Patch from David Mosberger.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 /* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45 #include "bfd.h"
46 #include "symtab.h"
47 #include "dcache.h"
48 #include "memattr.h"
49
50 enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
58 };
59
60 enum thread_control_capabilities
61 {
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
65 };
66
67 /* Stuff for target_wait. */
68
69 /* Generally, what has the program done? */
70 enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
74
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_STOPPED,
78
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
82
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
86
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
91 TARGET_WAITKIND_FORKED,
92
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
96 TARGET_WAITKIND_VFORKED,
97
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
101 TARGET_WAITKIND_EXECD,
102
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
109
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* An event has occured, but we should wait again.
116 Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
123 like for instance the user typing. */
124 TARGET_WAITKIND_IGNORE
125 };
126
127 struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
142
143 /* Possible types of events that the inferior handler will have to
144 deal with. */
145 enum inferior_event_type
146 {
147 /* There is a request to quit the inferior, abandon it. */
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
150 being called. */
151 INF_REG_EVENT,
152 /* Deal with an error on the inferior. */
153 INF_ERROR,
154 /* We are called because a timer went off. */
155 INF_TIMER,
156 /* We are called to do stuff after the inferior stops. */
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
161 'step n' like commands. */
162 INF_EXEC_CONTINUE
163 };
164
165 /* Return the string for a signal. */
166 extern char *target_signal_to_string (enum target_signal);
167
168 /* Return the name (SIGHUP, etc.) for a signal. */
169 extern char *target_signal_to_name (enum target_signal);
170
171 /* Given a name (SIGHUP, etc.), return its signal. */
172 enum target_signal target_signal_from_name (char *);
173 \f
174
175 /* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
178 on TARGET_ACTIVITY_FD. */
179 extern int target_activity_fd;
180 /* Returns zero to leave the inferior alone, one to interrupt it. */
181 extern int (*target_activity_function) (void);
182 \f
183 struct thread_info; /* fwd decl for parameter list below: */
184
185 struct target_ops
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
190 newline, and starts with a one-line descrip-
191 tion (probably similar to to_longname). */
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_detach) (char *, int);
197 void (*to_resume) (ptid_t, int, enum target_signal);
198 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
199 void (*to_post_wait) (ptid_t, int);
200 void (*to_fetch_registers) (int);
201 void (*to_store_registers) (int);
202 void (*to_prepare_to_store) (void);
203
204 /* Transfer LEN bytes of memory between GDB address MYADDR and
205 target address MEMADDR. If WRITE, transfer them to the target, else
206 transfer them from the target. TARGET is the target from which we
207 get this function.
208
209 Return value, N, is one of the following:
210
211 0 means that we can't handle this. If errno has been set, it is the
212 error which prevented us from doing it (FIXME: What about bfd_error?).
213
214 positive (call it N) means that we have transferred N bytes
215 starting at MEMADDR. We might be able to handle more bytes
216 beyond this length, but no promises.
217
218 negative (call its absolute value N) means that we cannot
219 transfer right at MEMADDR, but we could transfer at least
220 something at MEMADDR + N. */
221
222 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
223 int len, int write,
224 struct mem_attrib *attrib,
225 struct target_ops *target);
226
227 #if 0
228 /* Enable this after 4.12. */
229
230 /* Search target memory. Start at STARTADDR and take LEN bytes of
231 target memory, and them with MASK, and compare to DATA. If they
232 match, set *ADDR_FOUND to the address we found it at, store the data
233 we found at LEN bytes starting at DATA_FOUND, and return. If
234 not, add INCREMENT to the search address and keep trying until
235 the search address is outside of the range [LORANGE,HIRANGE).
236
237 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
238 return. */
239
240 void (*to_search) (int len, char *data, char *mask,
241 CORE_ADDR startaddr, int increment,
242 CORE_ADDR lorange, CORE_ADDR hirange,
243 CORE_ADDR * addr_found, char *data_found);
244
245 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
246 (*current_target.to_search) (len, data, mask, startaddr, increment, \
247 lorange, hirange, addr_found, data_found)
248 #endif /* 0 */
249
250 void (*to_files_info) (struct target_ops *);
251 int (*to_insert_breakpoint) (CORE_ADDR, char *);
252 int (*to_remove_breakpoint) (CORE_ADDR, char *);
253 int (*to_can_use_hw_breakpoint) (int, int, int);
254 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
255 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
256 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
257 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
258 int (*to_stopped_by_watchpoint) (void);
259 CORE_ADDR (*to_stopped_data_address) (void);
260 int (*to_region_size_ok_for_hw_watchpoint) (int);
261 void (*to_terminal_init) (void);
262 void (*to_terminal_inferior) (void);
263 void (*to_terminal_ours_for_output) (void);
264 void (*to_terminal_ours) (void);
265 void (*to_terminal_save_ours) (void);
266 void (*to_terminal_info) (char *, int);
267 void (*to_kill) (void);
268 void (*to_load) (char *, int);
269 int (*to_lookup_symbol) (char *, CORE_ADDR *);
270 void (*to_create_inferior) (char *, char *, char **);
271 void (*to_post_startup_inferior) (ptid_t);
272 void (*to_acknowledge_created_inferior) (int);
273 int (*to_insert_fork_catchpoint) (int);
274 int (*to_remove_fork_catchpoint) (int);
275 int (*to_insert_vfork_catchpoint) (int);
276 int (*to_remove_vfork_catchpoint) (int);
277 int (*to_follow_fork) (int);
278 int (*to_insert_exec_catchpoint) (int);
279 int (*to_remove_exec_catchpoint) (int);
280 int (*to_reported_exec_events_per_exec_call) (void);
281 int (*to_has_exited) (int, int, int *);
282 void (*to_mourn_inferior) (void);
283 int (*to_can_run) (void);
284 void (*to_notice_signals) (ptid_t ptid);
285 int (*to_thread_alive) (ptid_t ptid);
286 void (*to_find_new_threads) (void);
287 char *(*to_pid_to_str) (ptid_t);
288 char *(*to_extra_thread_info) (struct thread_info *);
289 void (*to_stop) (void);
290 int (*to_query) (int /*char */ , char *, char *, int *);
291 void (*to_rcmd) (char *command, struct ui_file *output);
292 struct symtab_and_line *(*to_enable_exception_callback) (enum
293 exception_event_kind,
294 int);
295 struct exception_event_record *(*to_get_current_exception_event) (void);
296 char *(*to_pid_to_exec_file) (int pid);
297 enum strata to_stratum;
298 int to_has_all_memory;
299 int to_has_memory;
300 int to_has_stack;
301 int to_has_registers;
302 int to_has_execution;
303 int to_has_thread_control; /* control thread execution */
304 struct section_table
305 *to_sections;
306 struct section_table
307 *to_sections_end;
308 /* ASYNC target controls */
309 int (*to_can_async_p) (void);
310 int (*to_is_async_p) (void);
311 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
312 void *context);
313 int to_async_mask_value;
314 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
315 unsigned long,
316 int, int, int,
317 void *),
318 void *);
319 char * (*to_make_corefile_notes) (bfd *, int *);
320
321 /* Return the thread-local address at OFFSET in the
322 thread-local storage for the thread PTID and the shared library
323 or executable file given by OBJFILE. If that block of
324 thread-local storage hasn't been allocated yet, this function
325 may return an error. */
326 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
327 struct objfile *objfile,
328 CORE_ADDR offset);
329
330 int to_magic;
331 /* Need sub-structure for target machine related rather than comm related?
332 */
333 };
334
335 /* Magic number for checking ops size. If a struct doesn't end with this
336 number, somebody changed the declaration but didn't change all the
337 places that initialize one. */
338
339 #define OPS_MAGIC 3840
340
341 /* The ops structure for our "current" target process. This should
342 never be NULL. If there is no target, it points to the dummy_target. */
343
344 extern struct target_ops current_target;
345
346 /* An item on the target stack. */
347
348 struct target_stack_item
349 {
350 struct target_stack_item *next;
351 struct target_ops *target_ops;
352 };
353
354 /* The target stack. */
355
356 extern struct target_stack_item *target_stack;
357
358 /* Define easy words for doing these operations on our current target. */
359
360 #define target_shortname (current_target.to_shortname)
361 #define target_longname (current_target.to_longname)
362
363 /* The open routine takes the rest of the parameters from the command,
364 and (if successful) pushes a new target onto the stack.
365 Targets should supply this routine, if only to provide an error message. */
366
367 #define target_open(name, from_tty) \
368 do { \
369 dcache_invalidate (target_dcache); \
370 (*current_target.to_open) (name, from_tty); \
371 } while (0)
372
373 /* Does whatever cleanup is required for a target that we are no longer
374 going to be calling. Argument says whether we are quitting gdb and
375 should not get hung in case of errors, or whether we want a clean
376 termination even if it takes a while. This routine is automatically
377 always called just before a routine is popped off the target stack.
378 Closing file descriptors and freeing memory are typical things it should
379 do. */
380
381 #define target_close(quitting) \
382 (*current_target.to_close) (quitting)
383
384 /* Attaches to a process on the target side. Arguments are as passed
385 to the `attach' command by the user. This routine can be called
386 when the target is not on the target-stack, if the target_can_run
387 routine returns 1; in that case, it must push itself onto the stack.
388 Upon exit, the target should be ready for normal operations, and
389 should be ready to deliver the status of the process immediately
390 (without waiting) to an upcoming target_wait call. */
391
392 #define target_attach(args, from_tty) \
393 (*current_target.to_attach) (args, from_tty)
394
395 /* The target_attach operation places a process under debugger control,
396 and stops the process.
397
398 This operation provides a target-specific hook that allows the
399 necessary bookkeeping to be performed after an attach completes. */
400 #define target_post_attach(pid) \
401 (*current_target.to_post_attach) (pid)
402
403 /* Takes a program previously attached to and detaches it.
404 The program may resume execution (some targets do, some don't) and will
405 no longer stop on signals, etc. We better not have left any breakpoints
406 in the program or it'll die when it hits one. ARGS is arguments
407 typed by the user (e.g. a signal to send the process). FROM_TTY
408 says whether to be verbose or not. */
409
410 extern void target_detach (char *, int);
411
412 /* Resume execution of the target process PTID. STEP says whether to
413 single-step or to run free; SIGGNAL is the signal to be given to
414 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
415 pass TARGET_SIGNAL_DEFAULT. */
416
417 #define target_resume(ptid, step, siggnal) \
418 do { \
419 dcache_invalidate(target_dcache); \
420 (*current_target.to_resume) (ptid, step, siggnal); \
421 } while (0)
422
423 /* Wait for process pid to do something. PTID = -1 to wait for any
424 pid to do something. Return pid of child, or -1 in case of error;
425 store status through argument pointer STATUS. Note that it is
426 _NOT_ OK to throw_exception() out of target_wait() without popping
427 the debugging target from the stack; GDB isn't prepared to get back
428 to the prompt with a debugging target but without the frame cache,
429 stop_pc, etc., set up. */
430
431 #define target_wait(ptid, status) \
432 (*current_target.to_wait) (ptid, status)
433
434 /* The target_wait operation waits for a process event to occur, and
435 thereby stop the process.
436
437 On some targets, certain events may happen in sequences. gdb's
438 correct response to any single event of such a sequence may require
439 knowledge of what earlier events in the sequence have been seen.
440
441 This operation provides a target-specific hook that allows the
442 necessary bookkeeping to be performed to track such sequences. */
443
444 #define target_post_wait(ptid, status) \
445 (*current_target.to_post_wait) (ptid, status)
446
447 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
448
449 #define target_fetch_registers(regno) \
450 (*current_target.to_fetch_registers) (regno)
451
452 /* Store at least register REGNO, or all regs if REGNO == -1.
453 It can store as many registers as it wants to, so target_prepare_to_store
454 must have been previously called. Calls error() if there are problems. */
455
456 #define target_store_registers(regs) \
457 (*current_target.to_store_registers) (regs)
458
459 /* Get ready to modify the registers array. On machines which store
460 individual registers, this doesn't need to do anything. On machines
461 which store all the registers in one fell swoop, this makes sure
462 that REGISTERS contains all the registers from the program being
463 debugged. */
464
465 #define target_prepare_to_store() \
466 (*current_target.to_prepare_to_store) ()
467
468 extern DCACHE *target_dcache;
469
470 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
471 struct mem_attrib *attrib);
472
473 extern int target_read_string (CORE_ADDR, char **, int, int *);
474
475 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
476
477 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
478
479 extern int xfer_memory (CORE_ADDR, char *, int, int,
480 struct mem_attrib *, struct target_ops *);
481
482 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
483 struct mem_attrib *, struct target_ops *);
484
485 /* Make a single attempt at transfering LEN bytes. On a successful
486 transfer, the number of bytes actually transfered is returned and
487 ERR is set to 0. When a transfer fails, -1 is returned (the number
488 of bytes actually transfered is not defined) and ERR is set to a
489 non-zero error indication. */
490
491 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
492 int *err);
493
494 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
495 int *err);
496
497 extern char *child_pid_to_exec_file (int);
498
499 extern char *child_core_file_to_sym_file (char *);
500
501 #if defined(CHILD_POST_ATTACH)
502 extern void child_post_attach (int);
503 #endif
504
505 extern void child_post_wait (ptid_t, int);
506
507 extern void child_post_startup_inferior (ptid_t);
508
509 extern void child_acknowledge_created_inferior (int);
510
511 extern int child_insert_fork_catchpoint (int);
512
513 extern int child_remove_fork_catchpoint (int);
514
515 extern int child_insert_vfork_catchpoint (int);
516
517 extern int child_remove_vfork_catchpoint (int);
518
519 extern void child_acknowledge_created_inferior (int);
520
521 extern int child_follow_fork (int);
522
523 extern int child_insert_exec_catchpoint (int);
524
525 extern int child_remove_exec_catchpoint (int);
526
527 extern int child_reported_exec_events_per_exec_call (void);
528
529 extern int child_has_exited (int, int, int *);
530
531 extern int child_thread_alive (ptid_t);
532
533 /* From infrun.c. */
534
535 extern int inferior_has_forked (int pid, int *child_pid);
536
537 extern int inferior_has_vforked (int pid, int *child_pid);
538
539 extern int inferior_has_execd (int pid, char **execd_pathname);
540
541 /* From exec.c */
542
543 extern void print_section_info (struct target_ops *, bfd *);
544
545 /* Print a line about the current target. */
546
547 #define target_files_info() \
548 (*current_target.to_files_info) (&current_target)
549
550 /* Insert a breakpoint at address ADDR in the target machine.
551 SAVE is a pointer to memory allocated for saving the
552 target contents. It is guaranteed by the caller to be long enough
553 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
554 an errno value. */
555
556 #define target_insert_breakpoint(addr, save) \
557 (*current_target.to_insert_breakpoint) (addr, save)
558
559 /* Remove a breakpoint at address ADDR in the target machine.
560 SAVE is a pointer to the same save area
561 that was previously passed to target_insert_breakpoint.
562 Result is 0 for success, or an errno value. */
563
564 #define target_remove_breakpoint(addr, save) \
565 (*current_target.to_remove_breakpoint) (addr, save)
566
567 /* Initialize the terminal settings we record for the inferior,
568 before we actually run the inferior. */
569
570 #define target_terminal_init() \
571 (*current_target.to_terminal_init) ()
572
573 /* Put the inferior's terminal settings into effect.
574 This is preparation for starting or resuming the inferior. */
575
576 #define target_terminal_inferior() \
577 (*current_target.to_terminal_inferior) ()
578
579 /* Put some of our terminal settings into effect,
580 enough to get proper results from our output,
581 but do not change into or out of RAW mode
582 so that no input is discarded.
583
584 After doing this, either terminal_ours or terminal_inferior
585 should be called to get back to a normal state of affairs. */
586
587 #define target_terminal_ours_for_output() \
588 (*current_target.to_terminal_ours_for_output) ()
589
590 /* Put our terminal settings into effect.
591 First record the inferior's terminal settings
592 so they can be restored properly later. */
593
594 #define target_terminal_ours() \
595 (*current_target.to_terminal_ours) ()
596
597 /* Save our terminal settings.
598 This is called from TUI after entering or leaving the curses
599 mode. Since curses modifies our terminal this call is here
600 to take this change into account. */
601
602 #define target_terminal_save_ours() \
603 (*current_target.to_terminal_save_ours) ()
604
605 /* Print useful information about our terminal status, if such a thing
606 exists. */
607
608 #define target_terminal_info(arg, from_tty) \
609 (*current_target.to_terminal_info) (arg, from_tty)
610
611 /* Kill the inferior process. Make it go away. */
612
613 #define target_kill() \
614 (*current_target.to_kill) ()
615
616 /* Load an executable file into the target process. This is expected
617 to not only bring new code into the target process, but also to
618 update GDB's symbol tables to match. */
619
620 extern void target_load (char *arg, int from_tty);
621
622 /* Look up a symbol in the target's symbol table. NAME is the symbol
623 name. ADDRP is a CORE_ADDR * pointing to where the value of the
624 symbol should be returned. The result is 0 if successful, nonzero
625 if the symbol does not exist in the target environment. This
626 function should not call error() if communication with the target
627 is interrupted, since it is called from symbol reading, but should
628 return nonzero, possibly doing a complain(). */
629
630 #define target_lookup_symbol(name, addrp) \
631 (*current_target.to_lookup_symbol) (name, addrp)
632
633 /* Start an inferior process and set inferior_ptid to its pid.
634 EXEC_FILE is the file to run.
635 ALLARGS is a string containing the arguments to the program.
636 ENV is the environment vector to pass. Errors reported with error().
637 On VxWorks and various standalone systems, we ignore exec_file. */
638
639 #define target_create_inferior(exec_file, args, env) \
640 (*current_target.to_create_inferior) (exec_file, args, env)
641
642
643 /* Some targets (such as ttrace-based HPUX) don't allow us to request
644 notification of inferior events such as fork and vork immediately
645 after the inferior is created. (This because of how gdb gets an
646 inferior created via invoking a shell to do it. In such a scenario,
647 if the shell init file has commands in it, the shell will fork and
648 exec for each of those commands, and we will see each such fork
649 event. Very bad.)
650
651 Such targets will supply an appropriate definition for this function. */
652
653 #define target_post_startup_inferior(ptid) \
654 (*current_target.to_post_startup_inferior) (ptid)
655
656 /* On some targets, the sequence of starting up an inferior requires
657 some synchronization between gdb and the new inferior process, PID. */
658
659 #define target_acknowledge_created_inferior(pid) \
660 (*current_target.to_acknowledge_created_inferior) (pid)
661
662 /* On some targets, we can catch an inferior fork or vfork event when
663 it occurs. These functions insert/remove an already-created
664 catchpoint for such events. */
665
666 #define target_insert_fork_catchpoint(pid) \
667 (*current_target.to_insert_fork_catchpoint) (pid)
668
669 #define target_remove_fork_catchpoint(pid) \
670 (*current_target.to_remove_fork_catchpoint) (pid)
671
672 #define target_insert_vfork_catchpoint(pid) \
673 (*current_target.to_insert_vfork_catchpoint) (pid)
674
675 #define target_remove_vfork_catchpoint(pid) \
676 (*current_target.to_remove_vfork_catchpoint) (pid)
677
678 /* If the inferior forks or vforks, this function will be called at
679 the next resume in order to perform any bookkeeping and fiddling
680 necessary to continue debugging either the parent or child, as
681 requested, and releasing the other. Information about the fork
682 or vfork event is available via get_last_target_status ().
683 This function returns 1 if the inferior should not be resumed
684 (i.e. there is another event pending). */
685
686 #define target_follow_fork(follow_child) \
687 (*current_target.to_follow_fork) (follow_child)
688
689 /* On some targets, we can catch an inferior exec event when it
690 occurs. These functions insert/remove an already-created
691 catchpoint for such events. */
692
693 #define target_insert_exec_catchpoint(pid) \
694 (*current_target.to_insert_exec_catchpoint) (pid)
695
696 #define target_remove_exec_catchpoint(pid) \
697 (*current_target.to_remove_exec_catchpoint) (pid)
698
699 /* Returns the number of exec events that are reported when a process
700 invokes a flavor of the exec() system call on this target, if exec
701 events are being reported. */
702
703 #define target_reported_exec_events_per_exec_call() \
704 (*current_target.to_reported_exec_events_per_exec_call) ()
705
706 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
707 exit code of PID, if any. */
708
709 #define target_has_exited(pid,wait_status,exit_status) \
710 (*current_target.to_has_exited) (pid,wait_status,exit_status)
711
712 /* The debugger has completed a blocking wait() call. There is now
713 some process event that must be processed. This function should
714 be defined by those targets that require the debugger to perform
715 cleanup or internal state changes in response to the process event. */
716
717 /* The inferior process has died. Do what is right. */
718
719 #define target_mourn_inferior() \
720 (*current_target.to_mourn_inferior) ()
721
722 /* Does target have enough data to do a run or attach command? */
723
724 #define target_can_run(t) \
725 ((t)->to_can_run) ()
726
727 /* post process changes to signal handling in the inferior. */
728
729 #define target_notice_signals(ptid) \
730 (*current_target.to_notice_signals) (ptid)
731
732 /* Check to see if a thread is still alive. */
733
734 #define target_thread_alive(ptid) \
735 (*current_target.to_thread_alive) (ptid)
736
737 /* Query for new threads and add them to the thread list. */
738
739 #define target_find_new_threads() \
740 (*current_target.to_find_new_threads) (); \
741
742 /* Make target stop in a continuable fashion. (For instance, under
743 Unix, this should act like SIGSTOP). This function is normally
744 used by GUIs to implement a stop button. */
745
746 #define target_stop current_target.to_stop
747
748 /* Queries the target side for some information. The first argument is a
749 letter specifying the type of the query, which is used to determine who
750 should process it. The second argument is a string that specifies which
751 information is desired and the third is a buffer that carries back the
752 response from the target side. The fourth parameter is the size of the
753 output buffer supplied. */
754
755 #define target_query(query_type, query, resp_buffer, bufffer_size) \
756 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
757
758 /* Send the specified COMMAND to the target's monitor
759 (shell,interpreter) for execution. The result of the query is
760 placed in OUTBUF. */
761
762 #define target_rcmd(command, outbuf) \
763 (*current_target.to_rcmd) (command, outbuf)
764
765
766 /* Get the symbol information for a breakpointable routine called when
767 an exception event occurs.
768 Intended mainly for C++, and for those
769 platforms/implementations where such a callback mechanism is available,
770 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
771 different mechanisms for debugging exceptions. */
772
773 #define target_enable_exception_callback(kind, enable) \
774 (*current_target.to_enable_exception_callback) (kind, enable)
775
776 /* Get the current exception event kind -- throw or catch, etc. */
777
778 #define target_get_current_exception_event() \
779 (*current_target.to_get_current_exception_event) ()
780
781 /* Does the target include all of memory, or only part of it? This
782 determines whether we look up the target chain for other parts of
783 memory if this target can't satisfy a request. */
784
785 #define target_has_all_memory \
786 (current_target.to_has_all_memory)
787
788 /* Does the target include memory? (Dummy targets don't.) */
789
790 #define target_has_memory \
791 (current_target.to_has_memory)
792
793 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
794 we start a process.) */
795
796 #define target_has_stack \
797 (current_target.to_has_stack)
798
799 /* Does the target have registers? (Exec files don't.) */
800
801 #define target_has_registers \
802 (current_target.to_has_registers)
803
804 /* Does the target have execution? Can we make it jump (through
805 hoops), or pop its stack a few times? FIXME: If this is to work that
806 way, it needs to check whether an inferior actually exists.
807 remote-udi.c and probably other targets can be the current target
808 when the inferior doesn't actually exist at the moment. Right now
809 this just tells us whether this target is *capable* of execution. */
810
811 #define target_has_execution \
812 (current_target.to_has_execution)
813
814 /* Can the target support the debugger control of thread execution?
815 a) Can it lock the thread scheduler?
816 b) Can it switch the currently running thread? */
817
818 #define target_can_lock_scheduler \
819 (current_target.to_has_thread_control & tc_schedlock)
820
821 #define target_can_switch_threads \
822 (current_target.to_has_thread_control & tc_switch)
823
824 /* Can the target support asynchronous execution? */
825 #define target_can_async_p() (current_target.to_can_async_p ())
826
827 /* Is the target in asynchronous execution mode? */
828 #define target_is_async_p() (current_target.to_is_async_p())
829
830 /* Put the target in async mode with the specified callback function. */
831 #define target_async(CALLBACK,CONTEXT) \
832 (current_target.to_async((CALLBACK), (CONTEXT)))
833
834 /* This is to be used ONLY within run_stack_dummy(). It
835 provides a workaround, to have inferior function calls done in
836 sychronous mode, even though the target is asynchronous. After
837 target_async_mask(0) is called, calls to target_can_async_p() will
838 return FALSE , so that target_resume() will not try to start the
839 target asynchronously. After the inferior stops, we IMMEDIATELY
840 restore the previous nature of the target, by calling
841 target_async_mask(1). After that, target_can_async_p() will return
842 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
843
844 FIXME ezannoni 1999-12-13: we won't need this once we move
845 the turning async on and off to the single execution commands,
846 from where it is done currently, in remote_resume(). */
847
848 #define target_async_mask_value \
849 (current_target.to_async_mask_value)
850
851 extern int target_async_mask (int mask);
852
853 extern void target_link (char *, CORE_ADDR *);
854
855 /* Converts a process id to a string. Usually, the string just contains
856 `process xyz', but on some systems it may contain
857 `process xyz thread abc'. */
858
859 #undef target_pid_to_str
860 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
861
862 #ifndef target_tid_to_str
863 #define target_tid_to_str(PID) \
864 target_pid_to_str (PID)
865 extern char *normal_pid_to_str (ptid_t ptid);
866 #endif
867
868 /* Return a short string describing extra information about PID,
869 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
870 is okay. */
871
872 #define target_extra_thread_info(TP) \
873 (current_target.to_extra_thread_info (TP))
874
875 /*
876 * New Objfile Event Hook:
877 *
878 * Sometimes a GDB component wants to get notified whenever a new
879 * objfile is loaded. Mainly this is used by thread-debugging
880 * implementations that need to know when symbols for the target
881 * thread implemenation are available.
882 *
883 * The old way of doing this is to define a macro 'target_new_objfile'
884 * that points to the function that you want to be called on every
885 * objfile/shlib load.
886 *
887 * The new way is to grab the function pointer, 'target_new_objfile_hook',
888 * and point it to the function that you want to be called on every
889 * objfile/shlib load.
890 *
891 * If multiple clients are willing to be cooperative, they can each
892 * save a pointer to the previous value of target_new_objfile_hook
893 * before modifying it, and arrange for their function to call the
894 * previous function in the chain. In that way, multiple clients
895 * can receive this notification (something like with signal handlers).
896 */
897
898 extern void (*target_new_objfile_hook) (struct objfile *);
899
900 #ifndef target_pid_or_tid_to_str
901 #define target_pid_or_tid_to_str(ID) \
902 target_pid_to_str (ID)
903 #endif
904
905 /* Attempts to find the pathname of the executable file
906 that was run to create a specified process.
907
908 The process PID must be stopped when this operation is used.
909
910 If the executable file cannot be determined, NULL is returned.
911
912 Else, a pointer to a character string containing the pathname
913 is returned. This string should be copied into a buffer by
914 the client if the string will not be immediately used, or if
915 it must persist. */
916
917 #define target_pid_to_exec_file(pid) \
918 (current_target.to_pid_to_exec_file) (pid)
919
920 /*
921 * Iterator function for target memory regions.
922 * Calls a callback function once for each memory region 'mapped'
923 * in the child process. Defined as a simple macro rather than
924 * as a function macro so that it can be tested for nullity.
925 */
926
927 #define target_find_memory_regions(FUNC, DATA) \
928 (current_target.to_find_memory_regions) (FUNC, DATA)
929
930 /*
931 * Compose corefile .note section.
932 */
933
934 #define target_make_corefile_notes(BFD, SIZE_P) \
935 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
936
937 /* Thread-local values. */
938 #define target_get_thread_local_address \
939 (current_target.to_get_thread_local_address)
940 #define target_get_thread_local_address_p() \
941 (target_get_thread_local_address != NULL)
942
943 /* Hook to call target-dependent code after reading in a new symbol table. */
944
945 #ifndef TARGET_SYMFILE_POSTREAD
946 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
947 #endif
948
949 /* Hook to call target dependent code just after inferior target process has
950 started. */
951
952 #ifndef TARGET_CREATE_INFERIOR_HOOK
953 #define TARGET_CREATE_INFERIOR_HOOK(PID)
954 #endif
955
956 /* Hardware watchpoint interfaces. */
957
958 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
959 write). */
960
961 #ifndef STOPPED_BY_WATCHPOINT
962 #define STOPPED_BY_WATCHPOINT(w) \
963 (*current_target.to_stopped_by_watchpoint) ()
964 #endif
965
966 /* HP-UX supplies these operations, which respectively disable and enable
967 the memory page-protections that are used to implement hardware watchpoints
968 on that platform. See wait_for_inferior's use of these. */
969
970 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
971 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
972 #endif
973
974 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
975 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
976 #endif
977
978 /* Provide defaults for hardware watchpoint functions. */
979
980 /* If the *_hw_beakpoint functions have not been defined
981 elsewhere use the definitions in the target vector. */
982
983 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
984 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
985 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
986 (including this one?). OTHERTYPE is who knows what... */
987
988 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
989 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
990 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
991 #endif
992
993 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
994 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
995 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
996 #endif
997
998
999 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1000 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1001 success, non-zero for failure. */
1002
1003 #ifndef target_insert_watchpoint
1004 #define target_insert_watchpoint(addr, len, type) \
1005 (*current_target.to_insert_watchpoint) (addr, len, type)
1006
1007 #define target_remove_watchpoint(addr, len, type) \
1008 (*current_target.to_remove_watchpoint) (addr, len, type)
1009 #endif
1010
1011 #ifndef target_insert_hw_breakpoint
1012 #define target_insert_hw_breakpoint(addr, save) \
1013 (*current_target.to_insert_hw_breakpoint) (addr, save)
1014
1015 #define target_remove_hw_breakpoint(addr, save) \
1016 (*current_target.to_remove_hw_breakpoint) (addr, save)
1017 #endif
1018
1019 #ifndef target_stopped_data_address
1020 #define target_stopped_data_address() \
1021 (*current_target.to_stopped_data_address) ()
1022 #endif
1023
1024 /* If defined, then we need to decr pc by this much after a hardware break-
1025 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1026
1027 #ifndef DECR_PC_AFTER_HW_BREAK
1028 #define DECR_PC_AFTER_HW_BREAK 0
1029 #endif
1030
1031 /* Sometimes gdb may pick up what appears to be a valid target address
1032 from a minimal symbol, but the value really means, essentially,
1033 "This is an index into a table which is populated when the inferior
1034 is run. Therefore, do not attempt to use this as a PC." */
1035
1036 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1037 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1038 #endif
1039
1040 /* This will only be defined by a target that supports catching vfork events,
1041 such as HP-UX.
1042
1043 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1044 child process after it has exec'd, causes the parent process to resume as
1045 well. To prevent the parent from running spontaneously, such targets should
1046 define this to a function that prevents that from happening. */
1047 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1048 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1049 #endif
1050
1051 /* This will only be defined by a target that supports catching vfork events,
1052 such as HP-UX.
1053
1054 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1055 process must be resumed when it delivers its exec event, before the parent
1056 vfork event will be delivered to us. */
1057
1058 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1059 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1060 #endif
1061
1062 /* Routines for maintenance of the target structures...
1063
1064 add_target: Add a target to the list of all possible targets.
1065
1066 push_target: Make this target the top of the stack of currently used
1067 targets, within its particular stratum of the stack. Result
1068 is 0 if now atop the stack, nonzero if not on top (maybe
1069 should warn user).
1070
1071 unpush_target: Remove this from the stack of currently used targets,
1072 no matter where it is on the list. Returns 0 if no
1073 change, 1 if removed from stack.
1074
1075 pop_target: Remove the top thing on the stack of current targets. */
1076
1077 extern void add_target (struct target_ops *);
1078
1079 extern int push_target (struct target_ops *);
1080
1081 extern int unpush_target (struct target_ops *);
1082
1083 extern void target_preopen (int);
1084
1085 extern void pop_target (void);
1086
1087 /* Struct section_table maps address ranges to file sections. It is
1088 mostly used with BFD files, but can be used without (e.g. for handling
1089 raw disks, or files not in formats handled by BFD). */
1090
1091 struct section_table
1092 {
1093 CORE_ADDR addr; /* Lowest address in section */
1094 CORE_ADDR endaddr; /* 1+highest address in section */
1095
1096 sec_ptr the_bfd_section;
1097
1098 bfd *bfd; /* BFD file pointer */
1099 };
1100
1101 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1102 Returns 0 if OK, 1 on error. */
1103
1104 extern int build_section_table (bfd *, struct section_table **,
1105 struct section_table **);
1106
1107 /* From mem-break.c */
1108
1109 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1110
1111 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1112
1113 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1114
1115 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1116
1117 extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1118 int *lenptr);
1119
1120
1121 /* From target.c */
1122
1123 extern void initialize_targets (void);
1124
1125 extern void noprocess (void);
1126
1127 extern void find_default_attach (char *, int);
1128
1129 extern void find_default_create_inferior (char *, char *, char **);
1130
1131 extern struct target_ops *find_run_target (void);
1132
1133 extern struct target_ops *find_core_target (void);
1134
1135 extern struct target_ops *find_target_beneath (struct target_ops *);
1136
1137 extern int target_resize_to_sections (struct target_ops *target,
1138 int num_added);
1139
1140 extern void remove_target_sections (bfd *abfd);
1141
1142 \f
1143 /* Stuff that should be shared among the various remote targets. */
1144
1145 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1146 information (higher values, more information). */
1147 extern int remote_debug;
1148
1149 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1150 extern int baud_rate;
1151 /* Timeout limit for response from target. */
1152 extern int remote_timeout;
1153
1154 \f
1155 /* Functions for helping to write a native target. */
1156
1157 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1158 extern void store_waitstatus (struct target_waitstatus *, int);
1159
1160 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1161 targ_signal SIGNO has an equivalent ``host'' representation. */
1162 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1163 to the shorter target_signal_p() because it is far less ambigious.
1164 In this context ``target_signal'' refers to GDB's internal
1165 representation of the target's set of signals while ``host signal''
1166 refers to the target operating system's signal. Confused? */
1167
1168 extern int target_signal_to_host_p (enum target_signal signo);
1169
1170 /* Convert between host signal numbers and enum target_signal's.
1171 target_signal_to_host() returns 0 and prints a warning() on GDB's
1172 console if SIGNO has no equivalent host representation. */
1173 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1174 refering to the target operating system's signal numbering.
1175 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1176 gdb_signal'' would probably be better as it is refering to GDB's
1177 internal representation of a target operating system's signal. */
1178
1179 extern enum target_signal target_signal_from_host (int);
1180 extern int target_signal_to_host (enum target_signal);
1181
1182 /* Convert from a number used in a GDB command to an enum target_signal. */
1183 extern enum target_signal target_signal_from_command (int);
1184
1185 /* Any target can call this to switch to remote protocol (in remote.c). */
1186 extern void push_remote_target (char *name, int from_tty);
1187 \f
1188 /* Imported from machine dependent code */
1189
1190 /* Blank target vector entries are initialized to target_ignore. */
1191 void target_ignore (void);
1192
1193 #endif /* !defined (TARGET_H) */
This page took 0.052846 seconds and 4 git commands to generate.