Remove verbose code from backtrace command
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum. */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
80
81 #include "break-common.h" /* For enum target_hw_bp_type. */
82
83 enum strata
84 {
85 dummy_stratum, /* The lowest of the low */
86 file_stratum, /* Executable files, etc */
87 process_stratum, /* Executing processes or core dump files */
88 thread_stratum, /* Executing threads */
89 record_stratum, /* Support record debugging */
90 arch_stratum /* Architecture overrides */
91 };
92
93 enum thread_control_capabilities
94 {
95 tc_none = 0, /* Default: can't control thread execution. */
96 tc_schedlock = 1, /* Can lock the thread scheduler. */
97 };
98
99 /* The structure below stores information about a system call.
100 It is basically used in the "catch syscall" command, and in
101 every function that gives information about a system call.
102
103 It's also good to mention that its fields represent everything
104 that we currently know about a syscall in GDB. */
105 struct syscall
106 {
107 /* The syscall number. */
108 int number;
109
110 /* The syscall name. */
111 const char *name;
112 };
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* Traceframe info, in XML format. */
185 TARGET_OBJECT_TRACEFRAME_INFO,
186 /* Load maps for FDPIC systems. */
187 TARGET_OBJECT_FDPIC,
188 /* Darwin dynamic linker info data. */
189 TARGET_OBJECT_DARWIN_DYLD_INFO,
190 /* OpenVMS Unwind Information Block. */
191 TARGET_OBJECT_OPENVMS_UIB,
192 /* Branch trace data, in XML format. */
193 TARGET_OBJECT_BTRACE,
194 /* Branch trace configuration, in XML format. */
195 TARGET_OBJECT_BTRACE_CONF,
196 /* The pathname of the executable file that was run to create
197 a specified process. ANNEX should be a string representation
198 of the process ID of the process in question, in hexadecimal
199 format. */
200 TARGET_OBJECT_EXEC_FILE,
201 /* Possible future objects: TARGET_OBJECT_FILE, ... */
202 };
203
204 /* Possible values returned by target_xfer_partial, etc. */
205
206 enum target_xfer_status
207 {
208 /* Some bytes are transferred. */
209 TARGET_XFER_OK = 1,
210
211 /* No further transfer is possible. */
212 TARGET_XFER_EOF = 0,
213
214 /* The piece of the object requested is unavailable. */
215 TARGET_XFER_UNAVAILABLE = 2,
216
217 /* Generic I/O error. Note that it's important that this is '-1',
218 as we still have target_xfer-related code returning hardcoded
219 '-1' on error. */
220 TARGET_XFER_E_IO = -1,
221
222 /* Keep list in sync with target_xfer_status_to_string. */
223 };
224
225 /* Return the string form of STATUS. */
226
227 extern const char *
228 target_xfer_status_to_string (enum target_xfer_status status);
229
230 typedef enum target_xfer_status
231 target_xfer_partial_ftype (struct target_ops *ops,
232 enum target_object object,
233 const char *annex,
234 gdb_byte *readbuf,
235 const gdb_byte *writebuf,
236 ULONGEST offset,
237 ULONGEST len,
238 ULONGEST *xfered_len);
239
240 enum target_xfer_status
241 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
242 const gdb_byte *writebuf, ULONGEST memaddr,
243 LONGEST len, ULONGEST *xfered_len);
244
245 /* Request that OPS transfer up to LEN addressable units of the target's
246 OBJECT. When reading from a memory object, the size of an addressable unit
247 is architecture dependent and can be found using
248 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
249 byte long. BUF should point to a buffer large enough to hold the read data,
250 taking into account the addressable unit size. The OFFSET, for a seekable
251 object, specifies the starting point. The ANNEX can be used to provide
252 additional data-specific information to the target.
253
254 Return the number of addressable units actually transferred, or a negative
255 error code (an 'enum target_xfer_error' value) if the transfer is not
256 supported or otherwise fails. Return of a positive value less than
257 LEN indicates that no further transfer is possible. Unlike the raw
258 to_xfer_partial interface, callers of these functions do not need
259 to retry partial transfers. */
260
261 extern LONGEST target_read (struct target_ops *ops,
262 enum target_object object,
263 const char *annex, gdb_byte *buf,
264 ULONGEST offset, LONGEST len);
265
266 struct memory_read_result
267 {
268 memory_read_result (ULONGEST begin_, ULONGEST end_,
269 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
270 : begin (begin_),
271 end (end_),
272 data (std::move (data_))
273 {
274 }
275
276 ~memory_read_result () = default;
277
278 memory_read_result (memory_read_result &&other) = default;
279
280 DISABLE_COPY_AND_ASSIGN (memory_read_result);
281
282 /* First address that was read. */
283 ULONGEST begin;
284 /* Past-the-end address. */
285 ULONGEST end;
286 /* The data. */
287 gdb::unique_xmalloc_ptr<gdb_byte> data;
288 };
289
290 extern std::vector<memory_read_result> read_memory_robust
291 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
292
293 /* Request that OPS transfer up to LEN addressable units from BUF to the
294 target's OBJECT. When writing to a memory object, the addressable unit
295 size is architecture dependent and can be found using
296 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
297 byte long. The OFFSET, for a seekable object, specifies the starting point.
298 The ANNEX can be used to provide additional data-specific information to
299 the target.
300
301 Return the number of addressable units actually transferred, or a negative
302 error code (an 'enum target_xfer_status' value) if the transfer is not
303 supported or otherwise fails. Return of a positive value less than
304 LEN indicates that no further transfer is possible. Unlike the raw
305 to_xfer_partial interface, callers of these functions do not need to
306 retry partial transfers. */
307
308 extern LONGEST target_write (struct target_ops *ops,
309 enum target_object object,
310 const char *annex, const gdb_byte *buf,
311 ULONGEST offset, LONGEST len);
312
313 /* Similar to target_write, except that it also calls PROGRESS with
314 the number of bytes written and the opaque BATON after every
315 successful partial write (and before the first write). This is
316 useful for progress reporting and user interaction while writing
317 data. To abort the transfer, the progress callback can throw an
318 exception. */
319
320 LONGEST target_write_with_progress (struct target_ops *ops,
321 enum target_object object,
322 const char *annex, const gdb_byte *buf,
323 ULONGEST offset, LONGEST len,
324 void (*progress) (ULONGEST, void *),
325 void *baton);
326
327 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
328 be read using OPS. The return value will be -1 if the transfer
329 fails or is not supported; 0 if the object is empty; or the length
330 of the object otherwise. If a positive value is returned, a
331 sufficiently large buffer will be allocated using xmalloc and
332 returned in *BUF_P containing the contents of the object.
333
334 This method should be used for objects sufficiently small to store
335 in a single xmalloc'd buffer, when no fixed bound on the object's
336 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
337 through this function. */
338
339 extern LONGEST target_read_alloc (struct target_ops *ops,
340 enum target_object object,
341 const char *annex, gdb_byte **buf_p);
342
343 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
344 returned as a string. If an error occurs or the transfer is
345 unsupported, NULL is returned. Empty objects are returned as
346 allocated but empty strings. A warning is issued if the result
347 contains any embedded NUL bytes. */
348
349 extern gdb::unique_xmalloc_ptr<char> target_read_stralloc
350 (struct target_ops *ops, enum target_object object, const char *annex);
351
352 /* See target_ops->to_xfer_partial. */
353 extern target_xfer_partial_ftype target_xfer_partial;
354
355 /* Wrappers to target read/write that perform memory transfers. They
356 throw an error if the memory transfer fails.
357
358 NOTE: cagney/2003-10-23: The naming schema is lifted from
359 "frame.h". The parameter order is lifted from get_frame_memory,
360 which in turn lifted it from read_memory. */
361
362 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
363 gdb_byte *buf, LONGEST len);
364 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
365 CORE_ADDR addr, int len,
366 enum bfd_endian byte_order);
367 \f
368 struct thread_info; /* fwd decl for parameter list below: */
369
370 /* The type of the callback to the to_async method. */
371
372 typedef void async_callback_ftype (enum inferior_event_type event_type,
373 void *context);
374
375 /* Normally target debug printing is purely type-based. However,
376 sometimes it is necessary to override the debug printing on a
377 per-argument basis. This macro can be used, attribute-style, to
378 name the target debug printing function for a particular method
379 argument. FUNC is the name of the function. The macro's
380 definition is empty because it is only used by the
381 make-target-delegates script. */
382
383 #define TARGET_DEBUG_PRINTER(FUNC)
384
385 /* These defines are used to mark target_ops methods. The script
386 make-target-delegates scans these and auto-generates the base
387 method implementations. There are four macros that can be used:
388
389 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
390 does nothing. This is only valid if the method return type is
391 'void'.
392
393 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
394 'tcomplain ()'. The base method simply makes this call, which is
395 assumed not to return.
396
397 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
398 base method returns this expression's value.
399
400 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
401 make-target-delegates does not generate a base method in this case,
402 but instead uses the argument function as the base method. */
403
404 #define TARGET_DEFAULT_IGNORE()
405 #define TARGET_DEFAULT_NORETURN(ARG)
406 #define TARGET_DEFAULT_RETURN(ARG)
407 #define TARGET_DEFAULT_FUNC(ARG)
408
409 struct target_ops
410 {
411 struct target_ops *beneath; /* To the target under this one. */
412 const char *to_shortname; /* Name this target type */
413 const char *to_longname; /* Name for printing */
414 const char *to_doc; /* Documentation. Does not include trailing
415 newline, and starts with a one-line descrip-
416 tion (probably similar to to_longname). */
417 /* Per-target scratch pad. */
418 void *to_data;
419 /* The open routine takes the rest of the parameters from the
420 command, and (if successful) pushes a new target onto the
421 stack. Targets should supply this routine, if only to provide
422 an error message. */
423 void (*to_open) (const char *, int);
424 /* Old targets with a static target vector provide "to_close".
425 New re-entrant targets provide "to_xclose" and that is expected
426 to xfree everything (including the "struct target_ops"). */
427 void (*to_xclose) (struct target_ops *targ);
428 void (*to_close) (struct target_ops *);
429 /* Attaches to a process on the target side. Arguments are as
430 passed to the `attach' command by the user. This routine can
431 be called when the target is not on the target-stack, if the
432 target_can_run routine returns 1; in that case, it must push
433 itself onto the stack. Upon exit, the target should be ready
434 for normal operations, and should be ready to deliver the
435 status of the process immediately (without waiting) to an
436 upcoming target_wait call. */
437 void (*to_attach) (struct target_ops *ops, const char *, int);
438 void (*to_post_attach) (struct target_ops *, int)
439 TARGET_DEFAULT_IGNORE ();
440 void (*to_detach) (struct target_ops *ops, inferior *, int)
441 TARGET_DEFAULT_IGNORE ();
442 void (*to_disconnect) (struct target_ops *, const char *, int)
443 TARGET_DEFAULT_NORETURN (tcomplain ());
444 void (*to_resume) (struct target_ops *, ptid_t,
445 int TARGET_DEBUG_PRINTER (target_debug_print_step),
446 enum gdb_signal)
447 TARGET_DEFAULT_NORETURN (noprocess ());
448 void (*to_commit_resume) (struct target_ops *)
449 TARGET_DEFAULT_IGNORE ();
450 ptid_t (*to_wait) (struct target_ops *,
451 ptid_t, struct target_waitstatus *,
452 int TARGET_DEBUG_PRINTER (target_debug_print_options))
453 TARGET_DEFAULT_FUNC (default_target_wait);
454 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
455 TARGET_DEFAULT_IGNORE ();
456 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
457 TARGET_DEFAULT_NORETURN (noprocess ());
458 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
459 TARGET_DEFAULT_NORETURN (noprocess ());
460
461 void (*to_files_info) (struct target_ops *)
462 TARGET_DEFAULT_IGNORE ();
463 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
464 struct bp_target_info *)
465 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
466 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
467 struct bp_target_info *,
468 enum remove_bp_reason)
469 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
470
471 /* Returns true if the target stopped because it executed a
472 software breakpoint. This is necessary for correct background
473 execution / non-stop mode operation, and for correct PC
474 adjustment on targets where the PC needs to be adjusted when a
475 software breakpoint triggers. In these modes, by the time GDB
476 processes a breakpoint event, the breakpoint may already be
477 done from the target, so GDB needs to be able to tell whether
478 it should ignore the event and whether it should adjust the PC.
479 See adjust_pc_after_break. */
480 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
481 TARGET_DEFAULT_RETURN (0);
482 /* Returns true if the above method is supported. */
483 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
484 TARGET_DEFAULT_RETURN (0);
485
486 /* Returns true if the target stopped for a hardware breakpoint.
487 Likewise, if the target supports hardware breakpoints, this
488 method is necessary for correct background execution / non-stop
489 mode operation. Even though hardware breakpoints do not
490 require PC adjustment, GDB needs to be able to tell whether the
491 hardware breakpoint event is a delayed event for a breakpoint
492 that is already gone and should thus be ignored. */
493 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
494 TARGET_DEFAULT_RETURN (0);
495 /* Returns true if the above method is supported. */
496 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498
499 int (*to_can_use_hw_breakpoint) (struct target_ops *,
500 enum bptype, int, int)
501 TARGET_DEFAULT_RETURN (0);
502 int (*to_ranged_break_num_registers) (struct target_ops *)
503 TARGET_DEFAULT_RETURN (-1);
504 int (*to_insert_hw_breakpoint) (struct target_ops *,
505 struct gdbarch *, struct bp_target_info *)
506 TARGET_DEFAULT_RETURN (-1);
507 int (*to_remove_hw_breakpoint) (struct target_ops *,
508 struct gdbarch *, struct bp_target_info *)
509 TARGET_DEFAULT_RETURN (-1);
510
511 /* Documentation of what the two routines below are expected to do is
512 provided with the corresponding target_* macros. */
513 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
514 enum target_hw_bp_type, struct expression *)
515 TARGET_DEFAULT_RETURN (-1);
516 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
517 enum target_hw_bp_type, struct expression *)
518 TARGET_DEFAULT_RETURN (-1);
519
520 int (*to_insert_mask_watchpoint) (struct target_ops *,
521 CORE_ADDR, CORE_ADDR,
522 enum target_hw_bp_type)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_mask_watchpoint) (struct target_ops *,
525 CORE_ADDR, CORE_ADDR,
526 enum target_hw_bp_type)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_stopped_by_watchpoint) (struct target_ops *)
529 TARGET_DEFAULT_RETURN (0);
530 int to_have_steppable_watchpoint;
531 int to_have_continuable_watchpoint;
532 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
533 TARGET_DEFAULT_RETURN (0);
534 int (*to_watchpoint_addr_within_range) (struct target_ops *,
535 CORE_ADDR, CORE_ADDR, int)
536 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
537
538 /* Documentation of this routine is provided with the corresponding
539 target_* macro. */
540 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
541 CORE_ADDR, int)
542 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
543
544 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
545 CORE_ADDR, int, int,
546 struct expression *)
547 TARGET_DEFAULT_RETURN (0);
548 int (*to_masked_watch_num_registers) (struct target_ops *,
549 CORE_ADDR, CORE_ADDR)
550 TARGET_DEFAULT_RETURN (-1);
551
552 /* Return 1 for sure target can do single step. Return -1 for
553 unknown. Return 0 for target can't do. */
554 int (*to_can_do_single_step) (struct target_ops *)
555 TARGET_DEFAULT_RETURN (-1);
556
557 void (*to_terminal_init) (struct target_ops *)
558 TARGET_DEFAULT_IGNORE ();
559 void (*to_terminal_inferior) (struct target_ops *)
560 TARGET_DEFAULT_IGNORE ();
561 void (*to_terminal_save_inferior) (struct target_ops *)
562 TARGET_DEFAULT_IGNORE ();
563 void (*to_terminal_ours_for_output) (struct target_ops *)
564 TARGET_DEFAULT_IGNORE ();
565 void (*to_terminal_ours) (struct target_ops *)
566 TARGET_DEFAULT_IGNORE ();
567 void (*to_terminal_info) (struct target_ops *, const char *, int)
568 TARGET_DEFAULT_FUNC (default_terminal_info);
569 void (*to_kill) (struct target_ops *)
570 TARGET_DEFAULT_NORETURN (noprocess ());
571 void (*to_load) (struct target_ops *, const char *, int)
572 TARGET_DEFAULT_NORETURN (tcomplain ());
573 /* Start an inferior process and set inferior_ptid to its pid.
574 EXEC_FILE is the file to run.
575 ALLARGS is a string containing the arguments to the program.
576 ENV is the environment vector to pass. Errors reported with error().
577 On VxWorks and various standalone systems, we ignore exec_file. */
578 void (*to_create_inferior) (struct target_ops *,
579 const char *, const std::string &,
580 char **, int);
581 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
582 TARGET_DEFAULT_IGNORE ();
583 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
584 TARGET_DEFAULT_RETURN (1);
585 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
586 TARGET_DEFAULT_RETURN (1);
587 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
588 TARGET_DEFAULT_RETURN (1);
589 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
590 TARGET_DEFAULT_RETURN (1);
591 int (*to_follow_fork) (struct target_ops *, int, int)
592 TARGET_DEFAULT_FUNC (default_follow_fork);
593 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
594 TARGET_DEFAULT_RETURN (1);
595 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
596 TARGET_DEFAULT_RETURN (1);
597 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
598 TARGET_DEFAULT_IGNORE ();
599 int (*to_set_syscall_catchpoint) (struct target_ops *,
600 int, bool, int,
601 gdb::array_view<const int>)
602 TARGET_DEFAULT_RETURN (1);
603 int (*to_has_exited) (struct target_ops *, int, int, int *)
604 TARGET_DEFAULT_RETURN (0);
605 void (*to_mourn_inferior) (struct target_ops *)
606 TARGET_DEFAULT_FUNC (default_mourn_inferior);
607 /* Note that to_can_run is special and can be invoked on an
608 unpushed target. Targets defining this method must also define
609 to_can_async_p and to_supports_non_stop. */
610 int (*to_can_run) (struct target_ops *)
611 TARGET_DEFAULT_RETURN (0);
612
613 /* Documentation of this routine is provided with the corresponding
614 target_* macro. */
615 void (*to_pass_signals) (struct target_ops *, int,
616 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
617 TARGET_DEFAULT_IGNORE ();
618
619 /* Documentation of this routine is provided with the
620 corresponding target_* function. */
621 void (*to_program_signals) (struct target_ops *, int,
622 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
623 TARGET_DEFAULT_IGNORE ();
624
625 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
626 TARGET_DEFAULT_RETURN (0);
627 void (*to_update_thread_list) (struct target_ops *)
628 TARGET_DEFAULT_IGNORE ();
629 const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
630 TARGET_DEFAULT_FUNC (default_pid_to_str);
631 const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
632 TARGET_DEFAULT_RETURN (NULL);
633 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
634 TARGET_DEFAULT_RETURN (NULL);
635 struct thread_info *(*to_thread_handle_to_thread_info) (struct target_ops *,
636 const gdb_byte *,
637 int,
638 struct inferior *inf)
639 TARGET_DEFAULT_RETURN (NULL);
640 void (*to_stop) (struct target_ops *, ptid_t)
641 TARGET_DEFAULT_IGNORE ();
642 void (*to_interrupt) (struct target_ops *)
643 TARGET_DEFAULT_IGNORE ();
644 void (*to_pass_ctrlc) (struct target_ops *)
645 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
646 void (*to_rcmd) (struct target_ops *,
647 const char *command, struct ui_file *output)
648 TARGET_DEFAULT_FUNC (default_rcmd);
649 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
650 TARGET_DEFAULT_RETURN (NULL);
651 void (*to_log_command) (struct target_ops *, const char *)
652 TARGET_DEFAULT_IGNORE ();
653 struct target_section_table *(*to_get_section_table) (struct target_ops *)
654 TARGET_DEFAULT_RETURN (NULL);
655 enum strata to_stratum;
656 int (*to_has_all_memory) (struct target_ops *);
657 int (*to_has_memory) (struct target_ops *);
658 int (*to_has_stack) (struct target_ops *);
659 int (*to_has_registers) (struct target_ops *);
660 int (*to_has_execution) (struct target_ops *, ptid_t);
661 int to_has_thread_control; /* control thread execution */
662 int to_attach_no_wait;
663 /* This method must be implemented in some situations. See the
664 comment on 'to_can_run'. */
665 int (*to_can_async_p) (struct target_ops *)
666 TARGET_DEFAULT_RETURN (0);
667 int (*to_is_async_p) (struct target_ops *)
668 TARGET_DEFAULT_RETURN (0);
669 void (*to_async) (struct target_ops *, int)
670 TARGET_DEFAULT_NORETURN (tcomplain ());
671 void (*to_thread_events) (struct target_ops *, int)
672 TARGET_DEFAULT_IGNORE ();
673 /* This method must be implemented in some situations. See the
674 comment on 'to_can_run'. */
675 int (*to_supports_non_stop) (struct target_ops *)
676 TARGET_DEFAULT_RETURN (0);
677 /* Return true if the target operates in non-stop mode even with
678 "set non-stop off". */
679 int (*to_always_non_stop_p) (struct target_ops *)
680 TARGET_DEFAULT_RETURN (0);
681 /* find_memory_regions support method for gcore */
682 int (*to_find_memory_regions) (struct target_ops *,
683 find_memory_region_ftype func, void *data)
684 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
685 /* make_corefile_notes support method for gcore */
686 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
687 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
688 /* get_bookmark support method for bookmarks */
689 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
690 TARGET_DEFAULT_NORETURN (tcomplain ());
691 /* goto_bookmark support method for bookmarks */
692 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
693 TARGET_DEFAULT_NORETURN (tcomplain ());
694 /* Return the thread-local address at OFFSET in the
695 thread-local storage for the thread PTID and the shared library
696 or executable file given by OBJFILE. If that block of
697 thread-local storage hasn't been allocated yet, this function
698 may return an error. LOAD_MODULE_ADDR may be zero for statically
699 linked multithreaded inferiors. */
700 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
701 ptid_t ptid,
702 CORE_ADDR load_module_addr,
703 CORE_ADDR offset)
704 TARGET_DEFAULT_NORETURN (generic_tls_error ());
705
706 /* Request that OPS transfer up to LEN addressable units of the target's
707 OBJECT. When reading from a memory object, the size of an addressable
708 unit is architecture dependent and can be found using
709 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
710 1 byte long. The OFFSET, for a seekable object, specifies the
711 starting point. The ANNEX can be used to provide additional
712 data-specific information to the target.
713
714 Return the transferred status, error or OK (an
715 'enum target_xfer_status' value). Save the number of addressable units
716 actually transferred in *XFERED_LEN if transfer is successful
717 (TARGET_XFER_OK) or the number unavailable units if the requested
718 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
719 smaller than LEN does not indicate the end of the object, only
720 the end of the transfer; higher level code should continue
721 transferring if desired. This is handled in target.c.
722
723 The interface does not support a "retry" mechanism. Instead it
724 assumes that at least one addressable unit will be transfered on each
725 successful call.
726
727 NOTE: cagney/2003-10-17: The current interface can lead to
728 fragmented transfers. Lower target levels should not implement
729 hacks, such as enlarging the transfer, in an attempt to
730 compensate for this. Instead, the target stack should be
731 extended so that it implements supply/collect methods and a
732 look-aside object cache. With that available, the lowest
733 target can safely and freely "push" data up the stack.
734
735 See target_read and target_write for more information. One,
736 and only one, of readbuf or writebuf must be non-NULL. */
737
738 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
739 enum target_object object,
740 const char *annex,
741 gdb_byte *readbuf,
742 const gdb_byte *writebuf,
743 ULONGEST offset, ULONGEST len,
744 ULONGEST *xfered_len)
745 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
746
747 /* Return the limit on the size of any single memory transfer
748 for the target. */
749
750 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
751 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
752
753 /* Returns the memory map for the target. A return value of NULL
754 means that no memory map is available. If a memory address
755 does not fall within any returned regions, it's assumed to be
756 RAM. The returned memory regions should not overlap.
757
758 The order of regions does not matter; target_memory_map will
759 sort regions by starting address. For that reason, this
760 function should not be called directly except via
761 target_memory_map.
762
763 This method should not cache data; if the memory map could
764 change unexpectedly, it should be invalidated, and higher
765 layers will re-fetch it. */
766 std::vector<mem_region> (*to_memory_map) (struct target_ops *)
767 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
768
769 /* Erases the region of flash memory starting at ADDRESS, of
770 length LENGTH.
771
772 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
773 on flash block boundaries, as reported by 'to_memory_map'. */
774 void (*to_flash_erase) (struct target_ops *,
775 ULONGEST address, LONGEST length)
776 TARGET_DEFAULT_NORETURN (tcomplain ());
777
778 /* Finishes a flash memory write sequence. After this operation
779 all flash memory should be available for writing and the result
780 of reading from areas written by 'to_flash_write' should be
781 equal to what was written. */
782 void (*to_flash_done) (struct target_ops *)
783 TARGET_DEFAULT_NORETURN (tcomplain ());
784
785 /* Describe the architecture-specific features of this target. If
786 OPS doesn't have a description, this should delegate to the
787 "beneath" target. Returns the description found, or NULL if no
788 description was available. */
789 const struct target_desc *(*to_read_description) (struct target_ops *ops)
790 TARGET_DEFAULT_RETURN (NULL);
791
792 /* Build the PTID of the thread on which a given task is running,
793 based on LWP and THREAD. These values are extracted from the
794 task Private_Data section of the Ada Task Control Block, and
795 their interpretation depends on the target. */
796 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
797 long lwp, long thread)
798 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
799
800 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
801 Return 0 if *READPTR is already at the end of the buffer.
802 Return -1 if there is insufficient buffer for a whole entry.
803 Return 1 if an entry was read into *TYPEP and *VALP. */
804 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
805 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
806 TARGET_DEFAULT_FUNC (default_auxv_parse);
807
808 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
809 sequence of bytes in PATTERN with length PATTERN_LEN.
810
811 The result is 1 if found, 0 if not found, and -1 if there was an error
812 requiring halting of the search (e.g. memory read error).
813 If the pattern is found the address is recorded in FOUND_ADDRP. */
814 int (*to_search_memory) (struct target_ops *ops,
815 CORE_ADDR start_addr, ULONGEST search_space_len,
816 const gdb_byte *pattern, ULONGEST pattern_len,
817 CORE_ADDR *found_addrp)
818 TARGET_DEFAULT_FUNC (default_search_memory);
819
820 /* Can target execute in reverse? */
821 int (*to_can_execute_reverse) (struct target_ops *)
822 TARGET_DEFAULT_RETURN (0);
823
824 /* The direction the target is currently executing. Must be
825 implemented on targets that support reverse execution and async
826 mode. The default simply returns forward execution. */
827 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
828 TARGET_DEFAULT_FUNC (default_execution_direction);
829
830 /* Does this target support debugging multiple processes
831 simultaneously? */
832 int (*to_supports_multi_process) (struct target_ops *)
833 TARGET_DEFAULT_RETURN (0);
834
835 /* Does this target support enabling and disabling tracepoints while a trace
836 experiment is running? */
837 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
838 TARGET_DEFAULT_RETURN (0);
839
840 /* Does this target support disabling address space randomization? */
841 int (*to_supports_disable_randomization) (struct target_ops *);
842
843 /* Does this target support the tracenz bytecode for string collection? */
844 int (*to_supports_string_tracing) (struct target_ops *)
845 TARGET_DEFAULT_RETURN (0);
846
847 /* Does this target support evaluation of breakpoint conditions on its
848 end? */
849 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
850 TARGET_DEFAULT_RETURN (0);
851
852 /* Does this target support evaluation of breakpoint commands on its
853 end? */
854 int (*to_can_run_breakpoint_commands) (struct target_ops *)
855 TARGET_DEFAULT_RETURN (0);
856
857 /* Determine current architecture of thread PTID.
858
859 The target is supposed to determine the architecture of the code where
860 the target is currently stopped at (on Cell, if a target is in spu_run,
861 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
862 This is architecture used to perform decr_pc_after_break adjustment,
863 and also determines the frame architecture of the innermost frame.
864 ptrace operations need to operate according to target_gdbarch ().
865
866 The default implementation always returns target_gdbarch (). */
867 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
868 TARGET_DEFAULT_FUNC (default_thread_architecture);
869
870 /* Determine current address space of thread PTID.
871
872 The default implementation always returns the inferior's
873 address space. */
874 struct address_space *(*to_thread_address_space) (struct target_ops *,
875 ptid_t)
876 TARGET_DEFAULT_FUNC (default_thread_address_space);
877
878 /* Target file operations. */
879
880 /* Return nonzero if the filesystem seen by the current inferior
881 is the local filesystem, zero otherwise. */
882 int (*to_filesystem_is_local) (struct target_ops *)
883 TARGET_DEFAULT_RETURN (1);
884
885 /* Open FILENAME on the target, in the filesystem as seen by INF,
886 using FLAGS and MODE. If INF is NULL, use the filesystem seen
887 by the debugger (GDB or, for remote targets, the remote stub).
888 If WARN_IF_SLOW is nonzero, print a warning message if the file
889 is being accessed over a link that may be slow. Return a
890 target file descriptor, or -1 if an error occurs (and set
891 *TARGET_ERRNO). */
892 int (*to_fileio_open) (struct target_ops *,
893 struct inferior *inf, const char *filename,
894 int flags, int mode, int warn_if_slow,
895 int *target_errno);
896
897 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
898 Return the number of bytes written, or -1 if an error occurs
899 (and set *TARGET_ERRNO). */
900 int (*to_fileio_pwrite) (struct target_ops *,
901 int fd, const gdb_byte *write_buf, int len,
902 ULONGEST offset, int *target_errno);
903
904 /* Read up to LEN bytes FD on the target into READ_BUF.
905 Return the number of bytes read, or -1 if an error occurs
906 (and set *TARGET_ERRNO). */
907 int (*to_fileio_pread) (struct target_ops *,
908 int fd, gdb_byte *read_buf, int len,
909 ULONGEST offset, int *target_errno);
910
911 /* Get information about the file opened as FD and put it in
912 SB. Return 0 on success, or -1 if an error occurs (and set
913 *TARGET_ERRNO). */
914 int (*to_fileio_fstat) (struct target_ops *,
915 int fd, struct stat *sb, int *target_errno);
916
917 /* Close FD on the target. Return 0, or -1 if an error occurs
918 (and set *TARGET_ERRNO). */
919 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
920
921 /* Unlink FILENAME on the target, in the filesystem as seen by
922 INF. If INF is NULL, use the filesystem seen by the debugger
923 (GDB or, for remote targets, the remote stub). Return 0, or
924 -1 if an error occurs (and set *TARGET_ERRNO). */
925 int (*to_fileio_unlink) (struct target_ops *,
926 struct inferior *inf,
927 const char *filename,
928 int *target_errno);
929
930 /* Read value of symbolic link FILENAME on the target, in the
931 filesystem as seen by INF. If INF is NULL, use the filesystem
932 seen by the debugger (GDB or, for remote targets, the remote
933 stub). Return a string, or an empty optional if an error
934 occurs (and set *TARGET_ERRNO). */
935 gdb::optional<std::string> (*to_fileio_readlink) (struct target_ops *,
936 struct inferior *inf,
937 const char *filename,
938 int *target_errno);
939
940
941 /* Implement the "info proc" command. */
942 void (*to_info_proc) (struct target_ops *, const char *,
943 enum info_proc_what);
944
945 /* Tracepoint-related operations. */
946
947 /* Prepare the target for a tracing run. */
948 void (*to_trace_init) (struct target_ops *)
949 TARGET_DEFAULT_NORETURN (tcomplain ());
950
951 /* Send full details of a tracepoint location to the target. */
952 void (*to_download_tracepoint) (struct target_ops *,
953 struct bp_location *location)
954 TARGET_DEFAULT_NORETURN (tcomplain ());
955
956 /* Is the target able to download tracepoint locations in current
957 state? */
958 int (*to_can_download_tracepoint) (struct target_ops *)
959 TARGET_DEFAULT_RETURN (0);
960
961 /* Send full details of a trace state variable to the target. */
962 void (*to_download_trace_state_variable) (struct target_ops *,
963 struct trace_state_variable *tsv)
964 TARGET_DEFAULT_NORETURN (tcomplain ());
965
966 /* Enable a tracepoint on the target. */
967 void (*to_enable_tracepoint) (struct target_ops *,
968 struct bp_location *location)
969 TARGET_DEFAULT_NORETURN (tcomplain ());
970
971 /* Disable a tracepoint on the target. */
972 void (*to_disable_tracepoint) (struct target_ops *,
973 struct bp_location *location)
974 TARGET_DEFAULT_NORETURN (tcomplain ());
975
976 /* Inform the target info of memory regions that are readonly
977 (such as text sections), and so it should return data from
978 those rather than look in the trace buffer. */
979 void (*to_trace_set_readonly_regions) (struct target_ops *)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Start a trace run. */
983 void (*to_trace_start) (struct target_ops *)
984 TARGET_DEFAULT_NORETURN (tcomplain ());
985
986 /* Get the current status of a tracing run. */
987 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
988 TARGET_DEFAULT_RETURN (-1);
989
990 void (*to_get_tracepoint_status) (struct target_ops *,
991 struct breakpoint *tp,
992 struct uploaded_tp *utp)
993 TARGET_DEFAULT_NORETURN (tcomplain ());
994
995 /* Stop a trace run. */
996 void (*to_trace_stop) (struct target_ops *)
997 TARGET_DEFAULT_NORETURN (tcomplain ());
998
999 /* Ask the target to find a trace frame of the given type TYPE,
1000 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1001 number of the trace frame, and also the tracepoint number at
1002 TPP. If no trace frame matches, return -1. May throw if the
1003 operation fails. */
1004 int (*to_trace_find) (struct target_ops *,
1005 enum trace_find_type type, int num,
1006 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1007 TARGET_DEFAULT_RETURN (-1);
1008
1009 /* Get the value of the trace state variable number TSV, returning
1010 1 if the value is known and writing the value itself into the
1011 location pointed to by VAL, else returning 0. */
1012 int (*to_get_trace_state_variable_value) (struct target_ops *,
1013 int tsv, LONGEST *val)
1014 TARGET_DEFAULT_RETURN (0);
1015
1016 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1017 TARGET_DEFAULT_NORETURN (tcomplain ());
1018
1019 int (*to_upload_tracepoints) (struct target_ops *,
1020 struct uploaded_tp **utpp)
1021 TARGET_DEFAULT_RETURN (0);
1022
1023 int (*to_upload_trace_state_variables) (struct target_ops *,
1024 struct uploaded_tsv **utsvp)
1025 TARGET_DEFAULT_RETURN (0);
1026
1027 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1028 ULONGEST offset, LONGEST len)
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1030
1031 /* Get the minimum length of instruction on which a fast tracepoint
1032 may be set on the target. If this operation is unsupported,
1033 return -1. If for some reason the minimum length cannot be
1034 determined, return 0. */
1035 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1036 TARGET_DEFAULT_RETURN (-1);
1037
1038 /* Set the target's tracing behavior in response to unexpected
1039 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1040 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1041 TARGET_DEFAULT_IGNORE ();
1042 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1043 TARGET_DEFAULT_IGNORE ();
1044 /* Set the size of trace buffer in the target. */
1045 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1046 TARGET_DEFAULT_IGNORE ();
1047
1048 /* Add/change textual notes about the trace run, returning 1 if
1049 successful, 0 otherwise. */
1050 int (*to_set_trace_notes) (struct target_ops *,
1051 const char *user, const char *notes,
1052 const char *stopnotes)
1053 TARGET_DEFAULT_RETURN (0);
1054
1055 /* Return the processor core that thread PTID was last seen on.
1056 This information is updated only when:
1057 - update_thread_list is called
1058 - thread stops
1059 If the core cannot be determined -- either for the specified
1060 thread, or right now, or in this debug session, or for this
1061 target -- return -1. */
1062 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1063 TARGET_DEFAULT_RETURN (-1);
1064
1065 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1066 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1067 a match, 0 if there's a mismatch, and -1 if an error is
1068 encountered while reading memory. */
1069 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1070 CORE_ADDR memaddr, ULONGEST size)
1071 TARGET_DEFAULT_FUNC (default_verify_memory);
1072
1073 /* Return the address of the start of the Thread Information Block
1074 a Windows OS specific feature. */
1075 int (*to_get_tib_address) (struct target_ops *,
1076 ptid_t ptid, CORE_ADDR *addr)
1077 TARGET_DEFAULT_NORETURN (tcomplain ());
1078
1079 /* Send the new settings of write permission variables. */
1080 void (*to_set_permissions) (struct target_ops *)
1081 TARGET_DEFAULT_IGNORE ();
1082
1083 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1084 with its details. Return true on success, false on failure. */
1085 bool (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1086 static_tracepoint_marker *marker)
1087 TARGET_DEFAULT_RETURN (false);
1088
1089 /* Return a vector of all tracepoints markers string id ID, or all
1090 markers if ID is NULL. */
1091 std::vector<static_tracepoint_marker>
1092 (*to_static_tracepoint_markers_by_strid) (struct target_ops *,
1093 const char *id)
1094 TARGET_DEFAULT_NORETURN (tcomplain ());
1095
1096 /* Return a traceframe info object describing the current
1097 traceframe's contents. This method should not cache data;
1098 higher layers take care of caching, invalidating, and
1099 re-fetching when necessary. */
1100 traceframe_info_up (*to_traceframe_info) (struct target_ops *)
1101 TARGET_DEFAULT_NORETURN (tcomplain ());
1102
1103 /* Ask the target to use or not to use agent according to USE. Return 1
1104 successful, 0 otherwise. */
1105 int (*to_use_agent) (struct target_ops *, int use)
1106 TARGET_DEFAULT_NORETURN (tcomplain ());
1107
1108 /* Is the target able to use agent in current state? */
1109 int (*to_can_use_agent) (struct target_ops *)
1110 TARGET_DEFAULT_RETURN (0);
1111
1112 /* Enable branch tracing for PTID using CONF configuration.
1113 Return a branch trace target information struct for reading and for
1114 disabling branch trace. */
1115 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1116 ptid_t ptid,
1117 const struct btrace_config *conf)
1118 TARGET_DEFAULT_NORETURN (tcomplain ());
1119
1120 /* Disable branch tracing and deallocate TINFO. */
1121 void (*to_disable_btrace) (struct target_ops *,
1122 struct btrace_target_info *tinfo)
1123 TARGET_DEFAULT_NORETURN (tcomplain ());
1124
1125 /* Disable branch tracing and deallocate TINFO. This function is similar
1126 to to_disable_btrace, except that it is called during teardown and is
1127 only allowed to perform actions that are safe. A counter-example would
1128 be attempting to talk to a remote target. */
1129 void (*to_teardown_btrace) (struct target_ops *,
1130 struct btrace_target_info *tinfo)
1131 TARGET_DEFAULT_NORETURN (tcomplain ());
1132
1133 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1134 DATA is cleared before new trace is added. */
1135 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1136 struct btrace_data *data,
1137 struct btrace_target_info *btinfo,
1138 enum btrace_read_type type)
1139 TARGET_DEFAULT_NORETURN (tcomplain ());
1140
1141 /* Get the branch trace configuration. */
1142 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1143 const struct btrace_target_info *)
1144 TARGET_DEFAULT_RETURN (NULL);
1145
1146 /* Current recording method. */
1147 enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1148 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1149
1150 /* Stop trace recording. */
1151 void (*to_stop_recording) (struct target_ops *)
1152 TARGET_DEFAULT_IGNORE ();
1153
1154 /* Print information about the recording. */
1155 void (*to_info_record) (struct target_ops *)
1156 TARGET_DEFAULT_IGNORE ();
1157
1158 /* Save the recorded execution trace into a file. */
1159 void (*to_save_record) (struct target_ops *, const char *filename)
1160 TARGET_DEFAULT_NORETURN (tcomplain ());
1161
1162 /* Delete the recorded execution trace from the current position
1163 onwards. */
1164 void (*to_delete_record) (struct target_ops *)
1165 TARGET_DEFAULT_NORETURN (tcomplain ());
1166
1167 /* Query if the record target is currently replaying PTID. */
1168 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1169 TARGET_DEFAULT_RETURN (0);
1170
1171 /* Query if the record target will replay PTID if it were resumed in
1172 execution direction DIR. */
1173 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1174 TARGET_DEFAULT_RETURN (0);
1175
1176 /* Stop replaying. */
1177 void (*to_record_stop_replaying) (struct target_ops *)
1178 TARGET_DEFAULT_IGNORE ();
1179
1180 /* Go to the begin of the execution trace. */
1181 void (*to_goto_record_begin) (struct target_ops *)
1182 TARGET_DEFAULT_NORETURN (tcomplain ());
1183
1184 /* Go to the end of the execution trace. */
1185 void (*to_goto_record_end) (struct target_ops *)
1186 TARGET_DEFAULT_NORETURN (tcomplain ());
1187
1188 /* Go to a specific location in the recorded execution trace. */
1189 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1190 TARGET_DEFAULT_NORETURN (tcomplain ());
1191
1192 /* Disassemble SIZE instructions in the recorded execution trace from
1193 the current position.
1194 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1195 disassemble SIZE succeeding instructions. */
1196 void (*to_insn_history) (struct target_ops *, int size,
1197 gdb_disassembly_flags flags)
1198 TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200 /* Disassemble SIZE instructions in the recorded execution trace around
1201 FROM.
1202 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1203 disassemble SIZE instructions after FROM. */
1204 void (*to_insn_history_from) (struct target_ops *,
1205 ULONGEST from, int size,
1206 gdb_disassembly_flags flags)
1207 TARGET_DEFAULT_NORETURN (tcomplain ());
1208
1209 /* Disassemble a section of the recorded execution trace from instruction
1210 BEGIN (inclusive) to instruction END (inclusive). */
1211 void (*to_insn_history_range) (struct target_ops *,
1212 ULONGEST begin, ULONGEST end,
1213 gdb_disassembly_flags flags)
1214 TARGET_DEFAULT_NORETURN (tcomplain ());
1215
1216 /* Print a function trace of the recorded execution trace.
1217 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1218 succeeding functions. */
1219 void (*to_call_history) (struct target_ops *, int size, record_print_flags flags)
1220 TARGET_DEFAULT_NORETURN (tcomplain ());
1221
1222 /* Print a function trace of the recorded execution trace starting
1223 at function FROM.
1224 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1225 SIZE functions after FROM. */
1226 void (*to_call_history_from) (struct target_ops *,
1227 ULONGEST begin, int size, record_print_flags flags)
1228 TARGET_DEFAULT_NORETURN (tcomplain ());
1229
1230 /* Print a function trace of an execution trace section from function BEGIN
1231 (inclusive) to function END (inclusive). */
1232 void (*to_call_history_range) (struct target_ops *,
1233 ULONGEST begin, ULONGEST end, record_print_flags flags)
1234 TARGET_DEFAULT_NORETURN (tcomplain ());
1235
1236 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1237 non-empty annex. */
1238 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1239 TARGET_DEFAULT_RETURN (0);
1240
1241 /* Those unwinders are tried before any other arch unwinders. If
1242 SELF doesn't have unwinders, it should delegate to the
1243 "beneath" target. */
1244 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1245 TARGET_DEFAULT_RETURN (NULL);
1246
1247 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1248 TARGET_DEFAULT_RETURN (NULL);
1249
1250 /* Prepare to generate a core file. */
1251 void (*to_prepare_to_generate_core) (struct target_ops *)
1252 TARGET_DEFAULT_IGNORE ();
1253
1254 /* Cleanup after generating a core file. */
1255 void (*to_done_generating_core) (struct target_ops *)
1256 TARGET_DEFAULT_IGNORE ();
1257
1258 int to_magic;
1259 /* Need sub-structure for target machine related rather than comm related?
1260 */
1261 };
1262
1263 /* Magic number for checking ops size. If a struct doesn't end with this
1264 number, somebody changed the declaration but didn't change all the
1265 places that initialize one. */
1266
1267 #define OPS_MAGIC 3840
1268
1269 /* The ops structure for our "current" target process. This should
1270 never be NULL. If there is no target, it points to the dummy_target. */
1271
1272 extern struct target_ops current_target;
1273
1274 /* Define easy words for doing these operations on our current target. */
1275
1276 #define target_shortname (current_target.to_shortname)
1277 #define target_longname (current_target.to_longname)
1278
1279 /* Does whatever cleanup is required for a target that we are no
1280 longer going to be calling. This routine is automatically always
1281 called after popping the target off the target stack - the target's
1282 own methods are no longer available through the target vector.
1283 Closing file descriptors and freeing all memory allocated memory are
1284 typical things it should do. */
1285
1286 void target_close (struct target_ops *targ);
1287
1288 /* Find the correct target to use for "attach". If a target on the
1289 current stack supports attaching, then it is returned. Otherwise,
1290 the default run target is returned. */
1291
1292 extern struct target_ops *find_attach_target (void);
1293
1294 /* Find the correct target to use for "run". If a target on the
1295 current stack supports creating a new inferior, then it is
1296 returned. Otherwise, the default run target is returned. */
1297
1298 extern struct target_ops *find_run_target (void);
1299
1300 /* Some targets don't generate traps when attaching to the inferior,
1301 or their target_attach implementation takes care of the waiting.
1302 These targets must set to_attach_no_wait. */
1303
1304 #define target_attach_no_wait \
1305 (current_target.to_attach_no_wait)
1306
1307 /* The target_attach operation places a process under debugger control,
1308 and stops the process.
1309
1310 This operation provides a target-specific hook that allows the
1311 necessary bookkeeping to be performed after an attach completes. */
1312 #define target_post_attach(pid) \
1313 (*current_target.to_post_attach) (&current_target, pid)
1314
1315 /* Display a message indicating we're about to detach from the current
1316 inferior process. */
1317
1318 extern void target_announce_detach (int from_tty);
1319
1320 /* Takes a program previously attached to and detaches it.
1321 The program may resume execution (some targets do, some don't) and will
1322 no longer stop on signals, etc. We better not have left any breakpoints
1323 in the program or it'll die when it hits one. FROM_TTY says whether to be
1324 verbose or not. */
1325
1326 extern void target_detach (inferior *inf, int from_tty);
1327
1328 /* Disconnect from the current target without resuming it (leaving it
1329 waiting for a debugger). */
1330
1331 extern void target_disconnect (const char *, int);
1332
1333 /* Resume execution (or prepare for execution) of a target thread,
1334 process or all processes. STEP says whether to hardware
1335 single-step or to run free; SIGGNAL is the signal to be given to
1336 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1337 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1338 process id'. A wildcard PTID (all threads, or all threads of
1339 process) means `step/resume INFERIOR_PTID, and let other threads
1340 (for which the wildcard PTID matches) resume with their
1341 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1342 is in "pass" state, or with no signal if in "no pass" state.
1343
1344 In order to efficiently handle batches of resumption requests,
1345 targets may implement this method such that it records the
1346 resumption request, but defers the actual resumption to the
1347 target_commit_resume method implementation. See
1348 target_commit_resume below. */
1349 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1350
1351 /* Commit a series of resumption requests previously prepared with
1352 target_resume calls.
1353
1354 GDB always calls target_commit_resume after calling target_resume
1355 one or more times. A target may thus use this method in
1356 coordination with the target_resume method to batch target-side
1357 resumption requests. In that case, the target doesn't actually
1358 resume in its target_resume implementation. Instead, it prepares
1359 the resumption in target_resume, and defers the actual resumption
1360 to target_commit_resume. E.g., the remote target uses this to
1361 coalesce multiple resumption requests in a single vCont packet. */
1362 extern void target_commit_resume ();
1363
1364 /* Setup to defer target_commit_resume calls, and reactivate
1365 target_commit_resume on destruction, if it was previously
1366 active. */
1367 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1368
1369 /* For target_read_memory see target/target.h. */
1370
1371 /* The default target_ops::to_wait implementation. */
1372
1373 extern ptid_t default_target_wait (struct target_ops *ops,
1374 ptid_t ptid,
1375 struct target_waitstatus *status,
1376 int options);
1377
1378 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1379
1380 extern void target_fetch_registers (struct regcache *regcache, int regno);
1381
1382 /* Store at least register REGNO, or all regs if REGNO == -1.
1383 It can store as many registers as it wants to, so target_prepare_to_store
1384 must have been previously called. Calls error() if there are problems. */
1385
1386 extern void target_store_registers (struct regcache *regcache, int regs);
1387
1388 /* Get ready to modify the registers array. On machines which store
1389 individual registers, this doesn't need to do anything. On machines
1390 which store all the registers in one fell swoop, this makes sure
1391 that REGISTERS contains all the registers from the program being
1392 debugged. */
1393
1394 #define target_prepare_to_store(regcache) \
1395 (*current_target.to_prepare_to_store) (&current_target, regcache)
1396
1397 /* Determine current address space of thread PTID. */
1398
1399 struct address_space *target_thread_address_space (ptid_t);
1400
1401 /* Implement the "info proc" command. This returns one if the request
1402 was handled, and zero otherwise. It can also throw an exception if
1403 an error was encountered while attempting to handle the
1404 request. */
1405
1406 int target_info_proc (const char *, enum info_proc_what);
1407
1408 /* Returns true if this target can disable address space randomization. */
1409
1410 int target_supports_disable_randomization (void);
1411
1412 /* Returns true if this target can enable and disable tracepoints
1413 while a trace experiment is running. */
1414
1415 #define target_supports_enable_disable_tracepoint() \
1416 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1417
1418 #define target_supports_string_tracing() \
1419 (*current_target.to_supports_string_tracing) (&current_target)
1420
1421 /* Returns true if this target can handle breakpoint conditions
1422 on its end. */
1423
1424 #define target_supports_evaluation_of_breakpoint_conditions() \
1425 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1426
1427 /* Returns true if this target can handle breakpoint commands
1428 on its end. */
1429
1430 #define target_can_run_breakpoint_commands() \
1431 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1432
1433 extern int target_read_string (CORE_ADDR, char **, int, int *);
1434
1435 /* For target_read_memory see target/target.h. */
1436
1437 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1438 ssize_t len);
1439
1440 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1441
1442 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1443
1444 /* For target_write_memory see target/target.h. */
1445
1446 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1447 ssize_t len);
1448
1449 /* Fetches the target's memory map. If one is found it is sorted
1450 and returned, after some consistency checking. Otherwise, NULL
1451 is returned. */
1452 std::vector<mem_region> target_memory_map (void);
1453
1454 /* Erases all flash memory regions on the target. */
1455 void flash_erase_command (const char *cmd, int from_tty);
1456
1457 /* Erase the specified flash region. */
1458 void target_flash_erase (ULONGEST address, LONGEST length);
1459
1460 /* Finish a sequence of flash operations. */
1461 void target_flash_done (void);
1462
1463 /* Describes a request for a memory write operation. */
1464 struct memory_write_request
1465 {
1466 memory_write_request (ULONGEST begin_, ULONGEST end_,
1467 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1468 : begin (begin_), end (end_), data (data_), baton (baton_)
1469 {}
1470
1471 /* Begining address that must be written. */
1472 ULONGEST begin;
1473 /* Past-the-end address. */
1474 ULONGEST end;
1475 /* The data to write. */
1476 gdb_byte *data;
1477 /* A callback baton for progress reporting for this request. */
1478 void *baton;
1479 };
1480
1481 /* Enumeration specifying different flash preservation behaviour. */
1482 enum flash_preserve_mode
1483 {
1484 flash_preserve,
1485 flash_discard
1486 };
1487
1488 /* Write several memory blocks at once. This version can be more
1489 efficient than making several calls to target_write_memory, in
1490 particular because it can optimize accesses to flash memory.
1491
1492 Moreover, this is currently the only memory access function in gdb
1493 that supports writing to flash memory, and it should be used for
1494 all cases where access to flash memory is desirable.
1495
1496 REQUESTS is the vector (see vec.h) of memory_write_request.
1497 PRESERVE_FLASH_P indicates what to do with blocks which must be
1498 erased, but not completely rewritten.
1499 PROGRESS_CB is a function that will be periodically called to provide
1500 feedback to user. It will be called with the baton corresponding
1501 to the request currently being written. It may also be called
1502 with a NULL baton, when preserved flash sectors are being rewritten.
1503
1504 The function returns 0 on success, and error otherwise. */
1505 int target_write_memory_blocks
1506 (const std::vector<memory_write_request> &requests,
1507 enum flash_preserve_mode preserve_flash_p,
1508 void (*progress_cb) (ULONGEST, void *));
1509
1510 /* Print a line about the current target. */
1511
1512 #define target_files_info() \
1513 (*current_target.to_files_info) (&current_target)
1514
1515 /* Insert a breakpoint at address BP_TGT->placed_address in
1516 the target machine. Returns 0 for success, and returns non-zero or
1517 throws an error (with a detailed failure reason error code and
1518 message) otherwise. */
1519
1520 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1521 struct bp_target_info *bp_tgt);
1522
1523 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1524 machine. Result is 0 for success, non-zero for error. */
1525
1526 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1527 struct bp_target_info *bp_tgt,
1528 enum remove_bp_reason reason);
1529
1530 /* Return true if the target stack has a non-default
1531 "to_terminal_ours" method. */
1532
1533 extern int target_supports_terminal_ours (void);
1534
1535 /* Kill the inferior process. Make it go away. */
1536
1537 extern void target_kill (void);
1538
1539 /* Load an executable file into the target process. This is expected
1540 to not only bring new code into the target process, but also to
1541 update GDB's symbol tables to match.
1542
1543 ARG contains command-line arguments, to be broken down with
1544 buildargv (). The first non-switch argument is the filename to
1545 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1546 0)), which is an offset to apply to the load addresses of FILE's
1547 sections. The target may define switches, or other non-switch
1548 arguments, as it pleases. */
1549
1550 extern void target_load (const char *arg, int from_tty);
1551
1552 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1553 notification of inferior events such as fork and vork immediately
1554 after the inferior is created. (This because of how gdb gets an
1555 inferior created via invoking a shell to do it. In such a scenario,
1556 if the shell init file has commands in it, the shell will fork and
1557 exec for each of those commands, and we will see each such fork
1558 event. Very bad.)
1559
1560 Such targets will supply an appropriate definition for this function. */
1561
1562 #define target_post_startup_inferior(ptid) \
1563 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1564
1565 /* On some targets, we can catch an inferior fork or vfork event when
1566 it occurs. These functions insert/remove an already-created
1567 catchpoint for such events. They return 0 for success, 1 if the
1568 catchpoint type is not supported and -1 for failure. */
1569
1570 #define target_insert_fork_catchpoint(pid) \
1571 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1572
1573 #define target_remove_fork_catchpoint(pid) \
1574 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1575
1576 #define target_insert_vfork_catchpoint(pid) \
1577 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1578
1579 #define target_remove_vfork_catchpoint(pid) \
1580 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1581
1582 /* If the inferior forks or vforks, this function will be called at
1583 the next resume in order to perform any bookkeeping and fiddling
1584 necessary to continue debugging either the parent or child, as
1585 requested, and releasing the other. Information about the fork
1586 or vfork event is available via get_last_target_status ().
1587 This function returns 1 if the inferior should not be resumed
1588 (i.e. there is another event pending). */
1589
1590 int target_follow_fork (int follow_child, int detach_fork);
1591
1592 /* Handle the target-specific bookkeeping required when the inferior
1593 makes an exec call. INF is the exec'd inferior. */
1594
1595 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1596
1597 /* On some targets, we can catch an inferior exec event when it
1598 occurs. These functions insert/remove an already-created
1599 catchpoint for such events. They return 0 for success, 1 if the
1600 catchpoint type is not supported and -1 for failure. */
1601
1602 #define target_insert_exec_catchpoint(pid) \
1603 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1604
1605 #define target_remove_exec_catchpoint(pid) \
1606 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1607
1608 /* Syscall catch.
1609
1610 NEEDED is true if any syscall catch (of any kind) is requested.
1611 If NEEDED is false, it means the target can disable the mechanism to
1612 catch system calls because there are no more catchpoints of this type.
1613
1614 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1615 being requested. In this case, SYSCALL_COUNTS should be ignored.
1616
1617 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1618 element in this array is nonzero if that syscall should be caught.
1619 This argument only matters if ANY_COUNT is zero.
1620
1621 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1622 for failure. */
1623
1624 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1625 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1626 pid, needed, any_count, \
1627 syscall_counts)
1628
1629 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1630 exit code of PID, if any. */
1631
1632 #define target_has_exited(pid,wait_status,exit_status) \
1633 (*current_target.to_has_exited) (&current_target, \
1634 pid,wait_status,exit_status)
1635
1636 /* The debugger has completed a blocking wait() call. There is now
1637 some process event that must be processed. This function should
1638 be defined by those targets that require the debugger to perform
1639 cleanup or internal state changes in response to the process event. */
1640
1641 /* For target_mourn_inferior see target/target.h. */
1642
1643 /* Does target have enough data to do a run or attach command? */
1644
1645 #define target_can_run(t) \
1646 ((t)->to_can_run) (t)
1647
1648 /* Set list of signals to be handled in the target.
1649
1650 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1651 (enum gdb_signal). For every signal whose entry in this array is
1652 non-zero, the target is allowed -but not required- to skip reporting
1653 arrival of the signal to the GDB core by returning from target_wait,
1654 and to pass the signal directly to the inferior instead.
1655
1656 However, if the target is hardware single-stepping a thread that is
1657 about to receive a signal, it needs to be reported in any case, even
1658 if mentioned in a previous target_pass_signals call. */
1659
1660 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1661
1662 /* Set list of signals the target may pass to the inferior. This
1663 directly maps to the "handle SIGNAL pass/nopass" setting.
1664
1665 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1666 number (enum gdb_signal). For every signal whose entry in this
1667 array is non-zero, the target is allowed to pass the signal to the
1668 inferior. Signals not present in the array shall be silently
1669 discarded. This does not influence whether to pass signals to the
1670 inferior as a result of a target_resume call. This is useful in
1671 scenarios where the target needs to decide whether to pass or not a
1672 signal to the inferior without GDB core involvement, such as for
1673 example, when detaching (as threads may have been suspended with
1674 pending signals not reported to GDB). */
1675
1676 extern void target_program_signals (int nsig, unsigned char *program_signals);
1677
1678 /* Check to see if a thread is still alive. */
1679
1680 extern int target_thread_alive (ptid_t ptid);
1681
1682 /* Sync the target's threads with GDB's thread list. */
1683
1684 extern void target_update_thread_list (void);
1685
1686 /* Make target stop in a continuable fashion. (For instance, under
1687 Unix, this should act like SIGSTOP). Note that this function is
1688 asynchronous: it does not wait for the target to become stopped
1689 before returning. If this is the behavior you want please use
1690 target_stop_and_wait. */
1691
1692 extern void target_stop (ptid_t ptid);
1693
1694 /* Interrupt the target. Unlike target_stop, this does not specify
1695 which thread/process reports the stop. For most target this acts
1696 like raising a SIGINT, though that's not absolutely required. This
1697 function is asynchronous. */
1698
1699 extern void target_interrupt ();
1700
1701 /* Pass a ^C, as determined to have been pressed by checking the quit
1702 flag, to the target, as if the user had typed the ^C on the
1703 inferior's controlling terminal while the inferior was in the
1704 foreground. Remote targets may take the opportunity to detect the
1705 remote side is not responding and offer to disconnect. */
1706
1707 extern void target_pass_ctrlc (void);
1708
1709 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1710 target_interrupt. */
1711 extern void default_target_pass_ctrlc (struct target_ops *ops);
1712
1713 /* Send the specified COMMAND to the target's monitor
1714 (shell,interpreter) for execution. The result of the query is
1715 placed in OUTBUF. */
1716
1717 #define target_rcmd(command, outbuf) \
1718 (*current_target.to_rcmd) (&current_target, command, outbuf)
1719
1720
1721 /* Does the target include all of memory, or only part of it? This
1722 determines whether we look up the target chain for other parts of
1723 memory if this target can't satisfy a request. */
1724
1725 extern int target_has_all_memory_1 (void);
1726 #define target_has_all_memory target_has_all_memory_1 ()
1727
1728 /* Does the target include memory? (Dummy targets don't.) */
1729
1730 extern int target_has_memory_1 (void);
1731 #define target_has_memory target_has_memory_1 ()
1732
1733 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1734 we start a process.) */
1735
1736 extern int target_has_stack_1 (void);
1737 #define target_has_stack target_has_stack_1 ()
1738
1739 /* Does the target have registers? (Exec files don't.) */
1740
1741 extern int target_has_registers_1 (void);
1742 #define target_has_registers target_has_registers_1 ()
1743
1744 /* Does the target have execution? Can we make it jump (through
1745 hoops), or pop its stack a few times? This means that the current
1746 target is currently executing; for some targets, that's the same as
1747 whether or not the target is capable of execution, but there are
1748 also targets which can be current while not executing. In that
1749 case this will become true after to_create_inferior or
1750 to_attach. */
1751
1752 extern int target_has_execution_1 (ptid_t);
1753
1754 /* Like target_has_execution_1, but always passes inferior_ptid. */
1755
1756 extern int target_has_execution_current (void);
1757
1758 #define target_has_execution target_has_execution_current ()
1759
1760 /* Default implementations for process_stratum targets. Return true
1761 if there's a selected inferior, false otherwise. */
1762
1763 extern int default_child_has_all_memory (struct target_ops *ops);
1764 extern int default_child_has_memory (struct target_ops *ops);
1765 extern int default_child_has_stack (struct target_ops *ops);
1766 extern int default_child_has_registers (struct target_ops *ops);
1767 extern int default_child_has_execution (struct target_ops *ops,
1768 ptid_t the_ptid);
1769
1770 /* Can the target support the debugger control of thread execution?
1771 Can it lock the thread scheduler? */
1772
1773 #define target_can_lock_scheduler \
1774 (current_target.to_has_thread_control & tc_schedlock)
1775
1776 /* Controls whether async mode is permitted. */
1777 extern int target_async_permitted;
1778
1779 /* Can the target support asynchronous execution? */
1780 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1781
1782 /* Is the target in asynchronous execution mode? */
1783 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1784
1785 /* Enables/disabled async target events. */
1786 extern void target_async (int enable);
1787
1788 /* Enables/disables thread create and exit events. */
1789 extern void target_thread_events (int enable);
1790
1791 /* Whether support for controlling the target backends always in
1792 non-stop mode is enabled. */
1793 extern enum auto_boolean target_non_stop_enabled;
1794
1795 /* Is the target in non-stop mode? Some targets control the inferior
1796 in non-stop mode even with "set non-stop off". Always true if "set
1797 non-stop" is on. */
1798 extern int target_is_non_stop_p (void);
1799
1800 #define target_execution_direction() \
1801 (current_target.to_execution_direction (&current_target))
1802
1803 /* Converts a process id to a string. Usually, the string just contains
1804 `process xyz', but on some systems it may contain
1805 `process xyz thread abc'. */
1806
1807 extern const char *target_pid_to_str (ptid_t ptid);
1808
1809 extern const char *normal_pid_to_str (ptid_t ptid);
1810
1811 /* Return a short string describing extra information about PID,
1812 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1813 is okay. */
1814
1815 #define target_extra_thread_info(TP) \
1816 (current_target.to_extra_thread_info (&current_target, TP))
1817
1818 /* Return the thread's name, or NULL if the target is unable to determine it.
1819 The returned value must not be freed by the caller. */
1820
1821 extern const char *target_thread_name (struct thread_info *);
1822
1823 /* Given a pointer to a thread library specific thread handle and
1824 its length, return a pointer to the corresponding thread_info struct. */
1825
1826 extern struct thread_info *target_thread_handle_to_thread_info
1827 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1828
1829 /* Attempts to find the pathname of the executable file
1830 that was run to create a specified process.
1831
1832 The process PID must be stopped when this operation is used.
1833
1834 If the executable file cannot be determined, NULL is returned.
1835
1836 Else, a pointer to a character string containing the pathname
1837 is returned. This string should be copied into a buffer by
1838 the client if the string will not be immediately used, or if
1839 it must persist. */
1840
1841 #define target_pid_to_exec_file(pid) \
1842 (current_target.to_pid_to_exec_file) (&current_target, pid)
1843
1844 /* See the to_thread_architecture description in struct target_ops. */
1845
1846 #define target_thread_architecture(ptid) \
1847 (current_target.to_thread_architecture (&current_target, ptid))
1848
1849 /*
1850 * Iterator function for target memory regions.
1851 * Calls a callback function once for each memory region 'mapped'
1852 * in the child process. Defined as a simple macro rather than
1853 * as a function macro so that it can be tested for nullity.
1854 */
1855
1856 #define target_find_memory_regions(FUNC, DATA) \
1857 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1858
1859 /*
1860 * Compose corefile .note section.
1861 */
1862
1863 #define target_make_corefile_notes(BFD, SIZE_P) \
1864 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1865
1866 /* Bookmark interfaces. */
1867 #define target_get_bookmark(ARGS, FROM_TTY) \
1868 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1869
1870 #define target_goto_bookmark(ARG, FROM_TTY) \
1871 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1872
1873 /* Hardware watchpoint interfaces. */
1874
1875 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1876 write). Only the INFERIOR_PTID task is being queried. */
1877
1878 #define target_stopped_by_watchpoint() \
1879 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1880
1881 /* Returns non-zero if the target stopped because it executed a
1882 software breakpoint instruction. */
1883
1884 #define target_stopped_by_sw_breakpoint() \
1885 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1886
1887 #define target_supports_stopped_by_sw_breakpoint() \
1888 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1889
1890 #define target_stopped_by_hw_breakpoint() \
1891 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1892
1893 #define target_supports_stopped_by_hw_breakpoint() \
1894 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1895
1896 /* Non-zero if we have steppable watchpoints */
1897
1898 #define target_have_steppable_watchpoint \
1899 (current_target.to_have_steppable_watchpoint)
1900
1901 /* Non-zero if we have continuable watchpoints */
1902
1903 #define target_have_continuable_watchpoint \
1904 (current_target.to_have_continuable_watchpoint)
1905
1906 /* Provide defaults for hardware watchpoint functions. */
1907
1908 /* If the *_hw_beakpoint functions have not been defined
1909 elsewhere use the definitions in the target vector. */
1910
1911 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1912 Returns negative if the target doesn't have enough hardware debug
1913 registers available. Return zero if hardware watchpoint of type
1914 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1915 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1916 CNT is the number of such watchpoints used so far, including this
1917 one. OTHERTYPE is the number of watchpoints of other types than
1918 this one used so far. */
1919
1920 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1921 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1922 TYPE, CNT, OTHERTYPE)
1923
1924 /* Returns the number of debug registers needed to watch the given
1925 memory region, or zero if not supported. */
1926
1927 #define target_region_ok_for_hw_watchpoint(addr, len) \
1928 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1929 addr, len)
1930
1931
1932 #define target_can_do_single_step() \
1933 (*current_target.to_can_do_single_step) (&current_target)
1934
1935 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1936 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1937 COND is the expression for its condition, or NULL if there's none.
1938 Returns 0 for success, 1 if the watchpoint type is not supported,
1939 -1 for failure. */
1940
1941 #define target_insert_watchpoint(addr, len, type, cond) \
1942 (*current_target.to_insert_watchpoint) (&current_target, \
1943 addr, len, type, cond)
1944
1945 #define target_remove_watchpoint(addr, len, type, cond) \
1946 (*current_target.to_remove_watchpoint) (&current_target, \
1947 addr, len, type, cond)
1948
1949 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1950 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1951 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1952 masked watchpoints are not supported, -1 for failure. */
1953
1954 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1955 enum target_hw_bp_type);
1956
1957 /* Remove a masked watchpoint at ADDR with the mask MASK.
1958 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1959 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1960 for failure. */
1961
1962 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1963 enum target_hw_bp_type);
1964
1965 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1966 the target machine. Returns 0 for success, and returns non-zero or
1967 throws an error (with a detailed failure reason error code and
1968 message) otherwise. */
1969
1970 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1971 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1972 gdbarch, bp_tgt)
1973
1974 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1975 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1976 gdbarch, bp_tgt)
1977
1978 /* Return number of debug registers needed for a ranged breakpoint,
1979 or -1 if ranged breakpoints are not supported. */
1980
1981 extern int target_ranged_break_num_registers (void);
1982
1983 /* Return non-zero if target knows the data address which triggered this
1984 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1985 INFERIOR_PTID task is being queried. */
1986 #define target_stopped_data_address(target, addr_p) \
1987 (*(target)->to_stopped_data_address) (target, addr_p)
1988
1989 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1990 LENGTH bytes beginning at START. */
1991 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1992 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1993
1994 /* Return non-zero if the target is capable of using hardware to evaluate
1995 the condition expression. In this case, if the condition is false when
1996 the watched memory location changes, execution may continue without the
1997 debugger being notified.
1998
1999 Due to limitations in the hardware implementation, it may be capable of
2000 avoiding triggering the watchpoint in some cases where the condition
2001 expression is false, but may report some false positives as well.
2002 For this reason, GDB will still evaluate the condition expression when
2003 the watchpoint triggers. */
2004 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2005 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2006 addr, len, type, cond)
2007
2008 /* Return number of debug registers needed for a masked watchpoint,
2009 -1 if masked watchpoints are not supported or -2 if the given address
2010 and mask combination cannot be used. */
2011
2012 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2013
2014 /* Target can execute in reverse? */
2015 #define target_can_execute_reverse \
2016 current_target.to_can_execute_reverse (&current_target)
2017
2018 extern const struct target_desc *target_read_description (struct target_ops *);
2019
2020 #define target_get_ada_task_ptid(lwp, tid) \
2021 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2022
2023 /* Utility implementation of searching memory. */
2024 extern int simple_search_memory (struct target_ops* ops,
2025 CORE_ADDR start_addr,
2026 ULONGEST search_space_len,
2027 const gdb_byte *pattern,
2028 ULONGEST pattern_len,
2029 CORE_ADDR *found_addrp);
2030
2031 /* Main entry point for searching memory. */
2032 extern int target_search_memory (CORE_ADDR start_addr,
2033 ULONGEST search_space_len,
2034 const gdb_byte *pattern,
2035 ULONGEST pattern_len,
2036 CORE_ADDR *found_addrp);
2037
2038 /* Target file operations. */
2039
2040 /* Return nonzero if the filesystem seen by the current inferior
2041 is the local filesystem, zero otherwise. */
2042 #define target_filesystem_is_local() \
2043 current_target.to_filesystem_is_local (&current_target)
2044
2045 /* Open FILENAME on the target, in the filesystem as seen by INF,
2046 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2047 by the debugger (GDB or, for remote targets, the remote stub).
2048 Return a target file descriptor, or -1 if an error occurs (and
2049 set *TARGET_ERRNO). */
2050 extern int target_fileio_open (struct inferior *inf,
2051 const char *filename, int flags,
2052 int mode, int *target_errno);
2053
2054 /* Like target_fileio_open, but print a warning message if the
2055 file is being accessed over a link that may be slow. */
2056 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2057 const char *filename,
2058 int flags,
2059 int mode,
2060 int *target_errno);
2061
2062 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2063 Return the number of bytes written, or -1 if an error occurs
2064 (and set *TARGET_ERRNO). */
2065 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2066 ULONGEST offset, int *target_errno);
2067
2068 /* Read up to LEN bytes FD on the target into READ_BUF.
2069 Return the number of bytes read, or -1 if an error occurs
2070 (and set *TARGET_ERRNO). */
2071 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2072 ULONGEST offset, int *target_errno);
2073
2074 /* Get information about the file opened as FD on the target
2075 and put it in SB. Return 0 on success, or -1 if an error
2076 occurs (and set *TARGET_ERRNO). */
2077 extern int target_fileio_fstat (int fd, struct stat *sb,
2078 int *target_errno);
2079
2080 /* Close FD on the target. Return 0, or -1 if an error occurs
2081 (and set *TARGET_ERRNO). */
2082 extern int target_fileio_close (int fd, int *target_errno);
2083
2084 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2085 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2086 for remote targets, the remote stub). Return 0, or -1 if an error
2087 occurs (and set *TARGET_ERRNO). */
2088 extern int target_fileio_unlink (struct inferior *inf,
2089 const char *filename,
2090 int *target_errno);
2091
2092 /* Read value of symbolic link FILENAME on the target, in the
2093 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2094 by the debugger (GDB or, for remote targets, the remote stub).
2095 Return a null-terminated string allocated via xmalloc, or NULL if
2096 an error occurs (and set *TARGET_ERRNO). */
2097 extern gdb::optional<std::string> target_fileio_readlink
2098 (struct inferior *inf, const char *filename, int *target_errno);
2099
2100 /* Read target file FILENAME, in the filesystem as seen by INF. If
2101 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2102 remote targets, the remote stub). The return value will be -1 if
2103 the transfer fails or is not supported; 0 if the object is empty;
2104 or the length of the object otherwise. If a positive value is
2105 returned, a sufficiently large buffer will be allocated using
2106 xmalloc and returned in *BUF_P containing the contents of the
2107 object.
2108
2109 This method should be used for objects sufficiently small to store
2110 in a single xmalloc'd buffer, when no fixed bound on the object's
2111 size is known in advance. */
2112 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2113 const char *filename,
2114 gdb_byte **buf_p);
2115
2116 /* Read target file FILENAME, in the filesystem as seen by INF. If
2117 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2118 remote targets, the remote stub). The result is NUL-terminated and
2119 returned as a string, allocated using xmalloc. If an error occurs
2120 or the transfer is unsupported, NULL is returned. Empty objects
2121 are returned as allocated but empty strings. A warning is issued
2122 if the result contains any embedded NUL bytes. */
2123 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2124 (struct inferior *inf, const char *filename);
2125
2126
2127 /* Tracepoint-related operations. */
2128
2129 #define target_trace_init() \
2130 (*current_target.to_trace_init) (&current_target)
2131
2132 #define target_download_tracepoint(t) \
2133 (*current_target.to_download_tracepoint) (&current_target, t)
2134
2135 #define target_can_download_tracepoint() \
2136 (*current_target.to_can_download_tracepoint) (&current_target)
2137
2138 #define target_download_trace_state_variable(tsv) \
2139 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2140
2141 #define target_enable_tracepoint(loc) \
2142 (*current_target.to_enable_tracepoint) (&current_target, loc)
2143
2144 #define target_disable_tracepoint(loc) \
2145 (*current_target.to_disable_tracepoint) (&current_target, loc)
2146
2147 #define target_trace_start() \
2148 (*current_target.to_trace_start) (&current_target)
2149
2150 #define target_trace_set_readonly_regions() \
2151 (*current_target.to_trace_set_readonly_regions) (&current_target)
2152
2153 #define target_get_trace_status(ts) \
2154 (*current_target.to_get_trace_status) (&current_target, ts)
2155
2156 #define target_get_tracepoint_status(tp,utp) \
2157 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2158
2159 #define target_trace_stop() \
2160 (*current_target.to_trace_stop) (&current_target)
2161
2162 #define target_trace_find(type,num,addr1,addr2,tpp) \
2163 (*current_target.to_trace_find) (&current_target, \
2164 (type), (num), (addr1), (addr2), (tpp))
2165
2166 #define target_get_trace_state_variable_value(tsv,val) \
2167 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2168 (tsv), (val))
2169
2170 #define target_save_trace_data(filename) \
2171 (*current_target.to_save_trace_data) (&current_target, filename)
2172
2173 #define target_upload_tracepoints(utpp) \
2174 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2175
2176 #define target_upload_trace_state_variables(utsvp) \
2177 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2178
2179 #define target_get_raw_trace_data(buf,offset,len) \
2180 (*current_target.to_get_raw_trace_data) (&current_target, \
2181 (buf), (offset), (len))
2182
2183 #define target_get_min_fast_tracepoint_insn_len() \
2184 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2185
2186 #define target_set_disconnected_tracing(val) \
2187 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2188
2189 #define target_set_circular_trace_buffer(val) \
2190 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2191
2192 #define target_set_trace_buffer_size(val) \
2193 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2194
2195 #define target_set_trace_notes(user,notes,stopnotes) \
2196 (*current_target.to_set_trace_notes) (&current_target, \
2197 (user), (notes), (stopnotes))
2198
2199 #define target_get_tib_address(ptid, addr) \
2200 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2201
2202 #define target_set_permissions() \
2203 (*current_target.to_set_permissions) (&current_target)
2204
2205 #define target_static_tracepoint_marker_at(addr, marker) \
2206 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2207 addr, marker)
2208
2209 #define target_static_tracepoint_markers_by_strid(marker_id) \
2210 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2211 marker_id)
2212
2213 #define target_traceframe_info() \
2214 (*current_target.to_traceframe_info) (&current_target)
2215
2216 #define target_use_agent(use) \
2217 (*current_target.to_use_agent) (&current_target, use)
2218
2219 #define target_can_use_agent() \
2220 (*current_target.to_can_use_agent) (&current_target)
2221
2222 #define target_augmented_libraries_svr4_read() \
2223 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2224
2225 /* Command logging facility. */
2226
2227 #define target_log_command(p) \
2228 (*current_target.to_log_command) (&current_target, p)
2229
2230
2231 extern int target_core_of_thread (ptid_t ptid);
2232
2233 /* See to_get_unwinder in struct target_ops. */
2234 extern const struct frame_unwind *target_get_unwinder (void);
2235
2236 /* See to_get_tailcall_unwinder in struct target_ops. */
2237 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2238
2239 /* This implements basic memory verification, reading target memory
2240 and performing the comparison here (as opposed to accelerated
2241 verification making use of the qCRC packet, for example). */
2242
2243 extern int simple_verify_memory (struct target_ops* ops,
2244 const gdb_byte *data,
2245 CORE_ADDR memaddr, ULONGEST size);
2246
2247 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2248 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2249 if there's a mismatch, and -1 if an error is encountered while
2250 reading memory. Throws an error if the functionality is found not
2251 to be supported by the current target. */
2252 int target_verify_memory (const gdb_byte *data,
2253 CORE_ADDR memaddr, ULONGEST size);
2254
2255 /* Routines for maintenance of the target structures...
2256
2257 complete_target_initialization: Finalize a target_ops by filling in
2258 any fields needed by the target implementation. Unnecessary for
2259 targets which are registered via add_target, as this part gets
2260 taken care of then.
2261
2262 add_target: Add a target to the list of all possible targets.
2263 This only makes sense for targets that should be activated using
2264 the "target TARGET_NAME ..." command.
2265
2266 push_target: Make this target the top of the stack of currently used
2267 targets, within its particular stratum of the stack. Result
2268 is 0 if now atop the stack, nonzero if not on top (maybe
2269 should warn user).
2270
2271 unpush_target: Remove this from the stack of currently used targets,
2272 no matter where it is on the list. Returns 0 if no
2273 change, 1 if removed from stack. */
2274
2275 extern void add_target (struct target_ops *);
2276
2277 extern void add_target_with_completer (struct target_ops *t,
2278 completer_ftype *completer);
2279
2280 extern void complete_target_initialization (struct target_ops *t);
2281
2282 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2283 for maintaining backwards compatibility when renaming targets. */
2284
2285 extern void add_deprecated_target_alias (struct target_ops *t,
2286 const char *alias);
2287
2288 extern void push_target (struct target_ops *);
2289
2290 extern int unpush_target (struct target_ops *);
2291
2292 extern void target_pre_inferior (int);
2293
2294 extern void target_preopen (int);
2295
2296 /* Does whatever cleanup is required to get rid of all pushed targets. */
2297 extern void pop_all_targets (void);
2298
2299 /* Like pop_all_targets, but pops only targets whose stratum is at or
2300 above STRATUM. */
2301 extern void pop_all_targets_at_and_above (enum strata stratum);
2302
2303 /* Like pop_all_targets, but pops only targets whose stratum is
2304 strictly above ABOVE_STRATUM. */
2305 extern void pop_all_targets_above (enum strata above_stratum);
2306
2307 extern int target_is_pushed (struct target_ops *t);
2308
2309 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2310 CORE_ADDR offset);
2311
2312 /* Struct target_section maps address ranges to file sections. It is
2313 mostly used with BFD files, but can be used without (e.g. for handling
2314 raw disks, or files not in formats handled by BFD). */
2315
2316 struct target_section
2317 {
2318 CORE_ADDR addr; /* Lowest address in section */
2319 CORE_ADDR endaddr; /* 1+highest address in section */
2320
2321 struct bfd_section *the_bfd_section;
2322
2323 /* The "owner" of the section.
2324 It can be any unique value. It is set by add_target_sections
2325 and used by remove_target_sections.
2326 For example, for executables it is a pointer to exec_bfd and
2327 for shlibs it is the so_list pointer. */
2328 void *owner;
2329 };
2330
2331 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2332
2333 struct target_section_table
2334 {
2335 struct target_section *sections;
2336 struct target_section *sections_end;
2337 };
2338
2339 /* Return the "section" containing the specified address. */
2340 struct target_section *target_section_by_addr (struct target_ops *target,
2341 CORE_ADDR addr);
2342
2343 /* Return the target section table this target (or the targets
2344 beneath) currently manipulate. */
2345
2346 extern struct target_section_table *target_get_section_table
2347 (struct target_ops *target);
2348
2349 /* From mem-break.c */
2350
2351 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2352 struct bp_target_info *,
2353 enum remove_bp_reason);
2354
2355 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2356 struct bp_target_info *);
2357
2358 /* Check whether the memory at the breakpoint's placed address still
2359 contains the expected breakpoint instruction. */
2360
2361 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2362 struct bp_target_info *bp_tgt);
2363
2364 extern int default_memory_remove_breakpoint (struct gdbarch *,
2365 struct bp_target_info *);
2366
2367 extern int default_memory_insert_breakpoint (struct gdbarch *,
2368 struct bp_target_info *);
2369
2370
2371 /* From target.c */
2372
2373 extern void initialize_targets (void);
2374
2375 extern void noprocess (void) ATTRIBUTE_NORETURN;
2376
2377 extern void target_require_runnable (void);
2378
2379 extern struct target_ops *find_target_beneath (struct target_ops *);
2380
2381 /* Find the target at STRATUM. If no target is at that stratum,
2382 return NULL. */
2383
2384 struct target_ops *find_target_at (enum strata stratum);
2385
2386 /* Read OS data object of type TYPE from the target, and return it in
2387 XML format. The result is NUL-terminated and returned as a string.
2388 If an error occurs or the transfer is unsupported, NULL is
2389 returned. Empty objects are returned as allocated but empty
2390 strings. */
2391
2392 extern gdb::unique_xmalloc_ptr<char> target_get_osdata (const char *type);
2393
2394 \f
2395 /* Stuff that should be shared among the various remote targets. */
2396
2397 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2398 information (higher values, more information). */
2399 extern int remote_debug;
2400
2401 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2402 extern int baud_rate;
2403
2404 /* Parity for serial port */
2405 extern int serial_parity;
2406
2407 /* Timeout limit for response from target. */
2408 extern int remote_timeout;
2409
2410 \f
2411
2412 /* Set the show memory breakpoints mode to show, and return a
2413 scoped_restore to restore it back to the current value. */
2414 extern scoped_restore_tmpl<int>
2415 make_scoped_restore_show_memory_breakpoints (int show);
2416
2417 extern int may_write_registers;
2418 extern int may_write_memory;
2419 extern int may_insert_breakpoints;
2420 extern int may_insert_tracepoints;
2421 extern int may_insert_fast_tracepoints;
2422 extern int may_stop;
2423
2424 extern void update_target_permissions (void);
2425
2426 \f
2427 /* Imported from machine dependent code. */
2428
2429 /* See to_enable_btrace in struct target_ops. */
2430 extern struct btrace_target_info *
2431 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2432
2433 /* See to_disable_btrace in struct target_ops. */
2434 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2435
2436 /* See to_teardown_btrace in struct target_ops. */
2437 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2438
2439 /* See to_read_btrace in struct target_ops. */
2440 extern enum btrace_error target_read_btrace (struct btrace_data *,
2441 struct btrace_target_info *,
2442 enum btrace_read_type);
2443
2444 /* See to_btrace_conf in struct target_ops. */
2445 extern const struct btrace_config *
2446 target_btrace_conf (const struct btrace_target_info *);
2447
2448 /* See to_stop_recording in struct target_ops. */
2449 extern void target_stop_recording (void);
2450
2451 /* See to_save_record in struct target_ops. */
2452 extern void target_save_record (const char *filename);
2453
2454 /* Query if the target supports deleting the execution log. */
2455 extern int target_supports_delete_record (void);
2456
2457 /* See to_delete_record in struct target_ops. */
2458 extern void target_delete_record (void);
2459
2460 /* See to_record_method. */
2461 extern enum record_method target_record_method (ptid_t ptid);
2462
2463 /* See to_record_is_replaying in struct target_ops. */
2464 extern int target_record_is_replaying (ptid_t ptid);
2465
2466 /* See to_record_will_replay in struct target_ops. */
2467 extern int target_record_will_replay (ptid_t ptid, int dir);
2468
2469 /* See to_record_stop_replaying in struct target_ops. */
2470 extern void target_record_stop_replaying (void);
2471
2472 /* See to_goto_record_begin in struct target_ops. */
2473 extern void target_goto_record_begin (void);
2474
2475 /* See to_goto_record_end in struct target_ops. */
2476 extern void target_goto_record_end (void);
2477
2478 /* See to_goto_record in struct target_ops. */
2479 extern void target_goto_record (ULONGEST insn);
2480
2481 /* See to_insn_history. */
2482 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2483
2484 /* See to_insn_history_from. */
2485 extern void target_insn_history_from (ULONGEST from, int size,
2486 gdb_disassembly_flags flags);
2487
2488 /* See to_insn_history_range. */
2489 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2490 gdb_disassembly_flags flags);
2491
2492 /* See to_call_history. */
2493 extern void target_call_history (int size, record_print_flags flags);
2494
2495 /* See to_call_history_from. */
2496 extern void target_call_history_from (ULONGEST begin, int size,
2497 record_print_flags flags);
2498
2499 /* See to_call_history_range. */
2500 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2501 record_print_flags flags);
2502
2503 /* See to_prepare_to_generate_core. */
2504 extern void target_prepare_to_generate_core (void);
2505
2506 /* See to_done_generating_core. */
2507 extern void target_done_generating_core (void);
2508
2509 #if GDB_SELF_TEST
2510 namespace selftests {
2511
2512 /* A mock process_stratum target_ops that doesn't read/write registers
2513 anywhere. */
2514
2515 class test_target_ops : public target_ops
2516 {
2517 public:
2518 test_target_ops ();
2519 };
2520 } // namespace selftests
2521 #endif /* GDB_SELF_TEST */
2522
2523 #endif /* !defined (TARGET_H) */
This page took 0.080422 seconds and 4 git commands to generate.