplain ());
677 void (*to_thread_events) (struct target_ops *, int)
678 TARGET_DEFAULT_IGNORE ();
679 /* This method must be implemented in some situations. See the
680 comment on 'to_can_run'. */
681 int (*to_supports_non_stop) (struct target_ops *)
682 TARGET_DEFAULT_RETURN (0);
683 /* Return true if the target operates in non-stop mode even with
684 "set non-stop off". */
685 int (*to_always_non_stop_p) (struct target_ops *)
686 TARGET_DEFAULT_RETURN (0);
687 /* find_memory_regions support method for gcore */
688 int (*to_find_memory_regions) (struct target_ops *,
689 find_memory_region_ftype func, void *data)
690 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
691 /* make_corefile_notes support method for gcore */
692 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
693 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
694 /* get_bookmark support method for bookmarks */
695 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
696 TARGET_DEFAULT_NORETURN (tcomplain ());
697 /* goto_bookmark support method for bookmarks */
698 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
699 TARGET_DEFAULT_NORETURN (tcomplain ());
700 /* Return the thread-local address at OFFSET in the
701 thread-local storage for the thread PTID and the shared library
702 or executable file given by OBJFILE. If that block of
703 thread-local storage hasn't been allocated yet, this function
704 may return an error. LOAD_MODULE_ADDR may be zero for statically
705 linked multithreaded inferiors. */
706 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
707 ptid_t ptid,
708 CORE_ADDR load_module_addr,
709 CORE_ADDR offset)
710 TARGET_DEFAULT_NORETURN (generic_tls_error ());
711
712 /* Request that OPS transfer up to LEN addressable units of the target's
713 OBJECT. When reading from a memory object, the size of an addressable
714 unit is architecture dependent and can be found using
715 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
716 1 byte long. The OFFSET, for a seekable object, specifies the
717 starting point. The ANNEX can be used to provide additional
718 data-specific information to the target.
719
720 Return the transferred status, error or OK (an
721 'enum target_xfer_status' value). Save the number of addressable units
722 actually transferred in *XFERED_LEN if transfer is successful
723 (TARGET_XFER_OK) or the number unavailable units if the requested
724 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
725 smaller than LEN does not indicate the end of the object, only
726 the end of the transfer; higher level code should continue
727 transferring if desired. This is handled in target.c.
728
729 The interface does not support a "retry" mechanism. Instead it
730 assumes that at least one addressable unit will be transfered on each
731 successful call.
732
733 NOTE: cagney/2003-10-17: The current interface can lead to
734 fragmented transfers. Lower target levels should not implement
735 hacks, such as enlarging the transfer, in an attempt to
736 compensate for this. Instead, the target stack should be
737 extended so that it implements supply/collect methods and a
738 look-aside object cache. With that available, the lowest
739 target can safely and freely "push" data up the stack.
740
741 See target_read and target_write for more information. One,
742 and only one, of readbuf or writebuf must be non-NULL. */
743
744 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
745 enum target_object object,
746 const char *annex,
747 gdb_byte *readbuf,
748 const gdb_byte *writebuf,
749 ULONGEST offset, ULONGEST len,
750 ULONGEST *xfered_len)
751 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
752
753 /* Return the limit on the size of any single memory transfer
754 for the target. */
755
756 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
757 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
758
759 /* Returns the memory map for the target. A return value of NULL
760 means that no memory map is available. If a memory address
761 does not fall within any returned regions, it's assumed to be
762 RAM. The returned memory regions should not overlap.
763
764 The order of regions does not matter; target_memory_map will
765 sort regions by starting address. For that reason, this
766 function should not be called directly except via
767 target_memory_map.
768
769 This method should not cache data; if the memory map could
770 change unexpectedly, it should be invalidated, and higher
771 layers will re-fetch it. */
772 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
773 TARGET_DEFAULT_RETURN (NULL);
774
775 /* Erases the region of flash memory starting at ADDRESS, of
776 length LENGTH.
777
778 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
779 on flash block boundaries, as reported by 'to_memory_map'. */
780 void (*to_flash_erase) (struct target_ops *,
781 ULONGEST address, LONGEST length)
782 TARGET_DEFAULT_NORETURN (tcomplain ());
783
784 /* Finishes a flash memory write sequence. After this operation
785 all flash memory should be available for writing and the result
786 of reading from areas written by 'to_flash_write' should be
787 equal to what was written. */
788 void (*to_flash_done) (struct target_ops *)
789 TARGET_DEFAULT_NORETURN (tcomplain ());
790
791 /* Describe the architecture-specific features of this target. If
792 OPS doesn't have a description, this should delegate to the
793 "beneath" target. Returns the description found, or NULL if no
794 description was available. */
795 const struct target_desc *(*to_read_description) (struct target_ops *ops)
796 TARGET_DEFAULT_RETURN (NULL);
797
798 /* Build the PTID of the thread on which a given task is running,
799 based on LWP and THREAD. These values are extracted from the
800 task Private_Data section of the Ada Task Control Block, and
801 their interpretation depends on the target. */
802 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
803 long lwp, long thread)
804 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
805
806 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
807 Return 0 if *READPTR is already at the end of the buffer.
808 Return -1 if there is insufficient buffer for a whole entry.
809 Return 1 if an entry was read into *TYPEP and *VALP. */
810 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
811 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
812 TARGET_DEFAULT_FUNC (default_auxv_parse);
813
814 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
815 sequence of bytes in PATTERN with length PATTERN_LEN.
816
817 The result is 1 if found, 0 if not found, and -1 if there was an error
818 requiring halting of the search (e.g. memory read error).
819 If the pattern is found the address is recorded in FOUND_ADDRP. */
820 int (*to_search_memory) (struct target_ops *ops,
821 CORE_ADDR start_addr, ULONGEST search_space_len,
822 const gdb_byte *pattern, ULONGEST pattern_len,
823 CORE_ADDR *found_addrp)
824 TARGET_DEFAULT_FUNC (default_search_memory);
825
826 /* Can target execute in reverse? */
827 int (*to_can_execute_reverse) (struct target_ops *)
828 TARGET_DEFAULT_RETURN (0);
829
830 /* The direction the target is currently executing. Must be
831 implemented on targets that support reverse execution and async
832 mode. The default simply returns forward execution. */
833 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
834 TARGET_DEFAULT_FUNC (default_execution_direction);
835
836 /* Does this target support debugging multiple processes
837 simultaneously? */
838 int (*to_supports_multi_process) (struct target_ops *)
839 TARGET_DEFAULT_RETURN (0);
840
841 /* Does this target support enabling and disabling tracepoints while a trace
842 experiment is running? */
843 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
844 TARGET_DEFAULT_RETURN (0);
845
846 /* Does this target support disabling address space randomization? */
847 int (*to_supports_disable_randomization) (struct target_ops *);
848
849 /* Does this target support the tracenz bytecode for string collection? */
850 int (*to_supports_string_tracing) (struct target_ops *)
851 TARGET_DEFAULT_RETURN (0);
852
853 /* Does this target support evaluation of breakpoint conditions on its
854 end? */
855 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
856 TARGET_DEFAULT_RETURN (0);
857
858 /* Does this target support evaluation of breakpoint commands on its
859 end? */
860 int (*to_can_run_breakpoint_commands) (struct target_ops *)
861 TARGET_DEFAULT_RETURN (0);
862
863 /* Determine current architecture of thread PTID.
864
865 The target is supposed to determine the architecture of the code where
866 the target is currently stopped at (on Cell, if a target is in spu_run,
867 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
868 This is architecture used to perform decr_pc_after_break adjustment,
869 and also determines the frame architecture of the innermost frame.
870 ptrace operations need to operate according to target_gdbarch ().
871
872 The default implementation always returns target_gdbarch (). */
873 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
874 TARGET_DEFAULT_FUNC (default_thread_architecture);
875
876 /* Determine current address space of thread PTID.
877
878 The default implementation always returns the inferior's
879 address space. */
880 struct address_space *(*to_thread_address_space) (struct target_ops *,
881 ptid_t)
882 TARGET_DEFAULT_FUNC (default_thread_address_space);
883
884 /* Target file operations. */
885
886 /* Return nonzero if the filesystem seen by the current inferior
887 is the local filesystem, zero otherwise. */
888 int (*to_filesystem_is_local) (struct target_ops *)
889 TARGET_DEFAULT_RETURN (1);
890
891 /* Open FILENAME on the target, in the filesystem as seen by INF,
892 using FLAGS and MODE. If INF is NULL, use the filesystem seen
893 by the debugger (GDB or, for remote targets, the remote stub).
894 If WARN_IF_SLOW is nonzero, print a warning message if the file
895 is being accessed over a link that may be slow. Return a
896 target file descriptor, or -1 if an error occurs (and set
897 *TARGET_ERRNO). */
898 int (*to_fileio_open) (struct target_ops *,
899 struct inferior *inf, const char *filename,
900 int flags, int mode, int warn_if_slow,
901 int *target_errno);
902
903 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
904 Return the number of bytes written, or -1 if an error occurs
905 (and set *TARGET_ERRNO). */
906 int (*to_fileio_pwrite) (struct target_ops *,
907 int fd, const gdb_byte *write_buf, int len,
908 ULONGEST offset, int *target_errno);
909
910 /* Read up to LEN bytes FD on the target into READ_BUF.
911 Return the number of bytes read, or -1 if an error occurs
912 (and set *TARGET_ERRNO). */
913 int (*to_fileio_pread) (struct target_ops *,
914 int fd, gdb_byte *read_buf, int len,
915 ULONGEST offset, int *target_errno);
916
917 /* Get information about the file opened as FD and put it in
918 SB. Return 0 on success, or -1 if an error occurs (and set
919 *TARGET_ERRNO). */
920 int (*to_fileio_fstat) (struct target_ops *,
921 int fd, struct stat *sb, int *target_errno);
922
923 /* Close FD on the target. Return 0, or -1 if an error occurs
924 (and set *TARGET_ERRNO). */
925 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
926
927 /* Unlink FILENAME on the target, in the filesystem as seen by
928 INF. If INF is NULL, use the filesystem seen by the debugger
929 (GDB or, for remote targets, the remote stub). Return 0, or
930 -1 if an error occurs (and set *TARGET_ERRNO). */
931 int (*to_fileio_unlink) (struct target_ops *,
932 struct inferior *inf,
933 const char *filename,
934 int *target_errno);
935
936 /* Read value of symbolic link FILENAME on the target, in the
937 filesystem as seen by INF. If INF is NULL, use the filesystem
938 seen by the debugger (GDB or, for remote targets, the remote
939 stub). Return a null-terminated string allocated via xmalloc,
940 or NULL if an error occurs (and set *TARGET_ERRNO). */
941 char *(*to_fileio_readlink) (struct target_ops *,
942 struct inferior *inf,
943 const char *filename,
944 int *target_errno);
945
946
947 /* Implement the "info proc" command. */
948 void (*to_info_proc) (struct target_ops *, const char *,
949 enum info_proc_what);
950
951 /* Tracepoint-related operations. */
952
953 /* Prepare the target for a tracing run. */
954 void (*to_trace_init) (struct target_ops *)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
956
957 /* Send full details of a tracepoint location to the target. */
958 void (*to_download_tracepoint) (struct target_ops *,
959 struct bp_location *location)
960 TARGET_DEFAULT_NORETURN (tcomplain ());
961
962 /* Is the target able to download tracepoint locations in current
963 state? */
964 int (*to_can_download_tracepoint) (struct target_ops *)
965 TARGET_DEFAULT_RETURN (0);
966
967 /* Send full details of a trace state variable to the target. */
968 void (*to_download_trace_state_variable) (struct target_ops *,
969 struct trace_state_variable *tsv)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Enable a tracepoint on the target. */
973 void (*to_enable_tracepoint) (struct target_ops *,
974 struct bp_location *location)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Disable a tracepoint on the target. */
978 void (*to_disable_tracepoint) (struct target_ops *,
979 struct bp_location *location)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Inform the target info of memory regions that are readonly
983 (such as text sections), and so it should return data from
984 those rather than look in the trace buffer. */
985 void (*to_trace_set_readonly_regions) (struct target_ops *)
986 TARGET_DEFAULT_NORETURN (tcomplain ());
987
988 /* Start a trace run. */
989 void (*to_trace_start) (struct target_ops *)
990 TARGET_DEFAULT_NORETURN (tcomplain ());
991
992 /* Get the current status of a tracing run. */
993 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
994 TARGET_DEFAULT_RETURN (-1);
995
996 void (*to_get_tracepoint_status) (struct target_ops *,
997 struct breakpoint *tp,
998 struct uploaded_tp *utp)
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Stop a trace run. */
1002 void (*to_trace_stop) (struct target_ops *)
1003 TARGET_DEFAULT_NORETURN (tcomplain ());
1004
1005 /* Ask the target to find a trace frame of the given type TYPE,
1006 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1007 number of the trace frame, and also the tracepoint number at
1008 TPP. If no trace frame matches, return -1. May throw if the
1009 operation fails. */
1010 int (*to_trace_find) (struct target_ops *,
1011 enum trace_find_type type, int num,
1012 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1013 TARGET_DEFAULT_RETURN (-1);
1014
1015 /* Get the value of the trace state variable number TSV, returning
1016 1 if the value is known and writing the value itself into the
1017 location pointed to by VAL, else returning 0. */
1018 int (*to_get_trace_state_variable_value) (struct target_ops *,
1019 int tsv, LONGEST *val)
1020 TARGET_DEFAULT_RETURN (0);
1021
1022 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1023 TARGET_DEFAULT_NORETURN (tcomplain ());
1024
1025 int (*to_upload_tracepoints) (struct target_ops *,
1026 struct uploaded_tp **utpp)
1027 TARGET_DEFAULT_RETURN (0);
1028
1029 int (*to_upload_trace_state_variables) (struct target_ops *,
1030 struct uploaded_tsv **utsvp)
1031 TARGET_DEFAULT_RETURN (0);
1032
1033 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1034 ULONGEST offset, LONGEST len)
1035 TARGET_DEFAULT_NORETURN (tcomplain ());
1036
1037 /* Get the minimum length of instruction on which a fast tracepoint
1038 may be set on the target. If this operation is unsupported,
1039 return -1. If for some reason the minimum length cannot be
1040 determined, return 0. */
1041 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1042 TARGET_DEFAULT_RETURN (-1);
1043
1044 /* Set the target's tracing behavior in response to unexpected
1045 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1046 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1047 TARGET_DEFAULT_IGNORE ();
1048 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1049 TARGET_DEFAULT_IGNORE ();
1050 /* Set the size of trace buffer in the target. */
1051 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1052 TARGET_DEFAULT_IGNORE ();
1053
1054 /* Add/change textual notes about the trace run, returning 1 if
1055 successful, 0 otherwise. */
1056 int (*to_set_trace_notes) (struct target_ops *,
1057 const char *user, const char *notes,
1058 const char *stopnotes)
1059 TARGET_DEFAULT_RETURN (0);
1060
1061 /* Return the processor core that thread PTID was last seen on.
1062 This information is updated only when:
1063 - update_thread_list is called
1064 - thread stops
1065 If the core cannot be determined -- either for the specified
1066 thread, or right now, or in this debug session, or for this
1067 target -- return -1. */
1068 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1069 TARGET_DEFAULT_RETURN (-1);
1070
1071 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1072 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1073 a match, 0 if there's a mismatch, and -1 if an error is
1074 encountered while reading memory. */
1075 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1076 CORE_ADDR memaddr, ULONGEST size)
1077 TARGET_DEFAULT_FUNC (default_verify_memory);
1078
1079 /* Return the address of the start of the Thread Information Block
1080 a Windows OS specific feature. */
1081 int (*to_get_tib_address) (struct target_ops *,
1082 ptid_t ptid, CORE_ADDR *addr)
1083 TARGET_DEFAULT_NORETURN (tcomplain ());
1084
1085 /* Send the new settings of write permission variables. */
1086 void (*to_set_permissions) (struct target_ops *)
1087 TARGET_DEFAULT_IGNORE ();
1088
1089 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1090 with its details. Return 1 on success, 0 on failure. */
1091 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1092 struct static_tracepoint_marker *marker)
1093 TARGET_DEFAULT_RETURN (0);
1094
1095 /* Return a vector of all tracepoints markers string id ID, or all
1096 markers if ID is NULL. */
1097 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1098 TARGET_DEFAULT_NORETURN (tcomplain ());
1099
1100 /* Return a traceframe info object describing the current
1101 traceframe's contents. This method should not cache data;
1102 higher layers take care of caching, invalidating, and
1103 re-fetching when necessary. */
1104 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1105 TARGET_DEFAULT_NORETURN (tcomplain ());
1106
1107 /* Ask the target to use or not to use agent according to USE. Return 1
1108 successful, 0 otherwise. */
1109 int (*to_use_agent) (struct target_ops *, int use)
1110 TARGET_DEFAULT_NORETURN (tcomplain ());
1111
1112 /* Is the target able to use agent in current state? */
1113 int (*to_can_use_agent) (struct target_ops *)
1114 TARGET_DEFAULT_RETURN (0);
1115
1116 /* Check whether the target supports branch tracing. */
1117 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1118 TARGET_DEFAULT_RETURN (0);
1119
1120 /* Enable branch tracing for PTID using CONF configuration.
1121 Return a branch trace target information struct for reading and for
1122 disabling branch trace. */
1123 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1124 ptid_t ptid,
1125 const struct btrace_config *conf)
1126 TARGET_DEFAULT_NORETURN (tcomplain ());
1127
1128 /* Disable branch tracing and deallocate TINFO. */
1129 void (*to_disable_btrace) (struct target_ops *,
1130 struct btrace_target_info *tinfo)
1131 TARGET_DEFAULT_NORETURN (tcomplain ());
1132
1133 /* Disable branch tracing and deallocate TINFO. This function is similar
1134 to to_disable_btrace, except that it is called during teardown and is
1135 only allowed to perform actions that are safe. A counter-example would
1136 be attempting to talk to a remote target. */
1137 void (*to_teardown_btrace) (struct target_ops *,
1138 struct btrace_target_info *tinfo)
1139 TARGET_DEFAULT_NORETURN (tcomplain ());
1140
1141 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1142 DATA is cleared before new trace is added. */
1143 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1144 struct btrace_data *data,
1145 struct btrace_target_info *btinfo,
1146 enum btrace_read_type type)
1147 TARGET_DEFAULT_NORETURN (tcomplain ());
1148
1149 /* Get the branch trace configuration. */
1150 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1151 const struct btrace_target_info *)
1152 TARGET_DEFAULT_RETURN (NULL);
1153
1154 /* Current recording method. */
1155 enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1156 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1157
1158 /* Stop trace recording. */
1159 void (*to_stop_recording) (struct target_ops *)
1160 TARGET_DEFAULT_IGNORE ();
1161
1162 /* Print information about the recording. */
1163 void (*to_info_record) (struct target_ops *)
1164 TARGET_DEFAULT_IGNORE ();
1165
1166 /* Save the recorded execution trace into a file. */
1167 void (*to_save_record) (struct target_ops *, const char *filename)
1168 TARGET_DEFAULT_NORETURN (tcomplain ());
1169
1170 /* Delete the recorded execution trace from the current position
1171 onwards. */
1172 void (*to_delete_record) (struct target_ops *)
1173 TARGET_DEFAULT_NORETURN (tcomplain ());
1174
1175 /* Query if the record target is currently replaying PTID. */
1176 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1177 TARGET_DEFAULT_RETURN (0);
1178
1179 /* Query if the record target will replay PTID if it were resumed in
1180 execution direction DIR. */
1181 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1182 TARGET_DEFAULT_RETURN (0);
1183
1184 /* Stop replaying. */
1185 void (*to_record_stop_replaying) (struct target_ops *)
1186 TARGET_DEFAULT_IGNORE ();
1187
1188 /* Go to the begin of the execution trace. */
1189 void (*to_goto_record_begin) (struct target_ops *)
1190 TARGET_DEFAULT_NORETURN (tcomplain ());
1191
1192 /* Go to the end of the execution trace. */
1193 void (*to_goto_record_end) (struct target_ops *)
1194 TARGET_DEFAULT_NORETURN (tcomplain ());
1195
1196 /* Go to a specific location in the recorded execution trace. */
1197 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1198 TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200 /* Disassemble SIZE instructions in the recorded execution trace from
1201 the current position.
1202 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1203 disassemble SIZE succeeding instructions. */
1204 void (*to_insn_history) (struct target_ops *, int size,
1205 gdb_disassembly_flags flags)
1206 TARGET_DEFAULT_NORETURN (tcomplain ());
1207
1208 /* Disassemble SIZE instructions in the recorded execution trace around
1209 FROM.
1210 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1211 disassemble SIZE instructions after FROM. */
1212 void (*to_insn_history_from) (struct target_ops *,
1213 ULONGEST from, int size,
1214 gdb_disassembly_flags flags)
1215 TARGET_DEFAULT_NORETURN (tcomplain ());
1216
1217 /* Disassemble a section of the recorded execution trace from instruction
1218 BEGIN (inclusive) to instruction END (inclusive). */
1219 void (*to_insn_history_range) (struct target_ops *,
1220 ULONGEST begin, ULONGEST end,
1221 gdb_disassembly_flags flags)
1222 TARGET_DEFAULT_NORETURN (tcomplain ());
1223
1224 /* Print a function trace of the recorded execution trace.
1225 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1226 succeeding functions. */
1227 void (*to_call_history) (struct target_ops *, int size, int flags)
1228 TARGET_DEFAULT_NORETURN (tcomplain ());
1229
1230 /* Print a function trace of the recorded execution trace starting
1231 at function FROM.
1232 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1233 SIZE functions after FROM. */
1234 void (*to_call_history_from) (struct target_ops *,
1235 ULONGEST begin, int size, int flags)
1236 TARGET_DEFAULT_NORETURN (tcomplain ());
1237
1238 /* Print a function trace of an execution trace section from function BEGIN
1239 (inclusive) to function END (inclusive). */
1240 void (*to_call_history_range) (struct target_ops *,
1241 ULONGEST begin, ULONGEST end, int flags)
1242 TARGET_DEFAULT_NORETURN (tcomplain ());
1243
1244 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1245 non-empty annex. */
1246 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1247 TARGET_DEFAULT_RETURN (0);
1248
1249 /* Those unwinders are tried before any other arch unwinders. If
1250 SELF doesn't have unwinders, it should delegate to the
1251 "beneath" target. */
1252 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1253 TARGET_DEFAULT_RETURN (NULL);
1254
1255 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1256 TARGET_DEFAULT_RETURN (NULL);
1257
1258 /* Prepare to generate a core file. */
1259 void (*to_prepare_to_generate_core) (struct target_ops *)
1260 TARGET_DEFAULT_IGNORE ();
1261
1262 /* Cleanup after generating a core file. */
1263 void (*to_done_generating_core) (struct target_ops *)
1264 TARGET_DEFAULT_IGNORE ();
1265
1266 int to_magic;
1267 /* Need sub-structure for target machine related rather than comm related?
1268 */
1269 };
1270
1271 /* Magic number for checking ops size. If a struct doesn't end with this
1272 number, somebody changed the declaration but didn't change all the
1273 places that initialize one. */
1274
1275 #define OPS_MAGIC 3840
1276
1277 /* The ops structure for our "current" target process. This should
1278 never be NULL. If there is no target, it points to the dummy_target. */
1279
1280 extern struct target_ops current_target;
1281
1282 /* Define easy words for doing these operations on our current target. */
1283
1284 #define target_shortname (current_target.to_shortname)
1285 #define target_longname (current_target.to_longname)
1286
1287 /* Does whatever cleanup is required for a target that we are no
1288 longer going to be calling. This routine is automatically always
1289 called after popping the target off the target stack - the target's
1290 own methods are no longer available through the target vector.
1291 Closing file descriptors and freeing all memory allocated memory are
1292 typical things it should do. */
1293
1294 void target_close (struct target_ops *targ);
1295
1296 /* Find the correct target to use for "attach". If a target on the
1297 current stack supports attaching, then it is returned. Otherwise,
1298 the default run target is returned. */
1299
1300 extern struct target_ops *find_attach_target (void);
1301
1302 /* Find the correct target to use for "run". If a target on the
1303 current stack supports creating a new inferior, then it is
1304 returned. Otherwise, the default run target is returned. */
1305
1306 extern struct target_ops *find_run_target (void);
1307
1308 /* Some targets don't generate traps when attaching to the inferior,
1309 or their target_attach implementation takes care of the waiting.
1310 These targets must set to_attach_no_wait. */
1311
1312 #define target_attach_no_wait \
1313 (current_target.to_attach_no_wait)
1314
1315 /* The target_attach operation places a process under debugger control,
1316 and stops the process.
1317
1318 This operation provides a target-specific hook that allows the
1319 necessary bookkeeping to be performed after an attach completes. */
1320 #define target_post_attach(pid) \
1321 (*current_target.to_post_attach) (&current_target, pid)
1322
1323 /* Display a message indicating we're about to detach from the current
1324 inferior process. */
1325
1326 extern void target_announce_detach (int from_tty);
1327
1328 /* Takes a program previously attached to and detaches it.
1329 The program may resume execution (some targets do, some don't) and will
1330 no longer stop on signals, etc. We better not have left any breakpoints
1331 in the program or it'll die when it hits one. ARGS is arguments
1332 typed by the user (e.g. a signal to send the process). FROM_TTY
1333 says whether to be verbose or not. */
1334
1335 extern void target_detach (const char *, int);
1336
1337 /* Disconnect from the current target without resuming it (leaving it
1338 waiting for a debugger). */
1339
1340 extern void target_disconnect (const char *, int);
1341
1342 /* Resume execution (or prepare for execution) of a target thread,
1343 process or all processes. STEP says whether to hardware
1344 single-step or to run free; SIGGNAL is the signal to be given to
1345 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1346 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1347 process id'. A wildcard PTID (all threads, or all threads of
1348 process) means `step/resume INFERIOR_PTID, and let other threads
1349 (for which the wildcard PTID matches) resume with their
1350 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1351 is in "pass" state, or with no signal if in "no pass" state.
1352
1353 In order to efficiently handle batches of resumption requests,
1354 targets may implement this method such that it records the
1355 resumption request, but defers the actual resumption to the
1356 target_commit_resume method implementation. See
1357 target_commit_resume below. */
1358 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1359
1360 /* Commit a series of resumption requests previously prepared with
1361 target_resume calls.
1362
1363 GDB always calls target_commit_resume after calling target_resume
1364 one or more times. A target may thus use this method in
1365 coordination with the target_resume method to batch target-side
1366 resumption requests. In that case, the target doesn't actually
1367 resume in its target_resume implementation. Instead, it prepares
1368 the resumption in target_resume, and defers the actual resumption
1369 to target_commit_resume. E.g., the remote target uses this to
1370 coalesce multiple resumption requests in a single vCont packet. */
1371 extern void target_commit_resume ();
1372
1373 /* Setup to defer target_commit_resume calls, and return a cleanup
1374 that reactivates target_commit_resume, if it was previously
1375 active. */
1376 struct cleanup *make_cleanup_defer_target_commit_resume ();
1377
1378 /* For target_read_memory see target/target.h. */
1379
1380 /* The default target_ops::to_wait implementation. */
1381
1382 extern ptid_t default_target_wait (struct target_ops *ops,
1383 ptid_t ptid,
1384 struct target_waitstatus *status,
1385 int options);
1386
1387 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1388
1389 extern void target_fetch_registers (struct regcache *regcache, int regno);
1390
1391 /* Store at least register REGNO, or all regs if REGNO == -1.
1392 It can store as many registers as it wants to, so target_prepare_to_store
1393 must have been previously called. Calls error() if there are problems. */
1394
1395 extern void target_store_registers (struct regcache *regcache, int regs);
1396
1397 /* Get ready to modify the registers array. On machines which store
1398 individual registers, this doesn't need to do anything. On machines
1399 which store all the registers in one fell swoop, this makes sure
1400 that REGISTERS contains all the registers from the program being
1401 debugged. */
1402
1403 #define target_prepare_to_store(regcache) \
1404 (*current_target.to_prepare_to_store) (&current_target, regcache)
1405
1406 /* Determine current address space of thread PTID. */
1407
1408 struct address_space *target_thread_address_space (ptid_t);
1409
1410 /* Implement the "info proc" command. This returns one if the request
1411 was handled, and zero otherwise. It can also throw an exception if
1412 an error was encountered while attempting to handle the
1413 request. */
1414
1415 int target_info_proc (const char *, enum info_proc_what);
1416
1417 /* Returns true if this target can disable address space randomization. */
1418
1419 int target_supports_disable_randomization (void);
1420
1421 /* Returns true if this target can enable and disable tracepoints
1422 while a trace experiment is running. */
1423
1424 #define target_supports_enable_disable_tracepoint() \
1425 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1426
1427 #define target_supports_string_tracing() \
1428 (*current_target.to_supports_string_tracing) (&current_target)
1429
1430 /* Returns true if this target can handle breakpoint conditions
1431 on its end. */
1432
1433 #define target_supports_evaluation_of_breakpoint_conditions() \
1434 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1435
1436 /* Returns true if this target can handle breakpoint commands
1437 on its end. */
1438
1439 #define target_can_run_breakpoint_commands() \
1440 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1441
1442 extern int target_read_string (CORE_ADDR, char **, int, int *);
1443
1444 /* For target_read_memory see target/target.h. */
1445
1446 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1447 ssize_t len);
1448
1449 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1450
1451 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1452
1453 /* For target_write_memory see target/target.h. */
1454
1455 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1456 ssize_t len);
1457
1458 /* Fetches the target's memory map. If one is found it is sorted
1459 and returned, after some consistency checking. Otherwise, NULL
1460 is returned. */
1461 VEC(mem_region_s) *target_memory_map (void);
1462
1463 /* Erases all flash memory regions on the target. */
1464 void flash_erase_command (char *cmd, int from_tty);
1465
1466 /* Erase the specified flash region. */
1467 void target_flash_erase (ULONGEST address, LONGEST length);
1468
1469 /* Finish a sequence of flash operations. */
1470 void target_flash_done (void);
1471
1472 /* Describes a request for a memory write operation. */
1473 struct memory_write_request
1474 {
1475 /* Begining address that must be written. */
1476 ULONGEST begin;
1477 /* Past-the-end address. */
1478 ULONGEST end;
1479 /* The data to write. */
1480 gdb_byte *data;
1481 /* A callback baton for progress reporting for this request. */
1482 void *baton;
1483 };
1484 typedef struct memory_write_request memory_write_request_s;
1485 DEF_VEC_O(memory_write_request_s);
1486
1487 /* Enumeration specifying different flash preservation behaviour. */
1488 enum flash_preserve_mode
1489 {
1490 flash_preserve,
1491 flash_discard
1492 };
1493
1494 /* Write several memory blocks at once. This version can be more
1495 efficient than making several calls to target_write_memory, in
1496 particular because it can optimize accesses to flash memory.
1497
1498 Moreover, this is currently the only memory access function in gdb
1499 that supports writing to flash memory, and it should be used for
1500 all cases where access to flash memory is desirable.
1501
1502 REQUESTS is the vector (see vec.h) of memory_write_request.
1503 PRESERVE_FLASH_P indicates what to do with blocks which must be
1504 erased, but not completely rewritten.
1505 PROGRESS_CB is a function that will be periodically called to provide
1506 feedback to user. It will be called with the baton corresponding
1507 to the request currently being written. It may also be called
1508 with a NULL baton, when preserved flash sectors are being rewritten.
1509
1510 The function returns 0 on success, and error otherwise. */
1511 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1512 enum flash_preserve_mode preserve_flash_p,
1513 void (*progress_cb) (ULONGEST, void *));
1514
1515 /* Print a line about the current target. */
1516
1517 #define target_files_info() \
1518 (*current_target.to_files_info) (&current_target)
1519
1520 /* Insert a breakpoint at address BP_TGT->placed_address in
1521 the target machine. Returns 0 for success, and returns non-zero or
1522 throws an error (with a detailed failure reason error code and
1523 message) otherwise. */
1524
1525 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1526 struct bp_target_info *bp_tgt);
1527
1528 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1529 machine. Result is 0 for success, non-zero for error. */
1530
1531 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1532 struct bp_target_info *bp_tgt,
1533 enum remove_bp_reason reason);
1534
1535 /* Returns true if the terminal settings of the inferior are in
1536 effect. */
1537
1538 extern int target_terminal_is_inferior (void);
1539
1540 /* Returns true if our terminal settings are in effect. */
1541
1542 extern int target_terminal_is_ours (void);
1543
1544 /* For target_terminal_init, target_terminal_inferior and
1545 target_terminal_ours, see target/target.h. */
1546
1547 /* Put some of our terminal settings into effect, enough to get proper
1548 results from our output, but do not change into or out of RAW mode
1549 so that no input is discarded. This is a no-op if terminal_ours
1550 was most recently called. This is a no-op unless called with the main
1551 UI as current UI. */
1552
1553 extern void target_terminal_ours_for_output (void);
1554
1555 /* Return true if the target stack has a non-default
1556 "to_terminal_ours" method. */
1557
1558 extern int target_supports_terminal_ours (void);
1559
1560 /* Make a cleanup that restores the state of the terminal to the current
1561 state. */
1562 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1563
1564 /* Print useful information about our terminal status, if such a thing
1565 exists. */
1566
1567 #define target_terminal_info(arg, from_tty) \
1568 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1569
1570 /* Kill the inferior process. Make it go away. */
1571
1572 extern void target_kill (void);
1573
1574 /* Load an executable file into the target process. This is expected
1575 to not only bring new code into the target process, but also to
1576 update GDB's symbol tables to match.
1577
1578 ARG contains command-line arguments, to be broken down with
1579 buildargv (). The first non-switch argument is the filename to
1580 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1581 0)), which is an offset to apply to the load addresses of FILE's
1582 sections. The target may define switches, or other non-switch
1583 arguments, as it pleases. */
1584
1585 extern void target_load (const char *arg, int from_tty);
1586
1587 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1588 notification of inferior events such as fork and vork immediately
1589 after the inferior is created. (This because of how gdb gets an
1590 inferior created via invoking a shell to do it. In such a scenario,
1591 if the shell init file has commands in it, the shell will fork and
1592 exec for each of those commands, and we will see each such fork
1593 event. Very bad.)
1594
1595 Such targets will supply an appropriate definition for this function. */
1596
1597 #define target_post_startup_inferior(ptid) \
1598 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1599
1600 /* On some targets, we can catch an inferior fork or vfork event when
1601 it occurs. These functions insert/remove an already-created
1602 catchpoint for such events. They return 0 for success, 1 if the
1603 catchpoint type is not supported and -1 for failure. */
1604
1605 #define target_insert_fork_catchpoint(pid) \
1606 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1607
1608 #define target_remove_fork_catchpoint(pid) \
1609 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1610
1611 #define target_insert_vfork_catchpoint(pid) \
1612 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1613
1614 #define target_remove_vfork_catchpoint(pid) \
1615 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1616
1617 /* If the inferior forks or vforks, this function will be called at
1618 the next resume in order to perform any bookkeeping and fiddling
1619 necessary to continue debugging either the parent or child, as
1620 requested, and releasing the other. Information about the fork
1621 or vfork event is available via get_last_target_status ().
1622 This function returns 1 if the inferior should not be resumed
1623 (i.e. there is another event pending). */
1624
1625 int target_follow_fork (int follow_child, int detach_fork);
1626
1627 /* Handle the target-specific bookkeeping required when the inferior
1628 makes an exec call. INF is the exec'd inferior. */
1629
1630 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1631
1632 /* On some targets, we can catch an inferior exec event when it
1633 occurs. These functions insert/remove an already-created
1634 catchpoint for such events. They return 0 for success, 1 if the
1635 catchpoint type is not supported and -1 for failure. */
1636
1637 #define target_insert_exec_catchpoint(pid) \
1638 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1639
1640 #define target_remove_exec_catchpoint(pid) \
1641 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1642
1643 /* Syscall catch.
1644
1645 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1646 If NEEDED is zero, it means the target can disable the mechanism to
1647 catch system calls because there are no more catchpoints of this type.
1648
1649 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1650 being requested. In this case, both TABLE_SIZE and TABLE should
1651 be ignored.
1652
1653 TABLE_SIZE is the number of elements in TABLE. It only matters if
1654 ANY_COUNT is zero.
1655
1656 TABLE is an array of ints, indexed by syscall number. An element in
1657 this array is nonzero if that syscall should be caught. This argument
1658 only matters if ANY_COUNT is zero.
1659
1660 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1661 for failure. */
1662
1663 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1664 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1665 pid, needed, any_count, \
1666 table_size, table)
1667
1668 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1669 exit code of PID, if any. */
1670
1671 #define target_has_exited(pid,wait_status,exit_status) \
1672 (*current_target.to_has_exited) (&current_target, \
1673 pid,wait_status,exit_status)
1674
1675 /* The debugger has completed a blocking wait() call. There is now
1676 some process event that must be processed. This function should
1677 be defined by those targets that require the debugger to perform
1678 cleanup or internal state changes in response to the process event. */
1679
1680 /* For target_mourn_inferior see target/target.h. */
1681
1682 /* Does target have enough data to do a run or attach command? */
1683
1684 #define target_can_run(t) \
1685 ((t)->to_can_run) (t)
1686
1687 /* Set list of signals to be handled in the target.
1688
1689 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1690 (enum gdb_signal). For every signal whose entry in this array is
1691 non-zero, the target is allowed -but not required- to skip reporting
1692 arrival of the signal to the GDB core by returning from target_wait,
1693 and to pass the signal directly to the inferior instead.
1694
1695 However, if the target is hardware single-stepping a thread that is
1696 about to receive a signal, it needs to be reported in any case, even
1697 if mentioned in a previous target_pass_signals call. */
1698
1699 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1700
1701 /* Set list of signals the target may pass to the inferior. This
1702 directly maps to the "handle SIGNAL pass/nopass" setting.
1703
1704 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1705 number (enum gdb_signal). For every signal whose entry in this
1706 array is non-zero, the target is allowed to pass the signal to the
1707 inferior. Signals not present in the array shall be silently
1708 discarded. This does not influence whether to pass signals to the
1709 inferior as a result of a target_resume call. This is useful in
1710 scenarios where the target needs to decide whether to pass or not a
1711 signal to the inferior without GDB core involvement, such as for
1712 example, when detaching (as threads may have been suspended with
1713 pending signals not reported to GDB). */
1714
1715 extern void target_program_signals (int nsig, unsigned char *program_signals);
1716
1717 /* Check to see if a thread is still alive. */
1718
1719 extern int target_thread_alive (ptid_t ptid);
1720
1721 /* Sync the target's threads with GDB's thread list. */
1722
1723 extern void target_update_thread_list (void);
1724
1725 /* Make target stop in a continuable fashion. (For instance, under
1726 Unix, this should act like SIGSTOP). Note that this function is
1727 asynchronous: it does not wait for the target to become stopped
1728 before returning. If this is the behavior you want please use
1729 target_stop_and_wait. */
1730
1731 extern void target_stop (ptid_t ptid);
1732
1733 /* Interrupt the target just like the user typed a ^C on the
1734 inferior's controlling terminal. (For instance, under Unix, this
1735 should act like SIGINT). This function is asynchronous. */
1736
1737 extern void target_interrupt (ptid_t ptid);
1738
1739 /* Pass a ^C, as determined to have been pressed by checking the quit
1740 flag, to the target. Normally calls target_interrupt, but remote
1741 targets may take the opportunity to detect the remote side is not
1742 responding and offer to disconnect. */
1743
1744 extern void target_pass_ctrlc (void);
1745
1746 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1747 target_interrupt. */
1748 extern void default_target_pass_ctrlc (struct target_ops *ops);
1749
1750 /* Send the specified COMMAND to the target's monitor
1751 (shell,interpreter) for execution. The result of the query is
1752 placed in OUTBUF. */
1753
1754 #define target_rcmd(command, outbuf) \
1755 (*current_target.to_rcmd) (&current_target, command, outbuf)
1756
1757
1758 /* Does the target include all of memory, or only part of it? This
1759 determines whether we look up the target chain for other parts of
1760 memory if this target can't satisfy a request. */
1761
1762 extern int target_has_all_memory_1 (void);
1763 #define target_has_all_memory target_has_all_memory_1 ()
1764
1765 /* Does the target include memory? (Dummy targets don't.) */
1766
1767 extern int target_has_memory_1 (void);
1768 #define target_has_memory target_has_memory_1 ()
1769
1770 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1771 we start a process.) */
1772
1773 extern int target_has_stack_1 (void);
1774 #define target_has_stack target_has_stack_1 ()
1775
1776 /* Does the target have registers? (Exec files don't.) */
1777
1778 extern int target_has_registers_1 (void);
1779 #define target_has_registers target_has_registers_1 ()
1780
1781 /* Does the target have execution? Can we make it jump (through
1782 hoops), or pop its stack a few times? This means that the current
1783 target is currently executing; for some targets, that's the same as
1784 whether or not the target is capable of execution, but there are
1785 also targets which can be current while not executing. In that
1786 case this will become true after to_create_inferior or
1787 to_attach. */
1788
1789 extern int target_has_execution_1 (ptid_t);
1790
1791 /* Like target_has_execution_1, but always passes inferior_ptid. */
1792
1793 extern int target_has_execution_current (void);
1794
1795 #define target_has_execution target_has_execution_current ()
1796
1797 /* Default implementations for process_stratum targets. Return true
1798 if there's a selected inferior, false otherwise. */
1799
1800 extern int default_child_has_all_memory (struct target_ops *ops);
1801 extern int default_child_has_memory (struct target_ops *ops);
1802 extern int default_child_has_stack (struct target_ops *ops);
1803 extern int default_child_has_registers (struct target_ops *ops);
1804 extern int default_child_has_execution (struct target_ops *ops,
1805 ptid_t the_ptid);
1806
1807 /* Can the target support the debugger control of thread execution?
1808 Can it lock the thread scheduler? */
1809
1810 #define target_can_lock_scheduler \
1811 (current_target.to_has_thread_control & tc_schedlock)
1812
1813 /* Controls whether async mode is permitted. */
1814 extern int target_async_permitted;
1815
1816 /* Can the target support asynchronous execution? */
1817 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1818
1819 /* Is the target in asynchronous execution mode? */
1820 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1821
1822 /* Enables/disabled async target events. */
1823 extern void target_async (int enable);
1824
1825 /* Enables/disables thread create and exit events. */
1826 extern void target_thread_events (int enable);
1827
1828 /* Whether support for controlling the target backends always in
1829 non-stop mode is enabled. */
1830 extern enum auto_boolean target_non_stop_enabled;
1831
1832 /* Is the target in non-stop mode? Some targets control the inferior
1833 in non-stop mode even with "set non-stop off". Always true if "set
1834 non-stop" is on. */
1835 extern int target_is_non_stop_p (void);
1836
1837 #define target_execution_direction() \
1838 (current_target.to_execution_direction (&current_target))
1839
1840 /* Converts a process id to a string. Usually, the string just contains
1841 `process xyz', but on some systems it may contain
1842 `process xyz thread abc'. */
1843
1844 extern const char *target_pid_to_str (ptid_t ptid);
1845
1846 extern const char *normal_pid_to_str (ptid_t ptid);
1847
1848 /* Return a short string describing extra information about PID,
1849 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1850 is okay. */
1851
1852 #define target_extra_thread_info(TP) \
1853 (current_target.to_extra_thread_info (&current_target, TP))
1854
1855 /* Return the thread's name, or NULL if the target is unable to determine it.
1856 The returned value must not be freed by the caller. */
1857
1858 extern const char *target_thread_name (struct thread_info *);
1859
1860 /* Attempts to find the pathname of the executable file
1861 that was run to create a specified process.
1862
1863 The process PID must be stopped when this operation is used.
1864
1865 If the executable file cannot be determined, NULL is returned.
1866
1867 Else, a pointer to a character string containing the pathname
1868 is returned. This string should be copied into a buffer by
1869 the client if the string will not be immediately used, or if
1870 it must persist. */
1871
1872 #define target_pid_to_exec_file(pid) \
1873 (current_target.to_pid_to_exec_file) (&current_target, pid)
1874
1875 /* See the to_thread_architecture description in struct target_ops. */
1876
1877 #define target_thread_architecture(ptid) \
1878 (current_target.to_thread_architecture (&current_target, ptid))
1879
1880 /*
1881 * Iterator function for target memory regions.
1882 * Calls a callback function once for each memory region 'mapped'
1883 * in the child process. Defined as a simple macro rather than
1884 * as a function macro so that it can be tested for nullity.
1885 */
1886
1887 #define target_find_memory_regions(FUNC, DATA) \
1888 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1889
1890 /*
1891 * Compose corefile .note section.
1892 */
1893
1894 #define target_make_corefile_notes(BFD, SIZE_P) \
1895 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1896
1897 /* Bookmark interfaces. */
1898 #define target_get_bookmark(ARGS, FROM_TTY) \
1899 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1900
1901 #define target_goto_bookmark(ARG, FROM_TTY) \
1902 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1903
1904 /* Hardware watchpoint interfaces. */
1905
1906 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1907 write). Only the INFERIOR_PTID task is being queried. */
1908
1909 #define target_stopped_by_watchpoint() \
1910 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1911
1912 /* Returns non-zero if the target stopped because it executed a
1913 software breakpoint instruction. */
1914
1915 #define target_stopped_by_sw_breakpoint() \
1916 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1917
1918 #define target_supports_stopped_by_sw_breakpoint() \
1919 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1920
1921 #define target_stopped_by_hw_breakpoint() \
1922 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1923
1924 #define target_supports_stopped_by_hw_breakpoint() \
1925 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1926
1927 /* Non-zero if we have steppable watchpoints */
1928
1929 #define target_have_steppable_watchpoint \
1930 (current_target.to_have_steppable_watchpoint)
1931
1932 /* Non-zero if we have continuable watchpoints */
1933
1934 #define target_have_continuable_watchpoint \
1935 (current_target.to_have_continuable_watchpoint)
1936
1937 /* Provide defaults for hardware watchpoint functions. */
1938
1939 /* If the *_hw_beakpoint functions have not been defined
1940 elsewhere use the definitions in the target vector. */
1941
1942 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1943 Returns negative if the target doesn't have enough hardware debug
1944 registers available. Return zero if hardware watchpoint of type
1945 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1946 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1947 CNT is the number of such watchpoints used so far, including this
1948 one. OTHERTYPE is the number of watchpoints of other types than
1949 this one used so far. */
1950
1951 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1952 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1953 TYPE, CNT, OTHERTYPE)
1954
1955 /* Returns the number of debug registers needed to watch the given
1956 memory region, or zero if not supported. */
1957
1958 #define target_region_ok_for_hw_watchpoint(addr, len) \
1959 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1960 addr, len)
1961
1962
1963 #define target_can_do_single_step() \
1964 (*current_target.to_can_do_single_step) (&current_target)
1965
1966 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1967 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1968 COND is the expression for its condition, or NULL if there's none.
1969 Returns 0 for success, 1 if the watchpoint type is not supported,
1970 -1 for failure. */
1971
1972 #define target_insert_watchpoint(addr, len, type, cond) \
1973 (*current_target.to_insert_watchpoint) (&current_target, \
1974 addr, len, type, cond)
1975
1976 #define target_remove_watchpoint(addr, len, type, cond) \
1977 (*current_target.to_remove_watchpoint) (&current_target, \
1978 addr, len, type, cond)
1979
1980 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1981 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1982 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1983 masked watchpoints are not supported, -1 for failure. */
1984
1985 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1986 enum target_hw_bp_type);
1987
1988 /* Remove a masked watchpoint at ADDR with the mask MASK.
1989 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1990 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1991 for failure. */
1992
1993 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1994 enum target_hw_bp_type);
1995
1996 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1997 the target machine. Returns 0 for success, and returns non-zero or
1998 throws an error (with a detailed failure reason error code and
1999 message) otherwise. */
2000
2001 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2002 (*current_target.to_insert_hw_breakpoint) (&current_target, \
2003 gdbarch, bp_tgt)
2004
2005 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2006 (*current_target.to_remove_hw_breakpoint) (&current_target, \
2007 gdbarch, bp_tgt)
2008
2009 /* Return number of debug registers needed for a ranged breakpoint,
2010 or -1 if ranged breakpoints are not supported. */
2011
2012 extern int target_ranged_break_num_registers (void);
2013
2014 /* Return non-zero if target knows the data address which triggered this
2015 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2016 INFERIOR_PTID task is being queried. */
2017 #define target_stopped_data_address(target, addr_p) \
2018 (*(target)->to_stopped_data_address) (target, addr_p)
2019
2020 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2021 LENGTH bytes beginning at START. */
2022 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2023 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
2024
2025 /* Return non-zero if the target is capable of using hardware to evaluate
2026 the condition expression. In this case, if the condition is false when
2027 the watched memory location changes, execution may continue without the
2028 debugger being notified.
2029
2030 Due to limitations in the hardware implementation, it may be capable of
2031 avoiding triggering the watchpoint in some cases where the condition
2032 expression is false, but may report some false positives as well.
2033 For this reason, GDB will still evaluate the condition expression when
2034 the watchpoint triggers. */
2035 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2036 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2037 addr, len, type, cond)
2038
2039 /* Return number of debug registers needed for a masked watchpoint,
2040 -1 if masked watchpoints are not supported or -2 if the given address
2041 and mask combination cannot be used. */
2042
2043 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2044
2045 /* Target can execute in reverse? */
2046 #define target_can_execute_reverse \
2047 current_target.to_can_execute_reverse (&current_target)
2048
2049 extern const struct target_desc *target_read_description (struct target_ops *);
2050
2051 #define target_get_ada_task_ptid(lwp, tid) \
2052 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2053
2054 /* Utility implementation of searching memory. */
2055 extern int simple_search_memory (struct target_ops* ops,
2056 CORE_ADDR start_addr,
2057 ULONGEST search_space_len,
2058 const gdb_byte *pattern,
2059 ULONGEST pattern_len,
2060 CORE_ADDR *found_addrp);
2061
2062 /* Main entry point for searching memory. */
2063 extern int target_search_memory (CORE_ADDR start_addr,
2064 ULONGEST search_space_len,
2065 const gdb_byte *pattern,
2066 ULONGEST pattern_len,
2067 CORE_ADDR *found_addrp);
2068
2069 /* Target file operations. */
2070
2071 /* Return nonzero if the filesystem seen by the current inferior
2072 is the local filesystem, zero otherwise. */
2073 #define target_filesystem_is_local() \
2074 current_target.to_filesystem_is_local (&current_target)
2075
2076 /* Open FILENAME on the target, in the filesystem as seen by INF,
2077 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2078 by the debugger (GDB or, for remote targets, the remote stub).
2079 Return a target file descriptor, or -1 if an error occurs (and
2080 set *TARGET_ERRNO). */
2081 extern int target_fileio_open (struct inferior *inf,
2082 const char *filename, int flags,
2083 int mode, int *target_errno);
2084
2085 /* Like target_fileio_open, but print a warning message if the
2086 file is being accessed over a link that may be slow. */
2087 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2088 const char *filename,
2089 int flags,
2090 int mode,
2091 int *target_errno);
2092
2093 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2094 Return the number of bytes written, or -1 if an error occurs
2095 (and set *TARGET_ERRNO). */
2096 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2097 ULONGEST offset, int *target_errno);
2098
2099 /* Read up to LEN bytes FD on the target into READ_BUF.
2100 Return the number of bytes read, or -1 if an error occurs
2101 (and set *TARGET_ERRNO). */
2102 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2103 ULONGEST offset, int *target_errno);
2104
2105 /* Get information about the file opened as FD on the target
2106 and put it in SB. Return 0 on success, or -1 if an error
2107 occurs (and set *TARGET_ERRNO). */
2108 extern int target_fileio_fstat (int fd, struct stat *sb,
2109 int *target_errno);
2110
2111 /* Close FD on the target. Return 0, or -1 if an error occurs
2112 (and set *TARGET_ERRNO). */
2113 extern int target_fileio_close (int fd, int *target_errno);
2114
2115 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2116 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2117 for remote targets, the remote stub). Return 0, or -1 if an error
2118 occurs (and set *TARGET_ERRNO). */
2119 extern int target_fileio_unlink (struct inferior *inf,
2120 const char *filename,
2121 int *target_errno);
2122
2123 /* Read value of symbolic link FILENAME on the target, in the
2124 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2125 by the debugger (GDB or, for remote targets, the remote stub).
2126 Return a null-terminated string allocated via xmalloc, or NULL if
2127 an error occurs (and set *TARGET_ERRNO). */
2128 extern char *target_fileio_readlink (struct inferior *inf,
2129 const char *filename,
2130 int *target_errno);
2131
2132 /* Read target file FILENAME, in the filesystem as seen by INF. If
2133 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2134 remote targets, the remote stub). The return value will be -1 if
2135 the transfer fails or is not supported; 0 if the object is empty;
2136 or the length of the object otherwise. If a positive value is
2137 returned, a sufficiently large buffer will be allocated using
2138 xmalloc and returned in *BUF_P containing the contents of the
2139 object.
2140
2141 This method should be used for objects sufficiently small to store
2142 in a single xmalloc'd buffer, when no fixed bound on the object's
2143 size is known in advance. */
2144 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2145 const char *filename,
2146 gdb_byte **buf_p);
2147
2148 /* Read target file FILENAME, in the filesystem as seen by INF. If
2149 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2150 remote targets, the remote stub). The result is NUL-terminated and
2151 returned as a string, allocated using xmalloc. If an error occurs
2152 or the transfer is unsupported, NULL is returned. Empty objects
2153 are returned as allocated but empty strings. A warning is issued
2154 if the result contains any embedded NUL bytes. */
2155 extern char *target_fileio_read_stralloc (struct inferior *inf,
2156 const char *filename);
2157
2158
2159 /* Tracepoint-related operations. */
2160
2161 #define target_trace_init() \
2162 (*current_target.to_trace_init) (&current_target)
2163
2164 #define target_download_tracepoint(t) \
2165 (*current_target.to_download_tracepoint) (&current_target, t)
2166
2167 #define target_can_download_tracepoint() \
2168 (*current_target.to_can_download_tracepoint) (&current_target)
2169
2170 #define target_download_trace_state_variable(tsv) \
2171 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2172
2173 #define target_enable_tracepoint(loc) \
2174 (*current_target.to_enable_tracepoint) (&current_target, loc)
2175
2176 #define target_disable_tracepoint(loc) \
2177 (*current_target.to_disable_tracepoint) (&current_target, loc)
2178
2179 #define target_trace_start() \
2180 (*current_target.to_trace_start) (&current_target)
2181
2182 #define target_trace_set_readonly_regions() \
2183 (*current_target.to_trace_set_readonly_regions) (&current_target)
2184
2185 #define target_get_trace_status(ts) \
2186 (*current_target.to_get_trace_status) (&current_target, ts)
2187
2188 #define target_get_tracepoint_status(tp,utp) \
2189 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2190
2191 #define target_trace_stop() \
2192 (*current_target.to_trace_stop) (&current_target)
2193
2194 #define target_trace_find(type,num,addr1,addr2,tpp) \
2195 (*current_target.to_trace_find) (&current_target, \
2196 (type), (num), (addr1), (addr2), (tpp))
2197
2198 #define target_get_trace_state_variable_value(tsv,val) \
2199 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2200 (tsv), (val))
2201
2202 #define target_save_trace_data(filename) \
2203 (*current_target.to_save_trace_data) (&current_target, filename)
2204
2205 #define target_upload_tracepoints(utpp) \
2206 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2207
2208 #define target_upload_trace_state_variables(utsvp) \
2209 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2210
2211 #define target_get_raw_trace_data(buf,offset,len) \
2212 (*current_target.to_get_raw_trace_data) (&current_target, \
2213 (buf), (offset), (len))
2214
2215 #define target_get_min_fast_tracepoint_insn_len() \
2216 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2217
2218 #define target_set_disconnected_tracing(val) \
2219 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2220
2221 #define target_set_circular_trace_buffer(val) \
2222 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2223
2224 #define target_set_trace_buffer_size(val) \
2225 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2226
2227 #define target_set_trace_notes(user,notes,stopnotes) \
2228 (*current_target.to_set_trace_notes) (&current_target, \
2229 (user), (notes), (stopnotes))
2230
2231 #define target_get_tib_address(ptid, addr) \
2232 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2233
2234 #define target_set_permissions() \
2235 (*current_target.to_set_permissions) (&current_target)
2236
2237 #define target_static_tracepoint_marker_at(addr, marker) \
2238 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2239 addr, marker)
2240
2241 #define target_static_tracepoint_markers_by_strid(marker_id) \
2242 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2243 marker_id)
2244
2245 #define target_traceframe_info() \
2246 (*current_target.to_traceframe_info) (&current_target)
2247
2248 #define target_use_agent(use) \
2249 (*current_target.to_use_agent) (&current_target, use)
2250
2251 #define target_can_use_agent() \
2252 (*current_target.to_can_use_agent) (&current_target)
2253
2254 #define target_augmented_libraries_svr4_read() \
2255 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2256
2257 /* Command logging facility. */
2258
2259 #define target_log_command(p) \
2260 (*current_target.to_log_command) (&current_target, p)
2261
2262
2263 extern int target_core_of_thread (ptid_t ptid);
2264
2265 /* See to_get_unwinder in struct target_ops. */
2266 extern const struct frame_unwind *target_get_unwinder (void);
2267
2268 /* See to_get_tailcall_unwinder in struct target_ops. */
2269 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2270
2271 /* This implements basic memory verification, reading target memory
2272 and performing the comparison here (as opposed to accelerated
2273 verification making use of the qCRC packet, for example). */
2274
2275 extern int simple_verify_memory (struct target_ops* ops,
2276 const gdb_byte *data,
2277 CORE_ADDR memaddr, ULONGEST size);
2278
2279 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2280 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2281 if there's a mismatch, and -1 if an error is encountered while
2282 reading memory. Throws an error if the functionality is found not
2283 to be supported by the current target. */
2284 int target_verify_memory (const gdb_byte *data,
2285 CORE_ADDR memaddr, ULONGEST size);
2286
2287 /* Routines for maintenance of the target structures...
2288
2289 complete_target_initialization: Finalize a target_ops by filling in
2290 any fields needed by the target implementation. Unnecessary for
2291 targets which are registered via add_target, as this part gets
2292 taken care of then.
2293
2294 add_target: Add a target to the list of all possible targets.
2295 This only makes sense for targets that should be activated using
2296 the "target TARGET_NAME ..." command.
2297
2298 push_target: Make this target the top of the stack of currently used
2299 targets, within its particular stratum of the stack. Result
2300 is 0 if now atop the stack, nonzero if not on top (maybe
2301 should warn user).
2302
2303 unpush_target: Remove this from the stack of currently used targets,
2304 no matter where it is on the list. Returns 0 if no
2305 change, 1 if removed from stack. */
2306
2307 extern void add_target (struct target_ops *);
2308
2309 extern void add_target_with_completer (struct target_ops *t,
2310 completer_ftype *completer);
2311
2312 extern void complete_target_initialization (struct target_ops *t);
2313
2314 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2315 for maintaining backwards compatibility when renaming targets. */
2316
2317 extern void add_deprecated_target_alias (struct target_ops *t,
2318 const char *alias);
2319
2320 extern void push_target (struct target_ops *);
2321
2322 extern int unpush_target (struct target_ops *);
2323
2324 extern void target_pre_inferior (int);
2325
2326 extern void target_preopen (int);
2327
2328 /* Does whatever cleanup is required to get rid of all pushed targets. */
2329 extern void pop_all_targets (void);
2330
2331 /* Like pop_all_targets, but pops only targets whose stratum is at or
2332 above STRATUM. */
2333 extern void pop_all_targets_at_and_above (enum strata stratum);
2334
2335 /* Like pop_all_targets, but pops only targets whose stratum is
2336 strictly above ABOVE_STRATUM. */
2337 extern void pop_all_targets_above (enum strata above_stratum);
2338
2339 extern int target_is_pushed (struct target_ops *t);
2340
2341 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2342 CORE_ADDR offset);
2343
2344 /* Struct target_section maps address ranges to file sections. It is
2345 mostly used with BFD files, but can be used without (e.g. for handling
2346 raw disks, or files not in formats handled by BFD). */
2347
2348 struct target_section
2349 {
2350 CORE_ADDR addr; /* Lowest address in section */
2351 CORE_ADDR endaddr; /* 1+highest address in section */
2352
2353 struct bfd_section *the_bfd_section;
2354
2355 /* The "owner" of the section.
2356 It can be any unique value. It is set by add_target_sections
2357 and used by remove_target_sections.
2358 For example, for executables it is a pointer to exec_bfd and
2359 for shlibs it is the so_list pointer. */
2360 void *owner;
2361 };
2362
2363 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2364
2365 struct target_section_table
2366 {
2367 struct target_section *sections;
2368 struct target_section *sections_end;
2369 };
2370
2371 /* Return the "section" containing the specified address. */
2372 struct target_section *target_section_by_addr (struct target_ops *target,
2373 CORE_ADDR addr);
2374
2375 /* Return the target section table this target (or the targets
2376 beneath) currently manipulate. */
2377
2378 extern struct target_section_table *target_get_section_table
2379 (struct target_ops *target);
2380
2381 /* From mem-break.c */
2382
2383 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2384 struct bp_target_info *,
2385 enum remove_bp_reason);
2386
2387 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2388 struct bp_target_info *);
2389
2390 /* Check whether the memory at the breakpoint's placed address still
2391 contains the expected breakpoint instruction. */
2392
2393 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2394 struct bp_target_info *bp_tgt);
2395
2396 extern int default_memory_remove_breakpoint (struct gdbarch *,
2397 struct bp_target_info *);
2398
2399 extern int default_memory_insert_breakpoint (struct gdbarch *,
2400 struct bp_target_info *);
2401
2402
2403 /* From target.c */
2404
2405 extern void initialize_targets (void);
2406
2407 extern void noprocess (void) ATTRIBUTE_NORETURN;
2408
2409 extern void target_require_runnable (void);
2410
2411 extern struct target_ops *find_target_beneath (struct target_ops *);
2412
2413 /* Find the target at STRATUM. If no target is at that stratum,
2414 return NULL. */
2415
2416 struct target_ops *find_target_at (enum strata stratum);
2417
2418 /* Read OS data object of type TYPE from the target, and return it in
2419 XML format. The result is NUL-terminated and returned as a string,
2420 allocated using xmalloc. If an error occurs or the transfer is
2421 unsupported, NULL is returned. Empty objects are returned as
2422 allocated but empty strings. */
2423
2424 extern char *target_get_osdata (const char *type);
2425
2426 \f
2427 /* Stuff that should be shared among the various remote targets. */
2428
2429 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2430 information (higher values, more information). */
2431 extern int remote_debug;
2432
2433 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2434 extern int baud_rate;
2435
2436 /* Parity for serial port */
2437 extern int serial_parity;
2438
2439 /* Timeout limit for response from target. */
2440 extern int remote_timeout;
2441
2442 \f
2443
2444 /* Set the show memory breakpoints mode to show, and installs a cleanup
2445 to restore it back to the current value. */
2446 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2447
2448 extern int may_write_registers;
2449 extern int may_write_memory;
2450 extern int may_insert_breakpoints;
2451 extern int may_insert_tracepoints;
2452 extern int may_insert_fast_tracepoints;
2453 extern int may_stop;
2454
2455 extern void update_target_permissions (void);
2456
2457 \f
2458 /* Imported from machine dependent code. */
2459
2460 /* See to_supports_btrace in struct target_ops. */
2461 extern int target_supports_btrace (enum btrace_format);
2462
2463 /* See to_enable_btrace in struct target_ops. */
2464 extern struct btrace_target_info *
2465 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2466
2467 /* See to_disable_btrace in struct target_ops. */
2468 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2469
2470 /* See to_teardown_btrace in struct target_ops. */
2471 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2472
2473 /* See to_read_btrace in struct target_ops. */
2474 extern enum btrace_error target_read_btrace (struct btrace_data *,
2475 struct btrace_target_info *,
2476 enum btrace_read_type);
2477
2478 /* See to_btrace_conf in struct target_ops. */
2479 extern const struct btrace_config *
2480 target_btrace_conf (const struct btrace_target_info *);
2481
2482 /* See to_stop_recording in struct target_ops. */
2483 extern void target_stop_recording (void);
2484
2485 /* See to_save_record in struct target_ops. */
2486 extern void target_save_record (const char *filename);
2487
2488 /* Query if the target supports deleting the execution log. */
2489 extern int target_supports_delete_record (void);
2490
2491 /* See to_delete_record in struct target_ops. */
2492 extern void target_delete_record (void);
2493
2494 /* See to_record_method. */
2495 extern enum record_method target_record_method (ptid_t ptid);
2496
2497 /* See to_record_is_replaying in struct target_ops. */
2498 extern int target_record_is_replaying (ptid_t ptid);
2499
2500 /* See to_record_will_replay in struct target_ops. */
2501 extern int target_record_will_replay (ptid_t ptid, int dir);
2502
2503 /* See to_record_stop_replaying in struct target_ops. */
2504 extern void target_record_stop_replaying (void);
2505
2506 /* See to_goto_record_begin in struct target_ops. */
2507 extern void target_goto_record_begin (void);
2508
2509 /* See to_goto_record_end in struct target_ops. */
2510 extern void target_goto_record_end (void);
2511
2512 /* See to_goto_record in struct target_ops. */
2513 extern void target_goto_record (ULONGEST insn);
2514
2515 /* See to_insn_history. */
2516 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2517
2518 /* See to_insn_history_from. */
2519 extern void target_insn_history_from (ULONGEST from, int size,
2520 gdb_disassembly_flags flags);
2521
2522 /* See to_insn_history_range. */
2523 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2524 gdb_disassembly_flags flags);
2525
2526 /* See to_call_history. */
2527 extern void target_call_history (int size, int flags);
2528
2529 /* See to_call_history_from. */
2530 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2531
2532 /* See to_call_history_range. */
2533 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2534
2535 /* See to_prepare_to_generate_core. */
2536 extern void target_prepare_to_generate_core (void);
2537
2538 /* See to_done_generating_core. */
2539 extern void target_done_generating_core (void);
2540
2541 #endif /* !defined (TARGET_H) */
This page took 0.111182 seconds and 4 git commands to generate.