Eliminate exceptions.c:print_any_exception.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* The piece of the object requested is unavailable. */
217 TARGET_XFER_UNAVAILABLE = 2,
218
219 /* Generic I/O error. Note that it's important that this is '-1',
220 as we still have target_xfer-related code returning hardcoded
221 '-1' on error. */
222 TARGET_XFER_E_IO = -1,
223
224 /* Keep list in sync with target_xfer_status_to_string. */
225 };
226
227 /* Return the string form of STATUS. */
228
229 extern const char *
230 target_xfer_status_to_string (enum target_xfer_status status);
231
232 /* Enumeration of the kinds of traceframe searches that a target may
233 be able to perform. */
234
235 enum trace_find_type
236 {
237 tfind_number,
238 tfind_pc,
239 tfind_tp,
240 tfind_range,
241 tfind_outside,
242 };
243
244 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
245 DEF_VEC_P(static_tracepoint_marker_p);
246
247 typedef enum target_xfer_status
248 target_xfer_partial_ftype (struct target_ops *ops,
249 enum target_object object,
250 const char *annex,
251 gdb_byte *readbuf,
252 const gdb_byte *writebuf,
253 ULONGEST offset,
254 ULONGEST len,
255 ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
258 OBJECT. The OFFSET, for a seekable object, specifies the
259 starting point. The ANNEX can be used to provide additional
260 data-specific information to the target.
261
262 Return the number of bytes actually transfered, or a negative error
263 code (an 'enum target_xfer_error' value) if the transfer is not
264 supported or otherwise fails. Return of a positive value less than
265 LEN indicates that no further transfer is possible. Unlike the raw
266 to_xfer_partial interface, callers of these functions do not need
267 to retry partial transfers. */
268
269 extern LONGEST target_read (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte *buf,
272 ULONGEST offset, LONGEST len);
273
274 struct memory_read_result
275 {
276 /* First address that was read. */
277 ULONGEST begin;
278 /* Past-the-end address. */
279 ULONGEST end;
280 /* The data. */
281 gdb_byte *data;
282 };
283 typedef struct memory_read_result memory_read_result_s;
284 DEF_VEC_O(memory_read_result_s);
285
286 extern void free_memory_read_result_vector (void *);
287
288 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
289 ULONGEST offset,
290 LONGEST len);
291
292 extern LONGEST target_write (struct target_ops *ops,
293 enum target_object object,
294 const char *annex, const gdb_byte *buf,
295 ULONGEST offset, LONGEST len);
296
297 /* Similar to target_write, except that it also calls PROGRESS with
298 the number of bytes written and the opaque BATON after every
299 successful partial write (and before the first write). This is
300 useful for progress reporting and user interaction while writing
301 data. To abort the transfer, the progress callback can throw an
302 exception. */
303
304 LONGEST target_write_with_progress (struct target_ops *ops,
305 enum target_object object,
306 const char *annex, const gdb_byte *buf,
307 ULONGEST offset, LONGEST len,
308 void (*progress) (ULONGEST, void *),
309 void *baton);
310
311 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
312 be read using OPS. The return value will be -1 if the transfer
313 fails or is not supported; 0 if the object is empty; or the length
314 of the object otherwise. If a positive value is returned, a
315 sufficiently large buffer will be allocated using xmalloc and
316 returned in *BUF_P containing the contents of the object.
317
318 This method should be used for objects sufficiently small to store
319 in a single xmalloc'd buffer, when no fixed bound on the object's
320 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
321 through this function. */
322
323 extern LONGEST target_read_alloc (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, gdb_byte **buf_p);
326
327 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
328 returned as a string, allocated using xmalloc. If an error occurs
329 or the transfer is unsupported, NULL is returned. Empty objects
330 are returned as allocated but empty strings. A warning is issued
331 if the result contains any embedded NUL bytes. */
332
333 extern char *target_read_stralloc (struct target_ops *ops,
334 enum target_object object,
335 const char *annex);
336
337 /* See target_ops->to_xfer_partial. */
338 extern target_xfer_partial_ftype target_xfer_partial;
339
340 /* Wrappers to target read/write that perform memory transfers. They
341 throw an error if the memory transfer fails.
342
343 NOTE: cagney/2003-10-23: The naming schema is lifted from
344 "frame.h". The parameter order is lifted from get_frame_memory,
345 which in turn lifted it from read_memory. */
346
347 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
348 gdb_byte *buf, LONGEST len);
349 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
350 CORE_ADDR addr, int len,
351 enum bfd_endian byte_order);
352 \f
353 struct thread_info; /* fwd decl for parameter list below: */
354
355 /* The type of the callback to the to_async method. */
356
357 typedef void async_callback_ftype (enum inferior_event_type event_type,
358 void *context);
359
360 /* These defines are used to mark target_ops methods. The script
361 make-target-delegates scans these and auto-generates the base
362 method implementations. There are four macros that can be used:
363
364 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
365 does nothing. This is only valid if the method return type is
366 'void'.
367
368 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
369 'tcomplain ()'. The base method simply makes this call, which is
370 assumed not to return.
371
372 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
373 base method returns this expression's value.
374
375 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
376 make-target-delegates does not generate a base method in this case,
377 but instead uses the argument function as the base method. */
378
379 #define TARGET_DEFAULT_IGNORE()
380 #define TARGET_DEFAULT_NORETURN(ARG)
381 #define TARGET_DEFAULT_RETURN(ARG)
382 #define TARGET_DEFAULT_FUNC(ARG)
383
384 struct target_ops
385 {
386 struct target_ops *beneath; /* To the target under this one. */
387 char *to_shortname; /* Name this target type */
388 char *to_longname; /* Name for printing */
389 char *to_doc; /* Documentation. Does not include trailing
390 newline, and starts with a one-line descrip-
391 tion (probably similar to to_longname). */
392 /* Per-target scratch pad. */
393 void *to_data;
394 /* The open routine takes the rest of the parameters from the
395 command, and (if successful) pushes a new target onto the
396 stack. Targets should supply this routine, if only to provide
397 an error message. */
398 void (*to_open) (char *, int);
399 /* Old targets with a static target vector provide "to_close".
400 New re-entrant targets provide "to_xclose" and that is expected
401 to xfree everything (including the "struct target_ops"). */
402 void (*to_xclose) (struct target_ops *targ);
403 void (*to_close) (struct target_ops *);
404 /* Attaches to a process on the target side. Arguments are as
405 passed to the `attach' command by the user. This routine can
406 be called when the target is not on the target-stack, if the
407 target_can_run routine returns 1; in that case, it must push
408 itself onto the stack. Upon exit, the target should be ready
409 for normal operations, and should be ready to deliver the
410 status of the process immediately (without waiting) to an
411 upcoming target_wait call. */
412 void (*to_attach) (struct target_ops *ops, const char *, int);
413 void (*to_post_attach) (struct target_ops *, int)
414 TARGET_DEFAULT_IGNORE ();
415 void (*to_detach) (struct target_ops *ops, const char *, int)
416 TARGET_DEFAULT_IGNORE ();
417 void (*to_disconnect) (struct target_ops *, const char *, int)
418 TARGET_DEFAULT_NORETURN (tcomplain ());
419 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 ptid_t (*to_wait) (struct target_ops *,
422 ptid_t, struct target_waitstatus *, int)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
425 TARGET_DEFAULT_IGNORE ();
426 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
427 TARGET_DEFAULT_NORETURN (noprocess ());
428 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
429 TARGET_DEFAULT_NORETURN (noprocess ());
430
431 void (*to_files_info) (struct target_ops *)
432 TARGET_DEFAULT_IGNORE ();
433 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
434 struct bp_target_info *)
435 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
436 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
437 struct bp_target_info *)
438 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
439 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
440 TARGET_DEFAULT_RETURN (0);
441 int (*to_ranged_break_num_registers) (struct target_ops *)
442 TARGET_DEFAULT_RETURN (-1);
443 int (*to_insert_hw_breakpoint) (struct target_ops *,
444 struct gdbarch *, struct bp_target_info *)
445 TARGET_DEFAULT_RETURN (-1);
446 int (*to_remove_hw_breakpoint) (struct target_ops *,
447 struct gdbarch *, struct bp_target_info *)
448 TARGET_DEFAULT_RETURN (-1);
449
450 /* Documentation of what the two routines below are expected to do is
451 provided with the corresponding target_* macros. */
452 int (*to_remove_watchpoint) (struct target_ops *,
453 CORE_ADDR, int, int, struct expression *)
454 TARGET_DEFAULT_RETURN (-1);
455 int (*to_insert_watchpoint) (struct target_ops *,
456 CORE_ADDR, int, int, struct expression *)
457 TARGET_DEFAULT_RETURN (-1);
458
459 int (*to_insert_mask_watchpoint) (struct target_ops *,
460 CORE_ADDR, CORE_ADDR, int)
461 TARGET_DEFAULT_RETURN (1);
462 int (*to_remove_mask_watchpoint) (struct target_ops *,
463 CORE_ADDR, CORE_ADDR, int)
464 TARGET_DEFAULT_RETURN (1);
465 int (*to_stopped_by_watchpoint) (struct target_ops *)
466 TARGET_DEFAULT_RETURN (0);
467 int to_have_steppable_watchpoint;
468 int to_have_continuable_watchpoint;
469 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
470 TARGET_DEFAULT_RETURN (0);
471 int (*to_watchpoint_addr_within_range) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int)
473 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
474
475 /* Documentation of this routine is provided with the corresponding
476 target_* macro. */
477 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
478 CORE_ADDR, int)
479 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
480
481 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
482 CORE_ADDR, int, int,
483 struct expression *)
484 TARGET_DEFAULT_RETURN (0);
485 int (*to_masked_watch_num_registers) (struct target_ops *,
486 CORE_ADDR, CORE_ADDR)
487 TARGET_DEFAULT_RETURN (-1);
488 void (*to_terminal_init) (struct target_ops *)
489 TARGET_DEFAULT_IGNORE ();
490 void (*to_terminal_inferior) (struct target_ops *)
491 TARGET_DEFAULT_IGNORE ();
492 void (*to_terminal_ours_for_output) (struct target_ops *)
493 TARGET_DEFAULT_IGNORE ();
494 void (*to_terminal_ours) (struct target_ops *)
495 TARGET_DEFAULT_IGNORE ();
496 void (*to_terminal_save_ours) (struct target_ops *)
497 TARGET_DEFAULT_IGNORE ();
498 void (*to_terminal_info) (struct target_ops *, const char *, int)
499 TARGET_DEFAULT_FUNC (default_terminal_info);
500 void (*to_kill) (struct target_ops *)
501 TARGET_DEFAULT_NORETURN (noprocess ());
502 void (*to_load) (struct target_ops *, const char *, int)
503 TARGET_DEFAULT_NORETURN (tcomplain ());
504 /* Start an inferior process and set inferior_ptid to its pid.
505 EXEC_FILE is the file to run.
506 ALLARGS is a string containing the arguments to the program.
507 ENV is the environment vector to pass. Errors reported with error().
508 On VxWorks and various standalone systems, we ignore exec_file. */
509 void (*to_create_inferior) (struct target_ops *,
510 char *, char *, char **, int);
511 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
512 TARGET_DEFAULT_IGNORE ();
513 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
514 TARGET_DEFAULT_RETURN (1);
515 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
516 TARGET_DEFAULT_RETURN (1);
517 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
518 TARGET_DEFAULT_RETURN (1);
519 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
520 TARGET_DEFAULT_RETURN (1);
521 int (*to_follow_fork) (struct target_ops *, int, int)
522 TARGET_DEFAULT_FUNC (default_follow_fork);
523 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
524 TARGET_DEFAULT_RETURN (1);
525 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
526 TARGET_DEFAULT_RETURN (1);
527 int (*to_set_syscall_catchpoint) (struct target_ops *,
528 int, int, int, int, int *)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_has_exited) (struct target_ops *, int, int, int *)
531 TARGET_DEFAULT_RETURN (0);
532 void (*to_mourn_inferior) (struct target_ops *)
533 TARGET_DEFAULT_FUNC (default_mourn_inferior);
534 /* Note that to_can_run is special and can be invoked on an
535 unpushed target. Targets defining this method must also define
536 to_can_async_p and to_supports_non_stop. */
537 int (*to_can_run) (struct target_ops *)
538 TARGET_DEFAULT_RETURN (0);
539
540 /* Documentation of this routine is provided with the corresponding
541 target_* macro. */
542 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
543 TARGET_DEFAULT_IGNORE ();
544
545 /* Documentation of this routine is provided with the
546 corresponding target_* function. */
547 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
548 TARGET_DEFAULT_IGNORE ();
549
550 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
551 TARGET_DEFAULT_RETURN (0);
552 void (*to_find_new_threads) (struct target_ops *)
553 TARGET_DEFAULT_IGNORE ();
554 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
555 TARGET_DEFAULT_FUNC (default_pid_to_str);
556 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (NULL);
558 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
559 TARGET_DEFAULT_RETURN (NULL);
560 void (*to_stop) (struct target_ops *, ptid_t)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_rcmd) (struct target_ops *,
563 const char *command, struct ui_file *output)
564 TARGET_DEFAULT_FUNC (default_rcmd);
565 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
566 TARGET_DEFAULT_RETURN (NULL);
567 void (*to_log_command) (struct target_ops *, const char *)
568 TARGET_DEFAULT_IGNORE ();
569 struct target_section_table *(*to_get_section_table) (struct target_ops *)
570 TARGET_DEFAULT_RETURN (NULL);
571 enum strata to_stratum;
572 int (*to_has_all_memory) (struct target_ops *);
573 int (*to_has_memory) (struct target_ops *);
574 int (*to_has_stack) (struct target_ops *);
575 int (*to_has_registers) (struct target_ops *);
576 int (*to_has_execution) (struct target_ops *, ptid_t);
577 int to_has_thread_control; /* control thread execution */
578 int to_attach_no_wait;
579 /* This method must be implemented in some situations. See the
580 comment on 'to_can_run'. */
581 int (*to_can_async_p) (struct target_ops *)
582 TARGET_DEFAULT_RETURN (0);
583 int (*to_is_async_p) (struct target_ops *)
584 TARGET_DEFAULT_RETURN (0);
585 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
586 TARGET_DEFAULT_NORETURN (tcomplain ());
587 /* This method must be implemented in some situations. See the
588 comment on 'to_can_run'. */
589 int (*to_supports_non_stop) (struct target_ops *)
590 TARGET_DEFAULT_RETURN (0);
591 /* find_memory_regions support method for gcore */
592 int (*to_find_memory_regions) (struct target_ops *,
593 find_memory_region_ftype func, void *data)
594 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
595 /* make_corefile_notes support method for gcore */
596 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
597 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
598 /* get_bookmark support method for bookmarks */
599 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
600 TARGET_DEFAULT_NORETURN (tcomplain ());
601 /* goto_bookmark support method for bookmarks */
602 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
603 TARGET_DEFAULT_NORETURN (tcomplain ());
604 /* Return the thread-local address at OFFSET in the
605 thread-local storage for the thread PTID and the shared library
606 or executable file given by OBJFILE. If that block of
607 thread-local storage hasn't been allocated yet, this function
608 may return an error. LOAD_MODULE_ADDR may be zero for statically
609 linked multithreaded inferiors. */
610 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
611 ptid_t ptid,
612 CORE_ADDR load_module_addr,
613 CORE_ADDR offset)
614 TARGET_DEFAULT_NORETURN (generic_tls_error ());
615
616 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
617 OBJECT. The OFFSET, for a seekable object, specifies the
618 starting point. The ANNEX can be used to provide additional
619 data-specific information to the target.
620
621 Return the transferred status, error or OK (an
622 'enum target_xfer_status' value). Save the number of bytes
623 actually transferred in *XFERED_LEN if transfer is successful
624 (TARGET_XFER_OK) or the number unavailable bytes if the requested
625 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
626 smaller than LEN does not indicate the end of the object, only
627 the end of the transfer; higher level code should continue
628 transferring if desired. This is handled in target.c.
629
630 The interface does not support a "retry" mechanism. Instead it
631 assumes that at least one byte will be transfered on each
632 successful call.
633
634 NOTE: cagney/2003-10-17: The current interface can lead to
635 fragmented transfers. Lower target levels should not implement
636 hacks, such as enlarging the transfer, in an attempt to
637 compensate for this. Instead, the target stack should be
638 extended so that it implements supply/collect methods and a
639 look-aside object cache. With that available, the lowest
640 target can safely and freely "push" data up the stack.
641
642 See target_read and target_write for more information. One,
643 and only one, of readbuf or writebuf must be non-NULL. */
644
645 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
646 enum target_object object,
647 const char *annex,
648 gdb_byte *readbuf,
649 const gdb_byte *writebuf,
650 ULONGEST offset, ULONGEST len,
651 ULONGEST *xfered_len)
652 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
653
654 /* Returns the memory map for the target. A return value of NULL
655 means that no memory map is available. If a memory address
656 does not fall within any returned regions, it's assumed to be
657 RAM. The returned memory regions should not overlap.
658
659 The order of regions does not matter; target_memory_map will
660 sort regions by starting address. For that reason, this
661 function should not be called directly except via
662 target_memory_map.
663
664 This method should not cache data; if the memory map could
665 change unexpectedly, it should be invalidated, and higher
666 layers will re-fetch it. */
667 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
668 TARGET_DEFAULT_RETURN (NULL);
669
670 /* Erases the region of flash memory starting at ADDRESS, of
671 length LENGTH.
672
673 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
674 on flash block boundaries, as reported by 'to_memory_map'. */
675 void (*to_flash_erase) (struct target_ops *,
676 ULONGEST address, LONGEST length)
677 TARGET_DEFAULT_NORETURN (tcomplain ());
678
679 /* Finishes a flash memory write sequence. After this operation
680 all flash memory should be available for writing and the result
681 of reading from areas written by 'to_flash_write' should be
682 equal to what was written. */
683 void (*to_flash_done) (struct target_ops *)
684 TARGET_DEFAULT_NORETURN (tcomplain ());
685
686 /* Describe the architecture-specific features of this target. If
687 OPS doesn't have a description, this should delegate to the
688 "beneath" target. Returns the description found, or NULL if no
689 description was available. */
690 const struct target_desc *(*to_read_description) (struct target_ops *ops)
691 TARGET_DEFAULT_RETURN (NULL);
692
693 /* Build the PTID of the thread on which a given task is running,
694 based on LWP and THREAD. These values are extracted from the
695 task Private_Data section of the Ada Task Control Block, and
696 their interpretation depends on the target. */
697 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
698 long lwp, long thread)
699 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
700
701 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
702 Return 0 if *READPTR is already at the end of the buffer.
703 Return -1 if there is insufficient buffer for a whole entry.
704 Return 1 if an entry was read into *TYPEP and *VALP. */
705 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
706 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
707 TARGET_DEFAULT_FUNC (default_auxv_parse);
708
709 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
710 sequence of bytes in PATTERN with length PATTERN_LEN.
711
712 The result is 1 if found, 0 if not found, and -1 if there was an error
713 requiring halting of the search (e.g. memory read error).
714 If the pattern is found the address is recorded in FOUND_ADDRP. */
715 int (*to_search_memory) (struct target_ops *ops,
716 CORE_ADDR start_addr, ULONGEST search_space_len,
717 const gdb_byte *pattern, ULONGEST pattern_len,
718 CORE_ADDR *found_addrp)
719 TARGET_DEFAULT_FUNC (default_search_memory);
720
721 /* Can target execute in reverse? */
722 int (*to_can_execute_reverse) (struct target_ops *)
723 TARGET_DEFAULT_RETURN (0);
724
725 /* The direction the target is currently executing. Must be
726 implemented on targets that support reverse execution and async
727 mode. The default simply returns forward execution. */
728 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
729 TARGET_DEFAULT_FUNC (default_execution_direction);
730
731 /* Does this target support debugging multiple processes
732 simultaneously? */
733 int (*to_supports_multi_process) (struct target_ops *)
734 TARGET_DEFAULT_RETURN (0);
735
736 /* Does this target support enabling and disabling tracepoints while a trace
737 experiment is running? */
738 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
739 TARGET_DEFAULT_RETURN (0);
740
741 /* Does this target support disabling address space randomization? */
742 int (*to_supports_disable_randomization) (struct target_ops *);
743
744 /* Does this target support the tracenz bytecode for string collection? */
745 int (*to_supports_string_tracing) (struct target_ops *)
746 TARGET_DEFAULT_RETURN (0);
747
748 /* Does this target support evaluation of breakpoint conditions on its
749 end? */
750 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
751 TARGET_DEFAULT_RETURN (0);
752
753 /* Does this target support evaluation of breakpoint commands on its
754 end? */
755 int (*to_can_run_breakpoint_commands) (struct target_ops *)
756 TARGET_DEFAULT_RETURN (0);
757
758 /* Determine current architecture of thread PTID.
759
760 The target is supposed to determine the architecture of the code where
761 the target is currently stopped at (on Cell, if a target is in spu_run,
762 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
763 This is architecture used to perform decr_pc_after_break adjustment,
764 and also determines the frame architecture of the innermost frame.
765 ptrace operations need to operate according to target_gdbarch ().
766
767 The default implementation always returns target_gdbarch (). */
768 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
769 TARGET_DEFAULT_FUNC (default_thread_architecture);
770
771 /* Determine current address space of thread PTID.
772
773 The default implementation always returns the inferior's
774 address space. */
775 struct address_space *(*to_thread_address_space) (struct target_ops *,
776 ptid_t)
777 TARGET_DEFAULT_FUNC (default_thread_address_space);
778
779 /* Target file operations. */
780
781 /* Open FILENAME on the target, using FLAGS and MODE. Return a
782 target file descriptor, or -1 if an error occurs (and set
783 *TARGET_ERRNO). */
784 int (*to_fileio_open) (struct target_ops *,
785 const char *filename, int flags, int mode,
786 int *target_errno);
787
788 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
789 Return the number of bytes written, or -1 if an error occurs
790 (and set *TARGET_ERRNO). */
791 int (*to_fileio_pwrite) (struct target_ops *,
792 int fd, const gdb_byte *write_buf, int len,
793 ULONGEST offset, int *target_errno);
794
795 /* Read up to LEN bytes FD on the target into READ_BUF.
796 Return the number of bytes read, or -1 if an error occurs
797 (and set *TARGET_ERRNO). */
798 int (*to_fileio_pread) (struct target_ops *,
799 int fd, gdb_byte *read_buf, int len,
800 ULONGEST offset, int *target_errno);
801
802 /* Close FD on the target. Return 0, or -1 if an error occurs
803 (and set *TARGET_ERRNO). */
804 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
805
806 /* Unlink FILENAME on the target. Return 0, or -1 if an error
807 occurs (and set *TARGET_ERRNO). */
808 int (*to_fileio_unlink) (struct target_ops *,
809 const char *filename, int *target_errno);
810
811 /* Read value of symbolic link FILENAME on the target. Return a
812 null-terminated string allocated via xmalloc, or NULL if an error
813 occurs (and set *TARGET_ERRNO). */
814 char *(*to_fileio_readlink) (struct target_ops *,
815 const char *filename, int *target_errno);
816
817
818 /* Implement the "info proc" command. */
819 void (*to_info_proc) (struct target_ops *, const char *,
820 enum info_proc_what);
821
822 /* Tracepoint-related operations. */
823
824 /* Prepare the target for a tracing run. */
825 void (*to_trace_init) (struct target_ops *)
826 TARGET_DEFAULT_NORETURN (tcomplain ());
827
828 /* Send full details of a tracepoint location to the target. */
829 void (*to_download_tracepoint) (struct target_ops *,
830 struct bp_location *location)
831 TARGET_DEFAULT_NORETURN (tcomplain ());
832
833 /* Is the target able to download tracepoint locations in current
834 state? */
835 int (*to_can_download_tracepoint) (struct target_ops *)
836 TARGET_DEFAULT_RETURN (0);
837
838 /* Send full details of a trace state variable to the target. */
839 void (*to_download_trace_state_variable) (struct target_ops *,
840 struct trace_state_variable *tsv)
841 TARGET_DEFAULT_NORETURN (tcomplain ());
842
843 /* Enable a tracepoint on the target. */
844 void (*to_enable_tracepoint) (struct target_ops *,
845 struct bp_location *location)
846 TARGET_DEFAULT_NORETURN (tcomplain ());
847
848 /* Disable a tracepoint on the target. */
849 void (*to_disable_tracepoint) (struct target_ops *,
850 struct bp_location *location)
851 TARGET_DEFAULT_NORETURN (tcomplain ());
852
853 /* Inform the target info of memory regions that are readonly
854 (such as text sections), and so it should return data from
855 those rather than look in the trace buffer. */
856 void (*to_trace_set_readonly_regions) (struct target_ops *)
857 TARGET_DEFAULT_NORETURN (tcomplain ());
858
859 /* Start a trace run. */
860 void (*to_trace_start) (struct target_ops *)
861 TARGET_DEFAULT_NORETURN (tcomplain ());
862
863 /* Get the current status of a tracing run. */
864 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
865 TARGET_DEFAULT_RETURN (-1);
866
867 void (*to_get_tracepoint_status) (struct target_ops *,
868 struct breakpoint *tp,
869 struct uploaded_tp *utp)
870 TARGET_DEFAULT_NORETURN (tcomplain ());
871
872 /* Stop a trace run. */
873 void (*to_trace_stop) (struct target_ops *)
874 TARGET_DEFAULT_NORETURN (tcomplain ());
875
876 /* Ask the target to find a trace frame of the given type TYPE,
877 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
878 number of the trace frame, and also the tracepoint number at
879 TPP. If no trace frame matches, return -1. May throw if the
880 operation fails. */
881 int (*to_trace_find) (struct target_ops *,
882 enum trace_find_type type, int num,
883 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
884 TARGET_DEFAULT_RETURN (-1);
885
886 /* Get the value of the trace state variable number TSV, returning
887 1 if the value is known and writing the value itself into the
888 location pointed to by VAL, else returning 0. */
889 int (*to_get_trace_state_variable_value) (struct target_ops *,
890 int tsv, LONGEST *val)
891 TARGET_DEFAULT_RETURN (0);
892
893 int (*to_save_trace_data) (struct target_ops *, const char *filename)
894 TARGET_DEFAULT_NORETURN (tcomplain ());
895
896 int (*to_upload_tracepoints) (struct target_ops *,
897 struct uploaded_tp **utpp)
898 TARGET_DEFAULT_RETURN (0);
899
900 int (*to_upload_trace_state_variables) (struct target_ops *,
901 struct uploaded_tsv **utsvp)
902 TARGET_DEFAULT_RETURN (0);
903
904 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
905 ULONGEST offset, LONGEST len)
906 TARGET_DEFAULT_NORETURN (tcomplain ());
907
908 /* Get the minimum length of instruction on which a fast tracepoint
909 may be set on the target. If this operation is unsupported,
910 return -1. If for some reason the minimum length cannot be
911 determined, return 0. */
912 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
913 TARGET_DEFAULT_RETURN (-1);
914
915 /* Set the target's tracing behavior in response to unexpected
916 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
917 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
918 TARGET_DEFAULT_IGNORE ();
919 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
920 TARGET_DEFAULT_IGNORE ();
921 /* Set the size of trace buffer in the target. */
922 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
923 TARGET_DEFAULT_IGNORE ();
924
925 /* Add/change textual notes about the trace run, returning 1 if
926 successful, 0 otherwise. */
927 int (*to_set_trace_notes) (struct target_ops *,
928 const char *user, const char *notes,
929 const char *stopnotes)
930 TARGET_DEFAULT_RETURN (0);
931
932 /* Return the processor core that thread PTID was last seen on.
933 This information is updated only when:
934 - update_thread_list is called
935 - thread stops
936 If the core cannot be determined -- either for the specified
937 thread, or right now, or in this debug session, or for this
938 target -- return -1. */
939 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
940 TARGET_DEFAULT_RETURN (-1);
941
942 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
943 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
944 a match, 0 if there's a mismatch, and -1 if an error is
945 encountered while reading memory. */
946 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
947 CORE_ADDR memaddr, ULONGEST size)
948 TARGET_DEFAULT_FUNC (default_verify_memory);
949
950 /* Return the address of the start of the Thread Information Block
951 a Windows OS specific feature. */
952 int (*to_get_tib_address) (struct target_ops *,
953 ptid_t ptid, CORE_ADDR *addr)
954 TARGET_DEFAULT_NORETURN (tcomplain ());
955
956 /* Send the new settings of write permission variables. */
957 void (*to_set_permissions) (struct target_ops *)
958 TARGET_DEFAULT_IGNORE ();
959
960 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
961 with its details. Return 1 on success, 0 on failure. */
962 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
963 struct static_tracepoint_marker *marker)
964 TARGET_DEFAULT_RETURN (0);
965
966 /* Return a vector of all tracepoints markers string id ID, or all
967 markers if ID is NULL. */
968 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
969 TARGET_DEFAULT_NORETURN (tcomplain ());
970
971 /* Return a traceframe info object describing the current
972 traceframe's contents. This method should not cache data;
973 higher layers take care of caching, invalidating, and
974 re-fetching when necessary. */
975 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Ask the target to use or not to use agent according to USE. Return 1
979 successful, 0 otherwise. */
980 int (*to_use_agent) (struct target_ops *, int use)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Is the target able to use agent in current state? */
984 int (*to_can_use_agent) (struct target_ops *)
985 TARGET_DEFAULT_RETURN (0);
986
987 /* Check whether the target supports branch tracing. */
988 int (*to_supports_btrace) (struct target_ops *)
989 TARGET_DEFAULT_RETURN (0);
990
991 /* Enable branch tracing for PTID and allocate a branch trace target
992 information struct for reading and for disabling branch trace. */
993 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
994 ptid_t ptid)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Disable branch tracing and deallocate TINFO. */
998 void (*to_disable_btrace) (struct target_ops *,
999 struct btrace_target_info *tinfo)
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 /* Disable branch tracing and deallocate TINFO. This function is similar
1003 to to_disable_btrace, except that it is called during teardown and is
1004 only allowed to perform actions that are safe. A counter-example would
1005 be attempting to talk to a remote target. */
1006 void (*to_teardown_btrace) (struct target_ops *,
1007 struct btrace_target_info *tinfo)
1008 TARGET_DEFAULT_NORETURN (tcomplain ());
1009
1010 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1011 DATA is cleared before new trace is added.
1012 The branch trace will start with the most recent block and continue
1013 towards older blocks. */
1014 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1015 VEC (btrace_block_s) **data,
1016 struct btrace_target_info *btinfo,
1017 enum btrace_read_type type)
1018 TARGET_DEFAULT_NORETURN (tcomplain ());
1019
1020 /* Stop trace recording. */
1021 void (*to_stop_recording) (struct target_ops *)
1022 TARGET_DEFAULT_IGNORE ();
1023
1024 /* Print information about the recording. */
1025 void (*to_info_record) (struct target_ops *)
1026 TARGET_DEFAULT_IGNORE ();
1027
1028 /* Save the recorded execution trace into a file. */
1029 void (*to_save_record) (struct target_ops *, const char *filename)
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1031
1032 /* Delete the recorded execution trace from the current position onwards. */
1033 void (*to_delete_record) (struct target_ops *)
1034 TARGET_DEFAULT_NORETURN (tcomplain ());
1035
1036 /* Query if the record target is currently replaying. */
1037 int (*to_record_is_replaying) (struct target_ops *)
1038 TARGET_DEFAULT_RETURN (0);
1039
1040 /* Go to the begin of the execution trace. */
1041 void (*to_goto_record_begin) (struct target_ops *)
1042 TARGET_DEFAULT_NORETURN (tcomplain ());
1043
1044 /* Go to the end of the execution trace. */
1045 void (*to_goto_record_end) (struct target_ops *)
1046 TARGET_DEFAULT_NORETURN (tcomplain ());
1047
1048 /* Go to a specific location in the recorded execution trace. */
1049 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1050 TARGET_DEFAULT_NORETURN (tcomplain ());
1051
1052 /* Disassemble SIZE instructions in the recorded execution trace from
1053 the current position.
1054 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1055 disassemble SIZE succeeding instructions. */
1056 void (*to_insn_history) (struct target_ops *, int size, int flags)
1057 TARGET_DEFAULT_NORETURN (tcomplain ());
1058
1059 /* Disassemble SIZE instructions in the recorded execution trace around
1060 FROM.
1061 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1062 disassemble SIZE instructions after FROM. */
1063 void (*to_insn_history_from) (struct target_ops *,
1064 ULONGEST from, int size, int flags)
1065 TARGET_DEFAULT_NORETURN (tcomplain ());
1066
1067 /* Disassemble a section of the recorded execution trace from instruction
1068 BEGIN (inclusive) to instruction END (inclusive). */
1069 void (*to_insn_history_range) (struct target_ops *,
1070 ULONGEST begin, ULONGEST end, int flags)
1071 TARGET_DEFAULT_NORETURN (tcomplain ());
1072
1073 /* Print a function trace of the recorded execution trace.
1074 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1075 succeeding functions. */
1076 void (*to_call_history) (struct target_ops *, int size, int flags)
1077 TARGET_DEFAULT_NORETURN (tcomplain ());
1078
1079 /* Print a function trace of the recorded execution trace starting
1080 at function FROM.
1081 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1082 SIZE functions after FROM. */
1083 void (*to_call_history_from) (struct target_ops *,
1084 ULONGEST begin, int size, int flags)
1085 TARGET_DEFAULT_NORETURN (tcomplain ());
1086
1087 /* Print a function trace of an execution trace section from function BEGIN
1088 (inclusive) to function END (inclusive). */
1089 void (*to_call_history_range) (struct target_ops *,
1090 ULONGEST begin, ULONGEST end, int flags)
1091 TARGET_DEFAULT_NORETURN (tcomplain ());
1092
1093 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1094 non-empty annex. */
1095 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1096 TARGET_DEFAULT_RETURN (0);
1097
1098 /* Those unwinders are tried before any other arch unwinders. If
1099 SELF doesn't have unwinders, it should delegate to the
1100 "beneath" target. */
1101 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1102 TARGET_DEFAULT_RETURN (NULL);
1103
1104 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1105 TARGET_DEFAULT_RETURN (NULL);
1106
1107 /* Return the number of bytes by which the PC needs to be decremented
1108 after executing a breakpoint instruction.
1109 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1110 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1111 struct gdbarch *gdbarch)
1112 TARGET_DEFAULT_FUNC (default_target_decr_pc_after_break);
1113
1114 /* Prepare to generate a core file. */
1115 void (*to_prepare_to_generate_core) (struct target_ops *)
1116 TARGET_DEFAULT_IGNORE ();
1117
1118 /* Cleanup after generating a core file. */
1119 void (*to_done_generating_core) (struct target_ops *)
1120 TARGET_DEFAULT_IGNORE ();
1121
1122 int to_magic;
1123 /* Need sub-structure for target machine related rather than comm related?
1124 */
1125 };
1126
1127 /* Magic number for checking ops size. If a struct doesn't end with this
1128 number, somebody changed the declaration but didn't change all the
1129 places that initialize one. */
1130
1131 #define OPS_MAGIC 3840
1132
1133 /* The ops structure for our "current" target process. This should
1134 never be NULL. If there is no target, it points to the dummy_target. */
1135
1136 extern struct target_ops current_target;
1137
1138 /* Define easy words for doing these operations on our current target. */
1139
1140 #define target_shortname (current_target.to_shortname)
1141 #define target_longname (current_target.to_longname)
1142
1143 /* Does whatever cleanup is required for a target that we are no
1144 longer going to be calling. This routine is automatically always
1145 called after popping the target off the target stack - the target's
1146 own methods are no longer available through the target vector.
1147 Closing file descriptors and freeing all memory allocated memory are
1148 typical things it should do. */
1149
1150 void target_close (struct target_ops *targ);
1151
1152 /* Find the correct target to use for "attach". If a target on the
1153 current stack supports attaching, then it is returned. Otherwise,
1154 the default run target is returned. */
1155
1156 extern struct target_ops *find_attach_target (void);
1157
1158 /* Find the correct target to use for "run". If a target on the
1159 current stack supports creating a new inferior, then it is
1160 returned. Otherwise, the default run target is returned. */
1161
1162 extern struct target_ops *find_run_target (void);
1163
1164 /* Some targets don't generate traps when attaching to the inferior,
1165 or their target_attach implementation takes care of the waiting.
1166 These targets must set to_attach_no_wait. */
1167
1168 #define target_attach_no_wait \
1169 (current_target.to_attach_no_wait)
1170
1171 /* The target_attach operation places a process under debugger control,
1172 and stops the process.
1173
1174 This operation provides a target-specific hook that allows the
1175 necessary bookkeeping to be performed after an attach completes. */
1176 #define target_post_attach(pid) \
1177 (*current_target.to_post_attach) (&current_target, pid)
1178
1179 /* Takes a program previously attached to and detaches it.
1180 The program may resume execution (some targets do, some don't) and will
1181 no longer stop on signals, etc. We better not have left any breakpoints
1182 in the program or it'll die when it hits one. ARGS is arguments
1183 typed by the user (e.g. a signal to send the process). FROM_TTY
1184 says whether to be verbose or not. */
1185
1186 extern void target_detach (const char *, int);
1187
1188 /* Disconnect from the current target without resuming it (leaving it
1189 waiting for a debugger). */
1190
1191 extern void target_disconnect (const char *, int);
1192
1193 /* Resume execution of the target process PTID (or a group of
1194 threads). STEP says whether to single-step or to run free; SIGGNAL
1195 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1196 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1197 PTID means `step/resume only this process id'. A wildcard PTID
1198 (all threads, or all threads of process) means `step/resume
1199 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1200 matches) resume with their 'thread->suspend.stop_signal' signal
1201 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1202 if in "no pass" state. */
1203
1204 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1205
1206 /* Wait for process pid to do something. PTID = -1 to wait for any
1207 pid to do something. Return pid of child, or -1 in case of error;
1208 store status through argument pointer STATUS. Note that it is
1209 _NOT_ OK to throw_exception() out of target_wait() without popping
1210 the debugging target from the stack; GDB isn't prepared to get back
1211 to the prompt with a debugging target but without the frame cache,
1212 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1213 options. */
1214
1215 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1216 int options);
1217
1218 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1219
1220 extern void target_fetch_registers (struct regcache *regcache, int regno);
1221
1222 /* Store at least register REGNO, or all regs if REGNO == -1.
1223 It can store as many registers as it wants to, so target_prepare_to_store
1224 must have been previously called. Calls error() if there are problems. */
1225
1226 extern void target_store_registers (struct regcache *regcache, int regs);
1227
1228 /* Get ready to modify the registers array. On machines which store
1229 individual registers, this doesn't need to do anything. On machines
1230 which store all the registers in one fell swoop, this makes sure
1231 that REGISTERS contains all the registers from the program being
1232 debugged. */
1233
1234 #define target_prepare_to_store(regcache) \
1235 (*current_target.to_prepare_to_store) (&current_target, regcache)
1236
1237 /* Determine current address space of thread PTID. */
1238
1239 struct address_space *target_thread_address_space (ptid_t);
1240
1241 /* Implement the "info proc" command. This returns one if the request
1242 was handled, and zero otherwise. It can also throw an exception if
1243 an error was encountered while attempting to handle the
1244 request. */
1245
1246 int target_info_proc (const char *, enum info_proc_what);
1247
1248 /* Returns true if this target can debug multiple processes
1249 simultaneously. */
1250
1251 #define target_supports_multi_process() \
1252 (*current_target.to_supports_multi_process) (&current_target)
1253
1254 /* Returns true if this target can disable address space randomization. */
1255
1256 int target_supports_disable_randomization (void);
1257
1258 /* Returns true if this target can enable and disable tracepoints
1259 while a trace experiment is running. */
1260
1261 #define target_supports_enable_disable_tracepoint() \
1262 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1263
1264 #define target_supports_string_tracing() \
1265 (*current_target.to_supports_string_tracing) (&current_target)
1266
1267 /* Returns true if this target can handle breakpoint conditions
1268 on its end. */
1269
1270 #define target_supports_evaluation_of_breakpoint_conditions() \
1271 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1272
1273 /* Returns true if this target can handle breakpoint commands
1274 on its end. */
1275
1276 #define target_can_run_breakpoint_commands() \
1277 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1278
1279 extern int target_read_string (CORE_ADDR, char **, int, int *);
1280
1281 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1282 ssize_t len);
1283
1284 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1285 ssize_t len);
1286
1287 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1288
1289 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1290
1291 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1292 ssize_t len);
1293
1294 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1295 ssize_t len);
1296
1297 /* Fetches the target's memory map. If one is found it is sorted
1298 and returned, after some consistency checking. Otherwise, NULL
1299 is returned. */
1300 VEC(mem_region_s) *target_memory_map (void);
1301
1302 /* Erase the specified flash region. */
1303 void target_flash_erase (ULONGEST address, LONGEST length);
1304
1305 /* Finish a sequence of flash operations. */
1306 void target_flash_done (void);
1307
1308 /* Describes a request for a memory write operation. */
1309 struct memory_write_request
1310 {
1311 /* Begining address that must be written. */
1312 ULONGEST begin;
1313 /* Past-the-end address. */
1314 ULONGEST end;
1315 /* The data to write. */
1316 gdb_byte *data;
1317 /* A callback baton for progress reporting for this request. */
1318 void *baton;
1319 };
1320 typedef struct memory_write_request memory_write_request_s;
1321 DEF_VEC_O(memory_write_request_s);
1322
1323 /* Enumeration specifying different flash preservation behaviour. */
1324 enum flash_preserve_mode
1325 {
1326 flash_preserve,
1327 flash_discard
1328 };
1329
1330 /* Write several memory blocks at once. This version can be more
1331 efficient than making several calls to target_write_memory, in
1332 particular because it can optimize accesses to flash memory.
1333
1334 Moreover, this is currently the only memory access function in gdb
1335 that supports writing to flash memory, and it should be used for
1336 all cases where access to flash memory is desirable.
1337
1338 REQUESTS is the vector (see vec.h) of memory_write_request.
1339 PRESERVE_FLASH_P indicates what to do with blocks which must be
1340 erased, but not completely rewritten.
1341 PROGRESS_CB is a function that will be periodically called to provide
1342 feedback to user. It will be called with the baton corresponding
1343 to the request currently being written. It may also be called
1344 with a NULL baton, when preserved flash sectors are being rewritten.
1345
1346 The function returns 0 on success, and error otherwise. */
1347 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1348 enum flash_preserve_mode preserve_flash_p,
1349 void (*progress_cb) (ULONGEST, void *));
1350
1351 /* Print a line about the current target. */
1352
1353 #define target_files_info() \
1354 (*current_target.to_files_info) (&current_target)
1355
1356 /* Insert a breakpoint at address BP_TGT->placed_address in
1357 the target machine. Returns 0 for success, and returns non-zero or
1358 throws an error (with a detailed failure reason error code and
1359 message) otherwise. */
1360
1361 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1362 struct bp_target_info *bp_tgt);
1363
1364 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1365 machine. Result is 0 for success, non-zero for error. */
1366
1367 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1368 struct bp_target_info *bp_tgt);
1369
1370 /* Initialize the terminal settings we record for the inferior,
1371 before we actually run the inferior. */
1372
1373 #define target_terminal_init() \
1374 (*current_target.to_terminal_init) (&current_target)
1375
1376 /* Put the inferior's terminal settings into effect.
1377 This is preparation for starting or resuming the inferior. */
1378
1379 extern void target_terminal_inferior (void);
1380
1381 /* Put some of our terminal settings into effect,
1382 enough to get proper results from our output,
1383 but do not change into or out of RAW mode
1384 so that no input is discarded.
1385
1386 After doing this, either terminal_ours or terminal_inferior
1387 should be called to get back to a normal state of affairs. */
1388
1389 #define target_terminal_ours_for_output() \
1390 (*current_target.to_terminal_ours_for_output) (&current_target)
1391
1392 /* Put our terminal settings into effect.
1393 First record the inferior's terminal settings
1394 so they can be restored properly later. */
1395
1396 #define target_terminal_ours() \
1397 (*current_target.to_terminal_ours) (&current_target)
1398
1399 /* Save our terminal settings.
1400 This is called from TUI after entering or leaving the curses
1401 mode. Since curses modifies our terminal this call is here
1402 to take this change into account. */
1403
1404 #define target_terminal_save_ours() \
1405 (*current_target.to_terminal_save_ours) (&current_target)
1406
1407 /* Print useful information about our terminal status, if such a thing
1408 exists. */
1409
1410 #define target_terminal_info(arg, from_tty) \
1411 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1412
1413 /* Kill the inferior process. Make it go away. */
1414
1415 extern void target_kill (void);
1416
1417 /* Load an executable file into the target process. This is expected
1418 to not only bring new code into the target process, but also to
1419 update GDB's symbol tables to match.
1420
1421 ARG contains command-line arguments, to be broken down with
1422 buildargv (). The first non-switch argument is the filename to
1423 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1424 0)), which is an offset to apply to the load addresses of FILE's
1425 sections. The target may define switches, or other non-switch
1426 arguments, as it pleases. */
1427
1428 extern void target_load (const char *arg, int from_tty);
1429
1430 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1431 notification of inferior events such as fork and vork immediately
1432 after the inferior is created. (This because of how gdb gets an
1433 inferior created via invoking a shell to do it. In such a scenario,
1434 if the shell init file has commands in it, the shell will fork and
1435 exec for each of those commands, and we will see each such fork
1436 event. Very bad.)
1437
1438 Such targets will supply an appropriate definition for this function. */
1439
1440 #define target_post_startup_inferior(ptid) \
1441 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1442
1443 /* On some targets, we can catch an inferior fork or vfork event when
1444 it occurs. These functions insert/remove an already-created
1445 catchpoint for such events. They return 0 for success, 1 if the
1446 catchpoint type is not supported and -1 for failure. */
1447
1448 #define target_insert_fork_catchpoint(pid) \
1449 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1450
1451 #define target_remove_fork_catchpoint(pid) \
1452 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1453
1454 #define target_insert_vfork_catchpoint(pid) \
1455 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1456
1457 #define target_remove_vfork_catchpoint(pid) \
1458 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1459
1460 /* If the inferior forks or vforks, this function will be called at
1461 the next resume in order to perform any bookkeeping and fiddling
1462 necessary to continue debugging either the parent or child, as
1463 requested, and releasing the other. Information about the fork
1464 or vfork event is available via get_last_target_status ().
1465 This function returns 1 if the inferior should not be resumed
1466 (i.e. there is another event pending). */
1467
1468 int target_follow_fork (int follow_child, int detach_fork);
1469
1470 /* On some targets, we can catch an inferior exec event when it
1471 occurs. These functions insert/remove an already-created
1472 catchpoint for such events. They return 0 for success, 1 if the
1473 catchpoint type is not supported and -1 for failure. */
1474
1475 #define target_insert_exec_catchpoint(pid) \
1476 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1477
1478 #define target_remove_exec_catchpoint(pid) \
1479 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1480
1481 /* Syscall catch.
1482
1483 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1484 If NEEDED is zero, it means the target can disable the mechanism to
1485 catch system calls because there are no more catchpoints of this type.
1486
1487 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1488 being requested. In this case, both TABLE_SIZE and TABLE should
1489 be ignored.
1490
1491 TABLE_SIZE is the number of elements in TABLE. It only matters if
1492 ANY_COUNT is zero.
1493
1494 TABLE is an array of ints, indexed by syscall number. An element in
1495 this array is nonzero if that syscall should be caught. This argument
1496 only matters if ANY_COUNT is zero.
1497
1498 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1499 for failure. */
1500
1501 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1502 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1503 pid, needed, any_count, \
1504 table_size, table)
1505
1506 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1507 exit code of PID, if any. */
1508
1509 #define target_has_exited(pid,wait_status,exit_status) \
1510 (*current_target.to_has_exited) (&current_target, \
1511 pid,wait_status,exit_status)
1512
1513 /* The debugger has completed a blocking wait() call. There is now
1514 some process event that must be processed. This function should
1515 be defined by those targets that require the debugger to perform
1516 cleanup or internal state changes in response to the process event. */
1517
1518 /* The inferior process has died. Do what is right. */
1519
1520 void target_mourn_inferior (void);
1521
1522 /* Does target have enough data to do a run or attach command? */
1523
1524 #define target_can_run(t) \
1525 ((t)->to_can_run) (t)
1526
1527 /* Set list of signals to be handled in the target.
1528
1529 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1530 (enum gdb_signal). For every signal whose entry in this array is
1531 non-zero, the target is allowed -but not required- to skip reporting
1532 arrival of the signal to the GDB core by returning from target_wait,
1533 and to pass the signal directly to the inferior instead.
1534
1535 However, if the target is hardware single-stepping a thread that is
1536 about to receive a signal, it needs to be reported in any case, even
1537 if mentioned in a previous target_pass_signals call. */
1538
1539 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1540
1541 /* Set list of signals the target may pass to the inferior. This
1542 directly maps to the "handle SIGNAL pass/nopass" setting.
1543
1544 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1545 number (enum gdb_signal). For every signal whose entry in this
1546 array is non-zero, the target is allowed to pass the signal to the
1547 inferior. Signals not present in the array shall be silently
1548 discarded. This does not influence whether to pass signals to the
1549 inferior as a result of a target_resume call. This is useful in
1550 scenarios where the target needs to decide whether to pass or not a
1551 signal to the inferior without GDB core involvement, such as for
1552 example, when detaching (as threads may have been suspended with
1553 pending signals not reported to GDB). */
1554
1555 extern void target_program_signals (int nsig, unsigned char *program_signals);
1556
1557 /* Check to see if a thread is still alive. */
1558
1559 extern int target_thread_alive (ptid_t ptid);
1560
1561 /* Query for new threads and add them to the thread list. */
1562
1563 extern void target_find_new_threads (void);
1564
1565 /* Make target stop in a continuable fashion. (For instance, under
1566 Unix, this should act like SIGSTOP). This function is normally
1567 used by GUIs to implement a stop button. */
1568
1569 extern void target_stop (ptid_t ptid);
1570
1571 /* Send the specified COMMAND to the target's monitor
1572 (shell,interpreter) for execution. The result of the query is
1573 placed in OUTBUF. */
1574
1575 #define target_rcmd(command, outbuf) \
1576 (*current_target.to_rcmd) (&current_target, command, outbuf)
1577
1578
1579 /* Does the target include all of memory, or only part of it? This
1580 determines whether we look up the target chain for other parts of
1581 memory if this target can't satisfy a request. */
1582
1583 extern int target_has_all_memory_1 (void);
1584 #define target_has_all_memory target_has_all_memory_1 ()
1585
1586 /* Does the target include memory? (Dummy targets don't.) */
1587
1588 extern int target_has_memory_1 (void);
1589 #define target_has_memory target_has_memory_1 ()
1590
1591 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1592 we start a process.) */
1593
1594 extern int target_has_stack_1 (void);
1595 #define target_has_stack target_has_stack_1 ()
1596
1597 /* Does the target have registers? (Exec files don't.) */
1598
1599 extern int target_has_registers_1 (void);
1600 #define target_has_registers target_has_registers_1 ()
1601
1602 /* Does the target have execution? Can we make it jump (through
1603 hoops), or pop its stack a few times? This means that the current
1604 target is currently executing; for some targets, that's the same as
1605 whether or not the target is capable of execution, but there are
1606 also targets which can be current while not executing. In that
1607 case this will become true after to_create_inferior or
1608 to_attach. */
1609
1610 extern int target_has_execution_1 (ptid_t);
1611
1612 /* Like target_has_execution_1, but always passes inferior_ptid. */
1613
1614 extern int target_has_execution_current (void);
1615
1616 #define target_has_execution target_has_execution_current ()
1617
1618 /* Default implementations for process_stratum targets. Return true
1619 if there's a selected inferior, false otherwise. */
1620
1621 extern int default_child_has_all_memory (struct target_ops *ops);
1622 extern int default_child_has_memory (struct target_ops *ops);
1623 extern int default_child_has_stack (struct target_ops *ops);
1624 extern int default_child_has_registers (struct target_ops *ops);
1625 extern int default_child_has_execution (struct target_ops *ops,
1626 ptid_t the_ptid);
1627
1628 /* Can the target support the debugger control of thread execution?
1629 Can it lock the thread scheduler? */
1630
1631 #define target_can_lock_scheduler \
1632 (current_target.to_has_thread_control & tc_schedlock)
1633
1634 /* Controls whether async mode is permitted. */
1635 extern int target_async_permitted;
1636
1637 /* Can the target support asynchronous execution? */
1638 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1639
1640 /* Is the target in asynchronous execution mode? */
1641 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1642
1643 /* Put the target in async mode with the specified callback function. */
1644 #define target_async(CALLBACK,CONTEXT) \
1645 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1646
1647 #define target_execution_direction() \
1648 (current_target.to_execution_direction (&current_target))
1649
1650 /* Converts a process id to a string. Usually, the string just contains
1651 `process xyz', but on some systems it may contain
1652 `process xyz thread abc'. */
1653
1654 extern char *target_pid_to_str (ptid_t ptid);
1655
1656 extern char *normal_pid_to_str (ptid_t ptid);
1657
1658 /* Return a short string describing extra information about PID,
1659 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1660 is okay. */
1661
1662 #define target_extra_thread_info(TP) \
1663 (current_target.to_extra_thread_info (&current_target, TP))
1664
1665 /* Return the thread's name. A NULL result means that the target
1666 could not determine this thread's name. */
1667
1668 extern char *target_thread_name (struct thread_info *);
1669
1670 /* Attempts to find the pathname of the executable file
1671 that was run to create a specified process.
1672
1673 The process PID must be stopped when this operation is used.
1674
1675 If the executable file cannot be determined, NULL is returned.
1676
1677 Else, a pointer to a character string containing the pathname
1678 is returned. This string should be copied into a buffer by
1679 the client if the string will not be immediately used, or if
1680 it must persist. */
1681
1682 #define target_pid_to_exec_file(pid) \
1683 (current_target.to_pid_to_exec_file) (&current_target, pid)
1684
1685 /* See the to_thread_architecture description in struct target_ops. */
1686
1687 #define target_thread_architecture(ptid) \
1688 (current_target.to_thread_architecture (&current_target, ptid))
1689
1690 /*
1691 * Iterator function for target memory regions.
1692 * Calls a callback function once for each memory region 'mapped'
1693 * in the child process. Defined as a simple macro rather than
1694 * as a function macro so that it can be tested for nullity.
1695 */
1696
1697 #define target_find_memory_regions(FUNC, DATA) \
1698 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1699
1700 /*
1701 * Compose corefile .note section.
1702 */
1703
1704 #define target_make_corefile_notes(BFD, SIZE_P) \
1705 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1706
1707 /* Bookmark interfaces. */
1708 #define target_get_bookmark(ARGS, FROM_TTY) \
1709 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1710
1711 #define target_goto_bookmark(ARG, FROM_TTY) \
1712 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1713
1714 /* Hardware watchpoint interfaces. */
1715
1716 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1717 write). Only the INFERIOR_PTID task is being queried. */
1718
1719 #define target_stopped_by_watchpoint() \
1720 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1721
1722 /* Non-zero if we have steppable watchpoints */
1723
1724 #define target_have_steppable_watchpoint \
1725 (current_target.to_have_steppable_watchpoint)
1726
1727 /* Non-zero if we have continuable watchpoints */
1728
1729 #define target_have_continuable_watchpoint \
1730 (current_target.to_have_continuable_watchpoint)
1731
1732 /* Provide defaults for hardware watchpoint functions. */
1733
1734 /* If the *_hw_beakpoint functions have not been defined
1735 elsewhere use the definitions in the target vector. */
1736
1737 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1738 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1739 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1740 (including this one?). OTHERTYPE is who knows what... */
1741
1742 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1743 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1744 TYPE, CNT, OTHERTYPE);
1745
1746 /* Returns the number of debug registers needed to watch the given
1747 memory region, or zero if not supported. */
1748
1749 #define target_region_ok_for_hw_watchpoint(addr, len) \
1750 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1751 addr, len)
1752
1753
1754 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1755 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1756 COND is the expression for its condition, or NULL if there's none.
1757 Returns 0 for success, 1 if the watchpoint type is not supported,
1758 -1 for failure. */
1759
1760 #define target_insert_watchpoint(addr, len, type, cond) \
1761 (*current_target.to_insert_watchpoint) (&current_target, \
1762 addr, len, type, cond)
1763
1764 #define target_remove_watchpoint(addr, len, type, cond) \
1765 (*current_target.to_remove_watchpoint) (&current_target, \
1766 addr, len, type, cond)
1767
1768 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1769 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1770 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1771 masked watchpoints are not supported, -1 for failure. */
1772
1773 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1774
1775 /* Remove a masked watchpoint at ADDR with the mask MASK.
1776 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1777 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1778 for failure. */
1779
1780 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1781
1782 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1783 the target machine. Returns 0 for success, and returns non-zero or
1784 throws an error (with a detailed failure reason error code and
1785 message) otherwise. */
1786
1787 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1788 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1789 gdbarch, bp_tgt)
1790
1791 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1792 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1793 gdbarch, bp_tgt)
1794
1795 /* Return number of debug registers needed for a ranged breakpoint,
1796 or -1 if ranged breakpoints are not supported. */
1797
1798 extern int target_ranged_break_num_registers (void);
1799
1800 /* Return non-zero if target knows the data address which triggered this
1801 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1802 INFERIOR_PTID task is being queried. */
1803 #define target_stopped_data_address(target, addr_p) \
1804 (*target.to_stopped_data_address) (target, addr_p)
1805
1806 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1807 LENGTH bytes beginning at START. */
1808 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1809 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1810
1811 /* Return non-zero if the target is capable of using hardware to evaluate
1812 the condition expression. In this case, if the condition is false when
1813 the watched memory location changes, execution may continue without the
1814 debugger being notified.
1815
1816 Due to limitations in the hardware implementation, it may be capable of
1817 avoiding triggering the watchpoint in some cases where the condition
1818 expression is false, but may report some false positives as well.
1819 For this reason, GDB will still evaluate the condition expression when
1820 the watchpoint triggers. */
1821 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1822 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1823 addr, len, type, cond)
1824
1825 /* Return number of debug registers needed for a masked watchpoint,
1826 -1 if masked watchpoints are not supported or -2 if the given address
1827 and mask combination cannot be used. */
1828
1829 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1830
1831 /* Target can execute in reverse? */
1832 #define target_can_execute_reverse \
1833 current_target.to_can_execute_reverse (&current_target)
1834
1835 extern const struct target_desc *target_read_description (struct target_ops *);
1836
1837 #define target_get_ada_task_ptid(lwp, tid) \
1838 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1839
1840 /* Utility implementation of searching memory. */
1841 extern int simple_search_memory (struct target_ops* ops,
1842 CORE_ADDR start_addr,
1843 ULONGEST search_space_len,
1844 const gdb_byte *pattern,
1845 ULONGEST pattern_len,
1846 CORE_ADDR *found_addrp);
1847
1848 /* Main entry point for searching memory. */
1849 extern int target_search_memory (CORE_ADDR start_addr,
1850 ULONGEST search_space_len,
1851 const gdb_byte *pattern,
1852 ULONGEST pattern_len,
1853 CORE_ADDR *found_addrp);
1854
1855 /* Target file operations. */
1856
1857 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1858 target file descriptor, or -1 if an error occurs (and set
1859 *TARGET_ERRNO). */
1860 extern int target_fileio_open (const char *filename, int flags, int mode,
1861 int *target_errno);
1862
1863 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1864 Return the number of bytes written, or -1 if an error occurs
1865 (and set *TARGET_ERRNO). */
1866 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1867 ULONGEST offset, int *target_errno);
1868
1869 /* Read up to LEN bytes FD on the target into READ_BUF.
1870 Return the number of bytes read, or -1 if an error occurs
1871 (and set *TARGET_ERRNO). */
1872 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1873 ULONGEST offset, int *target_errno);
1874
1875 /* Close FD on the target. Return 0, or -1 if an error occurs
1876 (and set *TARGET_ERRNO). */
1877 extern int target_fileio_close (int fd, int *target_errno);
1878
1879 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1880 occurs (and set *TARGET_ERRNO). */
1881 extern int target_fileio_unlink (const char *filename, int *target_errno);
1882
1883 /* Read value of symbolic link FILENAME on the target. Return a
1884 null-terminated string allocated via xmalloc, or NULL if an error
1885 occurs (and set *TARGET_ERRNO). */
1886 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1887
1888 /* Read target file FILENAME. The return value will be -1 if the transfer
1889 fails or is not supported; 0 if the object is empty; or the length
1890 of the object otherwise. If a positive value is returned, a
1891 sufficiently large buffer will be allocated using xmalloc and
1892 returned in *BUF_P containing the contents of the object.
1893
1894 This method should be used for objects sufficiently small to store
1895 in a single xmalloc'd buffer, when no fixed bound on the object's
1896 size is known in advance. */
1897 extern LONGEST target_fileio_read_alloc (const char *filename,
1898 gdb_byte **buf_p);
1899
1900 /* Read target file FILENAME. The result is NUL-terminated and
1901 returned as a string, allocated using xmalloc. If an error occurs
1902 or the transfer is unsupported, NULL is returned. Empty objects
1903 are returned as allocated but empty strings. A warning is issued
1904 if the result contains any embedded NUL bytes. */
1905 extern char *target_fileio_read_stralloc (const char *filename);
1906
1907
1908 /* Tracepoint-related operations. */
1909
1910 #define target_trace_init() \
1911 (*current_target.to_trace_init) (&current_target)
1912
1913 #define target_download_tracepoint(t) \
1914 (*current_target.to_download_tracepoint) (&current_target, t)
1915
1916 #define target_can_download_tracepoint() \
1917 (*current_target.to_can_download_tracepoint) (&current_target)
1918
1919 #define target_download_trace_state_variable(tsv) \
1920 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1921
1922 #define target_enable_tracepoint(loc) \
1923 (*current_target.to_enable_tracepoint) (&current_target, loc)
1924
1925 #define target_disable_tracepoint(loc) \
1926 (*current_target.to_disable_tracepoint) (&current_target, loc)
1927
1928 #define target_trace_start() \
1929 (*current_target.to_trace_start) (&current_target)
1930
1931 #define target_trace_set_readonly_regions() \
1932 (*current_target.to_trace_set_readonly_regions) (&current_target)
1933
1934 #define target_get_trace_status(ts) \
1935 (*current_target.to_get_trace_status) (&current_target, ts)
1936
1937 #define target_get_tracepoint_status(tp,utp) \
1938 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1939
1940 #define target_trace_stop() \
1941 (*current_target.to_trace_stop) (&current_target)
1942
1943 #define target_trace_find(type,num,addr1,addr2,tpp) \
1944 (*current_target.to_trace_find) (&current_target, \
1945 (type), (num), (addr1), (addr2), (tpp))
1946
1947 #define target_get_trace_state_variable_value(tsv,val) \
1948 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1949 (tsv), (val))
1950
1951 #define target_save_trace_data(filename) \
1952 (*current_target.to_save_trace_data) (&current_target, filename)
1953
1954 #define target_upload_tracepoints(utpp) \
1955 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1956
1957 #define target_upload_trace_state_variables(utsvp) \
1958 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1959
1960 #define target_get_raw_trace_data(buf,offset,len) \
1961 (*current_target.to_get_raw_trace_data) (&current_target, \
1962 (buf), (offset), (len))
1963
1964 #define target_get_min_fast_tracepoint_insn_len() \
1965 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1966
1967 #define target_set_disconnected_tracing(val) \
1968 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1969
1970 #define target_set_circular_trace_buffer(val) \
1971 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1972
1973 #define target_set_trace_buffer_size(val) \
1974 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1975
1976 #define target_set_trace_notes(user,notes,stopnotes) \
1977 (*current_target.to_set_trace_notes) (&current_target, \
1978 (user), (notes), (stopnotes))
1979
1980 #define target_get_tib_address(ptid, addr) \
1981 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1982
1983 #define target_set_permissions() \
1984 (*current_target.to_set_permissions) (&current_target)
1985
1986 #define target_static_tracepoint_marker_at(addr, marker) \
1987 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1988 addr, marker)
1989
1990 #define target_static_tracepoint_markers_by_strid(marker_id) \
1991 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1992 marker_id)
1993
1994 #define target_traceframe_info() \
1995 (*current_target.to_traceframe_info) (&current_target)
1996
1997 #define target_use_agent(use) \
1998 (*current_target.to_use_agent) (&current_target, use)
1999
2000 #define target_can_use_agent() \
2001 (*current_target.to_can_use_agent) (&current_target)
2002
2003 #define target_augmented_libraries_svr4_read() \
2004 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2005
2006 /* Command logging facility. */
2007
2008 #define target_log_command(p) \
2009 (*current_target.to_log_command) (&current_target, p)
2010
2011
2012 extern int target_core_of_thread (ptid_t ptid);
2013
2014 /* See to_get_unwinder in struct target_ops. */
2015 extern const struct frame_unwind *target_get_unwinder (void);
2016
2017 /* See to_get_tailcall_unwinder in struct target_ops. */
2018 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2019
2020 /* This implements basic memory verification, reading target memory
2021 and performing the comparison here (as opposed to accelerated
2022 verification making use of the qCRC packet, for example). */
2023
2024 extern int simple_verify_memory (struct target_ops* ops,
2025 const gdb_byte *data,
2026 CORE_ADDR memaddr, ULONGEST size);
2027
2028 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2029 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2030 if there's a mismatch, and -1 if an error is encountered while
2031 reading memory. Throws an error if the functionality is found not
2032 to be supported by the current target. */
2033 int target_verify_memory (const gdb_byte *data,
2034 CORE_ADDR memaddr, ULONGEST size);
2035
2036 /* Routines for maintenance of the target structures...
2037
2038 complete_target_initialization: Finalize a target_ops by filling in
2039 any fields needed by the target implementation. Unnecessary for
2040 targets which are registered via add_target, as this part gets
2041 taken care of then.
2042
2043 add_target: Add a target to the list of all possible targets.
2044 This only makes sense for targets that should be activated using
2045 the "target TARGET_NAME ..." command.
2046
2047 push_target: Make this target the top of the stack of currently used
2048 targets, within its particular stratum of the stack. Result
2049 is 0 if now atop the stack, nonzero if not on top (maybe
2050 should warn user).
2051
2052 unpush_target: Remove this from the stack of currently used targets,
2053 no matter where it is on the list. Returns 0 if no
2054 change, 1 if removed from stack. */
2055
2056 extern void add_target (struct target_ops *);
2057
2058 extern void add_target_with_completer (struct target_ops *t,
2059 completer_ftype *completer);
2060
2061 extern void complete_target_initialization (struct target_ops *t);
2062
2063 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2064 for maintaining backwards compatibility when renaming targets. */
2065
2066 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2067
2068 extern void push_target (struct target_ops *);
2069
2070 extern int unpush_target (struct target_ops *);
2071
2072 extern void target_pre_inferior (int);
2073
2074 extern void target_preopen (int);
2075
2076 /* Does whatever cleanup is required to get rid of all pushed targets. */
2077 extern void pop_all_targets (void);
2078
2079 /* Like pop_all_targets, but pops only targets whose stratum is
2080 strictly above ABOVE_STRATUM. */
2081 extern void pop_all_targets_above (enum strata above_stratum);
2082
2083 extern int target_is_pushed (struct target_ops *t);
2084
2085 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2086 CORE_ADDR offset);
2087
2088 /* Struct target_section maps address ranges to file sections. It is
2089 mostly used with BFD files, but can be used without (e.g. for handling
2090 raw disks, or files not in formats handled by BFD). */
2091
2092 struct target_section
2093 {
2094 CORE_ADDR addr; /* Lowest address in section */
2095 CORE_ADDR endaddr; /* 1+highest address in section */
2096
2097 struct bfd_section *the_bfd_section;
2098
2099 /* The "owner" of the section.
2100 It can be any unique value. It is set by add_target_sections
2101 and used by remove_target_sections.
2102 For example, for executables it is a pointer to exec_bfd and
2103 for shlibs it is the so_list pointer. */
2104 void *owner;
2105 };
2106
2107 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2108
2109 struct target_section_table
2110 {
2111 struct target_section *sections;
2112 struct target_section *sections_end;
2113 };
2114
2115 /* Return the "section" containing the specified address. */
2116 struct target_section *target_section_by_addr (struct target_ops *target,
2117 CORE_ADDR addr);
2118
2119 /* Return the target section table this target (or the targets
2120 beneath) currently manipulate. */
2121
2122 extern struct target_section_table *target_get_section_table
2123 (struct target_ops *target);
2124
2125 /* From mem-break.c */
2126
2127 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2128 struct bp_target_info *);
2129
2130 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2131 struct bp_target_info *);
2132
2133 /* Check whether the memory at the breakpoint's placed address still
2134 contains the expected breakpoint instruction. */
2135
2136 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2137 struct bp_target_info *bp_tgt);
2138
2139 extern int default_memory_remove_breakpoint (struct gdbarch *,
2140 struct bp_target_info *);
2141
2142 extern int default_memory_insert_breakpoint (struct gdbarch *,
2143 struct bp_target_info *);
2144
2145
2146 /* From target.c */
2147
2148 extern void initialize_targets (void);
2149
2150 extern void noprocess (void) ATTRIBUTE_NORETURN;
2151
2152 extern void target_require_runnable (void);
2153
2154 extern void find_default_attach (struct target_ops *, const char *, int);
2155
2156 extern void find_default_create_inferior (struct target_ops *,
2157 char *, char *, char **, int);
2158
2159 extern struct target_ops *find_target_beneath (struct target_ops *);
2160
2161 /* Find the target at STRATUM. If no target is at that stratum,
2162 return NULL. */
2163
2164 struct target_ops *find_target_at (enum strata stratum);
2165
2166 /* Read OS data object of type TYPE from the target, and return it in
2167 XML format. The result is NUL-terminated and returned as a string,
2168 allocated using xmalloc. If an error occurs or the transfer is
2169 unsupported, NULL is returned. Empty objects are returned as
2170 allocated but empty strings. */
2171
2172 extern char *target_get_osdata (const char *type);
2173
2174 \f
2175 /* Stuff that should be shared among the various remote targets. */
2176
2177 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2178 information (higher values, more information). */
2179 extern int remote_debug;
2180
2181 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2182 extern int baud_rate;
2183 /* Timeout limit for response from target. */
2184 extern int remote_timeout;
2185
2186 \f
2187
2188 /* Set the show memory breakpoints mode to show, and installs a cleanup
2189 to restore it back to the current value. */
2190 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2191
2192 extern int may_write_registers;
2193 extern int may_write_memory;
2194 extern int may_insert_breakpoints;
2195 extern int may_insert_tracepoints;
2196 extern int may_insert_fast_tracepoints;
2197 extern int may_stop;
2198
2199 extern void update_target_permissions (void);
2200
2201 \f
2202 /* Imported from machine dependent code. */
2203
2204 /* See to_supports_btrace in struct target_ops. */
2205 #define target_supports_btrace() \
2206 (current_target.to_supports_btrace (&current_target))
2207
2208 /* See to_enable_btrace in struct target_ops. */
2209 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2210
2211 /* See to_disable_btrace in struct target_ops. */
2212 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2213
2214 /* See to_teardown_btrace in struct target_ops. */
2215 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2216
2217 /* See to_read_btrace in struct target_ops. */
2218 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2219 struct btrace_target_info *,
2220 enum btrace_read_type);
2221
2222 /* See to_stop_recording in struct target_ops. */
2223 extern void target_stop_recording (void);
2224
2225 /* See to_save_record in struct target_ops. */
2226 extern void target_save_record (const char *filename);
2227
2228 /* Query if the target supports deleting the execution log. */
2229 extern int target_supports_delete_record (void);
2230
2231 /* See to_delete_record in struct target_ops. */
2232 extern void target_delete_record (void);
2233
2234 /* See to_record_is_replaying in struct target_ops. */
2235 extern int target_record_is_replaying (void);
2236
2237 /* See to_goto_record_begin in struct target_ops. */
2238 extern void target_goto_record_begin (void);
2239
2240 /* See to_goto_record_end in struct target_ops. */
2241 extern void target_goto_record_end (void);
2242
2243 /* See to_goto_record in struct target_ops. */
2244 extern void target_goto_record (ULONGEST insn);
2245
2246 /* See to_insn_history. */
2247 extern void target_insn_history (int size, int flags);
2248
2249 /* See to_insn_history_from. */
2250 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2251
2252 /* See to_insn_history_range. */
2253 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2254
2255 /* See to_call_history. */
2256 extern void target_call_history (int size, int flags);
2257
2258 /* See to_call_history_from. */
2259 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2260
2261 /* See to_call_history_range. */
2262 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2263
2264 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2265 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2266 struct gdbarch *gdbarch);
2267
2268 /* See to_decr_pc_after_break. */
2269 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2270
2271 /* See to_prepare_to_generate_core. */
2272 extern void target_prepare_to_generate_core (void);
2273
2274 /* See to_done_generating_core. */
2275 extern void target_done_generating_core (void);
2276
2277 #endif /* !defined (TARGET_H) */
This page took 0.163013 seconds and 4 git commands to generate.