ceecca4f321d2c776fd33b253b27f50266a0b467
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42 of the debugger, and the part which is target-specific, or
43 specific to the communications interface between us and the
44 target.
45
46 A TARGET is an interface between the debugger and a particular
47 kind of file or process. Targets can be STACKED in STRATA,
48 so that more than one target can potentially respond to a request.
49 In particular, memory accesses will walk down the stack of targets
50 until they find a target that is interested in handling that particular
51 address. STRATA are artificial boundaries on the stack, within
52 which particular kinds of targets live. Strata exist so that
53 people don't get confused by pushing e.g. a process target and then
54 a file target, and wondering why they can't see the current values
55 of variables any more (the file target is handling them and they
56 never get to the process target). So when you push a file target,
57 it goes into the file stratum, which is always below the process
58 stratum. */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65 #include "btrace.h"
66
67 enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77 enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83 /* Stuff for target_wait. */
84
85 /* Generally, what has the program done? */
86 enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id. */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. sThis way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY,
154
155 /* There are no resumed children left in the program. */
156 TARGET_WAITKIND_NO_RESUMED
157 };
158
159 struct target_waitstatus
160 {
161 enum target_waitkind kind;
162
163 /* Forked child pid, execd pathname, exit status, signal number or
164 syscall number. */
165 union
166 {
167 int integer;
168 enum gdb_signal sig;
169 ptid_t related_pid;
170 char *execd_pathname;
171 int syscall_number;
172 }
173 value;
174 };
175
176 /* Options that can be passed to target_wait. */
177
178 /* Return immediately if there's no event already queued. If this
179 options is not requested, target_wait blocks waiting for an
180 event. */
181 #define TARGET_WNOHANG 1
182
183 /* The structure below stores information about a system call.
184 It is basically used in the "catch syscall" command, and in
185 every function that gives information about a system call.
186
187 It's also good to mention that its fields represent everything
188 that we currently know about a syscall in GDB. */
189 struct syscall
190 {
191 /* The syscall number. */
192 int number;
193
194 /* The syscall name. */
195 const char *name;
196 };
197
198 /* Return a pretty printed form of target_waitstatus.
199 Space for the result is malloc'd, caller must free. */
200 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
201
202 /* Return a pretty printed form of TARGET_OPTIONS.
203 Space for the result is malloc'd, caller must free. */
204 extern char *target_options_to_string (int target_options);
205
206 /* Possible types of events that the inferior handler will have to
207 deal with. */
208 enum inferior_event_type
209 {
210 /* Process a normal inferior event which will result in target_wait
211 being called. */
212 INF_REG_EVENT,
213 /* We are called because a timer went off. */
214 INF_TIMER,
215 /* We are called to do stuff after the inferior stops. */
216 INF_EXEC_COMPLETE,
217 /* We are called to do some stuff after the inferior stops, but we
218 are expected to reenter the proceed() and
219 handle_inferior_event() functions. This is used only in case of
220 'step n' like commands. */
221 INF_EXEC_CONTINUE
222 };
223 \f
224 /* Target objects which can be transfered using target_read,
225 target_write, et cetera. */
226
227 enum target_object
228 {
229 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
230 TARGET_OBJECT_AVR,
231 /* SPU target specific transfer. See "spu-tdep.c". */
232 TARGET_OBJECT_SPU,
233 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
234 TARGET_OBJECT_MEMORY,
235 /* Memory, avoiding GDB's data cache and trusting the executable.
236 Target implementations of to_xfer_partial never need to handle
237 this object, and most callers should not use it. */
238 TARGET_OBJECT_RAW_MEMORY,
239 /* Memory known to be part of the target's stack. This is cached even
240 if it is not in a region marked as such, since it is known to be
241 "normal" RAM. */
242 TARGET_OBJECT_STACK_MEMORY,
243 /* Kernel Unwind Table. See "ia64-tdep.c". */
244 TARGET_OBJECT_UNWIND_TABLE,
245 /* Transfer auxilliary vector. */
246 TARGET_OBJECT_AUXV,
247 /* StackGhost cookie. See "sparc-tdep.c". */
248 TARGET_OBJECT_WCOOKIE,
249 /* Target memory map in XML format. */
250 TARGET_OBJECT_MEMORY_MAP,
251 /* Flash memory. This object can be used to write contents to
252 a previously erased flash memory. Using it without erasing
253 flash can have unexpected results. Addresses are physical
254 address on target, and not relative to flash start. */
255 TARGET_OBJECT_FLASH,
256 /* Available target-specific features, e.g. registers and coprocessors.
257 See "target-descriptions.c". ANNEX should never be empty. */
258 TARGET_OBJECT_AVAILABLE_FEATURES,
259 /* Currently loaded libraries, in XML format. */
260 TARGET_OBJECT_LIBRARIES,
261 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
262 TARGET_OBJECT_LIBRARIES_SVR4,
263 /* Get OS specific data. The ANNEX specifies the type (running
264 processes, etc.). The data being transfered is expected to follow
265 the DTD specified in features/osdata.dtd. */
266 TARGET_OBJECT_OSDATA,
267 /* Extra signal info. Usually the contents of `siginfo_t' on unix
268 platforms. */
269 TARGET_OBJECT_SIGNAL_INFO,
270 /* The list of threads that are being debugged. */
271 TARGET_OBJECT_THREADS,
272 /* Collected static trace data. */
273 TARGET_OBJECT_STATIC_TRACE_DATA,
274 /* The HP-UX registers (those that can be obtained or modified by using
275 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
276 TARGET_OBJECT_HPUX_UREGS,
277 /* The HP-UX shared library linkage pointer. ANNEX should be a string
278 image of the code address whose linkage pointer we are looking for.
279
280 The size of the data transfered is always 8 bytes (the size of an
281 address on ia64). */
282 TARGET_OBJECT_HPUX_SOLIB_GOT,
283 /* Traceframe info, in XML format. */
284 TARGET_OBJECT_TRACEFRAME_INFO,
285 /* Load maps for FDPIC systems. */
286 TARGET_OBJECT_FDPIC,
287 /* Darwin dynamic linker info data. */
288 TARGET_OBJECT_DARWIN_DYLD_INFO,
289 /* OpenVMS Unwind Information Block. */
290 TARGET_OBJECT_OPENVMS_UIB,
291 /* Branch trace data, in XML format. */
292 TARGET_OBJECT_BTRACE
293 /* Possible future objects: TARGET_OBJECT_FILE, ... */
294 };
295
296 /* Enumeration of the kinds of traceframe searches that a target may
297 be able to perform. */
298
299 enum trace_find_type
300 {
301 tfind_number,
302 tfind_pc,
303 tfind_tp,
304 tfind_range,
305 tfind_outside,
306 };
307
308 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
309 DEF_VEC_P(static_tracepoint_marker_p);
310
311 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
312 OBJECT. The OFFSET, for a seekable object, specifies the
313 starting point. The ANNEX can be used to provide additional
314 data-specific information to the target.
315
316 Return the number of bytes actually transfered, or -1 if the
317 transfer is not supported or otherwise fails. Return of a positive
318 value less than LEN indicates that no further transfer is possible.
319 Unlike the raw to_xfer_partial interface, callers of these
320 functions do not need to retry partial transfers. */
321
322 extern LONGEST target_read (struct target_ops *ops,
323 enum target_object object,
324 const char *annex, gdb_byte *buf,
325 ULONGEST offset, LONGEST len);
326
327 struct memory_read_result
328 {
329 /* First address that was read. */
330 ULONGEST begin;
331 /* Past-the-end address. */
332 ULONGEST end;
333 /* The data. */
334 gdb_byte *data;
335 };
336 typedef struct memory_read_result memory_read_result_s;
337 DEF_VEC_O(memory_read_result_s);
338
339 extern void free_memory_read_result_vector (void *);
340
341 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
342 ULONGEST offset,
343 LONGEST len);
344
345 extern LONGEST target_write (struct target_ops *ops,
346 enum target_object object,
347 const char *annex, const gdb_byte *buf,
348 ULONGEST offset, LONGEST len);
349
350 /* Similar to target_write, except that it also calls PROGRESS with
351 the number of bytes written and the opaque BATON after every
352 successful partial write (and before the first write). This is
353 useful for progress reporting and user interaction while writing
354 data. To abort the transfer, the progress callback can throw an
355 exception. */
356
357 LONGEST target_write_with_progress (struct target_ops *ops,
358 enum target_object object,
359 const char *annex, const gdb_byte *buf,
360 ULONGEST offset, LONGEST len,
361 void (*progress) (ULONGEST, void *),
362 void *baton);
363
364 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
365 be read using OPS. The return value will be -1 if the transfer
366 fails or is not supported; 0 if the object is empty; or the length
367 of the object otherwise. If a positive value is returned, a
368 sufficiently large buffer will be allocated using xmalloc and
369 returned in *BUF_P containing the contents of the object.
370
371 This method should be used for objects sufficiently small to store
372 in a single xmalloc'd buffer, when no fixed bound on the object's
373 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
374 through this function. */
375
376 extern LONGEST target_read_alloc (struct target_ops *ops,
377 enum target_object object,
378 const char *annex, gdb_byte **buf_p);
379
380 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
381 returned as a string, allocated using xmalloc. If an error occurs
382 or the transfer is unsupported, NULL is returned. Empty objects
383 are returned as allocated but empty strings. A warning is issued
384 if the result contains any embedded NUL bytes. */
385
386 extern char *target_read_stralloc (struct target_ops *ops,
387 enum target_object object,
388 const char *annex);
389
390 /* Wrappers to target read/write that perform memory transfers. They
391 throw an error if the memory transfer fails.
392
393 NOTE: cagney/2003-10-23: The naming schema is lifted from
394 "frame.h". The parameter order is lifted from get_frame_memory,
395 which in turn lifted it from read_memory. */
396
397 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
398 gdb_byte *buf, LONGEST len);
399 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
400 CORE_ADDR addr, int len,
401 enum bfd_endian byte_order);
402 \f
403 struct thread_info; /* fwd decl for parameter list below: */
404
405 struct target_ops
406 {
407 struct target_ops *beneath; /* To the target under this one. */
408 char *to_shortname; /* Name this target type */
409 char *to_longname; /* Name for printing */
410 char *to_doc; /* Documentation. Does not include trailing
411 newline, and starts with a one-line descrip-
412 tion (probably similar to to_longname). */
413 /* Per-target scratch pad. */
414 void *to_data;
415 /* The open routine takes the rest of the parameters from the
416 command, and (if successful) pushes a new target onto the
417 stack. Targets should supply this routine, if only to provide
418 an error message. */
419 void (*to_open) (char *, int);
420 /* Old targets with a static target vector provide "to_close".
421 New re-entrant targets provide "to_xclose" and that is expected
422 to xfree everything (including the "struct target_ops"). */
423 void (*to_xclose) (struct target_ops *targ, int quitting);
424 void (*to_close) (int);
425 void (*to_attach) (struct target_ops *ops, char *, int);
426 void (*to_post_attach) (int);
427 void (*to_detach) (struct target_ops *ops, char *, int);
428 void (*to_disconnect) (struct target_ops *, char *, int);
429 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
430 ptid_t (*to_wait) (struct target_ops *,
431 ptid_t, struct target_waitstatus *, int);
432 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
433 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
434 void (*to_prepare_to_store) (struct regcache *);
435
436 /* Transfer LEN bytes of memory between GDB address MYADDR and
437 target address MEMADDR. If WRITE, transfer them to the target, else
438 transfer them from the target. TARGET is the target from which we
439 get this function.
440
441 Return value, N, is one of the following:
442
443 0 means that we can't handle this. If errno has been set, it is the
444 error which prevented us from doing it (FIXME: What about bfd_error?).
445
446 positive (call it N) means that we have transferred N bytes
447 starting at MEMADDR. We might be able to handle more bytes
448 beyond this length, but no promises.
449
450 negative (call its absolute value N) means that we cannot
451 transfer right at MEMADDR, but we could transfer at least
452 something at MEMADDR + N.
453
454 NOTE: cagney/2004-10-01: This has been entirely superseeded by
455 to_xfer_partial and inferior inheritance. */
456
457 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
458 int len, int write,
459 struct mem_attrib *attrib,
460 struct target_ops *target);
461
462 void (*to_files_info) (struct target_ops *);
463 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
464 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
465 int (*to_can_use_hw_breakpoint) (int, int, int);
466 int (*to_ranged_break_num_registers) (struct target_ops *);
467 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
468 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
473 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
474
475 int (*to_insert_mask_watchpoint) (struct target_ops *,
476 CORE_ADDR, CORE_ADDR, int);
477 int (*to_remove_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_stopped_by_watchpoint) (void);
480 int to_have_steppable_watchpoint;
481 int to_have_continuable_watchpoint;
482 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
483 int (*to_watchpoint_addr_within_range) (struct target_ops *,
484 CORE_ADDR, CORE_ADDR, int);
485
486 /* Documentation of this routine is provided with the corresponding
487 target_* macro. */
488 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
489
490 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
491 struct expression *);
492 int (*to_masked_watch_num_registers) (struct target_ops *,
493 CORE_ADDR, CORE_ADDR);
494 void (*to_terminal_init) (void);
495 void (*to_terminal_inferior) (void);
496 void (*to_terminal_ours_for_output) (void);
497 void (*to_terminal_ours) (void);
498 void (*to_terminal_save_ours) (void);
499 void (*to_terminal_info) (char *, int);
500 void (*to_kill) (struct target_ops *);
501 void (*to_load) (char *, int);
502 void (*to_create_inferior) (struct target_ops *,
503 char *, char *, char **, int);
504 void (*to_post_startup_inferior) (ptid_t);
505 int (*to_insert_fork_catchpoint) (int);
506 int (*to_remove_fork_catchpoint) (int);
507 int (*to_insert_vfork_catchpoint) (int);
508 int (*to_remove_vfork_catchpoint) (int);
509 int (*to_follow_fork) (struct target_ops *, int);
510 int (*to_insert_exec_catchpoint) (int);
511 int (*to_remove_exec_catchpoint) (int);
512 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
513 int (*to_has_exited) (int, int, int *);
514 void (*to_mourn_inferior) (struct target_ops *);
515 int (*to_can_run) (void);
516
517 /* Documentation of this routine is provided with the corresponding
518 target_* macro. */
519 void (*to_pass_signals) (int, unsigned char *);
520
521 /* Documentation of this routine is provided with the
522 corresponding target_* function. */
523 void (*to_program_signals) (int, unsigned char *);
524
525 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
526 void (*to_find_new_threads) (struct target_ops *);
527 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
528 char *(*to_extra_thread_info) (struct thread_info *);
529 char *(*to_thread_name) (struct thread_info *);
530 void (*to_stop) (ptid_t);
531 void (*to_rcmd) (char *command, struct ui_file *output);
532 char *(*to_pid_to_exec_file) (int pid);
533 void (*to_log_command) (const char *);
534 struct target_section_table *(*to_get_section_table) (struct target_ops *);
535 enum strata to_stratum;
536 int (*to_has_all_memory) (struct target_ops *);
537 int (*to_has_memory) (struct target_ops *);
538 int (*to_has_stack) (struct target_ops *);
539 int (*to_has_registers) (struct target_ops *);
540 int (*to_has_execution) (struct target_ops *, ptid_t);
541 int to_has_thread_control; /* control thread execution */
542 int to_attach_no_wait;
543 /* ASYNC target controls */
544 int (*to_can_async_p) (void);
545 int (*to_is_async_p) (void);
546 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
547 int (*to_supports_non_stop) (void);
548 /* find_memory_regions support method for gcore */
549 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
550 /* make_corefile_notes support method for gcore */
551 char * (*to_make_corefile_notes) (bfd *, int *);
552 /* get_bookmark support method for bookmarks */
553 gdb_byte * (*to_get_bookmark) (char *, int);
554 /* goto_bookmark support method for bookmarks */
555 void (*to_goto_bookmark) (gdb_byte *, int);
556 /* Return the thread-local address at OFFSET in the
557 thread-local storage for the thread PTID and the shared library
558 or executable file given by OBJFILE. If that block of
559 thread-local storage hasn't been allocated yet, this function
560 may return an error. */
561 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
562 ptid_t ptid,
563 CORE_ADDR load_module_addr,
564 CORE_ADDR offset);
565
566 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
567 OBJECT. The OFFSET, for a seekable object, specifies the
568 starting point. The ANNEX can be used to provide additional
569 data-specific information to the target.
570
571 Return the number of bytes actually transfered, zero when no
572 further transfer is possible, and -1 when the transfer is not
573 supported. Return of a positive value smaller than LEN does
574 not indicate the end of the object, only the end of the
575 transfer; higher level code should continue transferring if
576 desired. This is handled in target.c.
577
578 The interface does not support a "retry" mechanism. Instead it
579 assumes that at least one byte will be transfered on each
580 successful call.
581
582 NOTE: cagney/2003-10-17: The current interface can lead to
583 fragmented transfers. Lower target levels should not implement
584 hacks, such as enlarging the transfer, in an attempt to
585 compensate for this. Instead, the target stack should be
586 extended so that it implements supply/collect methods and a
587 look-aside object cache. With that available, the lowest
588 target can safely and freely "push" data up the stack.
589
590 See target_read and target_write for more information. One,
591 and only one, of readbuf or writebuf must be non-NULL. */
592
593 LONGEST (*to_xfer_partial) (struct target_ops *ops,
594 enum target_object object, const char *annex,
595 gdb_byte *readbuf, const gdb_byte *writebuf,
596 ULONGEST offset, LONGEST len);
597
598 /* Returns the memory map for the target. A return value of NULL
599 means that no memory map is available. If a memory address
600 does not fall within any returned regions, it's assumed to be
601 RAM. The returned memory regions should not overlap.
602
603 The order of regions does not matter; target_memory_map will
604 sort regions by starting address. For that reason, this
605 function should not be called directly except via
606 target_memory_map.
607
608 This method should not cache data; if the memory map could
609 change unexpectedly, it should be invalidated, and higher
610 layers will re-fetch it. */
611 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
612
613 /* Erases the region of flash memory starting at ADDRESS, of
614 length LENGTH.
615
616 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
617 on flash block boundaries, as reported by 'to_memory_map'. */
618 void (*to_flash_erase) (struct target_ops *,
619 ULONGEST address, LONGEST length);
620
621 /* Finishes a flash memory write sequence. After this operation
622 all flash memory should be available for writing and the result
623 of reading from areas written by 'to_flash_write' should be
624 equal to what was written. */
625 void (*to_flash_done) (struct target_ops *);
626
627 /* Describe the architecture-specific features of this target.
628 Returns the description found, or NULL if no description
629 was available. */
630 const struct target_desc *(*to_read_description) (struct target_ops *ops);
631
632 /* Build the PTID of the thread on which a given task is running,
633 based on LWP and THREAD. These values are extracted from the
634 task Private_Data section of the Ada Task Control Block, and
635 their interpretation depends on the target. */
636 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
637
638 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
639 Return 0 if *READPTR is already at the end of the buffer.
640 Return -1 if there is insufficient buffer for a whole entry.
641 Return 1 if an entry was read into *TYPEP and *VALP. */
642 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
643 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
644
645 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
646 sequence of bytes in PATTERN with length PATTERN_LEN.
647
648 The result is 1 if found, 0 if not found, and -1 if there was an error
649 requiring halting of the search (e.g. memory read error).
650 If the pattern is found the address is recorded in FOUND_ADDRP. */
651 int (*to_search_memory) (struct target_ops *ops,
652 CORE_ADDR start_addr, ULONGEST search_space_len,
653 const gdb_byte *pattern, ULONGEST pattern_len,
654 CORE_ADDR *found_addrp);
655
656 /* Can target execute in reverse? */
657 int (*to_can_execute_reverse) (void);
658
659 /* The direction the target is currently executing. Must be
660 implemented on targets that support reverse execution and async
661 mode. The default simply returns forward execution. */
662 enum exec_direction_kind (*to_execution_direction) (void);
663
664 /* Does this target support debugging multiple processes
665 simultaneously? */
666 int (*to_supports_multi_process) (void);
667
668 /* Does this target support enabling and disabling tracepoints while a trace
669 experiment is running? */
670 int (*to_supports_enable_disable_tracepoint) (void);
671
672 /* Does this target support disabling address space randomization? */
673 int (*to_supports_disable_randomization) (void);
674
675 /* Does this target support the tracenz bytecode for string collection? */
676 int (*to_supports_string_tracing) (void);
677
678 /* Does this target support evaluation of breakpoint conditions on its
679 end? */
680 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
681
682 /* Does this target support evaluation of breakpoint commands on its
683 end? */
684 int (*to_can_run_breakpoint_commands) (void);
685
686 /* Determine current architecture of thread PTID.
687
688 The target is supposed to determine the architecture of the code where
689 the target is currently stopped at (on Cell, if a target is in spu_run,
690 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
691 This is architecture used to perform decr_pc_after_break adjustment,
692 and also determines the frame architecture of the innermost frame.
693 ptrace operations need to operate according to target_gdbarch ().
694
695 The default implementation always returns target_gdbarch (). */
696 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
697
698 /* Determine current address space of thread PTID.
699
700 The default implementation always returns the inferior's
701 address space. */
702 struct address_space *(*to_thread_address_space) (struct target_ops *,
703 ptid_t);
704
705 /* Target file operations. */
706
707 /* Open FILENAME on the target, using FLAGS and MODE. Return a
708 target file descriptor, or -1 if an error occurs (and set
709 *TARGET_ERRNO). */
710 int (*to_fileio_open) (const char *filename, int flags, int mode,
711 int *target_errno);
712
713 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
714 Return the number of bytes written, or -1 if an error occurs
715 (and set *TARGET_ERRNO). */
716 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *target_errno);
718
719 /* Read up to LEN bytes FD on the target into READ_BUF.
720 Return the number of bytes read, or -1 if an error occurs
721 (and set *TARGET_ERRNO). */
722 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
723 ULONGEST offset, int *target_errno);
724
725 /* Close FD on the target. Return 0, or -1 if an error occurs
726 (and set *TARGET_ERRNO). */
727 int (*to_fileio_close) (int fd, int *target_errno);
728
729 /* Unlink FILENAME on the target. Return 0, or -1 if an error
730 occurs (and set *TARGET_ERRNO). */
731 int (*to_fileio_unlink) (const char *filename, int *target_errno);
732
733 /* Read value of symbolic link FILENAME on the target. Return a
734 null-terminated string allocated via xmalloc, or NULL if an error
735 occurs (and set *TARGET_ERRNO). */
736 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
737
738
739 /* Implement the "info proc" command. */
740 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
741
742 /* Tracepoint-related operations. */
743
744 /* Prepare the target for a tracing run. */
745 void (*to_trace_init) (void);
746
747 /* Send full details of a tracepoint location to the target. */
748 void (*to_download_tracepoint) (struct bp_location *location);
749
750 /* Is the target able to download tracepoint locations in current
751 state? */
752 int (*to_can_download_tracepoint) (void);
753
754 /* Send full details of a trace state variable to the target. */
755 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
756
757 /* Enable a tracepoint on the target. */
758 void (*to_enable_tracepoint) (struct bp_location *location);
759
760 /* Disable a tracepoint on the target. */
761 void (*to_disable_tracepoint) (struct bp_location *location);
762
763 /* Inform the target info of memory regions that are readonly
764 (such as text sections), and so it should return data from
765 those rather than look in the trace buffer. */
766 void (*to_trace_set_readonly_regions) (void);
767
768 /* Start a trace run. */
769 void (*to_trace_start) (void);
770
771 /* Get the current status of a tracing run. */
772 int (*to_get_trace_status) (struct trace_status *ts);
773
774 void (*to_get_tracepoint_status) (struct breakpoint *tp,
775 struct uploaded_tp *utp);
776
777 /* Stop a trace run. */
778 void (*to_trace_stop) (void);
779
780 /* Ask the target to find a trace frame of the given type TYPE,
781 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
782 number of the trace frame, and also the tracepoint number at
783 TPP. If no trace frame matches, return -1. May throw if the
784 operation fails. */
785 int (*to_trace_find) (enum trace_find_type type, int num,
786 ULONGEST addr1, ULONGEST addr2, int *tpp);
787
788 /* Get the value of the trace state variable number TSV, returning
789 1 if the value is known and writing the value itself into the
790 location pointed to by VAL, else returning 0. */
791 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
792
793 int (*to_save_trace_data) (const char *filename);
794
795 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
796
797 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
798
799 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
800 ULONGEST offset, LONGEST len);
801
802 /* Get the minimum length of instruction on which a fast tracepoint
803 may be set on the target. If this operation is unsupported,
804 return -1. If for some reason the minimum length cannot be
805 determined, return 0. */
806 int (*to_get_min_fast_tracepoint_insn_len) (void);
807
808 /* Set the target's tracing behavior in response to unexpected
809 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
810 void (*to_set_disconnected_tracing) (int val);
811 void (*to_set_circular_trace_buffer) (int val);
812 /* Set the size of trace buffer in the target. */
813 void (*to_set_trace_buffer_size) (LONGEST val);
814
815 /* Add/change textual notes about the trace run, returning 1 if
816 successful, 0 otherwise. */
817 int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
818
819 /* Return the processor core that thread PTID was last seen on.
820 This information is updated only when:
821 - update_thread_list is called
822 - thread stops
823 If the core cannot be determined -- either for the specified
824 thread, or right now, or in this debug session, or for this
825 target -- return -1. */
826 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
827
828 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
829 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
830 a match, 0 if there's a mismatch, and -1 if an error is
831 encountered while reading memory. */
832 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
833 CORE_ADDR memaddr, ULONGEST size);
834
835 /* Return the address of the start of the Thread Information Block
836 a Windows OS specific feature. */
837 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
838
839 /* Send the new settings of write permission variables. */
840 void (*to_set_permissions) (void);
841
842 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
843 with its details. Return 1 on success, 0 on failure. */
844 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
845 struct static_tracepoint_marker *marker);
846
847 /* Return a vector of all tracepoints markers string id ID, or all
848 markers if ID is NULL. */
849 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
850 (const char *id);
851
852 /* Return a traceframe info object describing the current
853 traceframe's contents. This method should not cache data;
854 higher layers take care of caching, invalidating, and
855 re-fetching when necessary. */
856 struct traceframe_info *(*to_traceframe_info) (void);
857
858 /* Ask the target to use or not to use agent according to USE. Return 1
859 successful, 0 otherwise. */
860 int (*to_use_agent) (int use);
861
862 /* Is the target able to use agent in current state? */
863 int (*to_can_use_agent) (void);
864
865 /* Check whether the target supports branch tracing. */
866 int (*to_supports_btrace) (void);
867
868 /* Enable branch tracing for PTID and allocate a branch trace target
869 information struct for reading and for disabling branch trace. */
870 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
871
872 /* Disable branch tracing and deallocate TINFO. */
873 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
874
875 /* Disable branch tracing and deallocate TINFO. This function is similar
876 to to_disable_btrace, except that it is called during teardown and is
877 only allowed to perform actions that are safe. A counter-example would
878 be attempting to talk to a remote target. */
879 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
880
881 /* Read branch trace data. */
882 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
883 enum btrace_read_type);
884
885 int to_magic;
886 /* Need sub-structure for target machine related rather than comm related?
887 */
888 };
889
890 /* Magic number for checking ops size. If a struct doesn't end with this
891 number, somebody changed the declaration but didn't change all the
892 places that initialize one. */
893
894 #define OPS_MAGIC 3840
895
896 /* The ops structure for our "current" target process. This should
897 never be NULL. If there is no target, it points to the dummy_target. */
898
899 extern struct target_ops current_target;
900
901 /* Define easy words for doing these operations on our current target. */
902
903 #define target_shortname (current_target.to_shortname)
904 #define target_longname (current_target.to_longname)
905
906 /* Does whatever cleanup is required for a target that we are no
907 longer going to be calling. QUITTING indicates that GDB is exiting
908 and should not get hung on an error (otherwise it is important to
909 perform clean termination, even if it takes a while). This routine
910 is automatically always called after popping the target off the
911 target stack - the target's own methods are no longer available
912 through the target vector. Closing file descriptors and freeing all
913 memory allocated memory are typical things it should do. */
914
915 void target_close (struct target_ops *targ, int quitting);
916
917 /* Attaches to a process on the target side. Arguments are as passed
918 to the `attach' command by the user. This routine can be called
919 when the target is not on the target-stack, if the target_can_run
920 routine returns 1; in that case, it must push itself onto the stack.
921 Upon exit, the target should be ready for normal operations, and
922 should be ready to deliver the status of the process immediately
923 (without waiting) to an upcoming target_wait call. */
924
925 void target_attach (char *, int);
926
927 /* Some targets don't generate traps when attaching to the inferior,
928 or their target_attach implementation takes care of the waiting.
929 These targets must set to_attach_no_wait. */
930
931 #define target_attach_no_wait \
932 (current_target.to_attach_no_wait)
933
934 /* The target_attach operation places a process under debugger control,
935 and stops the process.
936
937 This operation provides a target-specific hook that allows the
938 necessary bookkeeping to be performed after an attach completes. */
939 #define target_post_attach(pid) \
940 (*current_target.to_post_attach) (pid)
941
942 /* Takes a program previously attached to and detaches it.
943 The program may resume execution (some targets do, some don't) and will
944 no longer stop on signals, etc. We better not have left any breakpoints
945 in the program or it'll die when it hits one. ARGS is arguments
946 typed by the user (e.g. a signal to send the process). FROM_TTY
947 says whether to be verbose or not. */
948
949 extern void target_detach (char *, int);
950
951 /* Disconnect from the current target without resuming it (leaving it
952 waiting for a debugger). */
953
954 extern void target_disconnect (char *, int);
955
956 /* Resume execution of the target process PTID (or a group of
957 threads). STEP says whether to single-step or to run free; SIGGNAL
958 is the signal to be given to the target, or GDB_SIGNAL_0 for no
959 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
960 PTID means `step/resume only this process id'. A wildcard PTID
961 (all threads, or all threads of process) means `step/resume
962 INFERIOR_PTID, and let other threads (for which the wildcard PTID
963 matches) resume with their 'thread->suspend.stop_signal' signal
964 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
965 if in "no pass" state. */
966
967 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
968
969 /* Wait for process pid to do something. PTID = -1 to wait for any
970 pid to do something. Return pid of child, or -1 in case of error;
971 store status through argument pointer STATUS. Note that it is
972 _NOT_ OK to throw_exception() out of target_wait() without popping
973 the debugging target from the stack; GDB isn't prepared to get back
974 to the prompt with a debugging target but without the frame cache,
975 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
976 options. */
977
978 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
979 int options);
980
981 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
982
983 extern void target_fetch_registers (struct regcache *regcache, int regno);
984
985 /* Store at least register REGNO, or all regs if REGNO == -1.
986 It can store as many registers as it wants to, so target_prepare_to_store
987 must have been previously called. Calls error() if there are problems. */
988
989 extern void target_store_registers (struct regcache *regcache, int regs);
990
991 /* Get ready to modify the registers array. On machines which store
992 individual registers, this doesn't need to do anything. On machines
993 which store all the registers in one fell swoop, this makes sure
994 that REGISTERS contains all the registers from the program being
995 debugged. */
996
997 #define target_prepare_to_store(regcache) \
998 (*current_target.to_prepare_to_store) (regcache)
999
1000 /* Determine current address space of thread PTID. */
1001
1002 struct address_space *target_thread_address_space (ptid_t);
1003
1004 /* Implement the "info proc" command. This returns one if the request
1005 was handled, and zero otherwise. It can also throw an exception if
1006 an error was encountered while attempting to handle the
1007 request. */
1008
1009 int target_info_proc (char *, enum info_proc_what);
1010
1011 /* Returns true if this target can debug multiple processes
1012 simultaneously. */
1013
1014 #define target_supports_multi_process() \
1015 (*current_target.to_supports_multi_process) ()
1016
1017 /* Returns true if this target can disable address space randomization. */
1018
1019 int target_supports_disable_randomization (void);
1020
1021 /* Returns true if this target can enable and disable tracepoints
1022 while a trace experiment is running. */
1023
1024 #define target_supports_enable_disable_tracepoint() \
1025 (*current_target.to_supports_enable_disable_tracepoint) ()
1026
1027 #define target_supports_string_tracing() \
1028 (*current_target.to_supports_string_tracing) ()
1029
1030 /* Returns true if this target can handle breakpoint conditions
1031 on its end. */
1032
1033 #define target_supports_evaluation_of_breakpoint_conditions() \
1034 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1035
1036 /* Returns true if this target can handle breakpoint commands
1037 on its end. */
1038
1039 #define target_can_run_breakpoint_commands() \
1040 (*current_target.to_can_run_breakpoint_commands) ()
1041
1042 /* Invalidate all target dcaches. */
1043 extern void target_dcache_invalidate (void);
1044
1045 extern int target_read_string (CORE_ADDR, char **, int, int *);
1046
1047 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1048 ssize_t len);
1049
1050 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1051
1052 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1053 ssize_t len);
1054
1055 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1056 ssize_t len);
1057
1058 /* Fetches the target's memory map. If one is found it is sorted
1059 and returned, after some consistency checking. Otherwise, NULL
1060 is returned. */
1061 VEC(mem_region_s) *target_memory_map (void);
1062
1063 /* Erase the specified flash region. */
1064 void target_flash_erase (ULONGEST address, LONGEST length);
1065
1066 /* Finish a sequence of flash operations. */
1067 void target_flash_done (void);
1068
1069 /* Describes a request for a memory write operation. */
1070 struct memory_write_request
1071 {
1072 /* Begining address that must be written. */
1073 ULONGEST begin;
1074 /* Past-the-end address. */
1075 ULONGEST end;
1076 /* The data to write. */
1077 gdb_byte *data;
1078 /* A callback baton for progress reporting for this request. */
1079 void *baton;
1080 };
1081 typedef struct memory_write_request memory_write_request_s;
1082 DEF_VEC_O(memory_write_request_s);
1083
1084 /* Enumeration specifying different flash preservation behaviour. */
1085 enum flash_preserve_mode
1086 {
1087 flash_preserve,
1088 flash_discard
1089 };
1090
1091 /* Write several memory blocks at once. This version can be more
1092 efficient than making several calls to target_write_memory, in
1093 particular because it can optimize accesses to flash memory.
1094
1095 Moreover, this is currently the only memory access function in gdb
1096 that supports writing to flash memory, and it should be used for
1097 all cases where access to flash memory is desirable.
1098
1099 REQUESTS is the vector (see vec.h) of memory_write_request.
1100 PRESERVE_FLASH_P indicates what to do with blocks which must be
1101 erased, but not completely rewritten.
1102 PROGRESS_CB is a function that will be periodically called to provide
1103 feedback to user. It will be called with the baton corresponding
1104 to the request currently being written. It may also be called
1105 with a NULL baton, when preserved flash sectors are being rewritten.
1106
1107 The function returns 0 on success, and error otherwise. */
1108 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1109 enum flash_preserve_mode preserve_flash_p,
1110 void (*progress_cb) (ULONGEST, void *));
1111
1112 /* Print a line about the current target. */
1113
1114 #define target_files_info() \
1115 (*current_target.to_files_info) (&current_target)
1116
1117 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1118 machine. Result is 0 for success, or an errno value. */
1119
1120 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1121 struct bp_target_info *bp_tgt);
1122
1123 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1124 machine. Result is 0 for success, or an errno value. */
1125
1126 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1127 struct bp_target_info *bp_tgt);
1128
1129 /* Initialize the terminal settings we record for the inferior,
1130 before we actually run the inferior. */
1131
1132 #define target_terminal_init() \
1133 (*current_target.to_terminal_init) ()
1134
1135 /* Put the inferior's terminal settings into effect.
1136 This is preparation for starting or resuming the inferior. */
1137
1138 extern void target_terminal_inferior (void);
1139
1140 /* Put some of our terminal settings into effect,
1141 enough to get proper results from our output,
1142 but do not change into or out of RAW mode
1143 so that no input is discarded.
1144
1145 After doing this, either terminal_ours or terminal_inferior
1146 should be called to get back to a normal state of affairs. */
1147
1148 #define target_terminal_ours_for_output() \
1149 (*current_target.to_terminal_ours_for_output) ()
1150
1151 /* Put our terminal settings into effect.
1152 First record the inferior's terminal settings
1153 so they can be restored properly later. */
1154
1155 #define target_terminal_ours() \
1156 (*current_target.to_terminal_ours) ()
1157
1158 /* Save our terminal settings.
1159 This is called from TUI after entering or leaving the curses
1160 mode. Since curses modifies our terminal this call is here
1161 to take this change into account. */
1162
1163 #define target_terminal_save_ours() \
1164 (*current_target.to_terminal_save_ours) ()
1165
1166 /* Print useful information about our terminal status, if such a thing
1167 exists. */
1168
1169 #define target_terminal_info(arg, from_tty) \
1170 (*current_target.to_terminal_info) (arg, from_tty)
1171
1172 /* Kill the inferior process. Make it go away. */
1173
1174 extern void target_kill (void);
1175
1176 /* Load an executable file into the target process. This is expected
1177 to not only bring new code into the target process, but also to
1178 update GDB's symbol tables to match.
1179
1180 ARG contains command-line arguments, to be broken down with
1181 buildargv (). The first non-switch argument is the filename to
1182 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1183 0)), which is an offset to apply to the load addresses of FILE's
1184 sections. The target may define switches, or other non-switch
1185 arguments, as it pleases. */
1186
1187 extern void target_load (char *arg, int from_tty);
1188
1189 /* Start an inferior process and set inferior_ptid to its pid.
1190 EXEC_FILE is the file to run.
1191 ALLARGS is a string containing the arguments to the program.
1192 ENV is the environment vector to pass. Errors reported with error().
1193 On VxWorks and various standalone systems, we ignore exec_file. */
1194
1195 void target_create_inferior (char *exec_file, char *args,
1196 char **env, int from_tty);
1197
1198 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1199 notification of inferior events such as fork and vork immediately
1200 after the inferior is created. (This because of how gdb gets an
1201 inferior created via invoking a shell to do it. In such a scenario,
1202 if the shell init file has commands in it, the shell will fork and
1203 exec for each of those commands, and we will see each such fork
1204 event. Very bad.)
1205
1206 Such targets will supply an appropriate definition for this function. */
1207
1208 #define target_post_startup_inferior(ptid) \
1209 (*current_target.to_post_startup_inferior) (ptid)
1210
1211 /* On some targets, we can catch an inferior fork or vfork event when
1212 it occurs. These functions insert/remove an already-created
1213 catchpoint for such events. They return 0 for success, 1 if the
1214 catchpoint type is not supported and -1 for failure. */
1215
1216 #define target_insert_fork_catchpoint(pid) \
1217 (*current_target.to_insert_fork_catchpoint) (pid)
1218
1219 #define target_remove_fork_catchpoint(pid) \
1220 (*current_target.to_remove_fork_catchpoint) (pid)
1221
1222 #define target_insert_vfork_catchpoint(pid) \
1223 (*current_target.to_insert_vfork_catchpoint) (pid)
1224
1225 #define target_remove_vfork_catchpoint(pid) \
1226 (*current_target.to_remove_vfork_catchpoint) (pid)
1227
1228 /* If the inferior forks or vforks, this function will be called at
1229 the next resume in order to perform any bookkeeping and fiddling
1230 necessary to continue debugging either the parent or child, as
1231 requested, and releasing the other. Information about the fork
1232 or vfork event is available via get_last_target_status ().
1233 This function returns 1 if the inferior should not be resumed
1234 (i.e. there is another event pending). */
1235
1236 int target_follow_fork (int follow_child);
1237
1238 /* On some targets, we can catch an inferior exec event when it
1239 occurs. These functions insert/remove an already-created
1240 catchpoint for such events. They return 0 for success, 1 if the
1241 catchpoint type is not supported and -1 for failure. */
1242
1243 #define target_insert_exec_catchpoint(pid) \
1244 (*current_target.to_insert_exec_catchpoint) (pid)
1245
1246 #define target_remove_exec_catchpoint(pid) \
1247 (*current_target.to_remove_exec_catchpoint) (pid)
1248
1249 /* Syscall catch.
1250
1251 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1252 If NEEDED is zero, it means the target can disable the mechanism to
1253 catch system calls because there are no more catchpoints of this type.
1254
1255 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1256 being requested. In this case, both TABLE_SIZE and TABLE should
1257 be ignored.
1258
1259 TABLE_SIZE is the number of elements in TABLE. It only matters if
1260 ANY_COUNT is zero.
1261
1262 TABLE is an array of ints, indexed by syscall number. An element in
1263 this array is nonzero if that syscall should be caught. This argument
1264 only matters if ANY_COUNT is zero.
1265
1266 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1267 for failure. */
1268
1269 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1270 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1271 table_size, table)
1272
1273 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1274 exit code of PID, if any. */
1275
1276 #define target_has_exited(pid,wait_status,exit_status) \
1277 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1278
1279 /* The debugger has completed a blocking wait() call. There is now
1280 some process event that must be processed. This function should
1281 be defined by those targets that require the debugger to perform
1282 cleanup or internal state changes in response to the process event. */
1283
1284 /* The inferior process has died. Do what is right. */
1285
1286 void target_mourn_inferior (void);
1287
1288 /* Does target have enough data to do a run or attach command? */
1289
1290 #define target_can_run(t) \
1291 ((t)->to_can_run) ()
1292
1293 /* Set list of signals to be handled in the target.
1294
1295 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1296 (enum gdb_signal). For every signal whose entry in this array is
1297 non-zero, the target is allowed -but not required- to skip reporting
1298 arrival of the signal to the GDB core by returning from target_wait,
1299 and to pass the signal directly to the inferior instead.
1300
1301 However, if the target is hardware single-stepping a thread that is
1302 about to receive a signal, it needs to be reported in any case, even
1303 if mentioned in a previous target_pass_signals call. */
1304
1305 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1306
1307 /* Set list of signals the target may pass to the inferior. This
1308 directly maps to the "handle SIGNAL pass/nopass" setting.
1309
1310 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1311 number (enum gdb_signal). For every signal whose entry in this
1312 array is non-zero, the target is allowed to pass the signal to the
1313 inferior. Signals not present in the array shall be silently
1314 discarded. This does not influence whether to pass signals to the
1315 inferior as a result of a target_resume call. This is useful in
1316 scenarios where the target needs to decide whether to pass or not a
1317 signal to the inferior without GDB core involvement, such as for
1318 example, when detaching (as threads may have been suspended with
1319 pending signals not reported to GDB). */
1320
1321 extern void target_program_signals (int nsig, unsigned char *program_signals);
1322
1323 /* Check to see if a thread is still alive. */
1324
1325 extern int target_thread_alive (ptid_t ptid);
1326
1327 /* Query for new threads and add them to the thread list. */
1328
1329 extern void target_find_new_threads (void);
1330
1331 /* Make target stop in a continuable fashion. (For instance, under
1332 Unix, this should act like SIGSTOP). This function is normally
1333 used by GUIs to implement a stop button. */
1334
1335 extern void target_stop (ptid_t ptid);
1336
1337 /* Send the specified COMMAND to the target's monitor
1338 (shell,interpreter) for execution. The result of the query is
1339 placed in OUTBUF. */
1340
1341 #define target_rcmd(command, outbuf) \
1342 (*current_target.to_rcmd) (command, outbuf)
1343
1344
1345 /* Does the target include all of memory, or only part of it? This
1346 determines whether we look up the target chain for other parts of
1347 memory if this target can't satisfy a request. */
1348
1349 extern int target_has_all_memory_1 (void);
1350 #define target_has_all_memory target_has_all_memory_1 ()
1351
1352 /* Does the target include memory? (Dummy targets don't.) */
1353
1354 extern int target_has_memory_1 (void);
1355 #define target_has_memory target_has_memory_1 ()
1356
1357 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1358 we start a process.) */
1359
1360 extern int target_has_stack_1 (void);
1361 #define target_has_stack target_has_stack_1 ()
1362
1363 /* Does the target have registers? (Exec files don't.) */
1364
1365 extern int target_has_registers_1 (void);
1366 #define target_has_registers target_has_registers_1 ()
1367
1368 /* Does the target have execution? Can we make it jump (through
1369 hoops), or pop its stack a few times? This means that the current
1370 target is currently executing; for some targets, that's the same as
1371 whether or not the target is capable of execution, but there are
1372 also targets which can be current while not executing. In that
1373 case this will become true after target_create_inferior or
1374 target_attach. */
1375
1376 extern int target_has_execution_1 (ptid_t);
1377
1378 /* Like target_has_execution_1, but always passes inferior_ptid. */
1379
1380 extern int target_has_execution_current (void);
1381
1382 #define target_has_execution target_has_execution_current ()
1383
1384 /* Default implementations for process_stratum targets. Return true
1385 if there's a selected inferior, false otherwise. */
1386
1387 extern int default_child_has_all_memory (struct target_ops *ops);
1388 extern int default_child_has_memory (struct target_ops *ops);
1389 extern int default_child_has_stack (struct target_ops *ops);
1390 extern int default_child_has_registers (struct target_ops *ops);
1391 extern int default_child_has_execution (struct target_ops *ops,
1392 ptid_t the_ptid);
1393
1394 /* Can the target support the debugger control of thread execution?
1395 Can it lock the thread scheduler? */
1396
1397 #define target_can_lock_scheduler \
1398 (current_target.to_has_thread_control & tc_schedlock)
1399
1400 /* Should the target enable async mode if it is supported? Temporary
1401 cludge until async mode is a strict superset of sync mode. */
1402 extern int target_async_permitted;
1403
1404 /* Can the target support asynchronous execution? */
1405 #define target_can_async_p() (current_target.to_can_async_p ())
1406
1407 /* Is the target in asynchronous execution mode? */
1408 #define target_is_async_p() (current_target.to_is_async_p ())
1409
1410 int target_supports_non_stop (void);
1411
1412 /* Put the target in async mode with the specified callback function. */
1413 #define target_async(CALLBACK,CONTEXT) \
1414 (current_target.to_async ((CALLBACK), (CONTEXT)))
1415
1416 #define target_execution_direction() \
1417 (current_target.to_execution_direction ())
1418
1419 /* Converts a process id to a string. Usually, the string just contains
1420 `process xyz', but on some systems it may contain
1421 `process xyz thread abc'. */
1422
1423 extern char *target_pid_to_str (ptid_t ptid);
1424
1425 extern char *normal_pid_to_str (ptid_t ptid);
1426
1427 /* Return a short string describing extra information about PID,
1428 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1429 is okay. */
1430
1431 #define target_extra_thread_info(TP) \
1432 (current_target.to_extra_thread_info (TP))
1433
1434 /* Return the thread's name. A NULL result means that the target
1435 could not determine this thread's name. */
1436
1437 extern char *target_thread_name (struct thread_info *);
1438
1439 /* Attempts to find the pathname of the executable file
1440 that was run to create a specified process.
1441
1442 The process PID must be stopped when this operation is used.
1443
1444 If the executable file cannot be determined, NULL is returned.
1445
1446 Else, a pointer to a character string containing the pathname
1447 is returned. This string should be copied into a buffer by
1448 the client if the string will not be immediately used, or if
1449 it must persist. */
1450
1451 #define target_pid_to_exec_file(pid) \
1452 (current_target.to_pid_to_exec_file) (pid)
1453
1454 /* See the to_thread_architecture description in struct target_ops. */
1455
1456 #define target_thread_architecture(ptid) \
1457 (current_target.to_thread_architecture (&current_target, ptid))
1458
1459 /*
1460 * Iterator function for target memory regions.
1461 * Calls a callback function once for each memory region 'mapped'
1462 * in the child process. Defined as a simple macro rather than
1463 * as a function macro so that it can be tested for nullity.
1464 */
1465
1466 #define target_find_memory_regions(FUNC, DATA) \
1467 (current_target.to_find_memory_regions) (FUNC, DATA)
1468
1469 /*
1470 * Compose corefile .note section.
1471 */
1472
1473 #define target_make_corefile_notes(BFD, SIZE_P) \
1474 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1475
1476 /* Bookmark interfaces. */
1477 #define target_get_bookmark(ARGS, FROM_TTY) \
1478 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1479
1480 #define target_goto_bookmark(ARG, FROM_TTY) \
1481 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1482
1483 /* Hardware watchpoint interfaces. */
1484
1485 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1486 write). Only the INFERIOR_PTID task is being queried. */
1487
1488 #define target_stopped_by_watchpoint \
1489 (*current_target.to_stopped_by_watchpoint)
1490
1491 /* Non-zero if we have steppable watchpoints */
1492
1493 #define target_have_steppable_watchpoint \
1494 (current_target.to_have_steppable_watchpoint)
1495
1496 /* Non-zero if we have continuable watchpoints */
1497
1498 #define target_have_continuable_watchpoint \
1499 (current_target.to_have_continuable_watchpoint)
1500
1501 /* Provide defaults for hardware watchpoint functions. */
1502
1503 /* If the *_hw_beakpoint functions have not been defined
1504 elsewhere use the definitions in the target vector. */
1505
1506 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1507 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1508 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1509 (including this one?). OTHERTYPE is who knows what... */
1510
1511 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1512 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1513
1514 /* Returns the number of debug registers needed to watch the given
1515 memory region, or zero if not supported. */
1516
1517 #define target_region_ok_for_hw_watchpoint(addr, len) \
1518 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1519
1520
1521 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1522 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1523 COND is the expression for its condition, or NULL if there's none.
1524 Returns 0 for success, 1 if the watchpoint type is not supported,
1525 -1 for failure. */
1526
1527 #define target_insert_watchpoint(addr, len, type, cond) \
1528 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1529
1530 #define target_remove_watchpoint(addr, len, type, cond) \
1531 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1532
1533 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1534 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1535 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1536 masked watchpoints are not supported, -1 for failure. */
1537
1538 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1539
1540 /* Remove a masked watchpoint at ADDR with the mask MASK.
1541 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1542 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1543 for failure. */
1544
1545 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1546
1547 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1548 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1549
1550 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1551 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1552
1553 /* Return number of debug registers needed for a ranged breakpoint,
1554 or -1 if ranged breakpoints are not supported. */
1555
1556 extern int target_ranged_break_num_registers (void);
1557
1558 /* Return non-zero if target knows the data address which triggered this
1559 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1560 INFERIOR_PTID task is being queried. */
1561 #define target_stopped_data_address(target, addr_p) \
1562 (*target.to_stopped_data_address) (target, addr_p)
1563
1564 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1565 LENGTH bytes beginning at START. */
1566 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1567 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1568
1569 /* Return non-zero if the target is capable of using hardware to evaluate
1570 the condition expression. In this case, if the condition is false when
1571 the watched memory location changes, execution may continue without the
1572 debugger being notified.
1573
1574 Due to limitations in the hardware implementation, it may be capable of
1575 avoiding triggering the watchpoint in some cases where the condition
1576 expression is false, but may report some false positives as well.
1577 For this reason, GDB will still evaluate the condition expression when
1578 the watchpoint triggers. */
1579 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1580 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1581
1582 /* Return number of debug registers needed for a masked watchpoint,
1583 -1 if masked watchpoints are not supported or -2 if the given address
1584 and mask combination cannot be used. */
1585
1586 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1587
1588 /* Target can execute in reverse? */
1589 #define target_can_execute_reverse \
1590 (current_target.to_can_execute_reverse ? \
1591 current_target.to_can_execute_reverse () : 0)
1592
1593 extern const struct target_desc *target_read_description (struct target_ops *);
1594
1595 #define target_get_ada_task_ptid(lwp, tid) \
1596 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1597
1598 /* Utility implementation of searching memory. */
1599 extern int simple_search_memory (struct target_ops* ops,
1600 CORE_ADDR start_addr,
1601 ULONGEST search_space_len,
1602 const gdb_byte *pattern,
1603 ULONGEST pattern_len,
1604 CORE_ADDR *found_addrp);
1605
1606 /* Main entry point for searching memory. */
1607 extern int target_search_memory (CORE_ADDR start_addr,
1608 ULONGEST search_space_len,
1609 const gdb_byte *pattern,
1610 ULONGEST pattern_len,
1611 CORE_ADDR *found_addrp);
1612
1613 /* Target file operations. */
1614
1615 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1616 target file descriptor, or -1 if an error occurs (and set
1617 *TARGET_ERRNO). */
1618 extern int target_fileio_open (const char *filename, int flags, int mode,
1619 int *target_errno);
1620
1621 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1622 Return the number of bytes written, or -1 if an error occurs
1623 (and set *TARGET_ERRNO). */
1624 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1625 ULONGEST offset, int *target_errno);
1626
1627 /* Read up to LEN bytes FD on the target into READ_BUF.
1628 Return the number of bytes read, or -1 if an error occurs
1629 (and set *TARGET_ERRNO). */
1630 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1631 ULONGEST offset, int *target_errno);
1632
1633 /* Close FD on the target. Return 0, or -1 if an error occurs
1634 (and set *TARGET_ERRNO). */
1635 extern int target_fileio_close (int fd, int *target_errno);
1636
1637 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1638 occurs (and set *TARGET_ERRNO). */
1639 extern int target_fileio_unlink (const char *filename, int *target_errno);
1640
1641 /* Read value of symbolic link FILENAME on the target. Return a
1642 null-terminated string allocated via xmalloc, or NULL if an error
1643 occurs (and set *TARGET_ERRNO). */
1644 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1645
1646 /* Read target file FILENAME. The return value will be -1 if the transfer
1647 fails or is not supported; 0 if the object is empty; or the length
1648 of the object otherwise. If a positive value is returned, a
1649 sufficiently large buffer will be allocated using xmalloc and
1650 returned in *BUF_P containing the contents of the object.
1651
1652 This method should be used for objects sufficiently small to store
1653 in a single xmalloc'd buffer, when no fixed bound on the object's
1654 size is known in advance. */
1655 extern LONGEST target_fileio_read_alloc (const char *filename,
1656 gdb_byte **buf_p);
1657
1658 /* Read target file FILENAME. The result is NUL-terminated and
1659 returned as a string, allocated using xmalloc. If an error occurs
1660 or the transfer is unsupported, NULL is returned. Empty objects
1661 are returned as allocated but empty strings. A warning is issued
1662 if the result contains any embedded NUL bytes. */
1663 extern char *target_fileio_read_stralloc (const char *filename);
1664
1665
1666 /* Tracepoint-related operations. */
1667
1668 #define target_trace_init() \
1669 (*current_target.to_trace_init) ()
1670
1671 #define target_download_tracepoint(t) \
1672 (*current_target.to_download_tracepoint) (t)
1673
1674 #define target_can_download_tracepoint() \
1675 (*current_target.to_can_download_tracepoint) ()
1676
1677 #define target_download_trace_state_variable(tsv) \
1678 (*current_target.to_download_trace_state_variable) (tsv)
1679
1680 #define target_enable_tracepoint(loc) \
1681 (*current_target.to_enable_tracepoint) (loc)
1682
1683 #define target_disable_tracepoint(loc) \
1684 (*current_target.to_disable_tracepoint) (loc)
1685
1686 #define target_trace_start() \
1687 (*current_target.to_trace_start) ()
1688
1689 #define target_trace_set_readonly_regions() \
1690 (*current_target.to_trace_set_readonly_regions) ()
1691
1692 #define target_get_trace_status(ts) \
1693 (*current_target.to_get_trace_status) (ts)
1694
1695 #define target_get_tracepoint_status(tp,utp) \
1696 (*current_target.to_get_tracepoint_status) (tp, utp)
1697
1698 #define target_trace_stop() \
1699 (*current_target.to_trace_stop) ()
1700
1701 #define target_trace_find(type,num,addr1,addr2,tpp) \
1702 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1703
1704 #define target_get_trace_state_variable_value(tsv,val) \
1705 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1706
1707 #define target_save_trace_data(filename) \
1708 (*current_target.to_save_trace_data) (filename)
1709
1710 #define target_upload_tracepoints(utpp) \
1711 (*current_target.to_upload_tracepoints) (utpp)
1712
1713 #define target_upload_trace_state_variables(utsvp) \
1714 (*current_target.to_upload_trace_state_variables) (utsvp)
1715
1716 #define target_get_raw_trace_data(buf,offset,len) \
1717 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1718
1719 #define target_get_min_fast_tracepoint_insn_len() \
1720 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1721
1722 #define target_set_disconnected_tracing(val) \
1723 (*current_target.to_set_disconnected_tracing) (val)
1724
1725 #define target_set_circular_trace_buffer(val) \
1726 (*current_target.to_set_circular_trace_buffer) (val)
1727
1728 #define target_set_trace_buffer_size(val) \
1729 (*current_target.to_set_trace_buffer_size) (val)
1730
1731 #define target_set_trace_notes(user,notes,stopnotes) \
1732 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1733
1734 #define target_get_tib_address(ptid, addr) \
1735 (*current_target.to_get_tib_address) ((ptid), (addr))
1736
1737 #define target_set_permissions() \
1738 (*current_target.to_set_permissions) ()
1739
1740 #define target_static_tracepoint_marker_at(addr, marker) \
1741 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1742
1743 #define target_static_tracepoint_markers_by_strid(marker_id) \
1744 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1745
1746 #define target_traceframe_info() \
1747 (*current_target.to_traceframe_info) ()
1748
1749 #define target_use_agent(use) \
1750 (*current_target.to_use_agent) (use)
1751
1752 #define target_can_use_agent() \
1753 (*current_target.to_can_use_agent) ()
1754
1755 /* Command logging facility. */
1756
1757 #define target_log_command(p) \
1758 do \
1759 if (current_target.to_log_command) \
1760 (*current_target.to_log_command) (p); \
1761 while (0)
1762
1763
1764 extern int target_core_of_thread (ptid_t ptid);
1765
1766 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1767 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1768 if there's a mismatch, and -1 if an error is encountered while
1769 reading memory. Throws an error if the functionality is found not
1770 to be supported by the current target. */
1771 int target_verify_memory (const gdb_byte *data,
1772 CORE_ADDR memaddr, ULONGEST size);
1773
1774 /* Routines for maintenance of the target structures...
1775
1776 add_target: Add a target to the list of all possible targets.
1777
1778 push_target: Make this target the top of the stack of currently used
1779 targets, within its particular stratum of the stack. Result
1780 is 0 if now atop the stack, nonzero if not on top (maybe
1781 should warn user).
1782
1783 unpush_target: Remove this from the stack of currently used targets,
1784 no matter where it is on the list. Returns 0 if no
1785 change, 1 if removed from stack.
1786
1787 pop_target: Remove the top thing on the stack of current targets. */
1788
1789 extern void add_target (struct target_ops *);
1790
1791 extern void push_target (struct target_ops *);
1792
1793 extern int unpush_target (struct target_ops *);
1794
1795 extern void target_pre_inferior (int);
1796
1797 extern void target_preopen (int);
1798
1799 extern void pop_target (void);
1800
1801 /* Does whatever cleanup is required to get rid of all pushed targets.
1802 QUITTING is propagated to target_close; it indicates that GDB is
1803 exiting and should not get hung on an error (otherwise it is
1804 important to perform clean termination, even if it takes a
1805 while). */
1806 extern void pop_all_targets (int quitting);
1807
1808 /* Like pop_all_targets, but pops only targets whose stratum is
1809 strictly above ABOVE_STRATUM. */
1810 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1811
1812 extern int target_is_pushed (struct target_ops *t);
1813
1814 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1815 CORE_ADDR offset);
1816
1817 /* Struct target_section maps address ranges to file sections. It is
1818 mostly used with BFD files, but can be used without (e.g. for handling
1819 raw disks, or files not in formats handled by BFD). */
1820
1821 struct target_section
1822 {
1823 CORE_ADDR addr; /* Lowest address in section */
1824 CORE_ADDR endaddr; /* 1+highest address in section */
1825
1826 struct bfd_section *the_bfd_section;
1827
1828 /* A given BFD may appear multiple times in the target section
1829 list, so each BFD is associated with a given key. The key is
1830 just some convenient pointer that can be used to differentiate
1831 the BFDs. These are managed only by convention. */
1832 void *key;
1833
1834 bfd *bfd; /* BFD file pointer */
1835 };
1836
1837 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1838
1839 struct target_section_table
1840 {
1841 struct target_section *sections;
1842 struct target_section *sections_end;
1843 };
1844
1845 /* Return the "section" containing the specified address. */
1846 struct target_section *target_section_by_addr (struct target_ops *target,
1847 CORE_ADDR addr);
1848
1849 /* Return the target section table this target (or the targets
1850 beneath) currently manipulate. */
1851
1852 extern struct target_section_table *target_get_section_table
1853 (struct target_ops *target);
1854
1855 /* From mem-break.c */
1856
1857 extern int memory_remove_breakpoint (struct gdbarch *,
1858 struct bp_target_info *);
1859
1860 extern int memory_insert_breakpoint (struct gdbarch *,
1861 struct bp_target_info *);
1862
1863 extern int default_memory_remove_breakpoint (struct gdbarch *,
1864 struct bp_target_info *);
1865
1866 extern int default_memory_insert_breakpoint (struct gdbarch *,
1867 struct bp_target_info *);
1868
1869
1870 /* From target.c */
1871
1872 extern void initialize_targets (void);
1873
1874 extern void noprocess (void) ATTRIBUTE_NORETURN;
1875
1876 extern void target_require_runnable (void);
1877
1878 extern void find_default_attach (struct target_ops *, char *, int);
1879
1880 extern void find_default_create_inferior (struct target_ops *,
1881 char *, char *, char **, int);
1882
1883 extern struct target_ops *find_run_target (void);
1884
1885 extern struct target_ops *find_target_beneath (struct target_ops *);
1886
1887 /* Read OS data object of type TYPE from the target, and return it in
1888 XML format. The result is NUL-terminated and returned as a string,
1889 allocated using xmalloc. If an error occurs or the transfer is
1890 unsupported, NULL is returned. Empty objects are returned as
1891 allocated but empty strings. */
1892
1893 extern char *target_get_osdata (const char *type);
1894
1895 \f
1896 /* Stuff that should be shared among the various remote targets. */
1897
1898 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1899 information (higher values, more information). */
1900 extern int remote_debug;
1901
1902 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1903 extern int baud_rate;
1904 /* Timeout limit for response from target. */
1905 extern int remote_timeout;
1906
1907 \f
1908
1909 /* Set the show memory breakpoints mode to show, and installs a cleanup
1910 to restore it back to the current value. */
1911 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1912
1913 extern int may_write_registers;
1914 extern int may_write_memory;
1915 extern int may_insert_breakpoints;
1916 extern int may_insert_tracepoints;
1917 extern int may_insert_fast_tracepoints;
1918 extern int may_stop;
1919
1920 extern void update_target_permissions (void);
1921
1922 \f
1923 /* Imported from machine dependent code. */
1924
1925 /* Blank target vector entries are initialized to target_ignore. */
1926 void target_ignore (void);
1927
1928 /* See to_supports_btrace in struct target_ops. */
1929 extern int target_supports_btrace (void);
1930
1931 /* See to_enable_btrace in struct target_ops. */
1932 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1933
1934 /* See to_disable_btrace in struct target_ops. */
1935 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1936
1937 /* See to_teardown_btrace in struct target_ops. */
1938 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1939
1940 /* See to_read_btrace in struct target_ops. */
1941 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
1942 enum btrace_read_type);
1943
1944
1945 #endif /* !defined (TARGET_H) */
This page took 0.069035 seconds and 4 git commands to generate.