convert to_load
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
521 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
522 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
523 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
524 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
525 int (*to_follow_fork) (struct target_ops *, int, int);
526 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
527 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
528 int (*to_set_syscall_catchpoint) (struct target_ops *,
529 int, int, int, int, int *);
530 int (*to_has_exited) (struct target_ops *, int, int, int *);
531 void (*to_mourn_inferior) (struct target_ops *);
532 int (*to_can_run) (struct target_ops *);
533
534 /* Documentation of this routine is provided with the corresponding
535 target_* macro. */
536 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
537
538 /* Documentation of this routine is provided with the
539 corresponding target_* function. */
540 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
541
542 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
543 void (*to_find_new_threads) (struct target_ops *);
544 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
545 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
546 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
547 void (*to_stop) (struct target_ops *, ptid_t);
548 void (*to_rcmd) (struct target_ops *,
549 char *command, struct ui_file *output)
550 TARGET_DEFAULT_FUNC (default_rcmd);
551 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
552 void (*to_log_command) (struct target_ops *, const char *);
553 struct target_section_table *(*to_get_section_table) (struct target_ops *);
554 enum strata to_stratum;
555 int (*to_has_all_memory) (struct target_ops *);
556 int (*to_has_memory) (struct target_ops *);
557 int (*to_has_stack) (struct target_ops *);
558 int (*to_has_registers) (struct target_ops *);
559 int (*to_has_execution) (struct target_ops *, ptid_t);
560 int to_has_thread_control; /* control thread execution */
561 int to_attach_no_wait;
562 /* ASYNC target controls */
563 int (*to_can_async_p) (struct target_ops *)
564 TARGET_DEFAULT_FUNC (find_default_can_async_p);
565 int (*to_is_async_p) (struct target_ops *)
566 TARGET_DEFAULT_FUNC (find_default_is_async_p);
567 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
568 TARGET_DEFAULT_NORETURN (tcomplain ());
569 int (*to_supports_non_stop) (struct target_ops *);
570 /* find_memory_regions support method for gcore */
571 int (*to_find_memory_regions) (struct target_ops *,
572 find_memory_region_ftype func, void *data);
573 /* make_corefile_notes support method for gcore */
574 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
575 /* get_bookmark support method for bookmarks */
576 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
577 /* goto_bookmark support method for bookmarks */
578 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
579 /* Return the thread-local address at OFFSET in the
580 thread-local storage for the thread PTID and the shared library
581 or executable file given by OBJFILE. If that block of
582 thread-local storage hasn't been allocated yet, this function
583 may return an error. */
584 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
585 ptid_t ptid,
586 CORE_ADDR load_module_addr,
587 CORE_ADDR offset);
588
589 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
590 OBJECT. The OFFSET, for a seekable object, specifies the
591 starting point. The ANNEX can be used to provide additional
592 data-specific information to the target.
593
594 Return the transferred status, error or OK (an
595 'enum target_xfer_status' value). Save the number of bytes
596 actually transferred in *XFERED_LEN if transfer is successful
597 (TARGET_XFER_OK) or the number unavailable bytes if the requested
598 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
599 smaller than LEN does not indicate the end of the object, only
600 the end of the transfer; higher level code should continue
601 transferring if desired. This is handled in target.c.
602
603 The interface does not support a "retry" mechanism. Instead it
604 assumes that at least one byte will be transfered on each
605 successful call.
606
607 NOTE: cagney/2003-10-17: The current interface can lead to
608 fragmented transfers. Lower target levels should not implement
609 hacks, such as enlarging the transfer, in an attempt to
610 compensate for this. Instead, the target stack should be
611 extended so that it implements supply/collect methods and a
612 look-aside object cache. With that available, the lowest
613 target can safely and freely "push" data up the stack.
614
615 See target_read and target_write for more information. One,
616 and only one, of readbuf or writebuf must be non-NULL. */
617
618 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
619 enum target_object object,
620 const char *annex,
621 gdb_byte *readbuf,
622 const gdb_byte *writebuf,
623 ULONGEST offset, ULONGEST len,
624 ULONGEST *xfered_len)
625 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
626
627 /* Returns the memory map for the target. A return value of NULL
628 means that no memory map is available. If a memory address
629 does not fall within any returned regions, it's assumed to be
630 RAM. The returned memory regions should not overlap.
631
632 The order of regions does not matter; target_memory_map will
633 sort regions by starting address. For that reason, this
634 function should not be called directly except via
635 target_memory_map.
636
637 This method should not cache data; if the memory map could
638 change unexpectedly, it should be invalidated, and higher
639 layers will re-fetch it. */
640 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
641
642 /* Erases the region of flash memory starting at ADDRESS, of
643 length LENGTH.
644
645 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
646 on flash block boundaries, as reported by 'to_memory_map'. */
647 void (*to_flash_erase) (struct target_ops *,
648 ULONGEST address, LONGEST length);
649
650 /* Finishes a flash memory write sequence. After this operation
651 all flash memory should be available for writing and the result
652 of reading from areas written by 'to_flash_write' should be
653 equal to what was written. */
654 void (*to_flash_done) (struct target_ops *);
655
656 /* Describe the architecture-specific features of this target.
657 Returns the description found, or NULL if no description
658 was available. */
659 const struct target_desc *(*to_read_description) (struct target_ops *ops);
660
661 /* Build the PTID of the thread on which a given task is running,
662 based on LWP and THREAD. These values are extracted from the
663 task Private_Data section of the Ada Task Control Block, and
664 their interpretation depends on the target. */
665 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
666 long lwp, long thread);
667
668 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
669 Return 0 if *READPTR is already at the end of the buffer.
670 Return -1 if there is insufficient buffer for a whole entry.
671 Return 1 if an entry was read into *TYPEP and *VALP. */
672 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
673 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
674
675 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
676 sequence of bytes in PATTERN with length PATTERN_LEN.
677
678 The result is 1 if found, 0 if not found, and -1 if there was an error
679 requiring halting of the search (e.g. memory read error).
680 If the pattern is found the address is recorded in FOUND_ADDRP. */
681 int (*to_search_memory) (struct target_ops *ops,
682 CORE_ADDR start_addr, ULONGEST search_space_len,
683 const gdb_byte *pattern, ULONGEST pattern_len,
684 CORE_ADDR *found_addrp);
685
686 /* Can target execute in reverse? */
687 int (*to_can_execute_reverse) (struct target_ops *);
688
689 /* The direction the target is currently executing. Must be
690 implemented on targets that support reverse execution and async
691 mode. The default simply returns forward execution. */
692 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
693
694 /* Does this target support debugging multiple processes
695 simultaneously? */
696 int (*to_supports_multi_process) (struct target_ops *);
697
698 /* Does this target support enabling and disabling tracepoints while a trace
699 experiment is running? */
700 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
701
702 /* Does this target support disabling address space randomization? */
703 int (*to_supports_disable_randomization) (struct target_ops *);
704
705 /* Does this target support the tracenz bytecode for string collection? */
706 int (*to_supports_string_tracing) (struct target_ops *);
707
708 /* Does this target support evaluation of breakpoint conditions on its
709 end? */
710 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
711
712 /* Does this target support evaluation of breakpoint commands on its
713 end? */
714 int (*to_can_run_breakpoint_commands) (struct target_ops *);
715
716 /* Determine current architecture of thread PTID.
717
718 The target is supposed to determine the architecture of the code where
719 the target is currently stopped at (on Cell, if a target is in spu_run,
720 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
721 This is architecture used to perform decr_pc_after_break adjustment,
722 and also determines the frame architecture of the innermost frame.
723 ptrace operations need to operate according to target_gdbarch ().
724
725 The default implementation always returns target_gdbarch (). */
726 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
727
728 /* Determine current address space of thread PTID.
729
730 The default implementation always returns the inferior's
731 address space. */
732 struct address_space *(*to_thread_address_space) (struct target_ops *,
733 ptid_t);
734
735 /* Target file operations. */
736
737 /* Open FILENAME on the target, using FLAGS and MODE. Return a
738 target file descriptor, or -1 if an error occurs (and set
739 *TARGET_ERRNO). */
740 int (*to_fileio_open) (struct target_ops *,
741 const char *filename, int flags, int mode,
742 int *target_errno);
743
744 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
745 Return the number of bytes written, or -1 if an error occurs
746 (and set *TARGET_ERRNO). */
747 int (*to_fileio_pwrite) (struct target_ops *,
748 int fd, const gdb_byte *write_buf, int len,
749 ULONGEST offset, int *target_errno);
750
751 /* Read up to LEN bytes FD on the target into READ_BUF.
752 Return the number of bytes read, or -1 if an error occurs
753 (and set *TARGET_ERRNO). */
754 int (*to_fileio_pread) (struct target_ops *,
755 int fd, gdb_byte *read_buf, int len,
756 ULONGEST offset, int *target_errno);
757
758 /* Close FD on the target. Return 0, or -1 if an error occurs
759 (and set *TARGET_ERRNO). */
760 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
761
762 /* Unlink FILENAME on the target. Return 0, or -1 if an error
763 occurs (and set *TARGET_ERRNO). */
764 int (*to_fileio_unlink) (struct target_ops *,
765 const char *filename, int *target_errno);
766
767 /* Read value of symbolic link FILENAME on the target. Return a
768 null-terminated string allocated via xmalloc, or NULL if an error
769 occurs (and set *TARGET_ERRNO). */
770 char *(*to_fileio_readlink) (struct target_ops *,
771 const char *filename, int *target_errno);
772
773
774 /* Implement the "info proc" command. */
775 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
776
777 /* Tracepoint-related operations. */
778
779 /* Prepare the target for a tracing run. */
780 void (*to_trace_init) (struct target_ops *);
781
782 /* Send full details of a tracepoint location to the target. */
783 void (*to_download_tracepoint) (struct target_ops *,
784 struct bp_location *location);
785
786 /* Is the target able to download tracepoint locations in current
787 state? */
788 int (*to_can_download_tracepoint) (struct target_ops *);
789
790 /* Send full details of a trace state variable to the target. */
791 void (*to_download_trace_state_variable) (struct target_ops *,
792 struct trace_state_variable *tsv);
793
794 /* Enable a tracepoint on the target. */
795 void (*to_enable_tracepoint) (struct target_ops *,
796 struct bp_location *location);
797
798 /* Disable a tracepoint on the target. */
799 void (*to_disable_tracepoint) (struct target_ops *,
800 struct bp_location *location);
801
802 /* Inform the target info of memory regions that are readonly
803 (such as text sections), and so it should return data from
804 those rather than look in the trace buffer. */
805 void (*to_trace_set_readonly_regions) (struct target_ops *);
806
807 /* Start a trace run. */
808 void (*to_trace_start) (struct target_ops *);
809
810 /* Get the current status of a tracing run. */
811 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
812
813 void (*to_get_tracepoint_status) (struct target_ops *,
814 struct breakpoint *tp,
815 struct uploaded_tp *utp);
816
817 /* Stop a trace run. */
818 void (*to_trace_stop) (struct target_ops *);
819
820 /* Ask the target to find a trace frame of the given type TYPE,
821 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
822 number of the trace frame, and also the tracepoint number at
823 TPP. If no trace frame matches, return -1. May throw if the
824 operation fails. */
825 int (*to_trace_find) (struct target_ops *,
826 enum trace_find_type type, int num,
827 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
828
829 /* Get the value of the trace state variable number TSV, returning
830 1 if the value is known and writing the value itself into the
831 location pointed to by VAL, else returning 0. */
832 int (*to_get_trace_state_variable_value) (struct target_ops *,
833 int tsv, LONGEST *val);
834
835 int (*to_save_trace_data) (struct target_ops *, const char *filename);
836
837 int (*to_upload_tracepoints) (struct target_ops *,
838 struct uploaded_tp **utpp);
839
840 int (*to_upload_trace_state_variables) (struct target_ops *,
841 struct uploaded_tsv **utsvp);
842
843 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
844 ULONGEST offset, LONGEST len);
845
846 /* Get the minimum length of instruction on which a fast tracepoint
847 may be set on the target. If this operation is unsupported,
848 return -1. If for some reason the minimum length cannot be
849 determined, return 0. */
850 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
851
852 /* Set the target's tracing behavior in response to unexpected
853 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
854 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
855 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
856 /* Set the size of trace buffer in the target. */
857 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
858
859 /* Add/change textual notes about the trace run, returning 1 if
860 successful, 0 otherwise. */
861 int (*to_set_trace_notes) (struct target_ops *,
862 const char *user, const char *notes,
863 const char *stopnotes);
864
865 /* Return the processor core that thread PTID was last seen on.
866 This information is updated only when:
867 - update_thread_list is called
868 - thread stops
869 If the core cannot be determined -- either for the specified
870 thread, or right now, or in this debug session, or for this
871 target -- return -1. */
872 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
873
874 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
875 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
876 a match, 0 if there's a mismatch, and -1 if an error is
877 encountered while reading memory. */
878 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
879 CORE_ADDR memaddr, ULONGEST size);
880
881 /* Return the address of the start of the Thread Information Block
882 a Windows OS specific feature. */
883 int (*to_get_tib_address) (struct target_ops *,
884 ptid_t ptid, CORE_ADDR *addr);
885
886 /* Send the new settings of write permission variables. */
887 void (*to_set_permissions) (struct target_ops *);
888
889 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
890 with its details. Return 1 on success, 0 on failure. */
891 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
892 struct static_tracepoint_marker *marker);
893
894 /* Return a vector of all tracepoints markers string id ID, or all
895 markers if ID is NULL. */
896 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
897 (struct target_ops *, const char *id);
898
899 /* Return a traceframe info object describing the current
900 traceframe's contents. If the target doesn't support
901 traceframe info, return NULL. If the current traceframe is not
902 selected (the current traceframe number is -1), the target can
903 choose to return either NULL or an empty traceframe info. If
904 NULL is returned, for example in remote target, GDB will read
905 from the live inferior. If an empty traceframe info is
906 returned, for example in tfile target, which means the
907 traceframe info is available, but the requested memory is not
908 available in it. GDB will try to see if the requested memory
909 is available in the read-only sections. This method should not
910 cache data; higher layers take care of caching, invalidating,
911 and re-fetching when necessary. */
912 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
913
914 /* Ask the target to use or not to use agent according to USE. Return 1
915 successful, 0 otherwise. */
916 int (*to_use_agent) (struct target_ops *, int use);
917
918 /* Is the target able to use agent in current state? */
919 int (*to_can_use_agent) (struct target_ops *);
920
921 /* Check whether the target supports branch tracing. */
922 int (*to_supports_btrace) (struct target_ops *)
923 TARGET_DEFAULT_RETURN (0);
924
925 /* Enable branch tracing for PTID and allocate a branch trace target
926 information struct for reading and for disabling branch trace. */
927 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
928 ptid_t ptid);
929
930 /* Disable branch tracing and deallocate TINFO. */
931 void (*to_disable_btrace) (struct target_ops *,
932 struct btrace_target_info *tinfo);
933
934 /* Disable branch tracing and deallocate TINFO. This function is similar
935 to to_disable_btrace, except that it is called during teardown and is
936 only allowed to perform actions that are safe. A counter-example would
937 be attempting to talk to a remote target. */
938 void (*to_teardown_btrace) (struct target_ops *,
939 struct btrace_target_info *tinfo);
940
941 /* Read branch trace data for the thread indicated by BTINFO into DATA.
942 DATA is cleared before new trace is added.
943 The branch trace will start with the most recent block and continue
944 towards older blocks. */
945 enum btrace_error (*to_read_btrace) (struct target_ops *self,
946 VEC (btrace_block_s) **data,
947 struct btrace_target_info *btinfo,
948 enum btrace_read_type type);
949
950 /* Stop trace recording. */
951 void (*to_stop_recording) (struct target_ops *);
952
953 /* Print information about the recording. */
954 void (*to_info_record) (struct target_ops *);
955
956 /* Save the recorded execution trace into a file. */
957 void (*to_save_record) (struct target_ops *, const char *filename);
958
959 /* Delete the recorded execution trace from the current position onwards. */
960 void (*to_delete_record) (struct target_ops *);
961
962 /* Query if the record target is currently replaying. */
963 int (*to_record_is_replaying) (struct target_ops *);
964
965 /* Go to the begin of the execution trace. */
966 void (*to_goto_record_begin) (struct target_ops *);
967
968 /* Go to the end of the execution trace. */
969 void (*to_goto_record_end) (struct target_ops *);
970
971 /* Go to a specific location in the recorded execution trace. */
972 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
973
974 /* Disassemble SIZE instructions in the recorded execution trace from
975 the current position.
976 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
977 disassemble SIZE succeeding instructions. */
978 void (*to_insn_history) (struct target_ops *, int size, int flags);
979
980 /* Disassemble SIZE instructions in the recorded execution trace around
981 FROM.
982 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
983 disassemble SIZE instructions after FROM. */
984 void (*to_insn_history_from) (struct target_ops *,
985 ULONGEST from, int size, int flags);
986
987 /* Disassemble a section of the recorded execution trace from instruction
988 BEGIN (inclusive) to instruction END (inclusive). */
989 void (*to_insn_history_range) (struct target_ops *,
990 ULONGEST begin, ULONGEST end, int flags);
991
992 /* Print a function trace of the recorded execution trace.
993 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
994 succeeding functions. */
995 void (*to_call_history) (struct target_ops *, int size, int flags);
996
997 /* Print a function trace of the recorded execution trace starting
998 at function FROM.
999 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1000 SIZE functions after FROM. */
1001 void (*to_call_history_from) (struct target_ops *,
1002 ULONGEST begin, int size, int flags);
1003
1004 /* Print a function trace of an execution trace section from function BEGIN
1005 (inclusive) to function END (inclusive). */
1006 void (*to_call_history_range) (struct target_ops *,
1007 ULONGEST begin, ULONGEST end, int flags);
1008
1009 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1010 non-empty annex. */
1011 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1012
1013 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1014 it is not used. */
1015 const struct frame_unwind *to_get_unwinder;
1016 const struct frame_unwind *to_get_tailcall_unwinder;
1017
1018 /* Return the number of bytes by which the PC needs to be decremented
1019 after executing a breakpoint instruction.
1020 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1021 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1022 struct gdbarch *gdbarch);
1023
1024 int to_magic;
1025 /* Need sub-structure for target machine related rather than comm related?
1026 */
1027 };
1028
1029 /* Magic number for checking ops size. If a struct doesn't end with this
1030 number, somebody changed the declaration but didn't change all the
1031 places that initialize one. */
1032
1033 #define OPS_MAGIC 3840
1034
1035 /* The ops structure for our "current" target process. This should
1036 never be NULL. If there is no target, it points to the dummy_target. */
1037
1038 extern struct target_ops current_target;
1039
1040 /* Define easy words for doing these operations on our current target. */
1041
1042 #define target_shortname (current_target.to_shortname)
1043 #define target_longname (current_target.to_longname)
1044
1045 /* Does whatever cleanup is required for a target that we are no
1046 longer going to be calling. This routine is automatically always
1047 called after popping the target off the target stack - the target's
1048 own methods are no longer available through the target vector.
1049 Closing file descriptors and freeing all memory allocated memory are
1050 typical things it should do. */
1051
1052 void target_close (struct target_ops *targ);
1053
1054 /* Attaches to a process on the target side. Arguments are as passed
1055 to the `attach' command by the user. This routine can be called
1056 when the target is not on the target-stack, if the target_can_run
1057 routine returns 1; in that case, it must push itself onto the stack.
1058 Upon exit, the target should be ready for normal operations, and
1059 should be ready to deliver the status of the process immediately
1060 (without waiting) to an upcoming target_wait call. */
1061
1062 void target_attach (char *, int);
1063
1064 /* Some targets don't generate traps when attaching to the inferior,
1065 or their target_attach implementation takes care of the waiting.
1066 These targets must set to_attach_no_wait. */
1067
1068 #define target_attach_no_wait \
1069 (current_target.to_attach_no_wait)
1070
1071 /* The target_attach operation places a process under debugger control,
1072 and stops the process.
1073
1074 This operation provides a target-specific hook that allows the
1075 necessary bookkeeping to be performed after an attach completes. */
1076 #define target_post_attach(pid) \
1077 (*current_target.to_post_attach) (&current_target, pid)
1078
1079 /* Takes a program previously attached to and detaches it.
1080 The program may resume execution (some targets do, some don't) and will
1081 no longer stop on signals, etc. We better not have left any breakpoints
1082 in the program or it'll die when it hits one. ARGS is arguments
1083 typed by the user (e.g. a signal to send the process). FROM_TTY
1084 says whether to be verbose or not. */
1085
1086 extern void target_detach (const char *, int);
1087
1088 /* Disconnect from the current target without resuming it (leaving it
1089 waiting for a debugger). */
1090
1091 extern void target_disconnect (char *, int);
1092
1093 /* Resume execution of the target process PTID (or a group of
1094 threads). STEP says whether to single-step or to run free; SIGGNAL
1095 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1096 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1097 PTID means `step/resume only this process id'. A wildcard PTID
1098 (all threads, or all threads of process) means `step/resume
1099 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1100 matches) resume with their 'thread->suspend.stop_signal' signal
1101 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1102 if in "no pass" state. */
1103
1104 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1105
1106 /* Wait for process pid to do something. PTID = -1 to wait for any
1107 pid to do something. Return pid of child, or -1 in case of error;
1108 store status through argument pointer STATUS. Note that it is
1109 _NOT_ OK to throw_exception() out of target_wait() without popping
1110 the debugging target from the stack; GDB isn't prepared to get back
1111 to the prompt with a debugging target but without the frame cache,
1112 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1113 options. */
1114
1115 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1116 int options);
1117
1118 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1119
1120 extern void target_fetch_registers (struct regcache *regcache, int regno);
1121
1122 /* Store at least register REGNO, or all regs if REGNO == -1.
1123 It can store as many registers as it wants to, so target_prepare_to_store
1124 must have been previously called. Calls error() if there are problems. */
1125
1126 extern void target_store_registers (struct regcache *regcache, int regs);
1127
1128 /* Get ready to modify the registers array. On machines which store
1129 individual registers, this doesn't need to do anything. On machines
1130 which store all the registers in one fell swoop, this makes sure
1131 that REGISTERS contains all the registers from the program being
1132 debugged. */
1133
1134 #define target_prepare_to_store(regcache) \
1135 (*current_target.to_prepare_to_store) (&current_target, regcache)
1136
1137 /* Determine current address space of thread PTID. */
1138
1139 struct address_space *target_thread_address_space (ptid_t);
1140
1141 /* Implement the "info proc" command. This returns one if the request
1142 was handled, and zero otherwise. It can also throw an exception if
1143 an error was encountered while attempting to handle the
1144 request. */
1145
1146 int target_info_proc (char *, enum info_proc_what);
1147
1148 /* Returns true if this target can debug multiple processes
1149 simultaneously. */
1150
1151 #define target_supports_multi_process() \
1152 (*current_target.to_supports_multi_process) (&current_target)
1153
1154 /* Returns true if this target can disable address space randomization. */
1155
1156 int target_supports_disable_randomization (void);
1157
1158 /* Returns true if this target can enable and disable tracepoints
1159 while a trace experiment is running. */
1160
1161 #define target_supports_enable_disable_tracepoint() \
1162 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1163
1164 #define target_supports_string_tracing() \
1165 (*current_target.to_supports_string_tracing) (&current_target)
1166
1167 /* Returns true if this target can handle breakpoint conditions
1168 on its end. */
1169
1170 #define target_supports_evaluation_of_breakpoint_conditions() \
1171 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1172
1173 /* Returns true if this target can handle breakpoint commands
1174 on its end. */
1175
1176 #define target_can_run_breakpoint_commands() \
1177 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1178
1179 extern int target_read_string (CORE_ADDR, char **, int, int *);
1180
1181 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1182 ssize_t len);
1183
1184 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1185 ssize_t len);
1186
1187 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1188
1189 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1190
1191 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1192 ssize_t len);
1193
1194 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1195 ssize_t len);
1196
1197 /* Fetches the target's memory map. If one is found it is sorted
1198 and returned, after some consistency checking. Otherwise, NULL
1199 is returned. */
1200 VEC(mem_region_s) *target_memory_map (void);
1201
1202 /* Erase the specified flash region. */
1203 void target_flash_erase (ULONGEST address, LONGEST length);
1204
1205 /* Finish a sequence of flash operations. */
1206 void target_flash_done (void);
1207
1208 /* Describes a request for a memory write operation. */
1209 struct memory_write_request
1210 {
1211 /* Begining address that must be written. */
1212 ULONGEST begin;
1213 /* Past-the-end address. */
1214 ULONGEST end;
1215 /* The data to write. */
1216 gdb_byte *data;
1217 /* A callback baton for progress reporting for this request. */
1218 void *baton;
1219 };
1220 typedef struct memory_write_request memory_write_request_s;
1221 DEF_VEC_O(memory_write_request_s);
1222
1223 /* Enumeration specifying different flash preservation behaviour. */
1224 enum flash_preserve_mode
1225 {
1226 flash_preserve,
1227 flash_discard
1228 };
1229
1230 /* Write several memory blocks at once. This version can be more
1231 efficient than making several calls to target_write_memory, in
1232 particular because it can optimize accesses to flash memory.
1233
1234 Moreover, this is currently the only memory access function in gdb
1235 that supports writing to flash memory, and it should be used for
1236 all cases where access to flash memory is desirable.
1237
1238 REQUESTS is the vector (see vec.h) of memory_write_request.
1239 PRESERVE_FLASH_P indicates what to do with blocks which must be
1240 erased, but not completely rewritten.
1241 PROGRESS_CB is a function that will be periodically called to provide
1242 feedback to user. It will be called with the baton corresponding
1243 to the request currently being written. It may also be called
1244 with a NULL baton, when preserved flash sectors are being rewritten.
1245
1246 The function returns 0 on success, and error otherwise. */
1247 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1248 enum flash_preserve_mode preserve_flash_p,
1249 void (*progress_cb) (ULONGEST, void *));
1250
1251 /* Print a line about the current target. */
1252
1253 #define target_files_info() \
1254 (*current_target.to_files_info) (&current_target)
1255
1256 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1257 the target machine. Returns 0 for success, and returns non-zero or
1258 throws an error (with a detailed failure reason error code and
1259 message) otherwise. */
1260
1261 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1262 struct bp_target_info *bp_tgt);
1263
1264 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1265 machine. Result is 0 for success, non-zero for error. */
1266
1267 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1268 struct bp_target_info *bp_tgt);
1269
1270 /* Initialize the terminal settings we record for the inferior,
1271 before we actually run the inferior. */
1272
1273 #define target_terminal_init() \
1274 (*current_target.to_terminal_init) (&current_target)
1275
1276 /* Put the inferior's terminal settings into effect.
1277 This is preparation for starting or resuming the inferior. */
1278
1279 extern void target_terminal_inferior (void);
1280
1281 /* Put some of our terminal settings into effect,
1282 enough to get proper results from our output,
1283 but do not change into or out of RAW mode
1284 so that no input is discarded.
1285
1286 After doing this, either terminal_ours or terminal_inferior
1287 should be called to get back to a normal state of affairs. */
1288
1289 #define target_terminal_ours_for_output() \
1290 (*current_target.to_terminal_ours_for_output) (&current_target)
1291
1292 /* Put our terminal settings into effect.
1293 First record the inferior's terminal settings
1294 so they can be restored properly later. */
1295
1296 #define target_terminal_ours() \
1297 (*current_target.to_terminal_ours) (&current_target)
1298
1299 /* Save our terminal settings.
1300 This is called from TUI after entering or leaving the curses
1301 mode. Since curses modifies our terminal this call is here
1302 to take this change into account. */
1303
1304 #define target_terminal_save_ours() \
1305 (*current_target.to_terminal_save_ours) (&current_target)
1306
1307 /* Print useful information about our terminal status, if such a thing
1308 exists. */
1309
1310 #define target_terminal_info(arg, from_tty) \
1311 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1312
1313 /* Kill the inferior process. Make it go away. */
1314
1315 extern void target_kill (void);
1316
1317 /* Load an executable file into the target process. This is expected
1318 to not only bring new code into the target process, but also to
1319 update GDB's symbol tables to match.
1320
1321 ARG contains command-line arguments, to be broken down with
1322 buildargv (). The first non-switch argument is the filename to
1323 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1324 0)), which is an offset to apply to the load addresses of FILE's
1325 sections. The target may define switches, or other non-switch
1326 arguments, as it pleases. */
1327
1328 extern void target_load (char *arg, int from_tty);
1329
1330 /* Start an inferior process and set inferior_ptid to its pid.
1331 EXEC_FILE is the file to run.
1332 ALLARGS is a string containing the arguments to the program.
1333 ENV is the environment vector to pass. Errors reported with error().
1334 On VxWorks and various standalone systems, we ignore exec_file. */
1335
1336 void target_create_inferior (char *exec_file, char *args,
1337 char **env, int from_tty);
1338
1339 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1340 notification of inferior events such as fork and vork immediately
1341 after the inferior is created. (This because of how gdb gets an
1342 inferior created via invoking a shell to do it. In such a scenario,
1343 if the shell init file has commands in it, the shell will fork and
1344 exec for each of those commands, and we will see each such fork
1345 event. Very bad.)
1346
1347 Such targets will supply an appropriate definition for this function. */
1348
1349 #define target_post_startup_inferior(ptid) \
1350 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1351
1352 /* On some targets, we can catch an inferior fork or vfork event when
1353 it occurs. These functions insert/remove an already-created
1354 catchpoint for such events. They return 0 for success, 1 if the
1355 catchpoint type is not supported and -1 for failure. */
1356
1357 #define target_insert_fork_catchpoint(pid) \
1358 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1359
1360 #define target_remove_fork_catchpoint(pid) \
1361 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1362
1363 #define target_insert_vfork_catchpoint(pid) \
1364 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1365
1366 #define target_remove_vfork_catchpoint(pid) \
1367 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1368
1369 /* If the inferior forks or vforks, this function will be called at
1370 the next resume in order to perform any bookkeeping and fiddling
1371 necessary to continue debugging either the parent or child, as
1372 requested, and releasing the other. Information about the fork
1373 or vfork event is available via get_last_target_status ().
1374 This function returns 1 if the inferior should not be resumed
1375 (i.e. there is another event pending). */
1376
1377 int target_follow_fork (int follow_child, int detach_fork);
1378
1379 /* On some targets, we can catch an inferior exec event when it
1380 occurs. These functions insert/remove an already-created
1381 catchpoint for such events. They return 0 for success, 1 if the
1382 catchpoint type is not supported and -1 for failure. */
1383
1384 #define target_insert_exec_catchpoint(pid) \
1385 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1386
1387 #define target_remove_exec_catchpoint(pid) \
1388 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1389
1390 /* Syscall catch.
1391
1392 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1393 If NEEDED is zero, it means the target can disable the mechanism to
1394 catch system calls because there are no more catchpoints of this type.
1395
1396 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1397 being requested. In this case, both TABLE_SIZE and TABLE should
1398 be ignored.
1399
1400 TABLE_SIZE is the number of elements in TABLE. It only matters if
1401 ANY_COUNT is zero.
1402
1403 TABLE is an array of ints, indexed by syscall number. An element in
1404 this array is nonzero if that syscall should be caught. This argument
1405 only matters if ANY_COUNT is zero.
1406
1407 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1408 for failure. */
1409
1410 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1411 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1412 pid, needed, any_count, \
1413 table_size, table)
1414
1415 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1416 exit code of PID, if any. */
1417
1418 #define target_has_exited(pid,wait_status,exit_status) \
1419 (*current_target.to_has_exited) (&current_target, \
1420 pid,wait_status,exit_status)
1421
1422 /* The debugger has completed a blocking wait() call. There is now
1423 some process event that must be processed. This function should
1424 be defined by those targets that require the debugger to perform
1425 cleanup or internal state changes in response to the process event. */
1426
1427 /* The inferior process has died. Do what is right. */
1428
1429 void target_mourn_inferior (void);
1430
1431 /* Does target have enough data to do a run or attach command? */
1432
1433 #define target_can_run(t) \
1434 ((t)->to_can_run) (t)
1435
1436 /* Set list of signals to be handled in the target.
1437
1438 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1439 (enum gdb_signal). For every signal whose entry in this array is
1440 non-zero, the target is allowed -but not required- to skip reporting
1441 arrival of the signal to the GDB core by returning from target_wait,
1442 and to pass the signal directly to the inferior instead.
1443
1444 However, if the target is hardware single-stepping a thread that is
1445 about to receive a signal, it needs to be reported in any case, even
1446 if mentioned in a previous target_pass_signals call. */
1447
1448 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1449
1450 /* Set list of signals the target may pass to the inferior. This
1451 directly maps to the "handle SIGNAL pass/nopass" setting.
1452
1453 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1454 number (enum gdb_signal). For every signal whose entry in this
1455 array is non-zero, the target is allowed to pass the signal to the
1456 inferior. Signals not present in the array shall be silently
1457 discarded. This does not influence whether to pass signals to the
1458 inferior as a result of a target_resume call. This is useful in
1459 scenarios where the target needs to decide whether to pass or not a
1460 signal to the inferior without GDB core involvement, such as for
1461 example, when detaching (as threads may have been suspended with
1462 pending signals not reported to GDB). */
1463
1464 extern void target_program_signals (int nsig, unsigned char *program_signals);
1465
1466 /* Check to see if a thread is still alive. */
1467
1468 extern int target_thread_alive (ptid_t ptid);
1469
1470 /* Query for new threads and add them to the thread list. */
1471
1472 extern void target_find_new_threads (void);
1473
1474 /* Make target stop in a continuable fashion. (For instance, under
1475 Unix, this should act like SIGSTOP). This function is normally
1476 used by GUIs to implement a stop button. */
1477
1478 extern void target_stop (ptid_t ptid);
1479
1480 /* Send the specified COMMAND to the target's monitor
1481 (shell,interpreter) for execution. The result of the query is
1482 placed in OUTBUF. */
1483
1484 #define target_rcmd(command, outbuf) \
1485 (*current_target.to_rcmd) (&current_target, command, outbuf)
1486
1487
1488 /* Does the target include all of memory, or only part of it? This
1489 determines whether we look up the target chain for other parts of
1490 memory if this target can't satisfy a request. */
1491
1492 extern int target_has_all_memory_1 (void);
1493 #define target_has_all_memory target_has_all_memory_1 ()
1494
1495 /* Does the target include memory? (Dummy targets don't.) */
1496
1497 extern int target_has_memory_1 (void);
1498 #define target_has_memory target_has_memory_1 ()
1499
1500 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1501 we start a process.) */
1502
1503 extern int target_has_stack_1 (void);
1504 #define target_has_stack target_has_stack_1 ()
1505
1506 /* Does the target have registers? (Exec files don't.) */
1507
1508 extern int target_has_registers_1 (void);
1509 #define target_has_registers target_has_registers_1 ()
1510
1511 /* Does the target have execution? Can we make it jump (through
1512 hoops), or pop its stack a few times? This means that the current
1513 target is currently executing; for some targets, that's the same as
1514 whether or not the target is capable of execution, but there are
1515 also targets which can be current while not executing. In that
1516 case this will become true after target_create_inferior or
1517 target_attach. */
1518
1519 extern int target_has_execution_1 (ptid_t);
1520
1521 /* Like target_has_execution_1, but always passes inferior_ptid. */
1522
1523 extern int target_has_execution_current (void);
1524
1525 #define target_has_execution target_has_execution_current ()
1526
1527 /* Default implementations for process_stratum targets. Return true
1528 if there's a selected inferior, false otherwise. */
1529
1530 extern int default_child_has_all_memory (struct target_ops *ops);
1531 extern int default_child_has_memory (struct target_ops *ops);
1532 extern int default_child_has_stack (struct target_ops *ops);
1533 extern int default_child_has_registers (struct target_ops *ops);
1534 extern int default_child_has_execution (struct target_ops *ops,
1535 ptid_t the_ptid);
1536
1537 /* Can the target support the debugger control of thread execution?
1538 Can it lock the thread scheduler? */
1539
1540 #define target_can_lock_scheduler \
1541 (current_target.to_has_thread_control & tc_schedlock)
1542
1543 /* Should the target enable async mode if it is supported? Temporary
1544 cludge until async mode is a strict superset of sync mode. */
1545 extern int target_async_permitted;
1546
1547 /* Can the target support asynchronous execution? */
1548 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1549
1550 /* Is the target in asynchronous execution mode? */
1551 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1552
1553 int target_supports_non_stop (void);
1554
1555 /* Put the target in async mode with the specified callback function. */
1556 #define target_async(CALLBACK,CONTEXT) \
1557 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1558
1559 #define target_execution_direction() \
1560 (current_target.to_execution_direction (&current_target))
1561
1562 /* Converts a process id to a string. Usually, the string just contains
1563 `process xyz', but on some systems it may contain
1564 `process xyz thread abc'. */
1565
1566 extern char *target_pid_to_str (ptid_t ptid);
1567
1568 extern char *normal_pid_to_str (ptid_t ptid);
1569
1570 /* Return a short string describing extra information about PID,
1571 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1572 is okay. */
1573
1574 #define target_extra_thread_info(TP) \
1575 (current_target.to_extra_thread_info (&current_target, TP))
1576
1577 /* Return the thread's name. A NULL result means that the target
1578 could not determine this thread's name. */
1579
1580 extern char *target_thread_name (struct thread_info *);
1581
1582 /* Attempts to find the pathname of the executable file
1583 that was run to create a specified process.
1584
1585 The process PID must be stopped when this operation is used.
1586
1587 If the executable file cannot be determined, NULL is returned.
1588
1589 Else, a pointer to a character string containing the pathname
1590 is returned. This string should be copied into a buffer by
1591 the client if the string will not be immediately used, or if
1592 it must persist. */
1593
1594 #define target_pid_to_exec_file(pid) \
1595 (current_target.to_pid_to_exec_file) (&current_target, pid)
1596
1597 /* See the to_thread_architecture description in struct target_ops. */
1598
1599 #define target_thread_architecture(ptid) \
1600 (current_target.to_thread_architecture (&current_target, ptid))
1601
1602 /*
1603 * Iterator function for target memory regions.
1604 * Calls a callback function once for each memory region 'mapped'
1605 * in the child process. Defined as a simple macro rather than
1606 * as a function macro so that it can be tested for nullity.
1607 */
1608
1609 #define target_find_memory_regions(FUNC, DATA) \
1610 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1611
1612 /*
1613 * Compose corefile .note section.
1614 */
1615
1616 #define target_make_corefile_notes(BFD, SIZE_P) \
1617 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1618
1619 /* Bookmark interfaces. */
1620 #define target_get_bookmark(ARGS, FROM_TTY) \
1621 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1622
1623 #define target_goto_bookmark(ARG, FROM_TTY) \
1624 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1625
1626 /* Hardware watchpoint interfaces. */
1627
1628 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1629 write). Only the INFERIOR_PTID task is being queried. */
1630
1631 #define target_stopped_by_watchpoint() \
1632 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1633
1634 /* Non-zero if we have steppable watchpoints */
1635
1636 #define target_have_steppable_watchpoint \
1637 (current_target.to_have_steppable_watchpoint)
1638
1639 /* Non-zero if we have continuable watchpoints */
1640
1641 #define target_have_continuable_watchpoint \
1642 (current_target.to_have_continuable_watchpoint)
1643
1644 /* Provide defaults for hardware watchpoint functions. */
1645
1646 /* If the *_hw_beakpoint functions have not been defined
1647 elsewhere use the definitions in the target vector. */
1648
1649 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1650 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1651 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1652 (including this one?). OTHERTYPE is who knows what... */
1653
1654 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1655 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1656 TYPE, CNT, OTHERTYPE);
1657
1658 /* Returns the number of debug registers needed to watch the given
1659 memory region, or zero if not supported. */
1660
1661 #define target_region_ok_for_hw_watchpoint(addr, len) \
1662 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1663 addr, len)
1664
1665
1666 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1667 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1668 COND is the expression for its condition, or NULL if there's none.
1669 Returns 0 for success, 1 if the watchpoint type is not supported,
1670 -1 for failure. */
1671
1672 #define target_insert_watchpoint(addr, len, type, cond) \
1673 (*current_target.to_insert_watchpoint) (&current_target, \
1674 addr, len, type, cond)
1675
1676 #define target_remove_watchpoint(addr, len, type, cond) \
1677 (*current_target.to_remove_watchpoint) (&current_target, \
1678 addr, len, type, cond)
1679
1680 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1681 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1682 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1683 masked watchpoints are not supported, -1 for failure. */
1684
1685 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1686
1687 /* Remove a masked watchpoint at ADDR with the mask MASK.
1688 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1689 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1690 for failure. */
1691
1692 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1693
1694 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1695 the target machine. Returns 0 for success, and returns non-zero or
1696 throws an error (with a detailed failure reason error code and
1697 message) otherwise. */
1698
1699 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1700 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1701 gdbarch, bp_tgt)
1702
1703 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1704 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1705 gdbarch, bp_tgt)
1706
1707 /* Return number of debug registers needed for a ranged breakpoint,
1708 or -1 if ranged breakpoints are not supported. */
1709
1710 extern int target_ranged_break_num_registers (void);
1711
1712 /* Return non-zero if target knows the data address which triggered this
1713 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1714 INFERIOR_PTID task is being queried. */
1715 #define target_stopped_data_address(target, addr_p) \
1716 (*target.to_stopped_data_address) (target, addr_p)
1717
1718 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1719 LENGTH bytes beginning at START. */
1720 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1721 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1722
1723 /* Return non-zero if the target is capable of using hardware to evaluate
1724 the condition expression. In this case, if the condition is false when
1725 the watched memory location changes, execution may continue without the
1726 debugger being notified.
1727
1728 Due to limitations in the hardware implementation, it may be capable of
1729 avoiding triggering the watchpoint in some cases where the condition
1730 expression is false, but may report some false positives as well.
1731 For this reason, GDB will still evaluate the condition expression when
1732 the watchpoint triggers. */
1733 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1734 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1735 addr, len, type, cond)
1736
1737 /* Return number of debug registers needed for a masked watchpoint,
1738 -1 if masked watchpoints are not supported or -2 if the given address
1739 and mask combination cannot be used. */
1740
1741 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1742
1743 /* Target can execute in reverse? */
1744 #define target_can_execute_reverse \
1745 (current_target.to_can_execute_reverse ? \
1746 current_target.to_can_execute_reverse (&current_target) : 0)
1747
1748 extern const struct target_desc *target_read_description (struct target_ops *);
1749
1750 #define target_get_ada_task_ptid(lwp, tid) \
1751 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1752
1753 /* Utility implementation of searching memory. */
1754 extern int simple_search_memory (struct target_ops* ops,
1755 CORE_ADDR start_addr,
1756 ULONGEST search_space_len,
1757 const gdb_byte *pattern,
1758 ULONGEST pattern_len,
1759 CORE_ADDR *found_addrp);
1760
1761 /* Main entry point for searching memory. */
1762 extern int target_search_memory (CORE_ADDR start_addr,
1763 ULONGEST search_space_len,
1764 const gdb_byte *pattern,
1765 ULONGEST pattern_len,
1766 CORE_ADDR *found_addrp);
1767
1768 /* Target file operations. */
1769
1770 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1771 target file descriptor, or -1 if an error occurs (and set
1772 *TARGET_ERRNO). */
1773 extern int target_fileio_open (const char *filename, int flags, int mode,
1774 int *target_errno);
1775
1776 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1777 Return the number of bytes written, or -1 if an error occurs
1778 (and set *TARGET_ERRNO). */
1779 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1780 ULONGEST offset, int *target_errno);
1781
1782 /* Read up to LEN bytes FD on the target into READ_BUF.
1783 Return the number of bytes read, or -1 if an error occurs
1784 (and set *TARGET_ERRNO). */
1785 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1786 ULONGEST offset, int *target_errno);
1787
1788 /* Close FD on the target. Return 0, or -1 if an error occurs
1789 (and set *TARGET_ERRNO). */
1790 extern int target_fileio_close (int fd, int *target_errno);
1791
1792 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1793 occurs (and set *TARGET_ERRNO). */
1794 extern int target_fileio_unlink (const char *filename, int *target_errno);
1795
1796 /* Read value of symbolic link FILENAME on the target. Return a
1797 null-terminated string allocated via xmalloc, or NULL if an error
1798 occurs (and set *TARGET_ERRNO). */
1799 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1800
1801 /* Read target file FILENAME. The return value will be -1 if the transfer
1802 fails or is not supported; 0 if the object is empty; or the length
1803 of the object otherwise. If a positive value is returned, a
1804 sufficiently large buffer will be allocated using xmalloc and
1805 returned in *BUF_P containing the contents of the object.
1806
1807 This method should be used for objects sufficiently small to store
1808 in a single xmalloc'd buffer, when no fixed bound on the object's
1809 size is known in advance. */
1810 extern LONGEST target_fileio_read_alloc (const char *filename,
1811 gdb_byte **buf_p);
1812
1813 /* Read target file FILENAME. The result is NUL-terminated and
1814 returned as a string, allocated using xmalloc. If an error occurs
1815 or the transfer is unsupported, NULL is returned. Empty objects
1816 are returned as allocated but empty strings. A warning is issued
1817 if the result contains any embedded NUL bytes. */
1818 extern char *target_fileio_read_stralloc (const char *filename);
1819
1820
1821 /* Tracepoint-related operations. */
1822
1823 #define target_trace_init() \
1824 (*current_target.to_trace_init) (&current_target)
1825
1826 #define target_download_tracepoint(t) \
1827 (*current_target.to_download_tracepoint) (&current_target, t)
1828
1829 #define target_can_download_tracepoint() \
1830 (*current_target.to_can_download_tracepoint) (&current_target)
1831
1832 #define target_download_trace_state_variable(tsv) \
1833 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1834
1835 #define target_enable_tracepoint(loc) \
1836 (*current_target.to_enable_tracepoint) (&current_target, loc)
1837
1838 #define target_disable_tracepoint(loc) \
1839 (*current_target.to_disable_tracepoint) (&current_target, loc)
1840
1841 #define target_trace_start() \
1842 (*current_target.to_trace_start) (&current_target)
1843
1844 #define target_trace_set_readonly_regions() \
1845 (*current_target.to_trace_set_readonly_regions) (&current_target)
1846
1847 #define target_get_trace_status(ts) \
1848 (*current_target.to_get_trace_status) (&current_target, ts)
1849
1850 #define target_get_tracepoint_status(tp,utp) \
1851 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1852
1853 #define target_trace_stop() \
1854 (*current_target.to_trace_stop) (&current_target)
1855
1856 #define target_trace_find(type,num,addr1,addr2,tpp) \
1857 (*current_target.to_trace_find) (&current_target, \
1858 (type), (num), (addr1), (addr2), (tpp))
1859
1860 #define target_get_trace_state_variable_value(tsv,val) \
1861 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1862 (tsv), (val))
1863
1864 #define target_save_trace_data(filename) \
1865 (*current_target.to_save_trace_data) (&current_target, filename)
1866
1867 #define target_upload_tracepoints(utpp) \
1868 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1869
1870 #define target_upload_trace_state_variables(utsvp) \
1871 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1872
1873 #define target_get_raw_trace_data(buf,offset,len) \
1874 (*current_target.to_get_raw_trace_data) (&current_target, \
1875 (buf), (offset), (len))
1876
1877 #define target_get_min_fast_tracepoint_insn_len() \
1878 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1879
1880 #define target_set_disconnected_tracing(val) \
1881 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1882
1883 #define target_set_circular_trace_buffer(val) \
1884 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1885
1886 #define target_set_trace_buffer_size(val) \
1887 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1888
1889 #define target_set_trace_notes(user,notes,stopnotes) \
1890 (*current_target.to_set_trace_notes) (&current_target, \
1891 (user), (notes), (stopnotes))
1892
1893 #define target_get_tib_address(ptid, addr) \
1894 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1895
1896 #define target_set_permissions() \
1897 (*current_target.to_set_permissions) (&current_target)
1898
1899 #define target_static_tracepoint_marker_at(addr, marker) \
1900 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1901 addr, marker)
1902
1903 #define target_static_tracepoint_markers_by_strid(marker_id) \
1904 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1905 marker_id)
1906
1907 #define target_traceframe_info() \
1908 (*current_target.to_traceframe_info) (&current_target)
1909
1910 #define target_use_agent(use) \
1911 (*current_target.to_use_agent) (&current_target, use)
1912
1913 #define target_can_use_agent() \
1914 (*current_target.to_can_use_agent) (&current_target)
1915
1916 #define target_augmented_libraries_svr4_read() \
1917 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1918
1919 /* Command logging facility. */
1920
1921 #define target_log_command(p) \
1922 do \
1923 if (current_target.to_log_command) \
1924 (*current_target.to_log_command) (&current_target, \
1925 p); \
1926 while (0)
1927
1928
1929 extern int target_core_of_thread (ptid_t ptid);
1930
1931 /* See to_get_unwinder in struct target_ops. */
1932 extern const struct frame_unwind *target_get_unwinder (void);
1933
1934 /* See to_get_tailcall_unwinder in struct target_ops. */
1935 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1936
1937 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1938 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1939 if there's a mismatch, and -1 if an error is encountered while
1940 reading memory. Throws an error if the functionality is found not
1941 to be supported by the current target. */
1942 int target_verify_memory (const gdb_byte *data,
1943 CORE_ADDR memaddr, ULONGEST size);
1944
1945 /* Routines for maintenance of the target structures...
1946
1947 complete_target_initialization: Finalize a target_ops by filling in
1948 any fields needed by the target implementation.
1949
1950 add_target: Add a target to the list of all possible targets.
1951
1952 push_target: Make this target the top of the stack of currently used
1953 targets, within its particular stratum of the stack. Result
1954 is 0 if now atop the stack, nonzero if not on top (maybe
1955 should warn user).
1956
1957 unpush_target: Remove this from the stack of currently used targets,
1958 no matter where it is on the list. Returns 0 if no
1959 change, 1 if removed from stack. */
1960
1961 extern void add_target (struct target_ops *);
1962
1963 extern void add_target_with_completer (struct target_ops *t,
1964 completer_ftype *completer);
1965
1966 extern void complete_target_initialization (struct target_ops *t);
1967
1968 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1969 for maintaining backwards compatibility when renaming targets. */
1970
1971 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1972
1973 extern void push_target (struct target_ops *);
1974
1975 extern int unpush_target (struct target_ops *);
1976
1977 extern void target_pre_inferior (int);
1978
1979 extern void target_preopen (int);
1980
1981 /* Does whatever cleanup is required to get rid of all pushed targets. */
1982 extern void pop_all_targets (void);
1983
1984 /* Like pop_all_targets, but pops only targets whose stratum is
1985 strictly above ABOVE_STRATUM. */
1986 extern void pop_all_targets_above (enum strata above_stratum);
1987
1988 extern int target_is_pushed (struct target_ops *t);
1989
1990 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1991 CORE_ADDR offset);
1992
1993 /* Struct target_section maps address ranges to file sections. It is
1994 mostly used with BFD files, but can be used without (e.g. for handling
1995 raw disks, or files not in formats handled by BFD). */
1996
1997 struct target_section
1998 {
1999 CORE_ADDR addr; /* Lowest address in section */
2000 CORE_ADDR endaddr; /* 1+highest address in section */
2001
2002 struct bfd_section *the_bfd_section;
2003
2004 /* The "owner" of the section.
2005 It can be any unique value. It is set by add_target_sections
2006 and used by remove_target_sections.
2007 For example, for executables it is a pointer to exec_bfd and
2008 for shlibs it is the so_list pointer. */
2009 void *owner;
2010 };
2011
2012 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2013
2014 struct target_section_table
2015 {
2016 struct target_section *sections;
2017 struct target_section *sections_end;
2018 };
2019
2020 /* Return the "section" containing the specified address. */
2021 struct target_section *target_section_by_addr (struct target_ops *target,
2022 CORE_ADDR addr);
2023
2024 /* Return the target section table this target (or the targets
2025 beneath) currently manipulate. */
2026
2027 extern struct target_section_table *target_get_section_table
2028 (struct target_ops *target);
2029
2030 /* From mem-break.c */
2031
2032 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2033 struct bp_target_info *);
2034
2035 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2036 struct bp_target_info *);
2037
2038 extern int default_memory_remove_breakpoint (struct gdbarch *,
2039 struct bp_target_info *);
2040
2041 extern int default_memory_insert_breakpoint (struct gdbarch *,
2042 struct bp_target_info *);
2043
2044
2045 /* From target.c */
2046
2047 extern void initialize_targets (void);
2048
2049 extern void noprocess (void) ATTRIBUTE_NORETURN;
2050
2051 extern void target_require_runnable (void);
2052
2053 extern void find_default_attach (struct target_ops *, char *, int);
2054
2055 extern void find_default_create_inferior (struct target_ops *,
2056 char *, char *, char **, int);
2057
2058 extern struct target_ops *find_target_beneath (struct target_ops *);
2059
2060 /* Find the target at STRATUM. If no target is at that stratum,
2061 return NULL. */
2062
2063 struct target_ops *find_target_at (enum strata stratum);
2064
2065 /* Read OS data object of type TYPE from the target, and return it in
2066 XML format. The result is NUL-terminated and returned as a string,
2067 allocated using xmalloc. If an error occurs or the transfer is
2068 unsupported, NULL is returned. Empty objects are returned as
2069 allocated but empty strings. */
2070
2071 extern char *target_get_osdata (const char *type);
2072
2073 \f
2074 /* Stuff that should be shared among the various remote targets. */
2075
2076 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2077 information (higher values, more information). */
2078 extern int remote_debug;
2079
2080 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2081 extern int baud_rate;
2082 /* Timeout limit for response from target. */
2083 extern int remote_timeout;
2084
2085 \f
2086
2087 /* Set the show memory breakpoints mode to show, and installs a cleanup
2088 to restore it back to the current value. */
2089 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2090
2091 extern int may_write_registers;
2092 extern int may_write_memory;
2093 extern int may_insert_breakpoints;
2094 extern int may_insert_tracepoints;
2095 extern int may_insert_fast_tracepoints;
2096 extern int may_stop;
2097
2098 extern void update_target_permissions (void);
2099
2100 \f
2101 /* Imported from machine dependent code. */
2102
2103 /* Blank target vector entries are initialized to target_ignore. */
2104 void target_ignore (void);
2105
2106 /* See to_supports_btrace in struct target_ops. */
2107 #define target_supports_btrace() \
2108 (current_target.to_supports_btrace (&current_target))
2109
2110 /* See to_enable_btrace in struct target_ops. */
2111 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2112
2113 /* See to_disable_btrace in struct target_ops. */
2114 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2115
2116 /* See to_teardown_btrace in struct target_ops. */
2117 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2118
2119 /* See to_read_btrace in struct target_ops. */
2120 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2121 struct btrace_target_info *,
2122 enum btrace_read_type);
2123
2124 /* See to_stop_recording in struct target_ops. */
2125 extern void target_stop_recording (void);
2126
2127 /* See to_info_record in struct target_ops. */
2128 extern void target_info_record (void);
2129
2130 /* See to_save_record in struct target_ops. */
2131 extern void target_save_record (const char *filename);
2132
2133 /* Query if the target supports deleting the execution log. */
2134 extern int target_supports_delete_record (void);
2135
2136 /* See to_delete_record in struct target_ops. */
2137 extern void target_delete_record (void);
2138
2139 /* See to_record_is_replaying in struct target_ops. */
2140 extern int target_record_is_replaying (void);
2141
2142 /* See to_goto_record_begin in struct target_ops. */
2143 extern void target_goto_record_begin (void);
2144
2145 /* See to_goto_record_end in struct target_ops. */
2146 extern void target_goto_record_end (void);
2147
2148 /* See to_goto_record in struct target_ops. */
2149 extern void target_goto_record (ULONGEST insn);
2150
2151 /* See to_insn_history. */
2152 extern void target_insn_history (int size, int flags);
2153
2154 /* See to_insn_history_from. */
2155 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2156
2157 /* See to_insn_history_range. */
2158 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2159
2160 /* See to_call_history. */
2161 extern void target_call_history (int size, int flags);
2162
2163 /* See to_call_history_from. */
2164 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2165
2166 /* See to_call_history_range. */
2167 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2168
2169 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2170 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2171 struct gdbarch *gdbarch);
2172
2173 /* See to_decr_pc_after_break. */
2174 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2175
2176 #endif /* !defined (TARGET_H) */
This page took 0.077022 seconds and 4 git commands to generate.