* Makefile.in (check-parallel): rm -rf outputs temp.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 struct target_ops
363 {
364 struct target_ops *beneath; /* To the target under this one. */
365 char *to_shortname; /* Name this target type */
366 char *to_longname; /* Name for printing */
367 char *to_doc; /* Documentation. Does not include trailing
368 newline, and starts with a one-line descrip-
369 tion (probably similar to to_longname). */
370 /* Per-target scratch pad. */
371 void *to_data;
372 /* The open routine takes the rest of the parameters from the
373 command, and (if successful) pushes a new target onto the
374 stack. Targets should supply this routine, if only to provide
375 an error message. */
376 void (*to_open) (char *, int);
377 /* Old targets with a static target vector provide "to_close".
378 New re-entrant targets provide "to_xclose" and that is expected
379 to xfree everything (including the "struct target_ops"). */
380 void (*to_xclose) (struct target_ops *targ);
381 void (*to_close) (void);
382 void (*to_attach) (struct target_ops *ops, char *, int);
383 void (*to_post_attach) (int);
384 void (*to_detach) (struct target_ops *ops, const char *, int);
385 void (*to_disconnect) (struct target_ops *, char *, int);
386 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
387 ptid_t (*to_wait) (struct target_ops *,
388 ptid_t, struct target_waitstatus *, int);
389 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
390 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
391 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
392
393 /* Transfer LEN bytes of memory between GDB address MYADDR and
394 target address MEMADDR. If WRITE, transfer them to the target, else
395 transfer them from the target. TARGET is the target from which we
396 get this function.
397
398 Return value, N, is one of the following:
399
400 0 means that we can't handle this. If errno has been set, it is the
401 error which prevented us from doing it (FIXME: What about bfd_error?).
402
403 positive (call it N) means that we have transferred N bytes
404 starting at MEMADDR. We might be able to handle more bytes
405 beyond this length, but no promises.
406
407 negative (call its absolute value N) means that we cannot
408 transfer right at MEMADDR, but we could transfer at least
409 something at MEMADDR + N.
410
411 NOTE: cagney/2004-10-01: This has been entirely superseeded by
412 to_xfer_partial and inferior inheritance. */
413
414 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
415 int len, int write,
416 struct mem_attrib *attrib,
417 struct target_ops *target);
418
419 void (*to_files_info) (struct target_ops *);
420 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
421 struct bp_target_info *);
422 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
423 struct bp_target_info *);
424 int (*to_can_use_hw_breakpoint) (int, int, int);
425 int (*to_ranged_break_num_registers) (struct target_ops *);
426 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
427 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
428
429 /* Documentation of what the two routines below are expected to do is
430 provided with the corresponding target_* macros. */
431 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
432 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
433
434 int (*to_insert_mask_watchpoint) (struct target_ops *,
435 CORE_ADDR, CORE_ADDR, int);
436 int (*to_remove_mask_watchpoint) (struct target_ops *,
437 CORE_ADDR, CORE_ADDR, int);
438 int (*to_stopped_by_watchpoint) (void);
439 int to_have_steppable_watchpoint;
440 int to_have_continuable_watchpoint;
441 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
442 int (*to_watchpoint_addr_within_range) (struct target_ops *,
443 CORE_ADDR, CORE_ADDR, int);
444
445 /* Documentation of this routine is provided with the corresponding
446 target_* macro. */
447 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
448
449 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
450 struct expression *);
451 int (*to_masked_watch_num_registers) (struct target_ops *,
452 CORE_ADDR, CORE_ADDR);
453 void (*to_terminal_init) (void);
454 void (*to_terminal_inferior) (void);
455 void (*to_terminal_ours_for_output) (void);
456 void (*to_terminal_ours) (void);
457 void (*to_terminal_save_ours) (void);
458 void (*to_terminal_info) (const char *, int);
459 void (*to_kill) (struct target_ops *);
460 void (*to_load) (char *, int);
461 void (*to_create_inferior) (struct target_ops *,
462 char *, char *, char **, int);
463 void (*to_post_startup_inferior) (ptid_t);
464 int (*to_insert_fork_catchpoint) (int);
465 int (*to_remove_fork_catchpoint) (int);
466 int (*to_insert_vfork_catchpoint) (int);
467 int (*to_remove_vfork_catchpoint) (int);
468 int (*to_follow_fork) (struct target_ops *, int, int);
469 int (*to_insert_exec_catchpoint) (int);
470 int (*to_remove_exec_catchpoint) (int);
471 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
472 int (*to_has_exited) (int, int, int *);
473 void (*to_mourn_inferior) (struct target_ops *);
474 int (*to_can_run) (void);
475
476 /* Documentation of this routine is provided with the corresponding
477 target_* macro. */
478 void (*to_pass_signals) (int, unsigned char *);
479
480 /* Documentation of this routine is provided with the
481 corresponding target_* function. */
482 void (*to_program_signals) (int, unsigned char *);
483
484 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
485 void (*to_find_new_threads) (struct target_ops *);
486 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
487 char *(*to_extra_thread_info) (struct thread_info *);
488 char *(*to_thread_name) (struct thread_info *);
489 void (*to_stop) (ptid_t);
490 void (*to_rcmd) (char *command, struct ui_file *output);
491 char *(*to_pid_to_exec_file) (int pid);
492 void (*to_log_command) (const char *);
493 struct target_section_table *(*to_get_section_table) (struct target_ops *);
494 enum strata to_stratum;
495 int (*to_has_all_memory) (struct target_ops *);
496 int (*to_has_memory) (struct target_ops *);
497 int (*to_has_stack) (struct target_ops *);
498 int (*to_has_registers) (struct target_ops *);
499 int (*to_has_execution) (struct target_ops *, ptid_t);
500 int to_has_thread_control; /* control thread execution */
501 int to_attach_no_wait;
502 /* ASYNC target controls */
503 int (*to_can_async_p) (void);
504 int (*to_is_async_p) (void);
505 void (*to_async) (async_callback_ftype *, void *);
506 int (*to_supports_non_stop) (void);
507 /* find_memory_regions support method for gcore */
508 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
509 /* make_corefile_notes support method for gcore */
510 char * (*to_make_corefile_notes) (bfd *, int *);
511 /* get_bookmark support method for bookmarks */
512 gdb_byte * (*to_get_bookmark) (char *, int);
513 /* goto_bookmark support method for bookmarks */
514 void (*to_goto_bookmark) (gdb_byte *, int);
515 /* Return the thread-local address at OFFSET in the
516 thread-local storage for the thread PTID and the shared library
517 or executable file given by OBJFILE. If that block of
518 thread-local storage hasn't been allocated yet, this function
519 may return an error. */
520 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
521 ptid_t ptid,
522 CORE_ADDR load_module_addr,
523 CORE_ADDR offset);
524
525 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
526 OBJECT. The OFFSET, for a seekable object, specifies the
527 starting point. The ANNEX can be used to provide additional
528 data-specific information to the target.
529
530 Return the transferred status, error or OK (an
531 'enum target_xfer_status' value). Save the number of bytes
532 actually transferred in *XFERED_LEN if transfer is successful
533 (TARGET_XFER_OK) or the number unavailable bytes if the requested
534 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
535 smaller than LEN does not indicate the end of the object, only
536 the end of the transfer; higher level code should continue
537 transferring if desired. This is handled in target.c.
538
539 The interface does not support a "retry" mechanism. Instead it
540 assumes that at least one byte will be transfered on each
541 successful call.
542
543 NOTE: cagney/2003-10-17: The current interface can lead to
544 fragmented transfers. Lower target levels should not implement
545 hacks, such as enlarging the transfer, in an attempt to
546 compensate for this. Instead, the target stack should be
547 extended so that it implements supply/collect methods and a
548 look-aside object cache. With that available, the lowest
549 target can safely and freely "push" data up the stack.
550
551 See target_read and target_write for more information. One,
552 and only one, of readbuf or writebuf must be non-NULL. */
553
554 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
555 enum target_object object,
556 const char *annex,
557 gdb_byte *readbuf,
558 const gdb_byte *writebuf,
559 ULONGEST offset, ULONGEST len,
560 ULONGEST *xfered_len);
561
562 /* Returns the memory map for the target. A return value of NULL
563 means that no memory map is available. If a memory address
564 does not fall within any returned regions, it's assumed to be
565 RAM. The returned memory regions should not overlap.
566
567 The order of regions does not matter; target_memory_map will
568 sort regions by starting address. For that reason, this
569 function should not be called directly except via
570 target_memory_map.
571
572 This method should not cache data; if the memory map could
573 change unexpectedly, it should be invalidated, and higher
574 layers will re-fetch it. */
575 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
576
577 /* Erases the region of flash memory starting at ADDRESS, of
578 length LENGTH.
579
580 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
581 on flash block boundaries, as reported by 'to_memory_map'. */
582 void (*to_flash_erase) (struct target_ops *,
583 ULONGEST address, LONGEST length);
584
585 /* Finishes a flash memory write sequence. After this operation
586 all flash memory should be available for writing and the result
587 of reading from areas written by 'to_flash_write' should be
588 equal to what was written. */
589 void (*to_flash_done) (struct target_ops *);
590
591 /* Describe the architecture-specific features of this target.
592 Returns the description found, or NULL if no description
593 was available. */
594 const struct target_desc *(*to_read_description) (struct target_ops *ops);
595
596 /* Build the PTID of the thread on which a given task is running,
597 based on LWP and THREAD. These values are extracted from the
598 task Private_Data section of the Ada Task Control Block, and
599 their interpretation depends on the target. */
600 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
601
602 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
603 Return 0 if *READPTR is already at the end of the buffer.
604 Return -1 if there is insufficient buffer for a whole entry.
605 Return 1 if an entry was read into *TYPEP and *VALP. */
606 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
607 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
608
609 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
610 sequence of bytes in PATTERN with length PATTERN_LEN.
611
612 The result is 1 if found, 0 if not found, and -1 if there was an error
613 requiring halting of the search (e.g. memory read error).
614 If the pattern is found the address is recorded in FOUND_ADDRP. */
615 int (*to_search_memory) (struct target_ops *ops,
616 CORE_ADDR start_addr, ULONGEST search_space_len,
617 const gdb_byte *pattern, ULONGEST pattern_len,
618 CORE_ADDR *found_addrp);
619
620 /* Can target execute in reverse? */
621 int (*to_can_execute_reverse) (void);
622
623 /* The direction the target is currently executing. Must be
624 implemented on targets that support reverse execution and async
625 mode. The default simply returns forward execution. */
626 enum exec_direction_kind (*to_execution_direction) (void);
627
628 /* Does this target support debugging multiple processes
629 simultaneously? */
630 int (*to_supports_multi_process) (void);
631
632 /* Does this target support enabling and disabling tracepoints while a trace
633 experiment is running? */
634 int (*to_supports_enable_disable_tracepoint) (void);
635
636 /* Does this target support disabling address space randomization? */
637 int (*to_supports_disable_randomization) (void);
638
639 /* Does this target support the tracenz bytecode for string collection? */
640 int (*to_supports_string_tracing) (void);
641
642 /* Does this target support evaluation of breakpoint conditions on its
643 end? */
644 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
645
646 /* Does this target support evaluation of breakpoint commands on its
647 end? */
648 int (*to_can_run_breakpoint_commands) (void);
649
650 /* Determine current architecture of thread PTID.
651
652 The target is supposed to determine the architecture of the code where
653 the target is currently stopped at (on Cell, if a target is in spu_run,
654 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
655 This is architecture used to perform decr_pc_after_break adjustment,
656 and also determines the frame architecture of the innermost frame.
657 ptrace operations need to operate according to target_gdbarch ().
658
659 The default implementation always returns target_gdbarch (). */
660 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
661
662 /* Determine current address space of thread PTID.
663
664 The default implementation always returns the inferior's
665 address space. */
666 struct address_space *(*to_thread_address_space) (struct target_ops *,
667 ptid_t);
668
669 /* Target file operations. */
670
671 /* Open FILENAME on the target, using FLAGS and MODE. Return a
672 target file descriptor, or -1 if an error occurs (and set
673 *TARGET_ERRNO). */
674 int (*to_fileio_open) (const char *filename, int flags, int mode,
675 int *target_errno);
676
677 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
678 Return the number of bytes written, or -1 if an error occurs
679 (and set *TARGET_ERRNO). */
680 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
681 ULONGEST offset, int *target_errno);
682
683 /* Read up to LEN bytes FD on the target into READ_BUF.
684 Return the number of bytes read, or -1 if an error occurs
685 (and set *TARGET_ERRNO). */
686 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
687 ULONGEST offset, int *target_errno);
688
689 /* Close FD on the target. Return 0, or -1 if an error occurs
690 (and set *TARGET_ERRNO). */
691 int (*to_fileio_close) (int fd, int *target_errno);
692
693 /* Unlink FILENAME on the target. Return 0, or -1 if an error
694 occurs (and set *TARGET_ERRNO). */
695 int (*to_fileio_unlink) (const char *filename, int *target_errno);
696
697 /* Read value of symbolic link FILENAME on the target. Return a
698 null-terminated string allocated via xmalloc, or NULL if an error
699 occurs (and set *TARGET_ERRNO). */
700 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
701
702
703 /* Implement the "info proc" command. */
704 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
705
706 /* Tracepoint-related operations. */
707
708 /* Prepare the target for a tracing run. */
709 void (*to_trace_init) (void);
710
711 /* Send full details of a tracepoint location to the target. */
712 void (*to_download_tracepoint) (struct bp_location *location);
713
714 /* Is the target able to download tracepoint locations in current
715 state? */
716 int (*to_can_download_tracepoint) (void);
717
718 /* Send full details of a trace state variable to the target. */
719 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
720
721 /* Enable a tracepoint on the target. */
722 void (*to_enable_tracepoint) (struct bp_location *location);
723
724 /* Disable a tracepoint on the target. */
725 void (*to_disable_tracepoint) (struct bp_location *location);
726
727 /* Inform the target info of memory regions that are readonly
728 (such as text sections), and so it should return data from
729 those rather than look in the trace buffer. */
730 void (*to_trace_set_readonly_regions) (void);
731
732 /* Start a trace run. */
733 void (*to_trace_start) (void);
734
735 /* Get the current status of a tracing run. */
736 int (*to_get_trace_status) (struct trace_status *ts);
737
738 void (*to_get_tracepoint_status) (struct breakpoint *tp,
739 struct uploaded_tp *utp);
740
741 /* Stop a trace run. */
742 void (*to_trace_stop) (void);
743
744 /* Ask the target to find a trace frame of the given type TYPE,
745 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
746 number of the trace frame, and also the tracepoint number at
747 TPP. If no trace frame matches, return -1. May throw if the
748 operation fails. */
749 int (*to_trace_find) (enum trace_find_type type, int num,
750 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
751
752 /* Get the value of the trace state variable number TSV, returning
753 1 if the value is known and writing the value itself into the
754 location pointed to by VAL, else returning 0. */
755 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
756
757 int (*to_save_trace_data) (const char *filename);
758
759 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
760
761 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
762
763 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
764 ULONGEST offset, LONGEST len);
765
766 /* Get the minimum length of instruction on which a fast tracepoint
767 may be set on the target. If this operation is unsupported,
768 return -1. If for some reason the minimum length cannot be
769 determined, return 0. */
770 int (*to_get_min_fast_tracepoint_insn_len) (void);
771
772 /* Set the target's tracing behavior in response to unexpected
773 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
774 void (*to_set_disconnected_tracing) (int val);
775 void (*to_set_circular_trace_buffer) (int val);
776 /* Set the size of trace buffer in the target. */
777 void (*to_set_trace_buffer_size) (LONGEST val);
778
779 /* Add/change textual notes about the trace run, returning 1 if
780 successful, 0 otherwise. */
781 int (*to_set_trace_notes) (const char *user, const char *notes,
782 const char *stopnotes);
783
784 /* Return the processor core that thread PTID was last seen on.
785 This information is updated only when:
786 - update_thread_list is called
787 - thread stops
788 If the core cannot be determined -- either for the specified
789 thread, or right now, or in this debug session, or for this
790 target -- return -1. */
791 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
792
793 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
794 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
795 a match, 0 if there's a mismatch, and -1 if an error is
796 encountered while reading memory. */
797 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
798 CORE_ADDR memaddr, ULONGEST size);
799
800 /* Return the address of the start of the Thread Information Block
801 a Windows OS specific feature. */
802 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
803
804 /* Send the new settings of write permission variables. */
805 void (*to_set_permissions) (void);
806
807 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
808 with its details. Return 1 on success, 0 on failure. */
809 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
810 struct static_tracepoint_marker *marker);
811
812 /* Return a vector of all tracepoints markers string id ID, or all
813 markers if ID is NULL. */
814 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
815 (const char *id);
816
817 /* Return a traceframe info object describing the current
818 traceframe's contents. If the target doesn't support
819 traceframe info, return NULL. If the current traceframe is not
820 selected (the current traceframe number is -1), the target can
821 choose to return either NULL or an empty traceframe info. If
822 NULL is returned, for example in remote target, GDB will read
823 from the live inferior. If an empty traceframe info is
824 returned, for example in tfile target, which means the
825 traceframe info is available, but the requested memory is not
826 available in it. GDB will try to see if the requested memory
827 is available in the read-only sections. This method should not
828 cache data; higher layers take care of caching, invalidating,
829 and re-fetching when necessary. */
830 struct traceframe_info *(*to_traceframe_info) (void);
831
832 /* Ask the target to use or not to use agent according to USE. Return 1
833 successful, 0 otherwise. */
834 int (*to_use_agent) (int use);
835
836 /* Is the target able to use agent in current state? */
837 int (*to_can_use_agent) (void);
838
839 /* Check whether the target supports branch tracing. */
840 int (*to_supports_btrace) (void);
841
842 /* Enable branch tracing for PTID and allocate a branch trace target
843 information struct for reading and for disabling branch trace. */
844 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
845
846 /* Disable branch tracing and deallocate TINFO. */
847 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
848
849 /* Disable branch tracing and deallocate TINFO. This function is similar
850 to to_disable_btrace, except that it is called during teardown and is
851 only allowed to perform actions that are safe. A counter-example would
852 be attempting to talk to a remote target. */
853 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
854
855 /* Read branch trace data for the thread indicated by BTINFO into DATA.
856 DATA is cleared before new trace is added.
857 The branch trace will start with the most recent block and continue
858 towards older blocks. */
859 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
860 struct btrace_target_info *btinfo,
861 enum btrace_read_type type);
862
863 /* Stop trace recording. */
864 void (*to_stop_recording) (void);
865
866 /* Print information about the recording. */
867 void (*to_info_record) (void);
868
869 /* Save the recorded execution trace into a file. */
870 void (*to_save_record) (const char *filename);
871
872 /* Delete the recorded execution trace from the current position onwards. */
873 void (*to_delete_record) (void);
874
875 /* Query if the record target is currently replaying. */
876 int (*to_record_is_replaying) (void);
877
878 /* Go to the begin of the execution trace. */
879 void (*to_goto_record_begin) (void);
880
881 /* Go to the end of the execution trace. */
882 void (*to_goto_record_end) (void);
883
884 /* Go to a specific location in the recorded execution trace. */
885 void (*to_goto_record) (ULONGEST insn);
886
887 /* Disassemble SIZE instructions in the recorded execution trace from
888 the current position.
889 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
890 disassemble SIZE succeeding instructions. */
891 void (*to_insn_history) (int size, int flags);
892
893 /* Disassemble SIZE instructions in the recorded execution trace around
894 FROM.
895 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
896 disassemble SIZE instructions after FROM. */
897 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
898
899 /* Disassemble a section of the recorded execution trace from instruction
900 BEGIN (inclusive) to instruction END (inclusive). */
901 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
902
903 /* Print a function trace of the recorded execution trace.
904 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
905 succeeding functions. */
906 void (*to_call_history) (int size, int flags);
907
908 /* Print a function trace of the recorded execution trace starting
909 at function FROM.
910 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
911 SIZE functions after FROM. */
912 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
913
914 /* Print a function trace of an execution trace section from function BEGIN
915 (inclusive) to function END (inclusive). */
916 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
917
918 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
919 non-empty annex. */
920 int (*to_augmented_libraries_svr4_read) (void);
921
922 /* Those unwinders are tried before any other arch unwinders. Use NULL if
923 it is not used. */
924 const struct frame_unwind *to_get_unwinder;
925 const struct frame_unwind *to_get_tailcall_unwinder;
926
927 /* Return the number of bytes by which the PC needs to be decremented
928 after executing a breakpoint instruction.
929 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
930 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
931 struct gdbarch *gdbarch);
932
933 int to_magic;
934 /* Need sub-structure for target machine related rather than comm related?
935 */
936 };
937
938 /* Magic number for checking ops size. If a struct doesn't end with this
939 number, somebody changed the declaration but didn't change all the
940 places that initialize one. */
941
942 #define OPS_MAGIC 3840
943
944 /* The ops structure for our "current" target process. This should
945 never be NULL. If there is no target, it points to the dummy_target. */
946
947 extern struct target_ops current_target;
948
949 /* Define easy words for doing these operations on our current target. */
950
951 #define target_shortname (current_target.to_shortname)
952 #define target_longname (current_target.to_longname)
953
954 /* Does whatever cleanup is required for a target that we are no
955 longer going to be calling. This routine is automatically always
956 called after popping the target off the target stack - the target's
957 own methods are no longer available through the target vector.
958 Closing file descriptors and freeing all memory allocated memory are
959 typical things it should do. */
960
961 void target_close (struct target_ops *targ);
962
963 /* Attaches to a process on the target side. Arguments are as passed
964 to the `attach' command by the user. This routine can be called
965 when the target is not on the target-stack, if the target_can_run
966 routine returns 1; in that case, it must push itself onto the stack.
967 Upon exit, the target should be ready for normal operations, and
968 should be ready to deliver the status of the process immediately
969 (without waiting) to an upcoming target_wait call. */
970
971 void target_attach (char *, int);
972
973 /* Some targets don't generate traps when attaching to the inferior,
974 or their target_attach implementation takes care of the waiting.
975 These targets must set to_attach_no_wait. */
976
977 #define target_attach_no_wait \
978 (current_target.to_attach_no_wait)
979
980 /* The target_attach operation places a process under debugger control,
981 and stops the process.
982
983 This operation provides a target-specific hook that allows the
984 necessary bookkeeping to be performed after an attach completes. */
985 #define target_post_attach(pid) \
986 (*current_target.to_post_attach) (pid)
987
988 /* Takes a program previously attached to and detaches it.
989 The program may resume execution (some targets do, some don't) and will
990 no longer stop on signals, etc. We better not have left any breakpoints
991 in the program or it'll die when it hits one. ARGS is arguments
992 typed by the user (e.g. a signal to send the process). FROM_TTY
993 says whether to be verbose or not. */
994
995 extern void target_detach (const char *, int);
996
997 /* Disconnect from the current target without resuming it (leaving it
998 waiting for a debugger). */
999
1000 extern void target_disconnect (char *, int);
1001
1002 /* Resume execution of the target process PTID (or a group of
1003 threads). STEP says whether to single-step or to run free; SIGGNAL
1004 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1005 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1006 PTID means `step/resume only this process id'. A wildcard PTID
1007 (all threads, or all threads of process) means `step/resume
1008 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1009 matches) resume with their 'thread->suspend.stop_signal' signal
1010 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1011 if in "no pass" state. */
1012
1013 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1014
1015 /* Wait for process pid to do something. PTID = -1 to wait for any
1016 pid to do something. Return pid of child, or -1 in case of error;
1017 store status through argument pointer STATUS. Note that it is
1018 _NOT_ OK to throw_exception() out of target_wait() without popping
1019 the debugging target from the stack; GDB isn't prepared to get back
1020 to the prompt with a debugging target but without the frame cache,
1021 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1022 options. */
1023
1024 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1025 int options);
1026
1027 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1028
1029 extern void target_fetch_registers (struct regcache *regcache, int regno);
1030
1031 /* Store at least register REGNO, or all regs if REGNO == -1.
1032 It can store as many registers as it wants to, so target_prepare_to_store
1033 must have been previously called. Calls error() if there are problems. */
1034
1035 extern void target_store_registers (struct regcache *regcache, int regs);
1036
1037 /* Get ready to modify the registers array. On machines which store
1038 individual registers, this doesn't need to do anything. On machines
1039 which store all the registers in one fell swoop, this makes sure
1040 that REGISTERS contains all the registers from the program being
1041 debugged. */
1042
1043 #define target_prepare_to_store(regcache) \
1044 (*current_target.to_prepare_to_store) (&current_target, regcache)
1045
1046 /* Determine current address space of thread PTID. */
1047
1048 struct address_space *target_thread_address_space (ptid_t);
1049
1050 /* Implement the "info proc" command. This returns one if the request
1051 was handled, and zero otherwise. It can also throw an exception if
1052 an error was encountered while attempting to handle the
1053 request. */
1054
1055 int target_info_proc (char *, enum info_proc_what);
1056
1057 /* Returns true if this target can debug multiple processes
1058 simultaneously. */
1059
1060 #define target_supports_multi_process() \
1061 (*current_target.to_supports_multi_process) ()
1062
1063 /* Returns true if this target can disable address space randomization. */
1064
1065 int target_supports_disable_randomization (void);
1066
1067 /* Returns true if this target can enable and disable tracepoints
1068 while a trace experiment is running. */
1069
1070 #define target_supports_enable_disable_tracepoint() \
1071 (*current_target.to_supports_enable_disable_tracepoint) ()
1072
1073 #define target_supports_string_tracing() \
1074 (*current_target.to_supports_string_tracing) ()
1075
1076 /* Returns true if this target can handle breakpoint conditions
1077 on its end. */
1078
1079 #define target_supports_evaluation_of_breakpoint_conditions() \
1080 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1081
1082 /* Returns true if this target can handle breakpoint commands
1083 on its end. */
1084
1085 #define target_can_run_breakpoint_commands() \
1086 (*current_target.to_can_run_breakpoint_commands) ()
1087
1088 extern int target_read_string (CORE_ADDR, char **, int, int *);
1089
1090 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1091 ssize_t len);
1092
1093 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1094 ssize_t len);
1095
1096 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1097
1098 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1099
1100 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1101 ssize_t len);
1102
1103 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1104 ssize_t len);
1105
1106 /* Fetches the target's memory map. If one is found it is sorted
1107 and returned, after some consistency checking. Otherwise, NULL
1108 is returned. */
1109 VEC(mem_region_s) *target_memory_map (void);
1110
1111 /* Erase the specified flash region. */
1112 void target_flash_erase (ULONGEST address, LONGEST length);
1113
1114 /* Finish a sequence of flash operations. */
1115 void target_flash_done (void);
1116
1117 /* Describes a request for a memory write operation. */
1118 struct memory_write_request
1119 {
1120 /* Begining address that must be written. */
1121 ULONGEST begin;
1122 /* Past-the-end address. */
1123 ULONGEST end;
1124 /* The data to write. */
1125 gdb_byte *data;
1126 /* A callback baton for progress reporting for this request. */
1127 void *baton;
1128 };
1129 typedef struct memory_write_request memory_write_request_s;
1130 DEF_VEC_O(memory_write_request_s);
1131
1132 /* Enumeration specifying different flash preservation behaviour. */
1133 enum flash_preserve_mode
1134 {
1135 flash_preserve,
1136 flash_discard
1137 };
1138
1139 /* Write several memory blocks at once. This version can be more
1140 efficient than making several calls to target_write_memory, in
1141 particular because it can optimize accesses to flash memory.
1142
1143 Moreover, this is currently the only memory access function in gdb
1144 that supports writing to flash memory, and it should be used for
1145 all cases where access to flash memory is desirable.
1146
1147 REQUESTS is the vector (see vec.h) of memory_write_request.
1148 PRESERVE_FLASH_P indicates what to do with blocks which must be
1149 erased, but not completely rewritten.
1150 PROGRESS_CB is a function that will be periodically called to provide
1151 feedback to user. It will be called with the baton corresponding
1152 to the request currently being written. It may also be called
1153 with a NULL baton, when preserved flash sectors are being rewritten.
1154
1155 The function returns 0 on success, and error otherwise. */
1156 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1157 enum flash_preserve_mode preserve_flash_p,
1158 void (*progress_cb) (ULONGEST, void *));
1159
1160 /* Print a line about the current target. */
1161
1162 #define target_files_info() \
1163 (*current_target.to_files_info) (&current_target)
1164
1165 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1166 the target machine. Returns 0 for success, and returns non-zero or
1167 throws an error (with a detailed failure reason error code and
1168 message) otherwise.
1169 Start the target search at OPS. */
1170
1171 extern int forward_target_insert_breakpoint (struct target_ops *ops,
1172 struct gdbarch *gdbarch,
1173 struct bp_target_info *bp_tgt);
1174
1175 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1176 the target machine. Returns 0 for success, and returns non-zero or
1177 throws an error (with a detailed failure reason error code and
1178 message) otherwise. */
1179
1180 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1181 struct bp_target_info *bp_tgt);
1182
1183 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1184 machine. Result is 0 for success, non-zero for error.
1185 Start the target search at OPS. */
1186
1187 extern int forward_target_remove_breakpoint (struct target_ops *ops,
1188 struct gdbarch *gdbarch,
1189 struct bp_target_info *bp_tgt);
1190 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1191 machine. Result is 0 for success, non-zero for error. */
1192
1193 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1194 struct bp_target_info *bp_tgt);
1195
1196 /* Initialize the terminal settings we record for the inferior,
1197 before we actually run the inferior. */
1198
1199 #define target_terminal_init() \
1200 (*current_target.to_terminal_init) ()
1201
1202 /* Put the inferior's terminal settings into effect.
1203 This is preparation for starting or resuming the inferior. */
1204
1205 extern void target_terminal_inferior (void);
1206
1207 /* Put some of our terminal settings into effect,
1208 enough to get proper results from our output,
1209 but do not change into or out of RAW mode
1210 so that no input is discarded.
1211
1212 After doing this, either terminal_ours or terminal_inferior
1213 should be called to get back to a normal state of affairs. */
1214
1215 #define target_terminal_ours_for_output() \
1216 (*current_target.to_terminal_ours_for_output) ()
1217
1218 /* Put our terminal settings into effect.
1219 First record the inferior's terminal settings
1220 so they can be restored properly later. */
1221
1222 #define target_terminal_ours() \
1223 (*current_target.to_terminal_ours) ()
1224
1225 /* Save our terminal settings.
1226 This is called from TUI after entering or leaving the curses
1227 mode. Since curses modifies our terminal this call is here
1228 to take this change into account. */
1229
1230 #define target_terminal_save_ours() \
1231 (*current_target.to_terminal_save_ours) ()
1232
1233 /* Print useful information about our terminal status, if such a thing
1234 exists. */
1235
1236 #define target_terminal_info(arg, from_tty) \
1237 (*current_target.to_terminal_info) (arg, from_tty)
1238
1239 /* Kill the inferior process. Make it go away. */
1240
1241 extern void target_kill (void);
1242
1243 /* Load an executable file into the target process. This is expected
1244 to not only bring new code into the target process, but also to
1245 update GDB's symbol tables to match.
1246
1247 ARG contains command-line arguments, to be broken down with
1248 buildargv (). The first non-switch argument is the filename to
1249 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1250 0)), which is an offset to apply to the load addresses of FILE's
1251 sections. The target may define switches, or other non-switch
1252 arguments, as it pleases. */
1253
1254 extern void target_load (char *arg, int from_tty);
1255
1256 /* Start an inferior process and set inferior_ptid to its pid.
1257 EXEC_FILE is the file to run.
1258 ALLARGS is a string containing the arguments to the program.
1259 ENV is the environment vector to pass. Errors reported with error().
1260 On VxWorks and various standalone systems, we ignore exec_file. */
1261
1262 void target_create_inferior (char *exec_file, char *args,
1263 char **env, int from_tty);
1264
1265 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1266 notification of inferior events such as fork and vork immediately
1267 after the inferior is created. (This because of how gdb gets an
1268 inferior created via invoking a shell to do it. In such a scenario,
1269 if the shell init file has commands in it, the shell will fork and
1270 exec for each of those commands, and we will see each such fork
1271 event. Very bad.)
1272
1273 Such targets will supply an appropriate definition for this function. */
1274
1275 #define target_post_startup_inferior(ptid) \
1276 (*current_target.to_post_startup_inferior) (ptid)
1277
1278 /* On some targets, we can catch an inferior fork or vfork event when
1279 it occurs. These functions insert/remove an already-created
1280 catchpoint for such events. They return 0 for success, 1 if the
1281 catchpoint type is not supported and -1 for failure. */
1282
1283 #define target_insert_fork_catchpoint(pid) \
1284 (*current_target.to_insert_fork_catchpoint) (pid)
1285
1286 #define target_remove_fork_catchpoint(pid) \
1287 (*current_target.to_remove_fork_catchpoint) (pid)
1288
1289 #define target_insert_vfork_catchpoint(pid) \
1290 (*current_target.to_insert_vfork_catchpoint) (pid)
1291
1292 #define target_remove_vfork_catchpoint(pid) \
1293 (*current_target.to_remove_vfork_catchpoint) (pid)
1294
1295 /* If the inferior forks or vforks, this function will be called at
1296 the next resume in order to perform any bookkeeping and fiddling
1297 necessary to continue debugging either the parent or child, as
1298 requested, and releasing the other. Information about the fork
1299 or vfork event is available via get_last_target_status ().
1300 This function returns 1 if the inferior should not be resumed
1301 (i.e. there is another event pending). */
1302
1303 int target_follow_fork (int follow_child, int detach_fork);
1304
1305 /* On some targets, we can catch an inferior exec event when it
1306 occurs. These functions insert/remove an already-created
1307 catchpoint for such events. They return 0 for success, 1 if the
1308 catchpoint type is not supported and -1 for failure. */
1309
1310 #define target_insert_exec_catchpoint(pid) \
1311 (*current_target.to_insert_exec_catchpoint) (pid)
1312
1313 #define target_remove_exec_catchpoint(pid) \
1314 (*current_target.to_remove_exec_catchpoint) (pid)
1315
1316 /* Syscall catch.
1317
1318 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1319 If NEEDED is zero, it means the target can disable the mechanism to
1320 catch system calls because there are no more catchpoints of this type.
1321
1322 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1323 being requested. In this case, both TABLE_SIZE and TABLE should
1324 be ignored.
1325
1326 TABLE_SIZE is the number of elements in TABLE. It only matters if
1327 ANY_COUNT is zero.
1328
1329 TABLE is an array of ints, indexed by syscall number. An element in
1330 this array is nonzero if that syscall should be caught. This argument
1331 only matters if ANY_COUNT is zero.
1332
1333 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1334 for failure. */
1335
1336 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1337 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1338 table_size, table)
1339
1340 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1341 exit code of PID, if any. */
1342
1343 #define target_has_exited(pid,wait_status,exit_status) \
1344 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1345
1346 /* The debugger has completed a blocking wait() call. There is now
1347 some process event that must be processed. This function should
1348 be defined by those targets that require the debugger to perform
1349 cleanup or internal state changes in response to the process event. */
1350
1351 /* The inferior process has died. Do what is right. */
1352
1353 void target_mourn_inferior (void);
1354
1355 /* Does target have enough data to do a run or attach command? */
1356
1357 #define target_can_run(t) \
1358 ((t)->to_can_run) ()
1359
1360 /* Set list of signals to be handled in the target.
1361
1362 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1363 (enum gdb_signal). For every signal whose entry in this array is
1364 non-zero, the target is allowed -but not required- to skip reporting
1365 arrival of the signal to the GDB core by returning from target_wait,
1366 and to pass the signal directly to the inferior instead.
1367
1368 However, if the target is hardware single-stepping a thread that is
1369 about to receive a signal, it needs to be reported in any case, even
1370 if mentioned in a previous target_pass_signals call. */
1371
1372 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1373
1374 /* Set list of signals the target may pass to the inferior. This
1375 directly maps to the "handle SIGNAL pass/nopass" setting.
1376
1377 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1378 number (enum gdb_signal). For every signal whose entry in this
1379 array is non-zero, the target is allowed to pass the signal to the
1380 inferior. Signals not present in the array shall be silently
1381 discarded. This does not influence whether to pass signals to the
1382 inferior as a result of a target_resume call. This is useful in
1383 scenarios where the target needs to decide whether to pass or not a
1384 signal to the inferior without GDB core involvement, such as for
1385 example, when detaching (as threads may have been suspended with
1386 pending signals not reported to GDB). */
1387
1388 extern void target_program_signals (int nsig, unsigned char *program_signals);
1389
1390 /* Check to see if a thread is still alive. */
1391
1392 extern int target_thread_alive (ptid_t ptid);
1393
1394 /* Query for new threads and add them to the thread list. */
1395
1396 extern void target_find_new_threads (void);
1397
1398 /* Make target stop in a continuable fashion. (For instance, under
1399 Unix, this should act like SIGSTOP). This function is normally
1400 used by GUIs to implement a stop button. */
1401
1402 extern void target_stop (ptid_t ptid);
1403
1404 /* Send the specified COMMAND to the target's monitor
1405 (shell,interpreter) for execution. The result of the query is
1406 placed in OUTBUF. */
1407
1408 #define target_rcmd(command, outbuf) \
1409 (*current_target.to_rcmd) (command, outbuf)
1410
1411
1412 /* Does the target include all of memory, or only part of it? This
1413 determines whether we look up the target chain for other parts of
1414 memory if this target can't satisfy a request. */
1415
1416 extern int target_has_all_memory_1 (void);
1417 #define target_has_all_memory target_has_all_memory_1 ()
1418
1419 /* Does the target include memory? (Dummy targets don't.) */
1420
1421 extern int target_has_memory_1 (void);
1422 #define target_has_memory target_has_memory_1 ()
1423
1424 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1425 we start a process.) */
1426
1427 extern int target_has_stack_1 (void);
1428 #define target_has_stack target_has_stack_1 ()
1429
1430 /* Does the target have registers? (Exec files don't.) */
1431
1432 extern int target_has_registers_1 (void);
1433 #define target_has_registers target_has_registers_1 ()
1434
1435 /* Does the target have execution? Can we make it jump (through
1436 hoops), or pop its stack a few times? This means that the current
1437 target is currently executing; for some targets, that's the same as
1438 whether or not the target is capable of execution, but there are
1439 also targets which can be current while not executing. In that
1440 case this will become true after target_create_inferior or
1441 target_attach. */
1442
1443 extern int target_has_execution_1 (ptid_t);
1444
1445 /* Like target_has_execution_1, but always passes inferior_ptid. */
1446
1447 extern int target_has_execution_current (void);
1448
1449 #define target_has_execution target_has_execution_current ()
1450
1451 /* Default implementations for process_stratum targets. Return true
1452 if there's a selected inferior, false otherwise. */
1453
1454 extern int default_child_has_all_memory (struct target_ops *ops);
1455 extern int default_child_has_memory (struct target_ops *ops);
1456 extern int default_child_has_stack (struct target_ops *ops);
1457 extern int default_child_has_registers (struct target_ops *ops);
1458 extern int default_child_has_execution (struct target_ops *ops,
1459 ptid_t the_ptid);
1460
1461 /* Can the target support the debugger control of thread execution?
1462 Can it lock the thread scheduler? */
1463
1464 #define target_can_lock_scheduler \
1465 (current_target.to_has_thread_control & tc_schedlock)
1466
1467 /* Should the target enable async mode if it is supported? Temporary
1468 cludge until async mode is a strict superset of sync mode. */
1469 extern int target_async_permitted;
1470
1471 /* Can the target support asynchronous execution? */
1472 #define target_can_async_p() (current_target.to_can_async_p ())
1473
1474 /* Is the target in asynchronous execution mode? */
1475 #define target_is_async_p() (current_target.to_is_async_p ())
1476
1477 int target_supports_non_stop (void);
1478
1479 /* Put the target in async mode with the specified callback function. */
1480 #define target_async(CALLBACK,CONTEXT) \
1481 (current_target.to_async ((CALLBACK), (CONTEXT)))
1482
1483 #define target_execution_direction() \
1484 (current_target.to_execution_direction ())
1485
1486 /* Converts a process id to a string. Usually, the string just contains
1487 `process xyz', but on some systems it may contain
1488 `process xyz thread abc'. */
1489
1490 extern char *target_pid_to_str (ptid_t ptid);
1491
1492 extern char *normal_pid_to_str (ptid_t ptid);
1493
1494 /* Return a short string describing extra information about PID,
1495 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1496 is okay. */
1497
1498 #define target_extra_thread_info(TP) \
1499 (current_target.to_extra_thread_info (TP))
1500
1501 /* Return the thread's name. A NULL result means that the target
1502 could not determine this thread's name. */
1503
1504 extern char *target_thread_name (struct thread_info *);
1505
1506 /* Attempts to find the pathname of the executable file
1507 that was run to create a specified process.
1508
1509 The process PID must be stopped when this operation is used.
1510
1511 If the executable file cannot be determined, NULL is returned.
1512
1513 Else, a pointer to a character string containing the pathname
1514 is returned. This string should be copied into a buffer by
1515 the client if the string will not be immediately used, or if
1516 it must persist. */
1517
1518 #define target_pid_to_exec_file(pid) \
1519 (current_target.to_pid_to_exec_file) (pid)
1520
1521 /* See the to_thread_architecture description in struct target_ops. */
1522
1523 #define target_thread_architecture(ptid) \
1524 (current_target.to_thread_architecture (&current_target, ptid))
1525
1526 /*
1527 * Iterator function for target memory regions.
1528 * Calls a callback function once for each memory region 'mapped'
1529 * in the child process. Defined as a simple macro rather than
1530 * as a function macro so that it can be tested for nullity.
1531 */
1532
1533 #define target_find_memory_regions(FUNC, DATA) \
1534 (current_target.to_find_memory_regions) (FUNC, DATA)
1535
1536 /*
1537 * Compose corefile .note section.
1538 */
1539
1540 #define target_make_corefile_notes(BFD, SIZE_P) \
1541 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1542
1543 /* Bookmark interfaces. */
1544 #define target_get_bookmark(ARGS, FROM_TTY) \
1545 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1546
1547 #define target_goto_bookmark(ARG, FROM_TTY) \
1548 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1549
1550 /* Hardware watchpoint interfaces. */
1551
1552 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1553 write). Only the INFERIOR_PTID task is being queried. */
1554
1555 #define target_stopped_by_watchpoint \
1556 (*current_target.to_stopped_by_watchpoint)
1557
1558 /* Non-zero if we have steppable watchpoints */
1559
1560 #define target_have_steppable_watchpoint \
1561 (current_target.to_have_steppable_watchpoint)
1562
1563 /* Non-zero if we have continuable watchpoints */
1564
1565 #define target_have_continuable_watchpoint \
1566 (current_target.to_have_continuable_watchpoint)
1567
1568 /* Provide defaults for hardware watchpoint functions. */
1569
1570 /* If the *_hw_beakpoint functions have not been defined
1571 elsewhere use the definitions in the target vector. */
1572
1573 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1574 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1575 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1576 (including this one?). OTHERTYPE is who knows what... */
1577
1578 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1579 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1580
1581 /* Returns the number of debug registers needed to watch the given
1582 memory region, or zero if not supported. */
1583
1584 #define target_region_ok_for_hw_watchpoint(addr, len) \
1585 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1586
1587
1588 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1589 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1590 COND is the expression for its condition, or NULL if there's none.
1591 Returns 0 for success, 1 if the watchpoint type is not supported,
1592 -1 for failure. */
1593
1594 #define target_insert_watchpoint(addr, len, type, cond) \
1595 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1596
1597 #define target_remove_watchpoint(addr, len, type, cond) \
1598 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1599
1600 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1601 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1602 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1603 masked watchpoints are not supported, -1 for failure. */
1604
1605 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1606
1607 /* Remove a masked watchpoint at ADDR with the mask MASK.
1608 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1609 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1610 for failure. */
1611
1612 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1613
1614 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1615 the target machine. Returns 0 for success, and returns non-zero or
1616 throws an error (with a detailed failure reason error code and
1617 message) otherwise. */
1618
1619 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1620 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1621
1622 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1623 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1624
1625 /* Return number of debug registers needed for a ranged breakpoint,
1626 or -1 if ranged breakpoints are not supported. */
1627
1628 extern int target_ranged_break_num_registers (void);
1629
1630 /* Return non-zero if target knows the data address which triggered this
1631 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1632 INFERIOR_PTID task is being queried. */
1633 #define target_stopped_data_address(target, addr_p) \
1634 (*target.to_stopped_data_address) (target, addr_p)
1635
1636 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1637 LENGTH bytes beginning at START. */
1638 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1639 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1640
1641 /* Return non-zero if the target is capable of using hardware to evaluate
1642 the condition expression. In this case, if the condition is false when
1643 the watched memory location changes, execution may continue without the
1644 debugger being notified.
1645
1646 Due to limitations in the hardware implementation, it may be capable of
1647 avoiding triggering the watchpoint in some cases where the condition
1648 expression is false, but may report some false positives as well.
1649 For this reason, GDB will still evaluate the condition expression when
1650 the watchpoint triggers. */
1651 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1652 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1653
1654 /* Return number of debug registers needed for a masked watchpoint,
1655 -1 if masked watchpoints are not supported or -2 if the given address
1656 and mask combination cannot be used. */
1657
1658 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1659
1660 /* Target can execute in reverse? */
1661 #define target_can_execute_reverse \
1662 (current_target.to_can_execute_reverse ? \
1663 current_target.to_can_execute_reverse () : 0)
1664
1665 extern const struct target_desc *target_read_description (struct target_ops *);
1666
1667 #define target_get_ada_task_ptid(lwp, tid) \
1668 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1669
1670 /* Utility implementation of searching memory. */
1671 extern int simple_search_memory (struct target_ops* ops,
1672 CORE_ADDR start_addr,
1673 ULONGEST search_space_len,
1674 const gdb_byte *pattern,
1675 ULONGEST pattern_len,
1676 CORE_ADDR *found_addrp);
1677
1678 /* Main entry point for searching memory. */
1679 extern int target_search_memory (CORE_ADDR start_addr,
1680 ULONGEST search_space_len,
1681 const gdb_byte *pattern,
1682 ULONGEST pattern_len,
1683 CORE_ADDR *found_addrp);
1684
1685 /* Target file operations. */
1686
1687 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1688 target file descriptor, or -1 if an error occurs (and set
1689 *TARGET_ERRNO). */
1690 extern int target_fileio_open (const char *filename, int flags, int mode,
1691 int *target_errno);
1692
1693 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1694 Return the number of bytes written, or -1 if an error occurs
1695 (and set *TARGET_ERRNO). */
1696 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1697 ULONGEST offset, int *target_errno);
1698
1699 /* Read up to LEN bytes FD on the target into READ_BUF.
1700 Return the number of bytes read, or -1 if an error occurs
1701 (and set *TARGET_ERRNO). */
1702 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1703 ULONGEST offset, int *target_errno);
1704
1705 /* Close FD on the target. Return 0, or -1 if an error occurs
1706 (and set *TARGET_ERRNO). */
1707 extern int target_fileio_close (int fd, int *target_errno);
1708
1709 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1710 occurs (and set *TARGET_ERRNO). */
1711 extern int target_fileio_unlink (const char *filename, int *target_errno);
1712
1713 /* Read value of symbolic link FILENAME on the target. Return a
1714 null-terminated string allocated via xmalloc, or NULL if an error
1715 occurs (and set *TARGET_ERRNO). */
1716 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1717
1718 /* Read target file FILENAME. The return value will be -1 if the transfer
1719 fails or is not supported; 0 if the object is empty; or the length
1720 of the object otherwise. If a positive value is returned, a
1721 sufficiently large buffer will be allocated using xmalloc and
1722 returned in *BUF_P containing the contents of the object.
1723
1724 This method should be used for objects sufficiently small to store
1725 in a single xmalloc'd buffer, when no fixed bound on the object's
1726 size is known in advance. */
1727 extern LONGEST target_fileio_read_alloc (const char *filename,
1728 gdb_byte **buf_p);
1729
1730 /* Read target file FILENAME. The result is NUL-terminated and
1731 returned as a string, allocated using xmalloc. If an error occurs
1732 or the transfer is unsupported, NULL is returned. Empty objects
1733 are returned as allocated but empty strings. A warning is issued
1734 if the result contains any embedded NUL bytes. */
1735 extern char *target_fileio_read_stralloc (const char *filename);
1736
1737
1738 /* Tracepoint-related operations. */
1739
1740 #define target_trace_init() \
1741 (*current_target.to_trace_init) ()
1742
1743 #define target_download_tracepoint(t) \
1744 (*current_target.to_download_tracepoint) (t)
1745
1746 #define target_can_download_tracepoint() \
1747 (*current_target.to_can_download_tracepoint) ()
1748
1749 #define target_download_trace_state_variable(tsv) \
1750 (*current_target.to_download_trace_state_variable) (tsv)
1751
1752 #define target_enable_tracepoint(loc) \
1753 (*current_target.to_enable_tracepoint) (loc)
1754
1755 #define target_disable_tracepoint(loc) \
1756 (*current_target.to_disable_tracepoint) (loc)
1757
1758 #define target_trace_start() \
1759 (*current_target.to_trace_start) ()
1760
1761 #define target_trace_set_readonly_regions() \
1762 (*current_target.to_trace_set_readonly_regions) ()
1763
1764 #define target_get_trace_status(ts) \
1765 (*current_target.to_get_trace_status) (ts)
1766
1767 #define target_get_tracepoint_status(tp,utp) \
1768 (*current_target.to_get_tracepoint_status) (tp, utp)
1769
1770 #define target_trace_stop() \
1771 (*current_target.to_trace_stop) ()
1772
1773 #define target_trace_find(type,num,addr1,addr2,tpp) \
1774 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1775
1776 #define target_get_trace_state_variable_value(tsv,val) \
1777 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1778
1779 #define target_save_trace_data(filename) \
1780 (*current_target.to_save_trace_data) (filename)
1781
1782 #define target_upload_tracepoints(utpp) \
1783 (*current_target.to_upload_tracepoints) (utpp)
1784
1785 #define target_upload_trace_state_variables(utsvp) \
1786 (*current_target.to_upload_trace_state_variables) (utsvp)
1787
1788 #define target_get_raw_trace_data(buf,offset,len) \
1789 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1790
1791 #define target_get_min_fast_tracepoint_insn_len() \
1792 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1793
1794 #define target_set_disconnected_tracing(val) \
1795 (*current_target.to_set_disconnected_tracing) (val)
1796
1797 #define target_set_circular_trace_buffer(val) \
1798 (*current_target.to_set_circular_trace_buffer) (val)
1799
1800 #define target_set_trace_buffer_size(val) \
1801 (*current_target.to_set_trace_buffer_size) (val)
1802
1803 #define target_set_trace_notes(user,notes,stopnotes) \
1804 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1805
1806 #define target_get_tib_address(ptid, addr) \
1807 (*current_target.to_get_tib_address) ((ptid), (addr))
1808
1809 #define target_set_permissions() \
1810 (*current_target.to_set_permissions) ()
1811
1812 #define target_static_tracepoint_marker_at(addr, marker) \
1813 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1814
1815 #define target_static_tracepoint_markers_by_strid(marker_id) \
1816 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1817
1818 #define target_traceframe_info() \
1819 (*current_target.to_traceframe_info) ()
1820
1821 #define target_use_agent(use) \
1822 (*current_target.to_use_agent) (use)
1823
1824 #define target_can_use_agent() \
1825 (*current_target.to_can_use_agent) ()
1826
1827 #define target_augmented_libraries_svr4_read() \
1828 (*current_target.to_augmented_libraries_svr4_read) ()
1829
1830 /* Command logging facility. */
1831
1832 #define target_log_command(p) \
1833 do \
1834 if (current_target.to_log_command) \
1835 (*current_target.to_log_command) (p); \
1836 while (0)
1837
1838
1839 extern int target_core_of_thread (ptid_t ptid);
1840
1841 /* See to_get_unwinder in struct target_ops. */
1842 extern const struct frame_unwind *target_get_unwinder (void);
1843
1844 /* See to_get_tailcall_unwinder in struct target_ops. */
1845 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1846
1847 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1848 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1849 if there's a mismatch, and -1 if an error is encountered while
1850 reading memory. Throws an error if the functionality is found not
1851 to be supported by the current target. */
1852 int target_verify_memory (const gdb_byte *data,
1853 CORE_ADDR memaddr, ULONGEST size);
1854
1855 /* Routines for maintenance of the target structures...
1856
1857 complete_target_initialization: Finalize a target_ops by filling in
1858 any fields needed by the target implementation.
1859
1860 add_target: Add a target to the list of all possible targets.
1861
1862 push_target: Make this target the top of the stack of currently used
1863 targets, within its particular stratum of the stack. Result
1864 is 0 if now atop the stack, nonzero if not on top (maybe
1865 should warn user).
1866
1867 unpush_target: Remove this from the stack of currently used targets,
1868 no matter where it is on the list. Returns 0 if no
1869 change, 1 if removed from stack. */
1870
1871 extern void add_target (struct target_ops *);
1872
1873 extern void add_target_with_completer (struct target_ops *t,
1874 completer_ftype *completer);
1875
1876 extern void complete_target_initialization (struct target_ops *t);
1877
1878 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1879 for maintaining backwards compatibility when renaming targets. */
1880
1881 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1882
1883 extern void push_target (struct target_ops *);
1884
1885 extern int unpush_target (struct target_ops *);
1886
1887 extern void target_pre_inferior (int);
1888
1889 extern void target_preopen (int);
1890
1891 /* Does whatever cleanup is required to get rid of all pushed targets. */
1892 extern void pop_all_targets (void);
1893
1894 /* Like pop_all_targets, but pops only targets whose stratum is
1895 strictly above ABOVE_STRATUM. */
1896 extern void pop_all_targets_above (enum strata above_stratum);
1897
1898 extern int target_is_pushed (struct target_ops *t);
1899
1900 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1901 CORE_ADDR offset);
1902
1903 /* Struct target_section maps address ranges to file sections. It is
1904 mostly used with BFD files, but can be used without (e.g. for handling
1905 raw disks, or files not in formats handled by BFD). */
1906
1907 struct target_section
1908 {
1909 CORE_ADDR addr; /* Lowest address in section */
1910 CORE_ADDR endaddr; /* 1+highest address in section */
1911
1912 struct bfd_section *the_bfd_section;
1913
1914 /* The "owner" of the section.
1915 It can be any unique value. It is set by add_target_sections
1916 and used by remove_target_sections.
1917 For example, for executables it is a pointer to exec_bfd and
1918 for shlibs it is the so_list pointer. */
1919 void *owner;
1920 };
1921
1922 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1923
1924 struct target_section_table
1925 {
1926 struct target_section *sections;
1927 struct target_section *sections_end;
1928 };
1929
1930 /* Return the "section" containing the specified address. */
1931 struct target_section *target_section_by_addr (struct target_ops *target,
1932 CORE_ADDR addr);
1933
1934 /* Return the target section table this target (or the targets
1935 beneath) currently manipulate. */
1936
1937 extern struct target_section_table *target_get_section_table
1938 (struct target_ops *target);
1939
1940 /* From mem-break.c */
1941
1942 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1943 struct bp_target_info *);
1944
1945 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1946 struct bp_target_info *);
1947
1948 extern int default_memory_remove_breakpoint (struct gdbarch *,
1949 struct bp_target_info *);
1950
1951 extern int default_memory_insert_breakpoint (struct gdbarch *,
1952 struct bp_target_info *);
1953
1954
1955 /* From target.c */
1956
1957 extern void initialize_targets (void);
1958
1959 extern void noprocess (void) ATTRIBUTE_NORETURN;
1960
1961 extern void target_require_runnable (void);
1962
1963 extern void find_default_attach (struct target_ops *, char *, int);
1964
1965 extern void find_default_create_inferior (struct target_ops *,
1966 char *, char *, char **, int);
1967
1968 extern struct target_ops *find_target_beneath (struct target_ops *);
1969
1970 /* Read OS data object of type TYPE from the target, and return it in
1971 XML format. The result is NUL-terminated and returned as a string,
1972 allocated using xmalloc. If an error occurs or the transfer is
1973 unsupported, NULL is returned. Empty objects are returned as
1974 allocated but empty strings. */
1975
1976 extern char *target_get_osdata (const char *type);
1977
1978 \f
1979 /* Stuff that should be shared among the various remote targets. */
1980
1981 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1982 information (higher values, more information). */
1983 extern int remote_debug;
1984
1985 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1986 extern int baud_rate;
1987 /* Timeout limit for response from target. */
1988 extern int remote_timeout;
1989
1990 \f
1991
1992 /* Set the show memory breakpoints mode to show, and installs a cleanup
1993 to restore it back to the current value. */
1994 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1995
1996 extern int may_write_registers;
1997 extern int may_write_memory;
1998 extern int may_insert_breakpoints;
1999 extern int may_insert_tracepoints;
2000 extern int may_insert_fast_tracepoints;
2001 extern int may_stop;
2002
2003 extern void update_target_permissions (void);
2004
2005 \f
2006 /* Imported from machine dependent code. */
2007
2008 /* Blank target vector entries are initialized to target_ignore. */
2009 void target_ignore (void);
2010
2011 /* See to_supports_btrace in struct target_ops. */
2012 extern int target_supports_btrace (void);
2013
2014 /* See to_enable_btrace in struct target_ops. */
2015 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2016
2017 /* See to_disable_btrace in struct target_ops. */
2018 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2019
2020 /* See to_teardown_btrace in struct target_ops. */
2021 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2022
2023 /* See to_read_btrace in struct target_ops. */
2024 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2025 struct btrace_target_info *,
2026 enum btrace_read_type);
2027
2028 /* See to_stop_recording in struct target_ops. */
2029 extern void target_stop_recording (void);
2030
2031 /* See to_info_record in struct target_ops. */
2032 extern void target_info_record (void);
2033
2034 /* See to_save_record in struct target_ops. */
2035 extern void target_save_record (const char *filename);
2036
2037 /* Query if the target supports deleting the execution log. */
2038 extern int target_supports_delete_record (void);
2039
2040 /* See to_delete_record in struct target_ops. */
2041 extern void target_delete_record (void);
2042
2043 /* See to_record_is_replaying in struct target_ops. */
2044 extern int target_record_is_replaying (void);
2045
2046 /* See to_goto_record_begin in struct target_ops. */
2047 extern void target_goto_record_begin (void);
2048
2049 /* See to_goto_record_end in struct target_ops. */
2050 extern void target_goto_record_end (void);
2051
2052 /* See to_goto_record in struct target_ops. */
2053 extern void target_goto_record (ULONGEST insn);
2054
2055 /* See to_insn_history. */
2056 extern void target_insn_history (int size, int flags);
2057
2058 /* See to_insn_history_from. */
2059 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2060
2061 /* See to_insn_history_range. */
2062 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2063
2064 /* See to_call_history. */
2065 extern void target_call_history (int size, int flags);
2066
2067 /* See to_call_history_from. */
2068 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2069
2070 /* See to_call_history_range. */
2071 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2072
2073 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2074 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2075 struct gdbarch *gdbarch);
2076
2077 /* See to_decr_pc_after_break. */
2078 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2079
2080 #endif /* !defined (TARGET_H) */
This page took 0.074641 seconds and 4 git commands to generate.