2004-09-29 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by John Gilmore.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #if !defined (TARGET_H)
26 #define TARGET_H
27
28 struct objfile;
29 struct ui_file;
30 struct mem_attrib;
31 struct target_ops;
32
33 /* This include file defines the interface between the main part
34 of the debugger, and the part which is target-specific, or
35 specific to the communications interface between us and the
36 target.
37
38 A TARGET is an interface between the debugger and a particular
39 kind of file or process. Targets can be STACKED in STRATA,
40 so that more than one target can potentially respond to a request.
41 In particular, memory accesses will walk down the stack of targets
42 until they find a target that is interested in handling that particular
43 address. STRATA are artificial boundaries on the stack, within
44 which particular kinds of targets live. Strata exist so that
45 people don't get confused by pushing e.g. a process target and then
46 a file target, and wondering why they can't see the current values
47 of variables any more (the file target is handling them and they
48 never get to the process target). So when you push a file target,
49 it goes into the file stratum, which is always below the process
50 stratum. */
51
52 #include "bfd.h"
53 #include "symtab.h"
54 #include "dcache.h"
55 #include "memattr.h"
56
57 enum strata
58 {
59 dummy_stratum, /* The lowest of the low */
60 file_stratum, /* Executable files, etc */
61 core_stratum, /* Core dump files */
62 download_stratum, /* Downloading of remote targets */
63 process_stratum, /* Executing processes */
64 thread_stratum /* Executing threads */
65 };
66
67 enum thread_control_capabilities
68 {
69 tc_none = 0, /* Default: can't control thread execution. */
70 tc_schedlock = 1, /* Can lock the thread scheduler. */
71 tc_switch = 2 /* Can switch the running thread on demand. */
72 };
73
74 /* Stuff for target_wait. */
75
76 /* Generally, what has the program done? */
77 enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
81
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
84 TARGET_WAITKIND_STOPPED,
85
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
89
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
93
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
98 TARGET_WAITKIND_FORKED,
99
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
103 TARGET_WAITKIND_VFORKED,
104
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
108 TARGET_WAITKIND_EXECD,
109
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
116
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
120 TARGET_WAITKIND_SPURIOUS,
121
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
130 like for instance the user typing. */
131 TARGET_WAITKIND_IGNORE
132 };
133
134 struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
149
150 /* Possible types of events that the inferior handler will have to
151 deal with. */
152 enum inferior_event_type
153 {
154 /* There is a request to quit the inferior, abandon it. */
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
157 being called. */
158 INF_REG_EVENT,
159 /* Deal with an error on the inferior. */
160 INF_ERROR,
161 /* We are called because a timer went off. */
162 INF_TIMER,
163 /* We are called to do stuff after the inferior stops. */
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
168 'step n' like commands. */
169 INF_EXEC_CONTINUE
170 };
171
172 /* Return the string for a signal. */
173 extern char *target_signal_to_string (enum target_signal);
174
175 /* Return the name (SIGHUP, etc.) for a signal. */
176 extern char *target_signal_to_name (enum target_signal);
177
178 /* Given a name (SIGHUP, etc.), return its signal. */
179 enum target_signal target_signal_from_name (char *);
180 \f
181 /* Request the transfer of up to LEN 8-bit bytes of the target's
182 OBJECT. The OFFSET, for a seekable object, specifies the starting
183 point. The ANNEX can be used to provide additional data-specific
184 information to the target.
185
186 Return the number of bytes actually transfered, zero when no
187 further transfer is possible, and -1 when the transfer is not
188 supported.
189
190 NOTE: cagney/2003-10-17: The current interface does not support a
191 "retry" mechanism. Instead it assumes that at least one byte will
192 be transfered on each call.
193
194 NOTE: cagney/2003-10-17: The current interface can lead to
195 fragmented transfers. Lower target levels should not implement
196 hacks, such as enlarging the transfer, in an attempt to compensate
197 for this. Instead, the target stack should be extended so that it
198 implements supply/collect methods and a look-aside object cache.
199 With that available, the lowest target can safely and freely "push"
200 data up the stack.
201
202 NOTE: cagney/2003-10-17: Unlike the old query and the memory
203 transfer mechanisms, these methods are explicitly parameterized by
204 the target that it should be applied to.
205
206 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207 methods, these new methods perform partial transfers. The only
208 difference is that these new methods thought to include "partial"
209 in the name. The old code's failure to do this lead to much
210 confusion and duplication of effort as each target object attempted
211 to locally take responsibility for something it didn't have to
212 worry about.
213
214 NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
215 backward compatibility with the "target_query" method that this
216 replaced, when OFFSET and LEN are both zero, return the "minimum"
217 buffer size. See "remote.c" for further information. */
218
219 enum target_object
220 {
221 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
222 TARGET_OBJECT_KOD,
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
226 TARGET_OBJECT_MEMORY,
227 /* Kernel Unwind Table. See "ia64-tdep.c". */
228 TARGET_OBJECT_UNWIND_TABLE,
229 /* Transfer auxilliary vector. */
230 TARGET_OBJECT_AUXV,
231 /* StackGhost cookie. See "sparc-tdep.c". */
232 TARGET_OBJECT_WCOOKIE
233
234 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
235 };
236
237 extern LONGEST target_read_partial (struct target_ops *ops,
238 enum target_object object,
239 const char *annex, void *buf,
240 ULONGEST offset, LONGEST len);
241
242 extern LONGEST target_write_partial (struct target_ops *ops,
243 enum target_object object,
244 const char *annex, const void *buf,
245 ULONGEST offset, LONGEST len);
246
247 /* Wrappers to perform the full transfer. */
248 extern LONGEST target_read (struct target_ops *ops,
249 enum target_object object,
250 const char *annex, void *buf,
251 ULONGEST offset, LONGEST len);
252
253 extern LONGEST target_write (struct target_ops *ops,
254 enum target_object object,
255 const char *annex, const void *buf,
256 ULONGEST offset, LONGEST len);
257
258 /* Wrappers to target read/write that perform memory transfers. They
259 throw an error if the memory transfer fails.
260
261 NOTE: cagney/2003-10-23: The naming schema is lifted from
262 "frame.h". The parameter order is lifted from get_frame_memory,
263 which in turn lifted it from read_memory. */
264
265 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
266 void *buf, LONGEST len);
267 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
268 CORE_ADDR addr, int len);
269 \f
270
271 /* If certain kinds of activity happen, target_wait should perform
272 callbacks. */
273 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
274 on TARGET_ACTIVITY_FD. */
275 extern int target_activity_fd;
276 /* Returns zero to leave the inferior alone, one to interrupt it. */
277 extern int (*target_activity_function) (void);
278 \f
279 struct thread_info; /* fwd decl for parameter list below: */
280
281 struct target_ops
282 {
283 struct target_ops *beneath; /* To the target under this one. */
284 char *to_shortname; /* Name this target type */
285 char *to_longname; /* Name for printing */
286 char *to_doc; /* Documentation. Does not include trailing
287 newline, and starts with a one-line descrip-
288 tion (probably similar to to_longname). */
289 /* Per-target scratch pad. */
290 void *to_data;
291 /* The open routine takes the rest of the parameters from the
292 command, and (if successful) pushes a new target onto the
293 stack. Targets should supply this routine, if only to provide
294 an error message. */
295 void (*to_open) (char *, int);
296 /* Old targets with a static target vector provide "to_close".
297 New re-entrant targets provide "to_xclose" and that is expected
298 to xfree everything (including the "struct target_ops"). */
299 void (*to_xclose) (struct target_ops *targ, int quitting);
300 void (*to_close) (int);
301 void (*to_attach) (char *, int);
302 void (*to_post_attach) (int);
303 void (*to_detach) (char *, int);
304 void (*to_disconnect) (char *, int);
305 void (*to_resume) (ptid_t, int, enum target_signal);
306 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
307 void (*to_fetch_registers) (int);
308 void (*to_store_registers) (int);
309 void (*to_prepare_to_store) (void);
310
311 /* Transfer LEN bytes of memory between GDB address MYADDR and
312 target address MEMADDR. If WRITE, transfer them to the target, else
313 transfer them from the target. TARGET is the target from which we
314 get this function.
315
316 Return value, N, is one of the following:
317
318 0 means that we can't handle this. If errno has been set, it is the
319 error which prevented us from doing it (FIXME: What about bfd_error?).
320
321 positive (call it N) means that we have transferred N bytes
322 starting at MEMADDR. We might be able to handle more bytes
323 beyond this length, but no promises.
324
325 negative (call its absolute value N) means that we cannot
326 transfer right at MEMADDR, but we could transfer at least
327 something at MEMADDR + N. */
328
329 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
330 int len, int write,
331 struct mem_attrib *attrib,
332 struct target_ops *target);
333
334 void (*to_files_info) (struct target_ops *);
335 int (*to_insert_breakpoint) (CORE_ADDR, char *);
336 int (*to_remove_breakpoint) (CORE_ADDR, char *);
337 int (*to_can_use_hw_breakpoint) (int, int, int);
338 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
339 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
340 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
341 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
342 int (*to_stopped_by_watchpoint) (void);
343 int to_have_continuable_watchpoint;
344 CORE_ADDR (*to_stopped_data_address) (void);
345 int (*to_region_size_ok_for_hw_watchpoint) (int);
346 void (*to_terminal_init) (void);
347 void (*to_terminal_inferior) (void);
348 void (*to_terminal_ours_for_output) (void);
349 void (*to_terminal_ours) (void);
350 void (*to_terminal_save_ours) (void);
351 void (*to_terminal_info) (char *, int);
352 void (*to_kill) (void);
353 void (*to_load) (char *, int);
354 int (*to_lookup_symbol) (char *, CORE_ADDR *);
355 void (*to_create_inferior) (char *, char *, char **, int);
356 void (*to_post_startup_inferior) (ptid_t);
357 void (*to_acknowledge_created_inferior) (int);
358 int (*to_insert_fork_catchpoint) (int);
359 int (*to_remove_fork_catchpoint) (int);
360 int (*to_insert_vfork_catchpoint) (int);
361 int (*to_remove_vfork_catchpoint) (int);
362 int (*to_follow_fork) (int);
363 int (*to_insert_exec_catchpoint) (int);
364 int (*to_remove_exec_catchpoint) (int);
365 int (*to_reported_exec_events_per_exec_call) (void);
366 int (*to_has_exited) (int, int, int *);
367 void (*to_mourn_inferior) (void);
368 int (*to_can_run) (void);
369 void (*to_notice_signals) (ptid_t ptid);
370 int (*to_thread_alive) (ptid_t ptid);
371 void (*to_find_new_threads) (void);
372 char *(*to_pid_to_str) (ptid_t);
373 char *(*to_extra_thread_info) (struct thread_info *);
374 void (*to_stop) (void);
375 void (*to_rcmd) (char *command, struct ui_file *output);
376 struct symtab_and_line *(*to_enable_exception_callback) (enum
377 exception_event_kind,
378 int);
379 struct exception_event_record *(*to_get_current_exception_event) (void);
380 char *(*to_pid_to_exec_file) (int pid);
381 enum strata to_stratum;
382 int to_has_all_memory;
383 int to_has_memory;
384 int to_has_stack;
385 int to_has_registers;
386 int to_has_execution;
387 int to_has_thread_control; /* control thread execution */
388 struct section_table
389 *to_sections;
390 struct section_table
391 *to_sections_end;
392 /* ASYNC target controls */
393 int (*to_can_async_p) (void);
394 int (*to_is_async_p) (void);
395 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
396 void *context);
397 int to_async_mask_value;
398 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
399 unsigned long,
400 int, int, int,
401 void *),
402 void *);
403 char * (*to_make_corefile_notes) (bfd *, int *);
404
405 /* Return the thread-local address at OFFSET in the
406 thread-local storage for the thread PTID and the shared library
407 or executable file given by OBJFILE. If that block of
408 thread-local storage hasn't been allocated yet, this function
409 may return an error. */
410 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
411 struct objfile *objfile,
412 CORE_ADDR offset);
413
414 /* Perform partial transfers on OBJECT. See target_read_partial
415 and target_write_partial for details of each variant. One, and
416 only one, of readbuf or writebuf must be non-NULL. */
417 LONGEST (*to_xfer_partial) (struct target_ops *ops,
418 enum target_object object, const char *annex,
419 void *readbuf, const void *writebuf,
420 ULONGEST offset, LONGEST len);
421
422 int to_magic;
423 /* Need sub-structure for target machine related rather than comm related?
424 */
425 };
426
427 /* Magic number for checking ops size. If a struct doesn't end with this
428 number, somebody changed the declaration but didn't change all the
429 places that initialize one. */
430
431 #define OPS_MAGIC 3840
432
433 /* The ops structure for our "current" target process. This should
434 never be NULL. If there is no target, it points to the dummy_target. */
435
436 extern struct target_ops current_target;
437
438 /* Define easy words for doing these operations on our current target. */
439
440 #define target_shortname (current_target.to_shortname)
441 #define target_longname (current_target.to_longname)
442
443 /* Does whatever cleanup is required for a target that we are no
444 longer going to be calling. QUITTING indicates that GDB is exiting
445 and should not get hung on an error (otherwise it is important to
446 perform clean termination, even if it takes a while). This routine
447 is automatically always called when popping the target off the
448 target stack (to_beneath is undefined). Closing file descriptors
449 and freeing all memory allocated memory are typical things it
450 should do. */
451
452 void target_close (struct target_ops *targ, int quitting);
453
454 /* Attaches to a process on the target side. Arguments are as passed
455 to the `attach' command by the user. This routine can be called
456 when the target is not on the target-stack, if the target_can_run
457 routine returns 1; in that case, it must push itself onto the stack.
458 Upon exit, the target should be ready for normal operations, and
459 should be ready to deliver the status of the process immediately
460 (without waiting) to an upcoming target_wait call. */
461
462 #define target_attach(args, from_tty) \
463 (*current_target.to_attach) (args, from_tty)
464
465 /* The target_attach operation places a process under debugger control,
466 and stops the process.
467
468 This operation provides a target-specific hook that allows the
469 necessary bookkeeping to be performed after an attach completes. */
470 #define target_post_attach(pid) \
471 (*current_target.to_post_attach) (pid)
472
473 /* Takes a program previously attached to and detaches it.
474 The program may resume execution (some targets do, some don't) and will
475 no longer stop on signals, etc. We better not have left any breakpoints
476 in the program or it'll die when it hits one. ARGS is arguments
477 typed by the user (e.g. a signal to send the process). FROM_TTY
478 says whether to be verbose or not. */
479
480 extern void target_detach (char *, int);
481
482 /* Disconnect from the current target without resuming it (leaving it
483 waiting for a debugger). */
484
485 extern void target_disconnect (char *, int);
486
487 /* Resume execution of the target process PTID. STEP says whether to
488 single-step or to run free; SIGGNAL is the signal to be given to
489 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
490 pass TARGET_SIGNAL_DEFAULT. */
491
492 #define target_resume(ptid, step, siggnal) \
493 do { \
494 dcache_invalidate(target_dcache); \
495 (*current_target.to_resume) (ptid, step, siggnal); \
496 } while (0)
497
498 /* Wait for process pid to do something. PTID = -1 to wait for any
499 pid to do something. Return pid of child, or -1 in case of error;
500 store status through argument pointer STATUS. Note that it is
501 _NOT_ OK to throw_exception() out of target_wait() without popping
502 the debugging target from the stack; GDB isn't prepared to get back
503 to the prompt with a debugging target but without the frame cache,
504 stop_pc, etc., set up. */
505
506 #define target_wait(ptid, status) \
507 (*current_target.to_wait) (ptid, status)
508
509 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
510
511 #define target_fetch_registers(regno) \
512 (*current_target.to_fetch_registers) (regno)
513
514 /* Store at least register REGNO, or all regs if REGNO == -1.
515 It can store as many registers as it wants to, so target_prepare_to_store
516 must have been previously called. Calls error() if there are problems. */
517
518 #define target_store_registers(regs) \
519 (*current_target.to_store_registers) (regs)
520
521 /* Get ready to modify the registers array. On machines which store
522 individual registers, this doesn't need to do anything. On machines
523 which store all the registers in one fell swoop, this makes sure
524 that REGISTERS contains all the registers from the program being
525 debugged. */
526
527 #define target_prepare_to_store() \
528 (*current_target.to_prepare_to_store) ()
529
530 extern DCACHE *target_dcache;
531
532 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
533 struct mem_attrib *attrib);
534
535 extern int target_read_string (CORE_ADDR, char **, int, int *);
536
537 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
538
539 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
540
541 extern int xfer_memory (CORE_ADDR, char *, int, int,
542 struct mem_attrib *, struct target_ops *);
543
544 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
545 struct mem_attrib *, struct target_ops *);
546
547 /* Make a single attempt at transfering LEN bytes. On a successful
548 transfer, the number of bytes actually transfered is returned and
549 ERR is set to 0. When a transfer fails, -1 is returned (the number
550 of bytes actually transfered is not defined) and ERR is set to a
551 non-zero error indication. */
552
553 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
554 int *err);
555
556 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
557 int *err);
558
559 extern char *child_pid_to_exec_file (int);
560
561 extern char *child_core_file_to_sym_file (char *);
562
563 #if defined(CHILD_POST_ATTACH)
564 extern void child_post_attach (int);
565 #endif
566
567 extern void child_post_startup_inferior (ptid_t);
568
569 extern void child_acknowledge_created_inferior (int);
570
571 extern int child_insert_fork_catchpoint (int);
572
573 extern int child_remove_fork_catchpoint (int);
574
575 extern int child_insert_vfork_catchpoint (int);
576
577 extern int child_remove_vfork_catchpoint (int);
578
579 extern void child_acknowledge_created_inferior (int);
580
581 extern int child_follow_fork (int);
582
583 extern int child_insert_exec_catchpoint (int);
584
585 extern int child_remove_exec_catchpoint (int);
586
587 extern int child_reported_exec_events_per_exec_call (void);
588
589 extern int child_has_exited (int, int, int *);
590
591 extern int child_thread_alive (ptid_t);
592
593 /* From infrun.c. */
594
595 extern int inferior_has_forked (int pid, int *child_pid);
596
597 extern int inferior_has_vforked (int pid, int *child_pid);
598
599 extern int inferior_has_execd (int pid, char **execd_pathname);
600
601 /* From exec.c */
602
603 extern void print_section_info (struct target_ops *, bfd *);
604
605 /* Print a line about the current target. */
606
607 #define target_files_info() \
608 (*current_target.to_files_info) (&current_target)
609
610 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
611 a pointer to memory allocated for saving the target contents. It
612 is guaranteed by the caller to be long enough to save the number of
613 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
614 success, or an errno value. */
615
616 #define target_insert_breakpoint(addr, save) \
617 (*current_target.to_insert_breakpoint) (addr, save)
618
619 /* Remove a breakpoint at address ADDR in the target machine.
620 SAVE is a pointer to the same save area
621 that was previously passed to target_insert_breakpoint.
622 Result is 0 for success, or an errno value. */
623
624 #define target_remove_breakpoint(addr, save) \
625 (*current_target.to_remove_breakpoint) (addr, save)
626
627 /* Initialize the terminal settings we record for the inferior,
628 before we actually run the inferior. */
629
630 #define target_terminal_init() \
631 (*current_target.to_terminal_init) ()
632
633 /* Put the inferior's terminal settings into effect.
634 This is preparation for starting or resuming the inferior. */
635
636 #define target_terminal_inferior() \
637 (*current_target.to_terminal_inferior) ()
638
639 /* Put some of our terminal settings into effect,
640 enough to get proper results from our output,
641 but do not change into or out of RAW mode
642 so that no input is discarded.
643
644 After doing this, either terminal_ours or terminal_inferior
645 should be called to get back to a normal state of affairs. */
646
647 #define target_terminal_ours_for_output() \
648 (*current_target.to_terminal_ours_for_output) ()
649
650 /* Put our terminal settings into effect.
651 First record the inferior's terminal settings
652 so they can be restored properly later. */
653
654 #define target_terminal_ours() \
655 (*current_target.to_terminal_ours) ()
656
657 /* Save our terminal settings.
658 This is called from TUI after entering or leaving the curses
659 mode. Since curses modifies our terminal this call is here
660 to take this change into account. */
661
662 #define target_terminal_save_ours() \
663 (*current_target.to_terminal_save_ours) ()
664
665 /* Print useful information about our terminal status, if such a thing
666 exists. */
667
668 #define target_terminal_info(arg, from_tty) \
669 (*current_target.to_terminal_info) (arg, from_tty)
670
671 /* Kill the inferior process. Make it go away. */
672
673 #define target_kill() \
674 (*current_target.to_kill) ()
675
676 /* Load an executable file into the target process. This is expected
677 to not only bring new code into the target process, but also to
678 update GDB's symbol tables to match. */
679
680 extern void target_load (char *arg, int from_tty);
681
682 /* Look up a symbol in the target's symbol table. NAME is the symbol
683 name. ADDRP is a CORE_ADDR * pointing to where the value of the
684 symbol should be returned. The result is 0 if successful, nonzero
685 if the symbol does not exist in the target environment. This
686 function should not call error() if communication with the target
687 is interrupted, since it is called from symbol reading, but should
688 return nonzero, possibly doing a complain(). */
689
690 #define target_lookup_symbol(name, addrp) \
691 (*current_target.to_lookup_symbol) (name, addrp)
692
693 /* Start an inferior process and set inferior_ptid to its pid.
694 EXEC_FILE is the file to run.
695 ALLARGS is a string containing the arguments to the program.
696 ENV is the environment vector to pass. Errors reported with error().
697 On VxWorks and various standalone systems, we ignore exec_file. */
698
699 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
700 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
701
702
703 /* Some targets (such as ttrace-based HPUX) don't allow us to request
704 notification of inferior events such as fork and vork immediately
705 after the inferior is created. (This because of how gdb gets an
706 inferior created via invoking a shell to do it. In such a scenario,
707 if the shell init file has commands in it, the shell will fork and
708 exec for each of those commands, and we will see each such fork
709 event. Very bad.)
710
711 Such targets will supply an appropriate definition for this function. */
712
713 #define target_post_startup_inferior(ptid) \
714 (*current_target.to_post_startup_inferior) (ptid)
715
716 /* On some targets, the sequence of starting up an inferior requires
717 some synchronization between gdb and the new inferior process, PID. */
718
719 #define target_acknowledge_created_inferior(pid) \
720 (*current_target.to_acknowledge_created_inferior) (pid)
721
722 /* On some targets, we can catch an inferior fork or vfork event when
723 it occurs. These functions insert/remove an already-created
724 catchpoint for such events. */
725
726 #define target_insert_fork_catchpoint(pid) \
727 (*current_target.to_insert_fork_catchpoint) (pid)
728
729 #define target_remove_fork_catchpoint(pid) \
730 (*current_target.to_remove_fork_catchpoint) (pid)
731
732 #define target_insert_vfork_catchpoint(pid) \
733 (*current_target.to_insert_vfork_catchpoint) (pid)
734
735 #define target_remove_vfork_catchpoint(pid) \
736 (*current_target.to_remove_vfork_catchpoint) (pid)
737
738 /* If the inferior forks or vforks, this function will be called at
739 the next resume in order to perform any bookkeeping and fiddling
740 necessary to continue debugging either the parent or child, as
741 requested, and releasing the other. Information about the fork
742 or vfork event is available via get_last_target_status ().
743 This function returns 1 if the inferior should not be resumed
744 (i.e. there is another event pending). */
745
746 #define target_follow_fork(follow_child) \
747 (*current_target.to_follow_fork) (follow_child)
748
749 /* On some targets, we can catch an inferior exec event when it
750 occurs. These functions insert/remove an already-created
751 catchpoint for such events. */
752
753 #define target_insert_exec_catchpoint(pid) \
754 (*current_target.to_insert_exec_catchpoint) (pid)
755
756 #define target_remove_exec_catchpoint(pid) \
757 (*current_target.to_remove_exec_catchpoint) (pid)
758
759 /* Returns the number of exec events that are reported when a process
760 invokes a flavor of the exec() system call on this target, if exec
761 events are being reported. */
762
763 #define target_reported_exec_events_per_exec_call() \
764 (*current_target.to_reported_exec_events_per_exec_call) ()
765
766 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
767 exit code of PID, if any. */
768
769 #define target_has_exited(pid,wait_status,exit_status) \
770 (*current_target.to_has_exited) (pid,wait_status,exit_status)
771
772 /* The debugger has completed a blocking wait() call. There is now
773 some process event that must be processed. This function should
774 be defined by those targets that require the debugger to perform
775 cleanup or internal state changes in response to the process event. */
776
777 /* The inferior process has died. Do what is right. */
778
779 #define target_mourn_inferior() \
780 (*current_target.to_mourn_inferior) ()
781
782 /* Does target have enough data to do a run or attach command? */
783
784 #define target_can_run(t) \
785 ((t)->to_can_run) ()
786
787 /* post process changes to signal handling in the inferior. */
788
789 #define target_notice_signals(ptid) \
790 (*current_target.to_notice_signals) (ptid)
791
792 /* Check to see if a thread is still alive. */
793
794 #define target_thread_alive(ptid) \
795 (*current_target.to_thread_alive) (ptid)
796
797 /* Query for new threads and add them to the thread list. */
798
799 #define target_find_new_threads() \
800 (*current_target.to_find_new_threads) (); \
801
802 /* Make target stop in a continuable fashion. (For instance, under
803 Unix, this should act like SIGSTOP). This function is normally
804 used by GUIs to implement a stop button. */
805
806 #define target_stop current_target.to_stop
807
808 /* Send the specified COMMAND to the target's monitor
809 (shell,interpreter) for execution. The result of the query is
810 placed in OUTBUF. */
811
812 #define target_rcmd(command, outbuf) \
813 (*current_target.to_rcmd) (command, outbuf)
814
815
816 /* Get the symbol information for a breakpointable routine called when
817 an exception event occurs.
818 Intended mainly for C++, and for those
819 platforms/implementations where such a callback mechanism is available,
820 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
821 different mechanisms for debugging exceptions. */
822
823 #define target_enable_exception_callback(kind, enable) \
824 (*current_target.to_enable_exception_callback) (kind, enable)
825
826 /* Get the current exception event kind -- throw or catch, etc. */
827
828 #define target_get_current_exception_event() \
829 (*current_target.to_get_current_exception_event) ()
830
831 /* Does the target include all of memory, or only part of it? This
832 determines whether we look up the target chain for other parts of
833 memory if this target can't satisfy a request. */
834
835 #define target_has_all_memory \
836 (current_target.to_has_all_memory)
837
838 /* Does the target include memory? (Dummy targets don't.) */
839
840 #define target_has_memory \
841 (current_target.to_has_memory)
842
843 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
844 we start a process.) */
845
846 #define target_has_stack \
847 (current_target.to_has_stack)
848
849 /* Does the target have registers? (Exec files don't.) */
850
851 #define target_has_registers \
852 (current_target.to_has_registers)
853
854 /* Does the target have execution? Can we make it jump (through
855 hoops), or pop its stack a few times? FIXME: If this is to work that
856 way, it needs to check whether an inferior actually exists.
857 remote-udi.c and probably other targets can be the current target
858 when the inferior doesn't actually exist at the moment. Right now
859 this just tells us whether this target is *capable* of execution. */
860
861 #define target_has_execution \
862 (current_target.to_has_execution)
863
864 /* Can the target support the debugger control of thread execution?
865 a) Can it lock the thread scheduler?
866 b) Can it switch the currently running thread? */
867
868 #define target_can_lock_scheduler \
869 (current_target.to_has_thread_control & tc_schedlock)
870
871 #define target_can_switch_threads \
872 (current_target.to_has_thread_control & tc_switch)
873
874 /* Can the target support asynchronous execution? */
875 #define target_can_async_p() (current_target.to_can_async_p ())
876
877 /* Is the target in asynchronous execution mode? */
878 #define target_is_async_p() (current_target.to_is_async_p())
879
880 /* Put the target in async mode with the specified callback function. */
881 #define target_async(CALLBACK,CONTEXT) \
882 (current_target.to_async((CALLBACK), (CONTEXT)))
883
884 /* This is to be used ONLY within call_function_by_hand(). It provides
885 a workaround, to have inferior function calls done in sychronous
886 mode, even though the target is asynchronous. After
887 target_async_mask(0) is called, calls to target_can_async_p() will
888 return FALSE , so that target_resume() will not try to start the
889 target asynchronously. After the inferior stops, we IMMEDIATELY
890 restore the previous nature of the target, by calling
891 target_async_mask(1). After that, target_can_async_p() will return
892 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
893
894 FIXME ezannoni 1999-12-13: we won't need this once we move
895 the turning async on and off to the single execution commands,
896 from where it is done currently, in remote_resume(). */
897
898 #define target_async_mask_value \
899 (current_target.to_async_mask_value)
900
901 extern int target_async_mask (int mask);
902
903 extern void target_link (char *, CORE_ADDR *);
904
905 /* Converts a process id to a string. Usually, the string just contains
906 `process xyz', but on some systems it may contain
907 `process xyz thread abc'. */
908
909 #undef target_pid_to_str
910 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
911
912 #ifndef target_tid_to_str
913 #define target_tid_to_str(PID) \
914 target_pid_to_str (PID)
915 extern char *normal_pid_to_str (ptid_t ptid);
916 #endif
917
918 /* Return a short string describing extra information about PID,
919 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
920 is okay. */
921
922 #define target_extra_thread_info(TP) \
923 (current_target.to_extra_thread_info (TP))
924
925 /*
926 * New Objfile Event Hook:
927 *
928 * Sometimes a GDB component wants to get notified whenever a new
929 * objfile is loaded. Mainly this is used by thread-debugging
930 * implementations that need to know when symbols for the target
931 * thread implemenation are available.
932 *
933 * The old way of doing this is to define a macro 'target_new_objfile'
934 * that points to the function that you want to be called on every
935 * objfile/shlib load.
936
937 The new way is to grab the function pointer,
938 'deprecated_target_new_objfile_hook', and point it to the function
939 that you want to be called on every objfile/shlib load.
940
941 If multiple clients are willing to be cooperative, they can each
942 save a pointer to the previous value of
943 deprecated_target_new_objfile_hook before modifying it, and arrange
944 for their function to call the previous function in the chain. In
945 that way, multiple clients can receive this notification (something
946 like with signal handlers). */
947
948 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
949
950 #ifndef target_pid_or_tid_to_str
951 #define target_pid_or_tid_to_str(ID) \
952 target_pid_to_str (ID)
953 #endif
954
955 /* Attempts to find the pathname of the executable file
956 that was run to create a specified process.
957
958 The process PID must be stopped when this operation is used.
959
960 If the executable file cannot be determined, NULL is returned.
961
962 Else, a pointer to a character string containing the pathname
963 is returned. This string should be copied into a buffer by
964 the client if the string will not be immediately used, or if
965 it must persist. */
966
967 #define target_pid_to_exec_file(pid) \
968 (current_target.to_pid_to_exec_file) (pid)
969
970 /*
971 * Iterator function for target memory regions.
972 * Calls a callback function once for each memory region 'mapped'
973 * in the child process. Defined as a simple macro rather than
974 * as a function macro so that it can be tested for nullity.
975 */
976
977 #define target_find_memory_regions(FUNC, DATA) \
978 (current_target.to_find_memory_regions) (FUNC, DATA)
979
980 /*
981 * Compose corefile .note section.
982 */
983
984 #define target_make_corefile_notes(BFD, SIZE_P) \
985 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
986
987 /* Thread-local values. */
988 #define target_get_thread_local_address \
989 (current_target.to_get_thread_local_address)
990 #define target_get_thread_local_address_p() \
991 (target_get_thread_local_address != NULL)
992
993 /* Hook to call target dependent code just after inferior target process has
994 started. */
995
996 #ifndef TARGET_CREATE_INFERIOR_HOOK
997 #define TARGET_CREATE_INFERIOR_HOOK(PID)
998 #endif
999
1000 /* Hardware watchpoint interfaces. */
1001
1002 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1003 write). */
1004
1005 #ifndef STOPPED_BY_WATCHPOINT
1006 #define STOPPED_BY_WATCHPOINT(w) \
1007 (*current_target.to_stopped_by_watchpoint) ()
1008 #endif
1009
1010 /* Non-zero if we have continuable watchpoints */
1011
1012 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1013 #define HAVE_CONTINUABLE_WATCHPOINT \
1014 (current_target.to_have_continuable_watchpoint)
1015 #endif
1016
1017 /* HP-UX supplies these operations, which respectively disable and enable
1018 the memory page-protections that are used to implement hardware watchpoints
1019 on that platform. See wait_for_inferior's use of these. */
1020
1021 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1022 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1023 #endif
1024
1025 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1026 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1027 #endif
1028
1029 /* Provide defaults for hardware watchpoint functions. */
1030
1031 /* If the *_hw_beakpoint functions have not been defined
1032 elsewhere use the definitions in the target vector. */
1033
1034 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1035 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1036 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1037 (including this one?). OTHERTYPE is who knows what... */
1038
1039 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1040 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1041 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1042 #endif
1043
1044 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1045 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1046 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1047 #endif
1048
1049
1050 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1051 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1052 success, non-zero for failure. */
1053
1054 #ifndef target_insert_watchpoint
1055 #define target_insert_watchpoint(addr, len, type) \
1056 (*current_target.to_insert_watchpoint) (addr, len, type)
1057
1058 #define target_remove_watchpoint(addr, len, type) \
1059 (*current_target.to_remove_watchpoint) (addr, len, type)
1060 #endif
1061
1062 #ifndef target_insert_hw_breakpoint
1063 #define target_insert_hw_breakpoint(addr, save) \
1064 (*current_target.to_insert_hw_breakpoint) (addr, save)
1065
1066 #define target_remove_hw_breakpoint(addr, save) \
1067 (*current_target.to_remove_hw_breakpoint) (addr, save)
1068 #endif
1069
1070 #ifndef target_stopped_data_address
1071 #define target_stopped_data_address() \
1072 (*current_target.to_stopped_data_address) ()
1073 #endif
1074
1075 /* This will only be defined by a target that supports catching vfork events,
1076 such as HP-UX.
1077
1078 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1079 child process after it has exec'd, causes the parent process to resume as
1080 well. To prevent the parent from running spontaneously, such targets should
1081 define this to a function that prevents that from happening. */
1082 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1083 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1084 #endif
1085
1086 /* This will only be defined by a target that supports catching vfork events,
1087 such as HP-UX.
1088
1089 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1090 process must be resumed when it delivers its exec event, before the parent
1091 vfork event will be delivered to us. */
1092
1093 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1094 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1095 #endif
1096
1097 /* Routines for maintenance of the target structures...
1098
1099 add_target: Add a target to the list of all possible targets.
1100
1101 push_target: Make this target the top of the stack of currently used
1102 targets, within its particular stratum of the stack. Result
1103 is 0 if now atop the stack, nonzero if not on top (maybe
1104 should warn user).
1105
1106 unpush_target: Remove this from the stack of currently used targets,
1107 no matter where it is on the list. Returns 0 if no
1108 change, 1 if removed from stack.
1109
1110 pop_target: Remove the top thing on the stack of current targets. */
1111
1112 extern void add_target (struct target_ops *);
1113
1114 extern int push_target (struct target_ops *);
1115
1116 extern int unpush_target (struct target_ops *);
1117
1118 extern void target_preopen (int);
1119
1120 extern void pop_target (void);
1121
1122 /* Struct section_table maps address ranges to file sections. It is
1123 mostly used with BFD files, but can be used without (e.g. for handling
1124 raw disks, or files not in formats handled by BFD). */
1125
1126 struct section_table
1127 {
1128 CORE_ADDR addr; /* Lowest address in section */
1129 CORE_ADDR endaddr; /* 1+highest address in section */
1130
1131 struct bfd_section *the_bfd_section;
1132
1133 bfd *bfd; /* BFD file pointer */
1134 };
1135
1136 /* Return the "section" containing the specified address. */
1137 struct section_table *target_section_by_addr (struct target_ops *target,
1138 CORE_ADDR addr);
1139
1140
1141 /* From mem-break.c */
1142
1143 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1144
1145 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1146
1147 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1148
1149 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1150
1151
1152 /* From target.c */
1153
1154 extern void initialize_targets (void);
1155
1156 extern void noprocess (void);
1157
1158 extern void find_default_attach (char *, int);
1159
1160 extern void find_default_create_inferior (char *, char *, char **, int);
1161
1162 extern struct target_ops *find_run_target (void);
1163
1164 extern struct target_ops *find_core_target (void);
1165
1166 extern struct target_ops *find_target_beneath (struct target_ops *);
1167
1168 extern int target_resize_to_sections (struct target_ops *target,
1169 int num_added);
1170
1171 extern void remove_target_sections (bfd *abfd);
1172
1173 \f
1174 /* Stuff that should be shared among the various remote targets. */
1175
1176 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1177 information (higher values, more information). */
1178 extern int remote_debug;
1179
1180 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1181 extern int baud_rate;
1182 /* Timeout limit for response from target. */
1183 extern int remote_timeout;
1184
1185 \f
1186 /* Functions for helping to write a native target. */
1187
1188 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1189 extern void store_waitstatus (struct target_waitstatus *, int);
1190
1191 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1192 targ_signal SIGNO has an equivalent ``host'' representation. */
1193 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1194 to the shorter target_signal_p() because it is far less ambigious.
1195 In this context ``target_signal'' refers to GDB's internal
1196 representation of the target's set of signals while ``host signal''
1197 refers to the target operating system's signal. Confused? */
1198
1199 extern int target_signal_to_host_p (enum target_signal signo);
1200
1201 /* Convert between host signal numbers and enum target_signal's.
1202 target_signal_to_host() returns 0 and prints a warning() on GDB's
1203 console if SIGNO has no equivalent host representation. */
1204 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1205 refering to the target operating system's signal numbering.
1206 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1207 gdb_signal'' would probably be better as it is refering to GDB's
1208 internal representation of a target operating system's signal. */
1209
1210 extern enum target_signal target_signal_from_host (int);
1211 extern int target_signal_to_host (enum target_signal);
1212
1213 /* Convert from a number used in a GDB command to an enum target_signal. */
1214 extern enum target_signal target_signal_from_command (int);
1215
1216 /* Any target can call this to switch to remote protocol (in remote.c). */
1217 extern void push_remote_target (char *name, int from_tty);
1218 \f
1219 /* Imported from machine dependent code */
1220
1221 /* Blank target vector entries are initialized to target_ignore. */
1222 void target_ignore (void);
1223
1224 extern struct target_ops child_ops;
1225
1226 #endif /* !defined (TARGET_H) */
This page took 0.054285 seconds and 4 git commands to generate.