* solib-spu.c (append_ocl_sos): Fix xsnprintf statement for
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38
39 /* This include file defines the interface between the main part
40 of the debugger, and the part which is target-specific, or
41 specific to the communications interface between us and the
42 target.
43
44 A TARGET is an interface between the debugger and a particular
45 kind of file or process. Targets can be STACKED in STRATA,
46 so that more than one target can potentially respond to a request.
47 In particular, memory accesses will walk down the stack of targets
48 until they find a target that is interested in handling that particular
49 address. STRATA are artificial boundaries on the stack, within
50 which particular kinds of targets live. Strata exist so that
51 people don't get confused by pushing e.g. a process target and then
52 a file target, and wondering why they can't see the current values
53 of variables any more (the file target is handling them and they
54 never get to the process target). So when you push a file target,
55 it goes into the file stratum, which is always below the process
56 stratum. */
57
58 #include "bfd.h"
59 #include "symtab.h"
60 #include "memattr.h"
61 #include "vec.h"
62 #include "gdb_signals.h"
63
64 enum strata
65 {
66 dummy_stratum, /* The lowest of the low */
67 file_stratum, /* Executable files, etc */
68 core_stratum, /* Core dump files */
69 process_stratum, /* Executing processes */
70 thread_stratum, /* Executing threads */
71 record_stratum, /* Support record debugging */
72 arch_stratum /* Architecture overrides */
73 };
74
75 enum thread_control_capabilities
76 {
77 tc_none = 0, /* Default: can't control thread execution. */
78 tc_schedlock = 1, /* Can lock the thread scheduler. */
79 };
80
81 /* Stuff for target_wait. */
82
83 /* Generally, what has the program done? */
84 enum target_waitkind
85 {
86 /* The program has exited. The exit status is in value.integer. */
87 TARGET_WAITKIND_EXITED,
88
89 /* The program has stopped with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_STOPPED,
92
93 /* The program has terminated with a signal. Which signal is in
94 value.sig. */
95 TARGET_WAITKIND_SIGNALLED,
96
97 /* The program is letting us know that it dynamically loaded something
98 (e.g. it called load(2) on AIX). */
99 TARGET_WAITKIND_LOADED,
100
101 /* The program has forked. A "related" process' PTID is in
102 value.related_pid. I.e., if the child forks, value.related_pid
103 is the parent's ID. */
104
105 TARGET_WAITKIND_FORKED,
106
107 /* The program has vforked. A "related" process's PTID is in
108 value.related_pid. */
109
110 TARGET_WAITKIND_VFORKED,
111
112 /* The program has exec'ed a new executable file. The new file's
113 pathname is pointed to by value.execd_pathname. */
114
115 TARGET_WAITKIND_EXECD,
116
117 /* The program had previously vforked, and now the child is done
118 with the shared memory region, because it exec'ed or exited.
119 Note that the event is reported to the vfork parent. This is
120 only used if GDB did not stay attached to the vfork child,
121 otherwise, a TARGET_WAITKIND_EXECD or
122 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
123 has the same effect. */
124 TARGET_WAITKIND_VFORK_DONE,
125
126 /* The program has entered or returned from a system call. On
127 HP-UX, this is used in the hardware watchpoint implementation.
128 The syscall's unique integer ID number is in value.syscall_id */
129
130 TARGET_WAITKIND_SYSCALL_ENTRY,
131 TARGET_WAITKIND_SYSCALL_RETURN,
132
133 /* Nothing happened, but we stopped anyway. This perhaps should be handled
134 within target_wait, but I'm not sure target_wait should be resuming the
135 inferior. */
136 TARGET_WAITKIND_SPURIOUS,
137
138 /* An event has occured, but we should wait again.
139 Remote_async_wait() returns this when there is an event
140 on the inferior, but the rest of the world is not interested in
141 it. The inferior has not stopped, but has just sent some output
142 to the console, for instance. In this case, we want to go back
143 to the event loop and wait there for another event from the
144 inferior, rather than being stuck in the remote_async_wait()
145 function. This way the event loop is responsive to other events,
146 like for instance the user typing. */
147 TARGET_WAITKIND_IGNORE,
148
149 /* The target has run out of history information,
150 and cannot run backward any further. */
151 TARGET_WAITKIND_NO_HISTORY
152 };
153
154 struct target_waitstatus
155 {
156 enum target_waitkind kind;
157
158 /* Forked child pid, execd pathname, exit status, signal number or
159 syscall number. */
160 union
161 {
162 int integer;
163 enum target_signal sig;
164 ptid_t related_pid;
165 char *execd_pathname;
166 int syscall_number;
167 }
168 value;
169 };
170
171 /* Options that can be passed to target_wait. */
172
173 /* Return immediately if there's no event already queued. If this
174 options is not requested, target_wait blocks waiting for an
175 event. */
176 #define TARGET_WNOHANG 1
177
178 /* The structure below stores information about a system call.
179 It is basically used in the "catch syscall" command, and in
180 every function that gives information about a system call.
181
182 It's also good to mention that its fields represent everything
183 that we currently know about a syscall in GDB. */
184 struct syscall
185 {
186 /* The syscall number. */
187 int number;
188
189 /* The syscall name. */
190 const char *name;
191 };
192
193 /* Return a pretty printed form of target_waitstatus.
194 Space for the result is malloc'd, caller must free. */
195 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
196
197 /* Possible types of events that the inferior handler will have to
198 deal with. */
199 enum inferior_event_type
200 {
201 /* There is a request to quit the inferior, abandon it. */
202 INF_QUIT_REQ,
203 /* Process a normal inferior event which will result in target_wait
204 being called. */
205 INF_REG_EVENT,
206 /* Deal with an error on the inferior. */
207 INF_ERROR,
208 /* We are called because a timer went off. */
209 INF_TIMER,
210 /* We are called to do stuff after the inferior stops. */
211 INF_EXEC_COMPLETE,
212 /* We are called to do some stuff after the inferior stops, but we
213 are expected to reenter the proceed() and
214 handle_inferior_event() functions. This is used only in case of
215 'step n' like commands. */
216 INF_EXEC_CONTINUE
217 };
218 \f
219 /* Target objects which can be transfered using target_read,
220 target_write, et cetera. */
221
222 enum target_object
223 {
224 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
225 TARGET_OBJECT_AVR,
226 /* SPU target specific transfer. See "spu-tdep.c". */
227 TARGET_OBJECT_SPU,
228 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
229 TARGET_OBJECT_MEMORY,
230 /* Memory, avoiding GDB's data cache and trusting the executable.
231 Target implementations of to_xfer_partial never need to handle
232 this object, and most callers should not use it. */
233 TARGET_OBJECT_RAW_MEMORY,
234 /* Memory known to be part of the target's stack. This is cached even
235 if it is not in a region marked as such, since it is known to be
236 "normal" RAM. */
237 TARGET_OBJECT_STACK_MEMORY,
238 /* Kernel Unwind Table. See "ia64-tdep.c". */
239 TARGET_OBJECT_UNWIND_TABLE,
240 /* Transfer auxilliary vector. */
241 TARGET_OBJECT_AUXV,
242 /* StackGhost cookie. See "sparc-tdep.c". */
243 TARGET_OBJECT_WCOOKIE,
244 /* Target memory map in XML format. */
245 TARGET_OBJECT_MEMORY_MAP,
246 /* Flash memory. This object can be used to write contents to
247 a previously erased flash memory. Using it without erasing
248 flash can have unexpected results. Addresses are physical
249 address on target, and not relative to flash start. */
250 TARGET_OBJECT_FLASH,
251 /* Available target-specific features, e.g. registers and coprocessors.
252 See "target-descriptions.c". ANNEX should never be empty. */
253 TARGET_OBJECT_AVAILABLE_FEATURES,
254 /* Currently loaded libraries, in XML format. */
255 TARGET_OBJECT_LIBRARIES,
256 /* Get OS specific data. The ANNEX specifies the type (running
257 processes, etc.). */
258 TARGET_OBJECT_OSDATA,
259 /* Extra signal info. Usually the contents of `siginfo_t' on unix
260 platforms. */
261 TARGET_OBJECT_SIGNAL_INFO,
262 /* The list of threads that are being debugged. */
263 TARGET_OBJECT_THREADS,
264 /* Possible future objects: TARGET_OBJECT_FILE, ... */
265 };
266
267 /* Enumeration of the kinds of traceframe searches that a target may
268 be able to perform. */
269
270 enum trace_find_type
271 {
272 tfind_number,
273 tfind_pc,
274 tfind_tp,
275 tfind_range,
276 tfind_outside,
277 };
278
279 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
280 OBJECT. The OFFSET, for a seekable object, specifies the
281 starting point. The ANNEX can be used to provide additional
282 data-specific information to the target.
283
284 Return the number of bytes actually transfered, or -1 if the
285 transfer is not supported or otherwise fails. Return of a positive
286 value less than LEN indicates that no further transfer is possible.
287 Unlike the raw to_xfer_partial interface, callers of these
288 functions do not need to retry partial transfers. */
289
290 extern LONGEST target_read (struct target_ops *ops,
291 enum target_object object,
292 const char *annex, gdb_byte *buf,
293 ULONGEST offset, LONGEST len);
294
295 extern LONGEST target_read_until_error (struct target_ops *ops,
296 enum target_object object,
297 const char *annex, gdb_byte *buf,
298 ULONGEST offset, LONGEST len);
299
300 extern LONGEST target_write (struct target_ops *ops,
301 enum target_object object,
302 const char *annex, const gdb_byte *buf,
303 ULONGEST offset, LONGEST len);
304
305 /* Similar to target_write, except that it also calls PROGRESS with
306 the number of bytes written and the opaque BATON after every
307 successful partial write (and before the first write). This is
308 useful for progress reporting and user interaction while writing
309 data. To abort the transfer, the progress callback can throw an
310 exception. */
311
312 LONGEST target_write_with_progress (struct target_ops *ops,
313 enum target_object object,
314 const char *annex, const gdb_byte *buf,
315 ULONGEST offset, LONGEST len,
316 void (*progress) (ULONGEST, void *),
317 void *baton);
318
319 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
320 be read using OPS. The return value will be -1 if the transfer
321 fails or is not supported; 0 if the object is empty; or the length
322 of the object otherwise. If a positive value is returned, a
323 sufficiently large buffer will be allocated using xmalloc and
324 returned in *BUF_P containing the contents of the object.
325
326 This method should be used for objects sufficiently small to store
327 in a single xmalloc'd buffer, when no fixed bound on the object's
328 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
329 through this function. */
330
331 extern LONGEST target_read_alloc (struct target_ops *ops,
332 enum target_object object,
333 const char *annex, gdb_byte **buf_p);
334
335 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
336 returned as a string, allocated using xmalloc. If an error occurs
337 or the transfer is unsupported, NULL is returned. Empty objects
338 are returned as allocated but empty strings. A warning is issued
339 if the result contains any embedded NUL bytes. */
340
341 extern char *target_read_stralloc (struct target_ops *ops,
342 enum target_object object,
343 const char *annex);
344
345 /* Wrappers to target read/write that perform memory transfers. They
346 throw an error if the memory transfer fails.
347
348 NOTE: cagney/2003-10-23: The naming schema is lifted from
349 "frame.h". The parameter order is lifted from get_frame_memory,
350 which in turn lifted it from read_memory. */
351
352 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
353 gdb_byte *buf, LONGEST len);
354 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
355 CORE_ADDR addr, int len,
356 enum bfd_endian byte_order);
357 \f
358 struct thread_info; /* fwd decl for parameter list below: */
359
360 struct target_ops
361 {
362 struct target_ops *beneath; /* To the target under this one. */
363 char *to_shortname; /* Name this target type */
364 char *to_longname; /* Name for printing */
365 char *to_doc; /* Documentation. Does not include trailing
366 newline, and starts with a one-line descrip-
367 tion (probably similar to to_longname). */
368 /* Per-target scratch pad. */
369 void *to_data;
370 /* The open routine takes the rest of the parameters from the
371 command, and (if successful) pushes a new target onto the
372 stack. Targets should supply this routine, if only to provide
373 an error message. */
374 void (*to_open) (char *, int);
375 /* Old targets with a static target vector provide "to_close".
376 New re-entrant targets provide "to_xclose" and that is expected
377 to xfree everything (including the "struct target_ops"). */
378 void (*to_xclose) (struct target_ops *targ, int quitting);
379 void (*to_close) (int);
380 void (*to_attach) (struct target_ops *ops, char *, int);
381 void (*to_post_attach) (int);
382 void (*to_detach) (struct target_ops *ops, char *, int);
383 void (*to_disconnect) (struct target_ops *, char *, int);
384 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
385 ptid_t (*to_wait) (struct target_ops *,
386 ptid_t, struct target_waitstatus *, int);
387 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
388 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
389 void (*to_prepare_to_store) (struct regcache *);
390
391 /* Transfer LEN bytes of memory between GDB address MYADDR and
392 target address MEMADDR. If WRITE, transfer them to the target, else
393 transfer them from the target. TARGET is the target from which we
394 get this function.
395
396 Return value, N, is one of the following:
397
398 0 means that we can't handle this. If errno has been set, it is the
399 error which prevented us from doing it (FIXME: What about bfd_error?).
400
401 positive (call it N) means that we have transferred N bytes
402 starting at MEMADDR. We might be able to handle more bytes
403 beyond this length, but no promises.
404
405 negative (call its absolute value N) means that we cannot
406 transfer right at MEMADDR, but we could transfer at least
407 something at MEMADDR + N.
408
409 NOTE: cagney/2004-10-01: This has been entirely superseeded by
410 to_xfer_partial and inferior inheritance. */
411
412 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
413 int len, int write,
414 struct mem_attrib *attrib,
415 struct target_ops *target);
416
417 void (*to_files_info) (struct target_ops *);
418 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
419 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
420 int (*to_can_use_hw_breakpoint) (int, int, int);
421 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
422 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
423 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
424 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
425 int (*to_stopped_by_watchpoint) (void);
426 int to_have_steppable_watchpoint;
427 int to_have_continuable_watchpoint;
428 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
429 int (*to_watchpoint_addr_within_range) (struct target_ops *,
430 CORE_ADDR, CORE_ADDR, int);
431 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
432 void (*to_terminal_init) (void);
433 void (*to_terminal_inferior) (void);
434 void (*to_terminal_ours_for_output) (void);
435 void (*to_terminal_ours) (void);
436 void (*to_terminal_save_ours) (void);
437 void (*to_terminal_info) (char *, int);
438 void (*to_kill) (struct target_ops *);
439 void (*to_load) (char *, int);
440 int (*to_lookup_symbol) (char *, CORE_ADDR *);
441 void (*to_create_inferior) (struct target_ops *,
442 char *, char *, char **, int);
443 void (*to_post_startup_inferior) (ptid_t);
444 void (*to_acknowledge_created_inferior) (int);
445 void (*to_insert_fork_catchpoint) (int);
446 int (*to_remove_fork_catchpoint) (int);
447 void (*to_insert_vfork_catchpoint) (int);
448 int (*to_remove_vfork_catchpoint) (int);
449 int (*to_follow_fork) (struct target_ops *, int);
450 void (*to_insert_exec_catchpoint) (int);
451 int (*to_remove_exec_catchpoint) (int);
452 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
453 int (*to_has_exited) (int, int, int *);
454 void (*to_mourn_inferior) (struct target_ops *);
455 int (*to_can_run) (void);
456 void (*to_notice_signals) (ptid_t ptid);
457 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
458 void (*to_find_new_threads) (struct target_ops *);
459 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
460 char *(*to_extra_thread_info) (struct thread_info *);
461 void (*to_stop) (ptid_t);
462 void (*to_rcmd) (char *command, struct ui_file *output);
463 char *(*to_pid_to_exec_file) (int pid);
464 void (*to_log_command) (const char *);
465 struct target_section_table *(*to_get_section_table) (struct target_ops *);
466 enum strata to_stratum;
467 int (*to_has_all_memory) (struct target_ops *);
468 int (*to_has_memory) (struct target_ops *);
469 int (*to_has_stack) (struct target_ops *);
470 int (*to_has_registers) (struct target_ops *);
471 int (*to_has_execution) (struct target_ops *);
472 int to_has_thread_control; /* control thread execution */
473 int to_attach_no_wait;
474 /* ASYNC target controls */
475 int (*to_can_async_p) (void);
476 int (*to_is_async_p) (void);
477 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
478 int (*to_async_mask) (int);
479 int (*to_supports_non_stop) (void);
480 /* find_memory_regions support method for gcore */
481 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
482 unsigned long,
483 int, int, int,
484 void *),
485 void *);
486 /* make_corefile_notes support method for gcore */
487 char * (*to_make_corefile_notes) (bfd *, int *);
488 /* get_bookmark support method for bookmarks */
489 gdb_byte * (*to_get_bookmark) (char *, int);
490 /* goto_bookmark support method for bookmarks */
491 void (*to_goto_bookmark) (gdb_byte *, int);
492 /* Return the thread-local address at OFFSET in the
493 thread-local storage for the thread PTID and the shared library
494 or executable file given by OBJFILE. If that block of
495 thread-local storage hasn't been allocated yet, this function
496 may return an error. */
497 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
498 ptid_t ptid,
499 CORE_ADDR load_module_addr,
500 CORE_ADDR offset);
501
502 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
503 OBJECT. The OFFSET, for a seekable object, specifies the
504 starting point. The ANNEX can be used to provide additional
505 data-specific information to the target.
506
507 Return the number of bytes actually transfered, zero when no
508 further transfer is possible, and -1 when the transfer is not
509 supported. Return of a positive value smaller than LEN does
510 not indicate the end of the object, only the end of the
511 transfer; higher level code should continue transferring if
512 desired. This is handled in target.c.
513
514 The interface does not support a "retry" mechanism. Instead it
515 assumes that at least one byte will be transfered on each
516 successful call.
517
518 NOTE: cagney/2003-10-17: The current interface can lead to
519 fragmented transfers. Lower target levels should not implement
520 hacks, such as enlarging the transfer, in an attempt to
521 compensate for this. Instead, the target stack should be
522 extended so that it implements supply/collect methods and a
523 look-aside object cache. With that available, the lowest
524 target can safely and freely "push" data up the stack.
525
526 See target_read and target_write for more information. One,
527 and only one, of readbuf or writebuf must be non-NULL. */
528
529 LONGEST (*to_xfer_partial) (struct target_ops *ops,
530 enum target_object object, const char *annex,
531 gdb_byte *readbuf, const gdb_byte *writebuf,
532 ULONGEST offset, LONGEST len);
533
534 /* Returns the memory map for the target. A return value of NULL
535 means that no memory map is available. If a memory address
536 does not fall within any returned regions, it's assumed to be
537 RAM. The returned memory regions should not overlap.
538
539 The order of regions does not matter; target_memory_map will
540 sort regions by starting address. For that reason, this
541 function should not be called directly except via
542 target_memory_map.
543
544 This method should not cache data; if the memory map could
545 change unexpectedly, it should be invalidated, and higher
546 layers will re-fetch it. */
547 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
548
549 /* Erases the region of flash memory starting at ADDRESS, of
550 length LENGTH.
551
552 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
553 on flash block boundaries, as reported by 'to_memory_map'. */
554 void (*to_flash_erase) (struct target_ops *,
555 ULONGEST address, LONGEST length);
556
557 /* Finishes a flash memory write sequence. After this operation
558 all flash memory should be available for writing and the result
559 of reading from areas written by 'to_flash_write' should be
560 equal to what was written. */
561 void (*to_flash_done) (struct target_ops *);
562
563 /* Describe the architecture-specific features of this target.
564 Returns the description found, or NULL if no description
565 was available. */
566 const struct target_desc *(*to_read_description) (struct target_ops *ops);
567
568 /* Build the PTID of the thread on which a given task is running,
569 based on LWP and THREAD. These values are extracted from the
570 task Private_Data section of the Ada Task Control Block, and
571 their interpretation depends on the target. */
572 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
573
574 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
575 Return 0 if *READPTR is already at the end of the buffer.
576 Return -1 if there is insufficient buffer for a whole entry.
577 Return 1 if an entry was read into *TYPEP and *VALP. */
578 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
579 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
580
581 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
582 sequence of bytes in PATTERN with length PATTERN_LEN.
583
584 The result is 1 if found, 0 if not found, and -1 if there was an error
585 requiring halting of the search (e.g. memory read error).
586 If the pattern is found the address is recorded in FOUND_ADDRP. */
587 int (*to_search_memory) (struct target_ops *ops,
588 CORE_ADDR start_addr, ULONGEST search_space_len,
589 const gdb_byte *pattern, ULONGEST pattern_len,
590 CORE_ADDR *found_addrp);
591
592 /* Can target execute in reverse? */
593 int (*to_can_execute_reverse) (void);
594
595 /* Does this target support debugging multiple processes
596 simultaneously? */
597 int (*to_supports_multi_process) (void);
598
599 /* Determine current architecture of thread PTID.
600
601 The target is supposed to determine the architecture of the code where
602 the target is currently stopped at (on Cell, if a target is in spu_run,
603 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
604 This is architecture used to perform decr_pc_after_break adjustment,
605 and also determines the frame architecture of the innermost frame.
606 ptrace operations need to operate according to target_gdbarch.
607
608 The default implementation always returns target_gdbarch. */
609 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
610
611 /* Determine current address space of thread PTID.
612
613 The default implementation always returns the inferior's
614 address space. */
615 struct address_space *(*to_thread_address_space) (struct target_ops *,
616 ptid_t);
617
618 /* Tracepoint-related operations. */
619
620 /* Prepare the target for a tracing run. */
621 void (*to_trace_init) (void);
622
623 /* Send full details of a tracepoint to the target. */
624 void (*to_download_tracepoint) (struct breakpoint *t);
625
626 /* Send full details of a trace state variable to the target. */
627 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
628
629 /* Inform the target info of memory regions that are readonly
630 (such as text sections), and so it should return data from
631 those rather than look in the trace buffer. */
632 void (*to_trace_set_readonly_regions) (void);
633
634 /* Start a trace run. */
635 void (*to_trace_start) (void);
636
637 /* Get the current status of a tracing run. */
638 int (*to_get_trace_status) (struct trace_status *ts);
639
640 /* Stop a trace run. */
641 void (*to_trace_stop) (void);
642
643 /* Ask the target to find a trace frame of the given type TYPE,
644 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
645 number of the trace frame, and also the tracepoint number at
646 TPP. If no trace frame matches, return -1. May throw if the
647 operation fails. */
648 int (*to_trace_find) (enum trace_find_type type, int num,
649 ULONGEST addr1, ULONGEST addr2, int *tpp);
650
651 /* Get the value of the trace state variable number TSV, returning
652 1 if the value is known and writing the value itself into the
653 location pointed to by VAL, else returning 0. */
654 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
655
656 int (*to_save_trace_data) (const char *filename);
657
658 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
659
660 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
661
662 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
663 ULONGEST offset, LONGEST len);
664
665 /* Set the target's tracing behavior in response to unexpected
666 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
667 void (*to_set_disconnected_tracing) (int val);
668 void (*to_set_circular_trace_buffer) (int val);
669
670 /* Return the processor core that thread PTID was last seen on.
671 This information is updated only when:
672 - update_thread_list is called
673 - thread stops
674 If the core cannot be determined -- either for the specified thread, or
675 right now, or in this debug session, or for this target -- return -1. */
676 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
677
678 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
679 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
680 a match, 0 if there's a mismatch, and -1 if an error is
681 encountered while reading memory. */
682 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
683 CORE_ADDR memaddr, ULONGEST size);
684
685 /* Return the address of the start of the Thread Information Block
686 a Windows OS specific feature. */
687 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
688
689 /* Send the new settings of write permission variables. */
690 void (*to_set_permissions) (void);
691
692 int to_magic;
693 /* Need sub-structure for target machine related rather than comm related?
694 */
695 };
696
697 /* Magic number for checking ops size. If a struct doesn't end with this
698 number, somebody changed the declaration but didn't change all the
699 places that initialize one. */
700
701 #define OPS_MAGIC 3840
702
703 /* The ops structure for our "current" target process. This should
704 never be NULL. If there is no target, it points to the dummy_target. */
705
706 extern struct target_ops current_target;
707
708 /* Define easy words for doing these operations on our current target. */
709
710 #define target_shortname (current_target.to_shortname)
711 #define target_longname (current_target.to_longname)
712
713 /* Does whatever cleanup is required for a target that we are no
714 longer going to be calling. QUITTING indicates that GDB is exiting
715 and should not get hung on an error (otherwise it is important to
716 perform clean termination, even if it takes a while). This routine
717 is automatically always called when popping the target off the
718 target stack (to_beneath is undefined). Closing file descriptors
719 and freeing all memory allocated memory are typical things it
720 should do. */
721
722 void target_close (struct target_ops *targ, int quitting);
723
724 /* Attaches to a process on the target side. Arguments are as passed
725 to the `attach' command by the user. This routine can be called
726 when the target is not on the target-stack, if the target_can_run
727 routine returns 1; in that case, it must push itself onto the stack.
728 Upon exit, the target should be ready for normal operations, and
729 should be ready to deliver the status of the process immediately
730 (without waiting) to an upcoming target_wait call. */
731
732 void target_attach (char *, int);
733
734 /* Some targets don't generate traps when attaching to the inferior,
735 or their target_attach implementation takes care of the waiting.
736 These targets must set to_attach_no_wait. */
737
738 #define target_attach_no_wait \
739 (current_target.to_attach_no_wait)
740
741 /* The target_attach operation places a process under debugger control,
742 and stops the process.
743
744 This operation provides a target-specific hook that allows the
745 necessary bookkeeping to be performed after an attach completes. */
746 #define target_post_attach(pid) \
747 (*current_target.to_post_attach) (pid)
748
749 /* Takes a program previously attached to and detaches it.
750 The program may resume execution (some targets do, some don't) and will
751 no longer stop on signals, etc. We better not have left any breakpoints
752 in the program or it'll die when it hits one. ARGS is arguments
753 typed by the user (e.g. a signal to send the process). FROM_TTY
754 says whether to be verbose or not. */
755
756 extern void target_detach (char *, int);
757
758 /* Disconnect from the current target without resuming it (leaving it
759 waiting for a debugger). */
760
761 extern void target_disconnect (char *, int);
762
763 /* Resume execution of the target process PTID. STEP says whether to
764 single-step or to run free; SIGGNAL is the signal to be given to
765 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
766 pass TARGET_SIGNAL_DEFAULT. */
767
768 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
769
770 /* Wait for process pid to do something. PTID = -1 to wait for any
771 pid to do something. Return pid of child, or -1 in case of error;
772 store status through argument pointer STATUS. Note that it is
773 _NOT_ OK to throw_exception() out of target_wait() without popping
774 the debugging target from the stack; GDB isn't prepared to get back
775 to the prompt with a debugging target but without the frame cache,
776 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
777 options. */
778
779 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
780 int options);
781
782 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
783
784 extern void target_fetch_registers (struct regcache *regcache, int regno);
785
786 /* Store at least register REGNO, or all regs if REGNO == -1.
787 It can store as many registers as it wants to, so target_prepare_to_store
788 must have been previously called. Calls error() if there are problems. */
789
790 extern void target_store_registers (struct regcache *regcache, int regs);
791
792 /* Get ready to modify the registers array. On machines which store
793 individual registers, this doesn't need to do anything. On machines
794 which store all the registers in one fell swoop, this makes sure
795 that REGISTERS contains all the registers from the program being
796 debugged. */
797
798 #define target_prepare_to_store(regcache) \
799 (*current_target.to_prepare_to_store) (regcache)
800
801 /* Determine current address space of thread PTID. */
802
803 struct address_space *target_thread_address_space (ptid_t);
804
805 /* Returns true if this target can debug multiple processes
806 simultaneously. */
807
808 #define target_supports_multi_process() \
809 (*current_target.to_supports_multi_process) ()
810
811 /* Invalidate all target dcaches. */
812 extern void target_dcache_invalidate (void);
813
814 extern int target_read_string (CORE_ADDR, char **, int, int *);
815
816 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
817
818 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
819
820 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
821 int len);
822
823 /* Fetches the target's memory map. If one is found it is sorted
824 and returned, after some consistency checking. Otherwise, NULL
825 is returned. */
826 VEC(mem_region_s) *target_memory_map (void);
827
828 /* Erase the specified flash region. */
829 void target_flash_erase (ULONGEST address, LONGEST length);
830
831 /* Finish a sequence of flash operations. */
832 void target_flash_done (void);
833
834 /* Describes a request for a memory write operation. */
835 struct memory_write_request
836 {
837 /* Begining address that must be written. */
838 ULONGEST begin;
839 /* Past-the-end address. */
840 ULONGEST end;
841 /* The data to write. */
842 gdb_byte *data;
843 /* A callback baton for progress reporting for this request. */
844 void *baton;
845 };
846 typedef struct memory_write_request memory_write_request_s;
847 DEF_VEC_O(memory_write_request_s);
848
849 /* Enumeration specifying different flash preservation behaviour. */
850 enum flash_preserve_mode
851 {
852 flash_preserve,
853 flash_discard
854 };
855
856 /* Write several memory blocks at once. This version can be more
857 efficient than making several calls to target_write_memory, in
858 particular because it can optimize accesses to flash memory.
859
860 Moreover, this is currently the only memory access function in gdb
861 that supports writing to flash memory, and it should be used for
862 all cases where access to flash memory is desirable.
863
864 REQUESTS is the vector (see vec.h) of memory_write_request.
865 PRESERVE_FLASH_P indicates what to do with blocks which must be
866 erased, but not completely rewritten.
867 PROGRESS_CB is a function that will be periodically called to provide
868 feedback to user. It will be called with the baton corresponding
869 to the request currently being written. It may also be called
870 with a NULL baton, when preserved flash sectors are being rewritten.
871
872 The function returns 0 on success, and error otherwise. */
873 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
874 enum flash_preserve_mode preserve_flash_p,
875 void (*progress_cb) (ULONGEST, void *));
876
877 /* From infrun.c. */
878
879 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
880
881 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
882
883 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
884
885 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
886
887 /* Print a line about the current target. */
888
889 #define target_files_info() \
890 (*current_target.to_files_info) (&current_target)
891
892 /* Insert a breakpoint at address BP_TGT->placed_address in the target
893 machine. Result is 0 for success, or an errno value. */
894
895 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
896 struct bp_target_info *bp_tgt);
897
898 /* Remove a breakpoint at address BP_TGT->placed_address in the target
899 machine. Result is 0 for success, or an errno value. */
900
901 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
902 struct bp_target_info *bp_tgt);
903
904 /* Initialize the terminal settings we record for the inferior,
905 before we actually run the inferior. */
906
907 #define target_terminal_init() \
908 (*current_target.to_terminal_init) ()
909
910 /* Put the inferior's terminal settings into effect.
911 This is preparation for starting or resuming the inferior. */
912
913 extern void target_terminal_inferior (void);
914
915 /* Put some of our terminal settings into effect,
916 enough to get proper results from our output,
917 but do not change into or out of RAW mode
918 so that no input is discarded.
919
920 After doing this, either terminal_ours or terminal_inferior
921 should be called to get back to a normal state of affairs. */
922
923 #define target_terminal_ours_for_output() \
924 (*current_target.to_terminal_ours_for_output) ()
925
926 /* Put our terminal settings into effect.
927 First record the inferior's terminal settings
928 so they can be restored properly later. */
929
930 #define target_terminal_ours() \
931 (*current_target.to_terminal_ours) ()
932
933 /* Save our terminal settings.
934 This is called from TUI after entering or leaving the curses
935 mode. Since curses modifies our terminal this call is here
936 to take this change into account. */
937
938 #define target_terminal_save_ours() \
939 (*current_target.to_terminal_save_ours) ()
940
941 /* Print useful information about our terminal status, if such a thing
942 exists. */
943
944 #define target_terminal_info(arg, from_tty) \
945 (*current_target.to_terminal_info) (arg, from_tty)
946
947 /* Kill the inferior process. Make it go away. */
948
949 extern void target_kill (void);
950
951 /* Load an executable file into the target process. This is expected
952 to not only bring new code into the target process, but also to
953 update GDB's symbol tables to match.
954
955 ARG contains command-line arguments, to be broken down with
956 buildargv (). The first non-switch argument is the filename to
957 load, FILE; the second is a number (as parsed by strtoul (..., ...,
958 0)), which is an offset to apply to the load addresses of FILE's
959 sections. The target may define switches, or other non-switch
960 arguments, as it pleases. */
961
962 extern void target_load (char *arg, int from_tty);
963
964 /* Look up a symbol in the target's symbol table. NAME is the symbol
965 name. ADDRP is a CORE_ADDR * pointing to where the value of the
966 symbol should be returned. The result is 0 if successful, nonzero
967 if the symbol does not exist in the target environment. This
968 function should not call error() if communication with the target
969 is interrupted, since it is called from symbol reading, but should
970 return nonzero, possibly doing a complain(). */
971
972 #define target_lookup_symbol(name, addrp) \
973 (*current_target.to_lookup_symbol) (name, addrp)
974
975 /* Start an inferior process and set inferior_ptid to its pid.
976 EXEC_FILE is the file to run.
977 ALLARGS is a string containing the arguments to the program.
978 ENV is the environment vector to pass. Errors reported with error().
979 On VxWorks and various standalone systems, we ignore exec_file. */
980
981 void target_create_inferior (char *exec_file, char *args,
982 char **env, int from_tty);
983
984 /* Some targets (such as ttrace-based HPUX) don't allow us to request
985 notification of inferior events such as fork and vork immediately
986 after the inferior is created. (This because of how gdb gets an
987 inferior created via invoking a shell to do it. In such a scenario,
988 if the shell init file has commands in it, the shell will fork and
989 exec for each of those commands, and we will see each such fork
990 event. Very bad.)
991
992 Such targets will supply an appropriate definition for this function. */
993
994 #define target_post_startup_inferior(ptid) \
995 (*current_target.to_post_startup_inferior) (ptid)
996
997 /* On some targets, the sequence of starting up an inferior requires
998 some synchronization between gdb and the new inferior process, PID. */
999
1000 #define target_acknowledge_created_inferior(pid) \
1001 (*current_target.to_acknowledge_created_inferior) (pid)
1002
1003 /* On some targets, we can catch an inferior fork or vfork event when
1004 it occurs. These functions insert/remove an already-created
1005 catchpoint for such events. */
1006
1007 #define target_insert_fork_catchpoint(pid) \
1008 (*current_target.to_insert_fork_catchpoint) (pid)
1009
1010 #define target_remove_fork_catchpoint(pid) \
1011 (*current_target.to_remove_fork_catchpoint) (pid)
1012
1013 #define target_insert_vfork_catchpoint(pid) \
1014 (*current_target.to_insert_vfork_catchpoint) (pid)
1015
1016 #define target_remove_vfork_catchpoint(pid) \
1017 (*current_target.to_remove_vfork_catchpoint) (pid)
1018
1019 /* If the inferior forks or vforks, this function will be called at
1020 the next resume in order to perform any bookkeeping and fiddling
1021 necessary to continue debugging either the parent or child, as
1022 requested, and releasing the other. Information about the fork
1023 or vfork event is available via get_last_target_status ().
1024 This function returns 1 if the inferior should not be resumed
1025 (i.e. there is another event pending). */
1026
1027 int target_follow_fork (int follow_child);
1028
1029 /* On some targets, we can catch an inferior exec event when it
1030 occurs. These functions insert/remove an already-created
1031 catchpoint for such events. */
1032
1033 #define target_insert_exec_catchpoint(pid) \
1034 (*current_target.to_insert_exec_catchpoint) (pid)
1035
1036 #define target_remove_exec_catchpoint(pid) \
1037 (*current_target.to_remove_exec_catchpoint) (pid)
1038
1039 /* Syscall catch.
1040
1041 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1042 If NEEDED is zero, it means the target can disable the mechanism to
1043 catch system calls because there are no more catchpoints of this type.
1044
1045 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1046 being requested. In this case, both TABLE_SIZE and TABLE should
1047 be ignored.
1048
1049 TABLE_SIZE is the number of elements in TABLE. It only matters if
1050 ANY_COUNT is zero.
1051
1052 TABLE is an array of ints, indexed by syscall number. An element in
1053 this array is nonzero if that syscall should be caught. This argument
1054 only matters if ANY_COUNT is zero. */
1055
1056 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1057 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1058 table_size, table)
1059
1060 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1061 exit code of PID, if any. */
1062
1063 #define target_has_exited(pid,wait_status,exit_status) \
1064 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1065
1066 /* The debugger has completed a blocking wait() call. There is now
1067 some process event that must be processed. This function should
1068 be defined by those targets that require the debugger to perform
1069 cleanup or internal state changes in response to the process event. */
1070
1071 /* The inferior process has died. Do what is right. */
1072
1073 void target_mourn_inferior (void);
1074
1075 /* Does target have enough data to do a run or attach command? */
1076
1077 #define target_can_run(t) \
1078 ((t)->to_can_run) ()
1079
1080 /* post process changes to signal handling in the inferior. */
1081
1082 #define target_notice_signals(ptid) \
1083 (*current_target.to_notice_signals) (ptid)
1084
1085 /* Check to see if a thread is still alive. */
1086
1087 extern int target_thread_alive (ptid_t ptid);
1088
1089 /* Query for new threads and add them to the thread list. */
1090
1091 extern void target_find_new_threads (void);
1092
1093 /* Make target stop in a continuable fashion. (For instance, under
1094 Unix, this should act like SIGSTOP). This function is normally
1095 used by GUIs to implement a stop button. */
1096
1097 extern void target_stop (ptid_t ptid);
1098
1099 /* Send the specified COMMAND to the target's monitor
1100 (shell,interpreter) for execution. The result of the query is
1101 placed in OUTBUF. */
1102
1103 #define target_rcmd(command, outbuf) \
1104 (*current_target.to_rcmd) (command, outbuf)
1105
1106
1107 /* Does the target include all of memory, or only part of it? This
1108 determines whether we look up the target chain for other parts of
1109 memory if this target can't satisfy a request. */
1110
1111 extern int target_has_all_memory_1 (void);
1112 #define target_has_all_memory target_has_all_memory_1 ()
1113
1114 /* Does the target include memory? (Dummy targets don't.) */
1115
1116 extern int target_has_memory_1 (void);
1117 #define target_has_memory target_has_memory_1 ()
1118
1119 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1120 we start a process.) */
1121
1122 extern int target_has_stack_1 (void);
1123 #define target_has_stack target_has_stack_1 ()
1124
1125 /* Does the target have registers? (Exec files don't.) */
1126
1127 extern int target_has_registers_1 (void);
1128 #define target_has_registers target_has_registers_1 ()
1129
1130 /* Does the target have execution? Can we make it jump (through
1131 hoops), or pop its stack a few times? This means that the current
1132 target is currently executing; for some targets, that's the same as
1133 whether or not the target is capable of execution, but there are
1134 also targets which can be current while not executing. In that
1135 case this will become true after target_create_inferior or
1136 target_attach. */
1137
1138 extern int target_has_execution_1 (void);
1139 #define target_has_execution target_has_execution_1 ()
1140
1141 /* Default implementations for process_stratum targets. Return true
1142 if there's a selected inferior, false otherwise. */
1143
1144 extern int default_child_has_all_memory (struct target_ops *ops);
1145 extern int default_child_has_memory (struct target_ops *ops);
1146 extern int default_child_has_stack (struct target_ops *ops);
1147 extern int default_child_has_registers (struct target_ops *ops);
1148 extern int default_child_has_execution (struct target_ops *ops);
1149
1150 /* Can the target support the debugger control of thread execution?
1151 Can it lock the thread scheduler? */
1152
1153 #define target_can_lock_scheduler \
1154 (current_target.to_has_thread_control & tc_schedlock)
1155
1156 /* Should the target enable async mode if it is supported? Temporary
1157 cludge until async mode is a strict superset of sync mode. */
1158 extern int target_async_permitted;
1159
1160 /* Can the target support asynchronous execution? */
1161 #define target_can_async_p() (current_target.to_can_async_p ())
1162
1163 /* Is the target in asynchronous execution mode? */
1164 #define target_is_async_p() (current_target.to_is_async_p ())
1165
1166 int target_supports_non_stop (void);
1167
1168 /* Put the target in async mode with the specified callback function. */
1169 #define target_async(CALLBACK,CONTEXT) \
1170 (current_target.to_async ((CALLBACK), (CONTEXT)))
1171
1172 /* This is to be used ONLY within call_function_by_hand(). It provides
1173 a workaround, to have inferior function calls done in sychronous
1174 mode, even though the target is asynchronous. After
1175 target_async_mask(0) is called, calls to target_can_async_p() will
1176 return FALSE , so that target_resume() will not try to start the
1177 target asynchronously. After the inferior stops, we IMMEDIATELY
1178 restore the previous nature of the target, by calling
1179 target_async_mask(1). After that, target_can_async_p() will return
1180 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1181
1182 FIXME ezannoni 1999-12-13: we won't need this once we move
1183 the turning async on and off to the single execution commands,
1184 from where it is done currently, in remote_resume(). */
1185
1186 #define target_async_mask(MASK) \
1187 (current_target.to_async_mask (MASK))
1188
1189 /* Converts a process id to a string. Usually, the string just contains
1190 `process xyz', but on some systems it may contain
1191 `process xyz thread abc'. */
1192
1193 extern char *target_pid_to_str (ptid_t ptid);
1194
1195 extern char *normal_pid_to_str (ptid_t ptid);
1196
1197 /* Return a short string describing extra information about PID,
1198 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1199 is okay. */
1200
1201 #define target_extra_thread_info(TP) \
1202 (current_target.to_extra_thread_info (TP))
1203
1204 /* Attempts to find the pathname of the executable file
1205 that was run to create a specified process.
1206
1207 The process PID must be stopped when this operation is used.
1208
1209 If the executable file cannot be determined, NULL is returned.
1210
1211 Else, a pointer to a character string containing the pathname
1212 is returned. This string should be copied into a buffer by
1213 the client if the string will not be immediately used, or if
1214 it must persist. */
1215
1216 #define target_pid_to_exec_file(pid) \
1217 (current_target.to_pid_to_exec_file) (pid)
1218
1219 /* See the to_thread_architecture description in struct target_ops. */
1220
1221 #define target_thread_architecture(ptid) \
1222 (current_target.to_thread_architecture (&current_target, ptid))
1223
1224 /*
1225 * Iterator function for target memory regions.
1226 * Calls a callback function once for each memory region 'mapped'
1227 * in the child process. Defined as a simple macro rather than
1228 * as a function macro so that it can be tested for nullity.
1229 */
1230
1231 #define target_find_memory_regions(FUNC, DATA) \
1232 (current_target.to_find_memory_regions) (FUNC, DATA)
1233
1234 /*
1235 * Compose corefile .note section.
1236 */
1237
1238 #define target_make_corefile_notes(BFD, SIZE_P) \
1239 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1240
1241 /* Bookmark interfaces. */
1242 #define target_get_bookmark(ARGS, FROM_TTY) \
1243 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1244
1245 #define target_goto_bookmark(ARG, FROM_TTY) \
1246 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1247
1248 /* Hardware watchpoint interfaces. */
1249
1250 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1251 write). Only the INFERIOR_PTID task is being queried. */
1252
1253 #define target_stopped_by_watchpoint \
1254 (*current_target.to_stopped_by_watchpoint)
1255
1256 /* Non-zero if we have steppable watchpoints */
1257
1258 #define target_have_steppable_watchpoint \
1259 (current_target.to_have_steppable_watchpoint)
1260
1261 /* Non-zero if we have continuable watchpoints */
1262
1263 #define target_have_continuable_watchpoint \
1264 (current_target.to_have_continuable_watchpoint)
1265
1266 /* Provide defaults for hardware watchpoint functions. */
1267
1268 /* If the *_hw_beakpoint functions have not been defined
1269 elsewhere use the definitions in the target vector. */
1270
1271 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1272 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1273 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1274 (including this one?). OTHERTYPE is who knows what... */
1275
1276 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1277 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1278
1279 #define target_region_ok_for_hw_watchpoint(addr, len) \
1280 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1281
1282
1283 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1284 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1285 Returns 0 for success, 1 if the watchpoint type is not supported,
1286 -1 for failure. */
1287
1288 #define target_insert_watchpoint(addr, len, type) \
1289 (*current_target.to_insert_watchpoint) (addr, len, type)
1290
1291 #define target_remove_watchpoint(addr, len, type) \
1292 (*current_target.to_remove_watchpoint) (addr, len, type)
1293
1294 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1295 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1296
1297 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1298 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1299
1300 /* Return non-zero if target knows the data address which triggered this
1301 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1302 INFERIOR_PTID task is being queried. */
1303 #define target_stopped_data_address(target, addr_p) \
1304 (*target.to_stopped_data_address) (target, addr_p)
1305
1306 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1307 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1308
1309 /* Target can execute in reverse? */
1310 #define target_can_execute_reverse \
1311 (current_target.to_can_execute_reverse ? \
1312 current_target.to_can_execute_reverse () : 0)
1313
1314 extern const struct target_desc *target_read_description (struct target_ops *);
1315
1316 #define target_get_ada_task_ptid(lwp, tid) \
1317 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1318
1319 /* Utility implementation of searching memory. */
1320 extern int simple_search_memory (struct target_ops* ops,
1321 CORE_ADDR start_addr,
1322 ULONGEST search_space_len,
1323 const gdb_byte *pattern,
1324 ULONGEST pattern_len,
1325 CORE_ADDR *found_addrp);
1326
1327 /* Main entry point for searching memory. */
1328 extern int target_search_memory (CORE_ADDR start_addr,
1329 ULONGEST search_space_len,
1330 const gdb_byte *pattern,
1331 ULONGEST pattern_len,
1332 CORE_ADDR *found_addrp);
1333
1334 /* Tracepoint-related operations. */
1335
1336 #define target_trace_init() \
1337 (*current_target.to_trace_init) ()
1338
1339 #define target_download_tracepoint(t) \
1340 (*current_target.to_download_tracepoint) (t)
1341
1342 #define target_download_trace_state_variable(tsv) \
1343 (*current_target.to_download_trace_state_variable) (tsv)
1344
1345 #define target_trace_start() \
1346 (*current_target.to_trace_start) ()
1347
1348 #define target_trace_set_readonly_regions() \
1349 (*current_target.to_trace_set_readonly_regions) ()
1350
1351 #define target_get_trace_status(ts) \
1352 (*current_target.to_get_trace_status) (ts)
1353
1354 #define target_trace_stop() \
1355 (*current_target.to_trace_stop) ()
1356
1357 #define target_trace_find(type,num,addr1,addr2,tpp) \
1358 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1359
1360 #define target_get_trace_state_variable_value(tsv,val) \
1361 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1362
1363 #define target_save_trace_data(filename) \
1364 (*current_target.to_save_trace_data) (filename)
1365
1366 #define target_upload_tracepoints(utpp) \
1367 (*current_target.to_upload_tracepoints) (utpp)
1368
1369 #define target_upload_trace_state_variables(utsvp) \
1370 (*current_target.to_upload_trace_state_variables) (utsvp)
1371
1372 #define target_get_raw_trace_data(buf,offset,len) \
1373 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1374
1375 #define target_set_disconnected_tracing(val) \
1376 (*current_target.to_set_disconnected_tracing) (val)
1377
1378 #define target_set_circular_trace_buffer(val) \
1379 (*current_target.to_set_circular_trace_buffer) (val)
1380
1381 #define target_get_tib_address(ptid, addr) \
1382 (*current_target.to_get_tib_address) ((ptid), (addr))
1383
1384 #define target_set_permissions() \
1385 (*current_target.to_set_permissions) ()
1386
1387 /* Command logging facility. */
1388
1389 #define target_log_command(p) \
1390 do \
1391 if (current_target.to_log_command) \
1392 (*current_target.to_log_command) (p); \
1393 while (0)
1394
1395
1396 extern int target_core_of_thread (ptid_t ptid);
1397
1398 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1399 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1400 if there's a mismatch, and -1 if an error is encountered while
1401 reading memory. Throws an error if the functionality is found not
1402 to be supported by the current target. */
1403 int target_verify_memory (const gdb_byte *data,
1404 CORE_ADDR memaddr, ULONGEST size);
1405
1406 /* Routines for maintenance of the target structures...
1407
1408 add_target: Add a target to the list of all possible targets.
1409
1410 push_target: Make this target the top of the stack of currently used
1411 targets, within its particular stratum of the stack. Result
1412 is 0 if now atop the stack, nonzero if not on top (maybe
1413 should warn user).
1414
1415 unpush_target: Remove this from the stack of currently used targets,
1416 no matter where it is on the list. Returns 0 if no
1417 change, 1 if removed from stack.
1418
1419 pop_target: Remove the top thing on the stack of current targets. */
1420
1421 extern void add_target (struct target_ops *);
1422
1423 extern void push_target (struct target_ops *);
1424
1425 extern int unpush_target (struct target_ops *);
1426
1427 extern void target_pre_inferior (int);
1428
1429 extern void target_preopen (int);
1430
1431 extern void pop_target (void);
1432
1433 /* Does whatever cleanup is required to get rid of all pushed targets.
1434 QUITTING is propagated to target_close; it indicates that GDB is
1435 exiting and should not get hung on an error (otherwise it is
1436 important to perform clean termination, even if it takes a
1437 while). */
1438 extern void pop_all_targets (int quitting);
1439
1440 /* Like pop_all_targets, but pops only targets whose stratum is
1441 strictly above ABOVE_STRATUM. */
1442 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1443
1444 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1445 CORE_ADDR offset);
1446
1447 /* Struct target_section maps address ranges to file sections. It is
1448 mostly used with BFD files, but can be used without (e.g. for handling
1449 raw disks, or files not in formats handled by BFD). */
1450
1451 struct target_section
1452 {
1453 CORE_ADDR addr; /* Lowest address in section */
1454 CORE_ADDR endaddr; /* 1+highest address in section */
1455
1456 struct bfd_section *the_bfd_section;
1457
1458 bfd *bfd; /* BFD file pointer */
1459 };
1460
1461 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1462
1463 struct target_section_table
1464 {
1465 struct target_section *sections;
1466 struct target_section *sections_end;
1467 };
1468
1469 /* Return the "section" containing the specified address. */
1470 struct target_section *target_section_by_addr (struct target_ops *target,
1471 CORE_ADDR addr);
1472
1473 /* Return the target section table this target (or the targets
1474 beneath) currently manipulate. */
1475
1476 extern struct target_section_table *target_get_section_table
1477 (struct target_ops *target);
1478
1479 /* From mem-break.c */
1480
1481 extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1482
1483 extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1484
1485 extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1486
1487 extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1488
1489
1490 /* From target.c */
1491
1492 extern void initialize_targets (void);
1493
1494 extern void noprocess (void) ATTRIBUTE_NORETURN;
1495
1496 extern void target_require_runnable (void);
1497
1498 extern void find_default_attach (struct target_ops *, char *, int);
1499
1500 extern void find_default_create_inferior (struct target_ops *,
1501 char *, char *, char **, int);
1502
1503 extern struct target_ops *find_run_target (void);
1504
1505 extern struct target_ops *find_core_target (void);
1506
1507 extern struct target_ops *find_target_beneath (struct target_ops *);
1508
1509 /* Read OS data object of type TYPE from the target, and return it in
1510 XML format. The result is NUL-terminated and returned as a string,
1511 allocated using xmalloc. If an error occurs or the transfer is
1512 unsupported, NULL is returned. Empty objects are returned as
1513 allocated but empty strings. */
1514
1515 extern char *target_get_osdata (const char *type);
1516
1517 \f
1518 /* Stuff that should be shared among the various remote targets. */
1519
1520 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1521 information (higher values, more information). */
1522 extern int remote_debug;
1523
1524 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1525 extern int baud_rate;
1526 /* Timeout limit for response from target. */
1527 extern int remote_timeout;
1528
1529 \f
1530 /* Functions for helping to write a native target. */
1531
1532 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1533 extern void store_waitstatus (struct target_waitstatus *, int);
1534
1535 /* These are in common/signals.c, but they're only used by gdb. */
1536 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1537 int);
1538 extern int default_target_signal_to_host (struct gdbarch *,
1539 enum target_signal);
1540
1541 /* Convert from a number used in a GDB command to an enum target_signal. */
1542 extern enum target_signal target_signal_from_command (int);
1543 /* End of files in common/signals.c. */
1544
1545 /* Set the show memory breakpoints mode to show, and installs a cleanup
1546 to restore it back to the current value. */
1547 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1548
1549 extern int may_write_registers;
1550 extern int may_write_memory;
1551 extern int may_insert_breakpoints;
1552 extern int may_insert_tracepoints;
1553 extern int may_insert_fast_tracepoints;
1554 extern int may_stop;
1555
1556 extern void update_target_permissions (void);
1557
1558 \f
1559 /* Imported from machine dependent code */
1560
1561 /* Blank target vector entries are initialized to target_ignore. */
1562 void target_ignore (void);
1563
1564 extern struct target_ops deprecated_child_ops;
1565
1566 #endif /* !defined (TARGET_H) */
This page took 0.060532 seconds and 4 git commands to generate.