Make target_options_to_string return an std::string
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "vec.h"
78 #include "gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (int target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* SPU target specific transfer. See "spu-tdep.c". */
141 TARGET_OBJECT_SPU,
142 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
143 TARGET_OBJECT_MEMORY,
144 /* Memory, avoiding GDB's data cache and trusting the executable.
145 Target implementations of to_xfer_partial never need to handle
146 this object, and most callers should not use it. */
147 TARGET_OBJECT_RAW_MEMORY,
148 /* Memory known to be part of the target's stack. This is cached even
149 if it is not in a region marked as such, since it is known to be
150 "normal" RAM. */
151 TARGET_OBJECT_STACK_MEMORY,
152 /* Memory known to be part of the target code. This is cached even
153 if it is not in a region marked as such. */
154 TARGET_OBJECT_CODE_MEMORY,
155 /* Kernel Unwind Table. See "ia64-tdep.c". */
156 TARGET_OBJECT_UNWIND_TABLE,
157 /* Transfer auxilliary vector. */
158 TARGET_OBJECT_AUXV,
159 /* StackGhost cookie. See "sparc-tdep.c". */
160 TARGET_OBJECT_WCOOKIE,
161 /* Target memory map in XML format. */
162 TARGET_OBJECT_MEMORY_MAP,
163 /* Flash memory. This object can be used to write contents to
164 a previously erased flash memory. Using it without erasing
165 flash can have unexpected results. Addresses are physical
166 address on target, and not relative to flash start. */
167 TARGET_OBJECT_FLASH,
168 /* Available target-specific features, e.g. registers and coprocessors.
169 See "target-descriptions.c". ANNEX should never be empty. */
170 TARGET_OBJECT_AVAILABLE_FEATURES,
171 /* Currently loaded libraries, in XML format. */
172 TARGET_OBJECT_LIBRARIES,
173 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_SVR4,
175 /* Currently loaded libraries specific to AIX systems, in XML format. */
176 TARGET_OBJECT_LIBRARIES_AIX,
177 /* Get OS specific data. The ANNEX specifies the type (running
178 processes, etc.). The data being transfered is expected to follow
179 the DTD specified in features/osdata.dtd. */
180 TARGET_OBJECT_OSDATA,
181 /* Extra signal info. Usually the contents of `siginfo_t' on unix
182 platforms. */
183 TARGET_OBJECT_SIGNAL_INFO,
184 /* The list of threads that are being debugged. */
185 TARGET_OBJECT_THREADS,
186 /* Collected static trace data. */
187 TARGET_OBJECT_STATIC_TRACE_DATA,
188 /* Traceframe info, in XML format. */
189 TARGET_OBJECT_TRACEFRAME_INFO,
190 /* Load maps for FDPIC systems. */
191 TARGET_OBJECT_FDPIC,
192 /* Darwin dynamic linker info data. */
193 TARGET_OBJECT_DARWIN_DYLD_INFO,
194 /* OpenVMS Unwind Information Block. */
195 TARGET_OBJECT_OPENVMS_UIB,
196 /* Branch trace data, in XML format. */
197 TARGET_OBJECT_BTRACE,
198 /* Branch trace configuration, in XML format. */
199 TARGET_OBJECT_BTRACE_CONF,
200 /* The pathname of the executable file that was run to create
201 a specified process. ANNEX should be a string representation
202 of the process ID of the process in question, in hexadecimal
203 format. */
204 TARGET_OBJECT_EXEC_FILE,
205 /* Possible future objects: TARGET_OBJECT_FILE, ... */
206 };
207
208 /* Possible values returned by target_xfer_partial, etc. */
209
210 enum target_xfer_status
211 {
212 /* Some bytes are transferred. */
213 TARGET_XFER_OK = 1,
214
215 /* No further transfer is possible. */
216 TARGET_XFER_EOF = 0,
217
218 /* The piece of the object requested is unavailable. */
219 TARGET_XFER_UNAVAILABLE = 2,
220
221 /* Generic I/O error. Note that it's important that this is '-1',
222 as we still have target_xfer-related code returning hardcoded
223 '-1' on error. */
224 TARGET_XFER_E_IO = -1,
225
226 /* Keep list in sync with target_xfer_status_to_string. */
227 };
228
229 /* Return the string form of STATUS. */
230
231 extern const char *
232 target_xfer_status_to_string (enum target_xfer_status status);
233
234 typedef enum target_xfer_status
235 target_xfer_partial_ftype (struct target_ops *ops,
236 enum target_object object,
237 const char *annex,
238 gdb_byte *readbuf,
239 const gdb_byte *writebuf,
240 ULONGEST offset,
241 ULONGEST len,
242 ULONGEST *xfered_len);
243
244 enum target_xfer_status
245 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
246 const gdb_byte *writebuf, ULONGEST memaddr,
247 LONGEST len, ULONGEST *xfered_len);
248
249 /* Request that OPS transfer up to LEN addressable units of the target's
250 OBJECT. When reading from a memory object, the size of an addressable unit
251 is architecture dependent and can be found using
252 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
253 byte long. BUF should point to a buffer large enough to hold the read data,
254 taking into account the addressable unit size. The OFFSET, for a seekable
255 object, specifies the starting point. The ANNEX can be used to provide
256 additional data-specific information to the target.
257
258 Return the number of addressable units actually transferred, or a negative
259 error code (an 'enum target_xfer_error' value) if the transfer is not
260 supported or otherwise fails. Return of a positive value less than
261 LEN indicates that no further transfer is possible. Unlike the raw
262 to_xfer_partial interface, callers of these functions do not need
263 to retry partial transfers. */
264
265 extern LONGEST target_read (struct target_ops *ops,
266 enum target_object object,
267 const char *annex, gdb_byte *buf,
268 ULONGEST offset, LONGEST len);
269
270 struct memory_read_result
271 {
272 memory_read_result (ULONGEST begin_, ULONGEST end_,
273 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
274 : begin (begin_),
275 end (end_),
276 data (std::move (data_))
277 {
278 }
279
280 ~memory_read_result () = default;
281
282 memory_read_result (memory_read_result &&other) = default;
283
284 DISABLE_COPY_AND_ASSIGN (memory_read_result);
285
286 /* First address that was read. */
287 ULONGEST begin;
288 /* Past-the-end address. */
289 ULONGEST end;
290 /* The data. */
291 gdb::unique_xmalloc_ptr<gdb_byte> data;
292 };
293
294 extern std::vector<memory_read_result> read_memory_robust
295 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
296
297 /* Request that OPS transfer up to LEN addressable units from BUF to the
298 target's OBJECT. When writing to a memory object, the addressable unit
299 size is architecture dependent and can be found using
300 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
301 byte long. The OFFSET, for a seekable object, specifies the starting point.
302 The ANNEX can be used to provide additional data-specific information to
303 the target.
304
305 Return the number of addressable units actually transferred, or a negative
306 error code (an 'enum target_xfer_status' value) if the transfer is not
307 supported or otherwise fails. Return of a positive value less than
308 LEN indicates that no further transfer is possible. Unlike the raw
309 to_xfer_partial interface, callers of these functions do not need to
310 retry partial transfers. */
311
312 extern LONGEST target_write (struct target_ops *ops,
313 enum target_object object,
314 const char *annex, const gdb_byte *buf,
315 ULONGEST offset, LONGEST len);
316
317 /* Similar to target_write, except that it also calls PROGRESS with
318 the number of bytes written and the opaque BATON after every
319 successful partial write (and before the first write). This is
320 useful for progress reporting and user interaction while writing
321 data. To abort the transfer, the progress callback can throw an
322 exception. */
323
324 LONGEST target_write_with_progress (struct target_ops *ops,
325 enum target_object object,
326 const char *annex, const gdb_byte *buf,
327 ULONGEST offset, LONGEST len,
328 void (*progress) (ULONGEST, void *),
329 void *baton);
330
331 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
332 using OPS. The return value will be uninstantiated if the transfer fails or
333 is not supported.
334
335 This method should be used for objects sufficiently small to store
336 in a single xmalloc'd buffer, when no fixed bound on the object's
337 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
338 through this function. */
339
340 extern gdb::optional<gdb::byte_vector> target_read_alloc
341 (struct target_ops *ops, enum target_object object, const char *annex);
342
343 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
344 (therefore usable as a NUL-terminated string). If an error occurs or the
345 transfer is unsupported, the return value will be uninstantiated. Empty
346 objects are returned as allocated but empty strings. Therefore, on success,
347 the returned vector is guaranteed to have at least one element. A warning is
348 issued if the result contains any embedded NUL bytes. */
349
350 extern gdb::optional<gdb::char_vector> target_read_stralloc
351 (struct target_ops *ops, enum target_object object, const char *annex);
352
353 /* See target_ops->to_xfer_partial. */
354 extern target_xfer_partial_ftype target_xfer_partial;
355
356 /* Wrappers to target read/write that perform memory transfers. They
357 throw an error if the memory transfer fails.
358
359 NOTE: cagney/2003-10-23: The naming schema is lifted from
360 "frame.h". The parameter order is lifted from get_frame_memory,
361 which in turn lifted it from read_memory. */
362
363 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
364 gdb_byte *buf, LONGEST len);
365 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
366 CORE_ADDR addr, int len,
367 enum bfd_endian byte_order);
368 \f
369 struct thread_info; /* fwd decl for parameter list below: */
370
371 /* The type of the callback to the to_async method. */
372
373 typedef void async_callback_ftype (enum inferior_event_type event_type,
374 void *context);
375
376 /* Normally target debug printing is purely type-based. However,
377 sometimes it is necessary to override the debug printing on a
378 per-argument basis. This macro can be used, attribute-style, to
379 name the target debug printing function for a particular method
380 argument. FUNC is the name of the function. The macro's
381 definition is empty because it is only used by the
382 make-target-delegates script. */
383
384 #define TARGET_DEBUG_PRINTER(FUNC)
385
386 /* These defines are used to mark target_ops methods. The script
387 make-target-delegates scans these and auto-generates the base
388 method implementations. There are four macros that can be used:
389
390 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
391 does nothing. This is only valid if the method return type is
392 'void'.
393
394 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
395 'tcomplain ()'. The base method simply makes this call, which is
396 assumed not to return.
397
398 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
399 base method returns this expression's value.
400
401 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
402 make-target-delegates does not generate a base method in this case,
403 but instead uses the argument function as the base method. */
404
405 #define TARGET_DEFAULT_IGNORE()
406 #define TARGET_DEFAULT_NORETURN(ARG)
407 #define TARGET_DEFAULT_RETURN(ARG)
408 #define TARGET_DEFAULT_FUNC(ARG)
409
410 /* Each target that can be activated with "target TARGET_NAME" passes
411 the address of one of these objects to add_target, which uses the
412 object's address as unique identifier, and registers the "target
413 TARGET_NAME" command using SHORTNAME as target name. */
414
415 struct target_info
416 {
417 /* Name of this target. */
418 const char *shortname;
419
420 /* Name for printing. */
421 const char *longname;
422
423 /* Documentation. Does not include trailing newline, and starts
424 with a one-line description (probably similar to longname). */
425 const char *doc;
426 };
427
428 struct target_ops
429 {
430 /* To the target under this one. */
431 target_ops *beneath () const;
432
433 /* Free resources associated with the target. Note that singleton
434 targets, like e.g., native targets, are global objects, not
435 heap allocated, and are thus only deleted on GDB exit. The
436 main teardown entry point is the "close" method, below. */
437 virtual ~target_ops () {}
438
439 /* Return a reference to this target's unique target_info
440 object. */
441 virtual const target_info &info () const = 0;
442
443 /* Name this target type. */
444 const char *shortname ()
445 { return info ().shortname; }
446
447 const char *longname ()
448 { return info ().longname; }
449
450 /* Close the target. This is where the target can handle
451 teardown. Heap-allocated targets should delete themselves
452 before returning. */
453 virtual void close ();
454
455 /* Attaches to a process on the target side. Arguments are as
456 passed to the `attach' command by the user. This routine can
457 be called when the target is not on the target-stack, if the
458 target_ops::can_run method returns 1; in that case, it must push
459 itself onto the stack. Upon exit, the target should be ready
460 for normal operations, and should be ready to deliver the
461 status of the process immediately (without waiting) to an
462 upcoming target_wait call. */
463 virtual bool can_attach ();
464 virtual void attach (const char *, int);
465 virtual void post_attach (int)
466 TARGET_DEFAULT_IGNORE ();
467 virtual void detach (inferior *, int)
468 TARGET_DEFAULT_IGNORE ();
469 virtual void disconnect (const char *, int)
470 TARGET_DEFAULT_NORETURN (tcomplain ());
471 virtual void resume (ptid_t,
472 int TARGET_DEBUG_PRINTER (target_debug_print_step),
473 enum gdb_signal)
474 TARGET_DEFAULT_NORETURN (noprocess ());
475 virtual void commit_resume ()
476 TARGET_DEFAULT_IGNORE ();
477 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
478 int TARGET_DEBUG_PRINTER (target_debug_print_options))
479 TARGET_DEFAULT_FUNC (default_target_wait);
480 virtual void fetch_registers (struct regcache *, int)
481 TARGET_DEFAULT_IGNORE ();
482 virtual void store_registers (struct regcache *, int)
483 TARGET_DEFAULT_NORETURN (noprocess ());
484 virtual void prepare_to_store (struct regcache *)
485 TARGET_DEFAULT_NORETURN (noprocess ());
486
487 virtual void files_info ()
488 TARGET_DEFAULT_IGNORE ();
489 virtual int insert_breakpoint (struct gdbarch *,
490 struct bp_target_info *)
491 TARGET_DEFAULT_NORETURN (noprocess ());
492 virtual int remove_breakpoint (struct gdbarch *,
493 struct bp_target_info *,
494 enum remove_bp_reason)
495 TARGET_DEFAULT_NORETURN (noprocess ());
496
497 /* Returns true if the target stopped because it executed a
498 software breakpoint. This is necessary for correct background
499 execution / non-stop mode operation, and for correct PC
500 adjustment on targets where the PC needs to be adjusted when a
501 software breakpoint triggers. In these modes, by the time GDB
502 processes a breakpoint event, the breakpoint may already be
503 done from the target, so GDB needs to be able to tell whether
504 it should ignore the event and whether it should adjust the PC.
505 See adjust_pc_after_break. */
506 virtual bool stopped_by_sw_breakpoint ()
507 TARGET_DEFAULT_RETURN (false);
508 /* Returns true if the above method is supported. */
509 virtual bool supports_stopped_by_sw_breakpoint ()
510 TARGET_DEFAULT_RETURN (false);
511
512 /* Returns true if the target stopped for a hardware breakpoint.
513 Likewise, if the target supports hardware breakpoints, this
514 method is necessary for correct background execution / non-stop
515 mode operation. Even though hardware breakpoints do not
516 require PC adjustment, GDB needs to be able to tell whether the
517 hardware breakpoint event is a delayed event for a breakpoint
518 that is already gone and should thus be ignored. */
519 virtual bool stopped_by_hw_breakpoint ()
520 TARGET_DEFAULT_RETURN (false);
521 /* Returns true if the above method is supported. */
522 virtual bool supports_stopped_by_hw_breakpoint ()
523 TARGET_DEFAULT_RETURN (false);
524
525 virtual int can_use_hw_breakpoint (enum bptype, int, int)
526 TARGET_DEFAULT_RETURN (0);
527 virtual int ranged_break_num_registers ()
528 TARGET_DEFAULT_RETURN (-1);
529 virtual int insert_hw_breakpoint (struct gdbarch *,
530 struct bp_target_info *)
531 TARGET_DEFAULT_RETURN (-1);
532 virtual int remove_hw_breakpoint (struct gdbarch *,
533 struct bp_target_info *)
534 TARGET_DEFAULT_RETURN (-1);
535
536 /* Documentation of what the two routines below are expected to do is
537 provided with the corresponding target_* macros. */
538 virtual int remove_watchpoint (CORE_ADDR, int,
539 enum target_hw_bp_type, struct expression *)
540 TARGET_DEFAULT_RETURN (-1);
541 virtual int insert_watchpoint (CORE_ADDR, int,
542 enum target_hw_bp_type, struct expression *)
543 TARGET_DEFAULT_RETURN (-1);
544
545 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
546 enum target_hw_bp_type)
547 TARGET_DEFAULT_RETURN (1);
548 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
549 enum target_hw_bp_type)
550 TARGET_DEFAULT_RETURN (1);
551 virtual bool stopped_by_watchpoint ()
552 TARGET_DEFAULT_RETURN (false);
553 virtual int have_steppable_watchpoint ()
554 TARGET_DEFAULT_RETURN (false);
555 virtual bool have_continuable_watchpoint ()
556 TARGET_DEFAULT_RETURN (false);
557 virtual bool stopped_data_address (CORE_ADDR *)
558 TARGET_DEFAULT_RETURN (false);
559 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
560 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
561
562 /* Documentation of this routine is provided with the corresponding
563 target_* macro. */
564 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
565 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
566
567 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
568 struct expression *)
569 TARGET_DEFAULT_RETURN (false);
570 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
571 TARGET_DEFAULT_RETURN (-1);
572
573 /* Return 1 for sure target can do single step. Return -1 for
574 unknown. Return 0 for target can't do. */
575 virtual int can_do_single_step ()
576 TARGET_DEFAULT_RETURN (-1);
577
578 virtual bool supports_terminal_ours ()
579 TARGET_DEFAULT_RETURN (false);
580 virtual void terminal_init ()
581 TARGET_DEFAULT_IGNORE ();
582 virtual void terminal_inferior ()
583 TARGET_DEFAULT_IGNORE ();
584 virtual void terminal_save_inferior ()
585 TARGET_DEFAULT_IGNORE ();
586 virtual void terminal_ours_for_output ()
587 TARGET_DEFAULT_IGNORE ();
588 virtual void terminal_ours ()
589 TARGET_DEFAULT_IGNORE ();
590 virtual void terminal_info (const char *, int)
591 TARGET_DEFAULT_FUNC (default_terminal_info);
592 virtual void kill ()
593 TARGET_DEFAULT_NORETURN (noprocess ());
594 virtual void load (const char *, int)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 /* Start an inferior process and set inferior_ptid to its pid.
597 EXEC_FILE is the file to run.
598 ALLARGS is a string containing the arguments to the program.
599 ENV is the environment vector to pass. Errors reported with error().
600 On VxWorks and various standalone systems, we ignore exec_file. */
601 virtual bool can_create_inferior ();
602 virtual void create_inferior (const char *, const std::string &,
603 char **, int);
604 virtual void post_startup_inferior (ptid_t)
605 TARGET_DEFAULT_IGNORE ();
606 virtual int insert_fork_catchpoint (int)
607 TARGET_DEFAULT_RETURN (1);
608 virtual int remove_fork_catchpoint (int)
609 TARGET_DEFAULT_RETURN (1);
610 virtual int insert_vfork_catchpoint (int)
611 TARGET_DEFAULT_RETURN (1);
612 virtual int remove_vfork_catchpoint (int)
613 TARGET_DEFAULT_RETURN (1);
614 virtual int follow_fork (int, int)
615 TARGET_DEFAULT_FUNC (default_follow_fork);
616 virtual int insert_exec_catchpoint (int)
617 TARGET_DEFAULT_RETURN (1);
618 virtual int remove_exec_catchpoint (int)
619 TARGET_DEFAULT_RETURN (1);
620 virtual void follow_exec (struct inferior *, char *)
621 TARGET_DEFAULT_IGNORE ();
622 virtual int set_syscall_catchpoint (int, bool, int,
623 gdb::array_view<const int>)
624 TARGET_DEFAULT_RETURN (1);
625 virtual void mourn_inferior ()
626 TARGET_DEFAULT_FUNC (default_mourn_inferior);
627
628 /* Note that can_run is special and can be invoked on an unpushed
629 target. Targets defining this method must also define
630 to_can_async_p and to_supports_non_stop. */
631 virtual bool can_run ();
632
633 /* Documentation of this routine is provided with the corresponding
634 target_* macro. */
635 virtual void pass_signals (int,
636 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
637 TARGET_DEFAULT_IGNORE ();
638
639 /* Documentation of this routine is provided with the
640 corresponding target_* function. */
641 virtual void program_signals (int,
642 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
643 TARGET_DEFAULT_IGNORE ();
644
645 virtual bool thread_alive (ptid_t ptid)
646 TARGET_DEFAULT_RETURN (false);
647 virtual void update_thread_list ()
648 TARGET_DEFAULT_IGNORE ();
649 virtual const char *pid_to_str (ptid_t)
650 TARGET_DEFAULT_FUNC (default_pid_to_str);
651 virtual const char *extra_thread_info (thread_info *)
652 TARGET_DEFAULT_RETURN (NULL);
653 virtual const char *thread_name (thread_info *)
654 TARGET_DEFAULT_RETURN (NULL);
655 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
656 int,
657 inferior *inf)
658 TARGET_DEFAULT_RETURN (NULL);
659 virtual void stop (ptid_t)
660 TARGET_DEFAULT_IGNORE ();
661 virtual void interrupt ()
662 TARGET_DEFAULT_IGNORE ();
663 virtual void pass_ctrlc ()
664 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
665 virtual void rcmd (const char *command, struct ui_file *output)
666 TARGET_DEFAULT_FUNC (default_rcmd);
667 virtual char *pid_to_exec_file (int pid)
668 TARGET_DEFAULT_RETURN (NULL);
669 virtual void log_command (const char *)
670 TARGET_DEFAULT_IGNORE ();
671 virtual struct target_section_table *get_section_table ()
672 TARGET_DEFAULT_RETURN (NULL);
673 enum strata to_stratum;
674
675 /* Provide default values for all "must have" methods. */
676 virtual bool has_all_memory () { return false; }
677 virtual bool has_memory () { return false; }
678 virtual bool has_stack () { return false; }
679 virtual bool has_registers () { return false; }
680 virtual bool has_execution (ptid_t) { return false; }
681
682 /* Control thread execution. */
683 virtual thread_control_capabilities get_thread_control_capabilities ()
684 TARGET_DEFAULT_RETURN (tc_none);
685 virtual bool attach_no_wait ()
686 TARGET_DEFAULT_RETURN (0);
687 /* This method must be implemented in some situations. See the
688 comment on 'can_run'. */
689 virtual bool can_async_p ()
690 TARGET_DEFAULT_RETURN (false);
691 virtual bool is_async_p ()
692 TARGET_DEFAULT_RETURN (false);
693 virtual void async (int)
694 TARGET_DEFAULT_NORETURN (tcomplain ());
695 virtual void thread_events (int)
696 TARGET_DEFAULT_IGNORE ();
697 /* This method must be implemented in some situations. See the
698 comment on 'can_run'. */
699 virtual bool supports_non_stop ()
700 TARGET_DEFAULT_RETURN (false);
701 /* Return true if the target operates in non-stop mode even with
702 "set non-stop off". */
703 virtual bool always_non_stop_p ()
704 TARGET_DEFAULT_RETURN (false);
705 /* find_memory_regions support method for gcore */
706 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
707 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
708 /* make_corefile_notes support method for gcore */
709 virtual char *make_corefile_notes (bfd *, int *)
710 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
711 /* get_bookmark support method for bookmarks */
712 virtual gdb_byte *get_bookmark (const char *, int)
713 TARGET_DEFAULT_NORETURN (tcomplain ());
714 /* goto_bookmark support method for bookmarks */
715 virtual void goto_bookmark (const gdb_byte *, int)
716 TARGET_DEFAULT_NORETURN (tcomplain ());
717 /* Return the thread-local address at OFFSET in the
718 thread-local storage for the thread PTID and the shared library
719 or executable file given by OBJFILE. If that block of
720 thread-local storage hasn't been allocated yet, this function
721 may return an error. LOAD_MODULE_ADDR may be zero for statically
722 linked multithreaded inferiors. */
723 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
724 CORE_ADDR load_module_addr,
725 CORE_ADDR offset)
726 TARGET_DEFAULT_NORETURN (generic_tls_error ());
727
728 /* Request that OPS transfer up to LEN addressable units of the target's
729 OBJECT. When reading from a memory object, the size of an addressable
730 unit is architecture dependent and can be found using
731 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
732 1 byte long. The OFFSET, for a seekable object, specifies the
733 starting point. The ANNEX can be used to provide additional
734 data-specific information to the target.
735
736 Return the transferred status, error or OK (an
737 'enum target_xfer_status' value). Save the number of addressable units
738 actually transferred in *XFERED_LEN if transfer is successful
739 (TARGET_XFER_OK) or the number unavailable units if the requested
740 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
741 smaller than LEN does not indicate the end of the object, only
742 the end of the transfer; higher level code should continue
743 transferring if desired. This is handled in target.c.
744
745 The interface does not support a "retry" mechanism. Instead it
746 assumes that at least one addressable unit will be transfered on each
747 successful call.
748
749 NOTE: cagney/2003-10-17: The current interface can lead to
750 fragmented transfers. Lower target levels should not implement
751 hacks, such as enlarging the transfer, in an attempt to
752 compensate for this. Instead, the target stack should be
753 extended so that it implements supply/collect methods and a
754 look-aside object cache. With that available, the lowest
755 target can safely and freely "push" data up the stack.
756
757 See target_read and target_write for more information. One,
758 and only one, of readbuf or writebuf must be non-NULL. */
759
760 virtual enum target_xfer_status xfer_partial (enum target_object object,
761 const char *annex,
762 gdb_byte *readbuf,
763 const gdb_byte *writebuf,
764 ULONGEST offset, ULONGEST len,
765 ULONGEST *xfered_len)
766 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
767
768 /* Return the limit on the size of any single memory transfer
769 for the target. */
770
771 virtual ULONGEST get_memory_xfer_limit ()
772 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
773
774 /* Returns the memory map for the target. A return value of NULL
775 means that no memory map is available. If a memory address
776 does not fall within any returned regions, it's assumed to be
777 RAM. The returned memory regions should not overlap.
778
779 The order of regions does not matter; target_memory_map will
780 sort regions by starting address. For that reason, this
781 function should not be called directly except via
782 target_memory_map.
783
784 This method should not cache data; if the memory map could
785 change unexpectedly, it should be invalidated, and higher
786 layers will re-fetch it. */
787 virtual std::vector<mem_region> memory_map ()
788 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
789
790 /* Erases the region of flash memory starting at ADDRESS, of
791 length LENGTH.
792
793 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
794 on flash block boundaries, as reported by 'to_memory_map'. */
795 virtual void flash_erase (ULONGEST address, LONGEST length)
796 TARGET_DEFAULT_NORETURN (tcomplain ());
797
798 /* Finishes a flash memory write sequence. After this operation
799 all flash memory should be available for writing and the result
800 of reading from areas written by 'to_flash_write' should be
801 equal to what was written. */
802 virtual void flash_done ()
803 TARGET_DEFAULT_NORETURN (tcomplain ());
804
805 /* Describe the architecture-specific features of this target. If
806 OPS doesn't have a description, this should delegate to the
807 "beneath" target. Returns the description found, or NULL if no
808 description was available. */
809 virtual const struct target_desc *read_description ()
810 TARGET_DEFAULT_RETURN (NULL);
811
812 /* Build the PTID of the thread on which a given task is running,
813 based on LWP and THREAD. These values are extracted from the
814 task Private_Data section of the Ada Task Control Block, and
815 their interpretation depends on the target. */
816 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
817 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
818
819 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
820 Return 0 if *READPTR is already at the end of the buffer.
821 Return -1 if there is insufficient buffer for a whole entry.
822 Return 1 if an entry was read into *TYPEP and *VALP. */
823 virtual int auxv_parse (gdb_byte **readptr,
824 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
825 TARGET_DEFAULT_FUNC (default_auxv_parse);
826
827 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
828 sequence of bytes in PATTERN with length PATTERN_LEN.
829
830 The result is 1 if found, 0 if not found, and -1 if there was an error
831 requiring halting of the search (e.g. memory read error).
832 If the pattern is found the address is recorded in FOUND_ADDRP. */
833 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
834 const gdb_byte *pattern, ULONGEST pattern_len,
835 CORE_ADDR *found_addrp)
836 TARGET_DEFAULT_FUNC (default_search_memory);
837
838 /* Can target execute in reverse? */
839 virtual bool can_execute_reverse ()
840 TARGET_DEFAULT_RETURN (false);
841
842 /* The direction the target is currently executing. Must be
843 implemented on targets that support reverse execution and async
844 mode. The default simply returns forward execution. */
845 virtual enum exec_direction_kind execution_direction ()
846 TARGET_DEFAULT_FUNC (default_execution_direction);
847
848 /* Does this target support debugging multiple processes
849 simultaneously? */
850 virtual bool supports_multi_process ()
851 TARGET_DEFAULT_RETURN (false);
852
853 /* Does this target support enabling and disabling tracepoints while a trace
854 experiment is running? */
855 virtual bool supports_enable_disable_tracepoint ()
856 TARGET_DEFAULT_RETURN (false);
857
858 /* Does this target support disabling address space randomization? */
859 virtual bool supports_disable_randomization ()
860 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
861
862 /* Does this target support the tracenz bytecode for string collection? */
863 virtual bool supports_string_tracing ()
864 TARGET_DEFAULT_RETURN (false);
865
866 /* Does this target support evaluation of breakpoint conditions on its
867 end? */
868 virtual bool supports_evaluation_of_breakpoint_conditions ()
869 TARGET_DEFAULT_RETURN (false);
870
871 /* Does this target support evaluation of breakpoint commands on its
872 end? */
873 virtual bool can_run_breakpoint_commands ()
874 TARGET_DEFAULT_RETURN (false);
875
876 /* Determine current architecture of thread PTID.
877
878 The target is supposed to determine the architecture of the code where
879 the target is currently stopped at (on Cell, if a target is in spu_run,
880 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
881 This is architecture used to perform decr_pc_after_break adjustment,
882 and also determines the frame architecture of the innermost frame.
883 ptrace operations need to operate according to target_gdbarch ().
884
885 The default implementation always returns target_gdbarch (). */
886 virtual struct gdbarch *thread_architecture (ptid_t)
887 TARGET_DEFAULT_FUNC (default_thread_architecture);
888
889 /* Determine current address space of thread PTID.
890
891 The default implementation always returns the inferior's
892 address space. */
893 virtual struct address_space *thread_address_space (ptid_t)
894 TARGET_DEFAULT_FUNC (default_thread_address_space);
895
896 /* Target file operations. */
897
898 /* Return nonzero if the filesystem seen by the current inferior
899 is the local filesystem, zero otherwise. */
900 virtual bool filesystem_is_local ()
901 TARGET_DEFAULT_RETURN (true);
902
903 /* Open FILENAME on the target, in the filesystem as seen by INF,
904 using FLAGS and MODE. If INF is NULL, use the filesystem seen
905 by the debugger (GDB or, for remote targets, the remote stub).
906 If WARN_IF_SLOW is nonzero, print a warning message if the file
907 is being accessed over a link that may be slow. Return a
908 target file descriptor, or -1 if an error occurs (and set
909 *TARGET_ERRNO). */
910 virtual int fileio_open (struct inferior *inf, const char *filename,
911 int flags, int mode, int warn_if_slow,
912 int *target_errno);
913
914 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
915 Return the number of bytes written, or -1 if an error occurs
916 (and set *TARGET_ERRNO). */
917 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
918 ULONGEST offset, int *target_errno);
919
920 /* Read up to LEN bytes FD on the target into READ_BUF.
921 Return the number of bytes read, or -1 if an error occurs
922 (and set *TARGET_ERRNO). */
923 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
924 ULONGEST offset, int *target_errno);
925
926 /* Get information about the file opened as FD and put it in
927 SB. Return 0 on success, or -1 if an error occurs (and set
928 *TARGET_ERRNO). */
929 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
930
931 /* Close FD on the target. Return 0, or -1 if an error occurs
932 (and set *TARGET_ERRNO). */
933 virtual int fileio_close (int fd, int *target_errno);
934
935 /* Unlink FILENAME on the target, in the filesystem as seen by
936 INF. If INF is NULL, use the filesystem seen by the debugger
937 (GDB or, for remote targets, the remote stub). Return 0, or
938 -1 if an error occurs (and set *TARGET_ERRNO). */
939 virtual int fileio_unlink (struct inferior *inf,
940 const char *filename,
941 int *target_errno);
942
943 /* Read value of symbolic link FILENAME on the target, in the
944 filesystem as seen by INF. If INF is NULL, use the filesystem
945 seen by the debugger (GDB or, for remote targets, the remote
946 stub). Return a string, or an empty optional if an error
947 occurs (and set *TARGET_ERRNO). */
948 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
949 const char *filename,
950 int *target_errno);
951
952 /* Implement the "info proc" command. Returns true if the target
953 actually implemented the command, false otherwise. */
954 virtual bool info_proc (const char *, enum info_proc_what);
955
956 /* Tracepoint-related operations. */
957
958 /* Prepare the target for a tracing run. */
959 virtual void trace_init ()
960 TARGET_DEFAULT_NORETURN (tcomplain ());
961
962 /* Send full details of a tracepoint location to the target. */
963 virtual void download_tracepoint (struct bp_location *location)
964 TARGET_DEFAULT_NORETURN (tcomplain ());
965
966 /* Is the target able to download tracepoint locations in current
967 state? */
968 virtual bool can_download_tracepoint ()
969 TARGET_DEFAULT_RETURN (false);
970
971 /* Send full details of a trace state variable to the target. */
972 virtual void download_trace_state_variable (const trace_state_variable &tsv)
973 TARGET_DEFAULT_NORETURN (tcomplain ());
974
975 /* Enable a tracepoint on the target. */
976 virtual void enable_tracepoint (struct bp_location *location)
977 TARGET_DEFAULT_NORETURN (tcomplain ());
978
979 /* Disable a tracepoint on the target. */
980 virtual void disable_tracepoint (struct bp_location *location)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Inform the target info of memory regions that are readonly
984 (such as text sections), and so it should return data from
985 those rather than look in the trace buffer. */
986 virtual void trace_set_readonly_regions ()
987 TARGET_DEFAULT_NORETURN (tcomplain ());
988
989 /* Start a trace run. */
990 virtual void trace_start ()
991 TARGET_DEFAULT_NORETURN (tcomplain ());
992
993 /* Get the current status of a tracing run. */
994 virtual int get_trace_status (struct trace_status *ts)
995 TARGET_DEFAULT_RETURN (-1);
996
997 virtual void get_tracepoint_status (struct breakpoint *tp,
998 struct uploaded_tp *utp)
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Stop a trace run. */
1002 virtual void trace_stop ()
1003 TARGET_DEFAULT_NORETURN (tcomplain ());
1004
1005 /* Ask the target to find a trace frame of the given type TYPE,
1006 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1007 number of the trace frame, and also the tracepoint number at
1008 TPP. If no trace frame matches, return -1. May throw if the
1009 operation fails. */
1010 virtual int trace_find (enum trace_find_type type, int num,
1011 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1012 TARGET_DEFAULT_RETURN (-1);
1013
1014 /* Get the value of the trace state variable number TSV, returning
1015 1 if the value is known and writing the value itself into the
1016 location pointed to by VAL, else returning 0. */
1017 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1018 TARGET_DEFAULT_RETURN (false);
1019
1020 virtual int save_trace_data (const char *filename)
1021 TARGET_DEFAULT_NORETURN (tcomplain ());
1022
1023 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1024 TARGET_DEFAULT_RETURN (0);
1025
1026 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1027 TARGET_DEFAULT_RETURN (0);
1028
1029 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1030 ULONGEST offset, LONGEST len)
1031 TARGET_DEFAULT_NORETURN (tcomplain ());
1032
1033 /* Get the minimum length of instruction on which a fast tracepoint
1034 may be set on the target. If this operation is unsupported,
1035 return -1. If for some reason the minimum length cannot be
1036 determined, return 0. */
1037 virtual int get_min_fast_tracepoint_insn_len ()
1038 TARGET_DEFAULT_RETURN (-1);
1039
1040 /* Set the target's tracing behavior in response to unexpected
1041 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1042 virtual void set_disconnected_tracing (int val)
1043 TARGET_DEFAULT_IGNORE ();
1044 virtual void set_circular_trace_buffer (int val)
1045 TARGET_DEFAULT_IGNORE ();
1046 /* Set the size of trace buffer in the target. */
1047 virtual void set_trace_buffer_size (LONGEST val)
1048 TARGET_DEFAULT_IGNORE ();
1049
1050 /* Add/change textual notes about the trace run, returning 1 if
1051 successful, 0 otherwise. */
1052 virtual bool set_trace_notes (const char *user, const char *notes,
1053 const char *stopnotes)
1054 TARGET_DEFAULT_RETURN (false);
1055
1056 /* Return the processor core that thread PTID was last seen on.
1057 This information is updated only when:
1058 - update_thread_list is called
1059 - thread stops
1060 If the core cannot be determined -- either for the specified
1061 thread, or right now, or in this debug session, or for this
1062 target -- return -1. */
1063 virtual int core_of_thread (ptid_t ptid)
1064 TARGET_DEFAULT_RETURN (-1);
1065
1066 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1067 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1068 a match, 0 if there's a mismatch, and -1 if an error is
1069 encountered while reading memory. */
1070 virtual int verify_memory (const gdb_byte *data,
1071 CORE_ADDR memaddr, ULONGEST size)
1072 TARGET_DEFAULT_FUNC (default_verify_memory);
1073
1074 /* Return the address of the start of the Thread Information Block
1075 a Windows OS specific feature. */
1076 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1077 TARGET_DEFAULT_NORETURN (tcomplain ());
1078
1079 /* Send the new settings of write permission variables. */
1080 virtual void set_permissions ()
1081 TARGET_DEFAULT_IGNORE ();
1082
1083 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1084 with its details. Return true on success, false on failure. */
1085 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1086 static_tracepoint_marker *marker)
1087 TARGET_DEFAULT_RETURN (false);
1088
1089 /* Return a vector of all tracepoints markers string id ID, or all
1090 markers if ID is NULL. */
1091 virtual std::vector<static_tracepoint_marker>
1092 static_tracepoint_markers_by_strid (const char *id)
1093 TARGET_DEFAULT_NORETURN (tcomplain ());
1094
1095 /* Return a traceframe info object describing the current
1096 traceframe's contents. This method should not cache data;
1097 higher layers take care of caching, invalidating, and
1098 re-fetching when necessary. */
1099 virtual traceframe_info_up traceframe_info ()
1100 TARGET_DEFAULT_NORETURN (tcomplain ());
1101
1102 /* Ask the target to use or not to use agent according to USE.
1103 Return true if successful, false otherwise. */
1104 virtual bool use_agent (bool use)
1105 TARGET_DEFAULT_NORETURN (tcomplain ());
1106
1107 /* Is the target able to use agent in current state? */
1108 virtual bool can_use_agent ()
1109 TARGET_DEFAULT_RETURN (false);
1110
1111 /* Enable branch tracing for PTID using CONF configuration.
1112 Return a branch trace target information struct for reading and for
1113 disabling branch trace. */
1114 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1115 const struct btrace_config *conf)
1116 TARGET_DEFAULT_NORETURN (tcomplain ());
1117
1118 /* Disable branch tracing and deallocate TINFO. */
1119 virtual void disable_btrace (struct btrace_target_info *tinfo)
1120 TARGET_DEFAULT_NORETURN (tcomplain ());
1121
1122 /* Disable branch tracing and deallocate TINFO. This function is similar
1123 to to_disable_btrace, except that it is called during teardown and is
1124 only allowed to perform actions that are safe. A counter-example would
1125 be attempting to talk to a remote target. */
1126 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1127 TARGET_DEFAULT_NORETURN (tcomplain ());
1128
1129 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1130 DATA is cleared before new trace is added. */
1131 virtual enum btrace_error read_btrace (struct btrace_data *data,
1132 struct btrace_target_info *btinfo,
1133 enum btrace_read_type type)
1134 TARGET_DEFAULT_NORETURN (tcomplain ());
1135
1136 /* Get the branch trace configuration. */
1137 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1138 TARGET_DEFAULT_RETURN (NULL);
1139
1140 /* Current recording method. */
1141 virtual enum record_method record_method (ptid_t ptid)
1142 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1143
1144 /* Stop trace recording. */
1145 virtual void stop_recording ()
1146 TARGET_DEFAULT_IGNORE ();
1147
1148 /* Print information about the recording. */
1149 virtual void info_record ()
1150 TARGET_DEFAULT_IGNORE ();
1151
1152 /* Save the recorded execution trace into a file. */
1153 virtual void save_record (const char *filename)
1154 TARGET_DEFAULT_NORETURN (tcomplain ());
1155
1156 /* Delete the recorded execution trace from the current position
1157 onwards. */
1158 virtual bool supports_delete_record ()
1159 TARGET_DEFAULT_RETURN (false);
1160 virtual void delete_record ()
1161 TARGET_DEFAULT_NORETURN (tcomplain ());
1162
1163 /* Query if the record target is currently replaying PTID. */
1164 virtual bool record_is_replaying (ptid_t ptid)
1165 TARGET_DEFAULT_RETURN (false);
1166
1167 /* Query if the record target will replay PTID if it were resumed in
1168 execution direction DIR. */
1169 virtual bool record_will_replay (ptid_t ptid, int dir)
1170 TARGET_DEFAULT_RETURN (false);
1171
1172 /* Stop replaying. */
1173 virtual void record_stop_replaying ()
1174 TARGET_DEFAULT_IGNORE ();
1175
1176 /* Go to the begin of the execution trace. */
1177 virtual void goto_record_begin ()
1178 TARGET_DEFAULT_NORETURN (tcomplain ());
1179
1180 /* Go to the end of the execution trace. */
1181 virtual void goto_record_end ()
1182 TARGET_DEFAULT_NORETURN (tcomplain ());
1183
1184 /* Go to a specific location in the recorded execution trace. */
1185 virtual void goto_record (ULONGEST insn)
1186 TARGET_DEFAULT_NORETURN (tcomplain ());
1187
1188 /* Disassemble SIZE instructions in the recorded execution trace from
1189 the current position.
1190 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1191 disassemble SIZE succeeding instructions. */
1192 virtual void insn_history (int size, gdb_disassembly_flags flags)
1193 TARGET_DEFAULT_NORETURN (tcomplain ());
1194
1195 /* Disassemble SIZE instructions in the recorded execution trace around
1196 FROM.
1197 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1198 disassemble SIZE instructions after FROM. */
1199 virtual void insn_history_from (ULONGEST from, int size,
1200 gdb_disassembly_flags flags)
1201 TARGET_DEFAULT_NORETURN (tcomplain ());
1202
1203 /* Disassemble a section of the recorded execution trace from instruction
1204 BEGIN (inclusive) to instruction END (inclusive). */
1205 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1206 gdb_disassembly_flags flags)
1207 TARGET_DEFAULT_NORETURN (tcomplain ());
1208
1209 /* Print a function trace of the recorded execution trace.
1210 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1211 succeeding functions. */
1212 virtual void call_history (int size, record_print_flags flags)
1213 TARGET_DEFAULT_NORETURN (tcomplain ());
1214
1215 /* Print a function trace of the recorded execution trace starting
1216 at function FROM.
1217 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1218 SIZE functions after FROM. */
1219 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1220 TARGET_DEFAULT_NORETURN (tcomplain ());
1221
1222 /* Print a function trace of an execution trace section from function BEGIN
1223 (inclusive) to function END (inclusive). */
1224 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1225 TARGET_DEFAULT_NORETURN (tcomplain ());
1226
1227 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1228 non-empty annex. */
1229 virtual bool augmented_libraries_svr4_read ()
1230 TARGET_DEFAULT_RETURN (false);
1231
1232 /* Those unwinders are tried before any other arch unwinders. If
1233 SELF doesn't have unwinders, it should delegate to the
1234 "beneath" target. */
1235 virtual const struct frame_unwind *get_unwinder ()
1236 TARGET_DEFAULT_RETURN (NULL);
1237
1238 virtual const struct frame_unwind *get_tailcall_unwinder ()
1239 TARGET_DEFAULT_RETURN (NULL);
1240
1241 /* Prepare to generate a core file. */
1242 virtual void prepare_to_generate_core ()
1243 TARGET_DEFAULT_IGNORE ();
1244
1245 /* Cleanup after generating a core file. */
1246 virtual void done_generating_core ()
1247 TARGET_DEFAULT_IGNORE ();
1248 };
1249
1250 /* Deleter for std::unique_ptr. See comments in
1251 target_ops::~target_ops and target_ops::close about heap-allocated
1252 targets. */
1253 struct target_ops_deleter
1254 {
1255 void operator() (target_ops *target)
1256 {
1257 target->close ();
1258 }
1259 };
1260
1261 /* A unique pointer for target_ops. */
1262 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1263
1264 /* Native target backends call this once at initialization time to
1265 inform the core about which is the target that can respond to "run"
1266 or "attach". Note: native targets are always singletons. */
1267 extern void set_native_target (target_ops *target);
1268
1269 /* Get the registered native target, if there's one. Otherwise return
1270 NULL. */
1271 extern target_ops *get_native_target ();
1272
1273 /* Type that manages a target stack. See description of target stacks
1274 and strata at the top of the file. */
1275
1276 class target_stack
1277 {
1278 public:
1279 target_stack () = default;
1280 DISABLE_COPY_AND_ASSIGN (target_stack);
1281
1282 /* Push a new target into the stack of the existing target
1283 accessors, possibly superseding some existing accessor. */
1284 void push (target_ops *t);
1285
1286 /* Remove a target from the stack, wherever it may be. Return true
1287 if it was removed, false otherwise. */
1288 bool unpush (target_ops *t);
1289
1290 /* Returns true if T is pushed on the target stack. */
1291 bool is_pushed (target_ops *t) const
1292 { return at (t->to_stratum) == t; }
1293
1294 /* Return the target at STRATUM. */
1295 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1296
1297 /* Return the target at the top of the stack. */
1298 target_ops *top () const { return at (m_top); }
1299
1300 /* Find the next target down the stack from the specified target. */
1301 target_ops *find_beneath (const target_ops *t) const;
1302
1303 private:
1304 /* The stratum of the top target. */
1305 enum strata m_top {};
1306
1307 /* The stack, represented as an array, with one slot per stratum.
1308 If no target is pushed at some stratum, the corresponding slot is
1309 null. */
1310 target_ops *m_stack[(int) debug_stratum + 1] {};
1311 };
1312
1313 /* The ops structure for our "current" target process. This should
1314 never be NULL. If there is no target, it points to the dummy_target. */
1315
1316 extern target_ops *current_top_target ();
1317
1318 /* Define easy words for doing these operations on our current target. */
1319
1320 #define target_shortname (current_top_target ()->shortname ())
1321 #define target_longname (current_top_target ()->longname ())
1322
1323 /* Does whatever cleanup is required for a target that we are no
1324 longer going to be calling. This routine is automatically always
1325 called after popping the target off the target stack - the target's
1326 own methods are no longer available through the target vector.
1327 Closing file descriptors and freeing all memory allocated memory are
1328 typical things it should do. */
1329
1330 void target_close (struct target_ops *targ);
1331
1332 /* Find the correct target to use for "attach". If a target on the
1333 current stack supports attaching, then it is returned. Otherwise,
1334 the default run target is returned. */
1335
1336 extern struct target_ops *find_attach_target (void);
1337
1338 /* Find the correct target to use for "run". If a target on the
1339 current stack supports creating a new inferior, then it is
1340 returned. Otherwise, the default run target is returned. */
1341
1342 extern struct target_ops *find_run_target (void);
1343
1344 /* Some targets don't generate traps when attaching to the inferior,
1345 or their target_attach implementation takes care of the waiting.
1346 These targets must set to_attach_no_wait. */
1347
1348 #define target_attach_no_wait() \
1349 (current_top_target ()->attach_no_wait ())
1350
1351 /* The target_attach operation places a process under debugger control,
1352 and stops the process.
1353
1354 This operation provides a target-specific hook that allows the
1355 necessary bookkeeping to be performed after an attach completes. */
1356 #define target_post_attach(pid) \
1357 (current_top_target ()->post_attach) (pid)
1358
1359 /* Display a message indicating we're about to detach from the current
1360 inferior process. */
1361
1362 extern void target_announce_detach (int from_tty);
1363
1364 /* Takes a program previously attached to and detaches it.
1365 The program may resume execution (some targets do, some don't) and will
1366 no longer stop on signals, etc. We better not have left any breakpoints
1367 in the program or it'll die when it hits one. FROM_TTY says whether to be
1368 verbose or not. */
1369
1370 extern void target_detach (inferior *inf, int from_tty);
1371
1372 /* Disconnect from the current target without resuming it (leaving it
1373 waiting for a debugger). */
1374
1375 extern void target_disconnect (const char *, int);
1376
1377 /* Resume execution (or prepare for execution) of a target thread,
1378 process or all processes. STEP says whether to hardware
1379 single-step or to run free; SIGGNAL is the signal to be given to
1380 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1381 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1382 process id'. A wildcard PTID (all threads, or all threads of
1383 process) means `step/resume INFERIOR_PTID, and let other threads
1384 (for which the wildcard PTID matches) resume with their
1385 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1386 is in "pass" state, or with no signal if in "no pass" state.
1387
1388 In order to efficiently handle batches of resumption requests,
1389 targets may implement this method such that it records the
1390 resumption request, but defers the actual resumption to the
1391 target_commit_resume method implementation. See
1392 target_commit_resume below. */
1393 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1394
1395 /* Commit a series of resumption requests previously prepared with
1396 target_resume calls.
1397
1398 GDB always calls target_commit_resume after calling target_resume
1399 one or more times. A target may thus use this method in
1400 coordination with the target_resume method to batch target-side
1401 resumption requests. In that case, the target doesn't actually
1402 resume in its target_resume implementation. Instead, it prepares
1403 the resumption in target_resume, and defers the actual resumption
1404 to target_commit_resume. E.g., the remote target uses this to
1405 coalesce multiple resumption requests in a single vCont packet. */
1406 extern void target_commit_resume ();
1407
1408 /* Setup to defer target_commit_resume calls, and reactivate
1409 target_commit_resume on destruction, if it was previously
1410 active. */
1411 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1412
1413 /* For target_read_memory see target/target.h. */
1414
1415 /* The default target_ops::to_wait implementation. */
1416
1417 extern ptid_t default_target_wait (struct target_ops *ops,
1418 ptid_t ptid,
1419 struct target_waitstatus *status,
1420 int options);
1421
1422 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1423
1424 extern void target_fetch_registers (struct regcache *regcache, int regno);
1425
1426 /* Store at least register REGNO, or all regs if REGNO == -1.
1427 It can store as many registers as it wants to, so target_prepare_to_store
1428 must have been previously called. Calls error() if there are problems. */
1429
1430 extern void target_store_registers (struct regcache *regcache, int regs);
1431
1432 /* Get ready to modify the registers array. On machines which store
1433 individual registers, this doesn't need to do anything. On machines
1434 which store all the registers in one fell swoop, this makes sure
1435 that REGISTERS contains all the registers from the program being
1436 debugged. */
1437
1438 #define target_prepare_to_store(regcache) \
1439 (current_top_target ()->prepare_to_store) (regcache)
1440
1441 /* Determine current address space of thread PTID. */
1442
1443 struct address_space *target_thread_address_space (ptid_t);
1444
1445 /* Implement the "info proc" command. This returns one if the request
1446 was handled, and zero otherwise. It can also throw an exception if
1447 an error was encountered while attempting to handle the
1448 request. */
1449
1450 int target_info_proc (const char *, enum info_proc_what);
1451
1452 /* Returns true if this target can disable address space randomization. */
1453
1454 int target_supports_disable_randomization (void);
1455
1456 /* Returns true if this target can enable and disable tracepoints
1457 while a trace experiment is running. */
1458
1459 #define target_supports_enable_disable_tracepoint() \
1460 (current_top_target ()->supports_enable_disable_tracepoint) ()
1461
1462 #define target_supports_string_tracing() \
1463 (current_top_target ()->supports_string_tracing) ()
1464
1465 /* Returns true if this target can handle breakpoint conditions
1466 on its end. */
1467
1468 #define target_supports_evaluation_of_breakpoint_conditions() \
1469 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1470
1471 /* Returns true if this target can handle breakpoint commands
1472 on its end. */
1473
1474 #define target_can_run_breakpoint_commands() \
1475 (current_top_target ()->can_run_breakpoint_commands) ()
1476
1477 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1478 int, int *);
1479
1480 /* For target_read_memory see target/target.h. */
1481
1482 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1483 ssize_t len);
1484
1485 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1486
1487 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1488
1489 /* For target_write_memory see target/target.h. */
1490
1491 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1492 ssize_t len);
1493
1494 /* Fetches the target's memory map. If one is found it is sorted
1495 and returned, after some consistency checking. Otherwise, NULL
1496 is returned. */
1497 std::vector<mem_region> target_memory_map (void);
1498
1499 /* Erases all flash memory regions on the target. */
1500 void flash_erase_command (const char *cmd, int from_tty);
1501
1502 /* Erase the specified flash region. */
1503 void target_flash_erase (ULONGEST address, LONGEST length);
1504
1505 /* Finish a sequence of flash operations. */
1506 void target_flash_done (void);
1507
1508 /* Describes a request for a memory write operation. */
1509 struct memory_write_request
1510 {
1511 memory_write_request (ULONGEST begin_, ULONGEST end_,
1512 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1513 : begin (begin_), end (end_), data (data_), baton (baton_)
1514 {}
1515
1516 /* Begining address that must be written. */
1517 ULONGEST begin;
1518 /* Past-the-end address. */
1519 ULONGEST end;
1520 /* The data to write. */
1521 gdb_byte *data;
1522 /* A callback baton for progress reporting for this request. */
1523 void *baton;
1524 };
1525
1526 /* Enumeration specifying different flash preservation behaviour. */
1527 enum flash_preserve_mode
1528 {
1529 flash_preserve,
1530 flash_discard
1531 };
1532
1533 /* Write several memory blocks at once. This version can be more
1534 efficient than making several calls to target_write_memory, in
1535 particular because it can optimize accesses to flash memory.
1536
1537 Moreover, this is currently the only memory access function in gdb
1538 that supports writing to flash memory, and it should be used for
1539 all cases where access to flash memory is desirable.
1540
1541 REQUESTS is the vector (see vec.h) of memory_write_request.
1542 PRESERVE_FLASH_P indicates what to do with blocks which must be
1543 erased, but not completely rewritten.
1544 PROGRESS_CB is a function that will be periodically called to provide
1545 feedback to user. It will be called with the baton corresponding
1546 to the request currently being written. It may also be called
1547 with a NULL baton, when preserved flash sectors are being rewritten.
1548
1549 The function returns 0 on success, and error otherwise. */
1550 int target_write_memory_blocks
1551 (const std::vector<memory_write_request> &requests,
1552 enum flash_preserve_mode preserve_flash_p,
1553 void (*progress_cb) (ULONGEST, void *));
1554
1555 /* Print a line about the current target. */
1556
1557 #define target_files_info() \
1558 (current_top_target ()->files_info) ()
1559
1560 /* Insert a breakpoint at address BP_TGT->placed_address in
1561 the target machine. Returns 0 for success, and returns non-zero or
1562 throws an error (with a detailed failure reason error code and
1563 message) otherwise. */
1564
1565 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1566 struct bp_target_info *bp_tgt);
1567
1568 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1569 machine. Result is 0 for success, non-zero for error. */
1570
1571 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1572 struct bp_target_info *bp_tgt,
1573 enum remove_bp_reason reason);
1574
1575 /* Return true if the target stack has a non-default
1576 "terminal_ours" method. */
1577
1578 extern int target_supports_terminal_ours (void);
1579
1580 /* Kill the inferior process. Make it go away. */
1581
1582 extern void target_kill (void);
1583
1584 /* Load an executable file into the target process. This is expected
1585 to not only bring new code into the target process, but also to
1586 update GDB's symbol tables to match.
1587
1588 ARG contains command-line arguments, to be broken down with
1589 buildargv (). The first non-switch argument is the filename to
1590 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1591 0)), which is an offset to apply to the load addresses of FILE's
1592 sections. The target may define switches, or other non-switch
1593 arguments, as it pleases. */
1594
1595 extern void target_load (const char *arg, int from_tty);
1596
1597 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1598 notification of inferior events such as fork and vork immediately
1599 after the inferior is created. (This because of how gdb gets an
1600 inferior created via invoking a shell to do it. In such a scenario,
1601 if the shell init file has commands in it, the shell will fork and
1602 exec for each of those commands, and we will see each such fork
1603 event. Very bad.)
1604
1605 Such targets will supply an appropriate definition for this function. */
1606
1607 #define target_post_startup_inferior(ptid) \
1608 (current_top_target ()->post_startup_inferior) (ptid)
1609
1610 /* On some targets, we can catch an inferior fork or vfork event when
1611 it occurs. These functions insert/remove an already-created
1612 catchpoint for such events. They return 0 for success, 1 if the
1613 catchpoint type is not supported and -1 for failure. */
1614
1615 #define target_insert_fork_catchpoint(pid) \
1616 (current_top_target ()->insert_fork_catchpoint) (pid)
1617
1618 #define target_remove_fork_catchpoint(pid) \
1619 (current_top_target ()->remove_fork_catchpoint) (pid)
1620
1621 #define target_insert_vfork_catchpoint(pid) \
1622 (current_top_target ()->insert_vfork_catchpoint) (pid)
1623
1624 #define target_remove_vfork_catchpoint(pid) \
1625 (current_top_target ()->remove_vfork_catchpoint) (pid)
1626
1627 /* If the inferior forks or vforks, this function will be called at
1628 the next resume in order to perform any bookkeeping and fiddling
1629 necessary to continue debugging either the parent or child, as
1630 requested, and releasing the other. Information about the fork
1631 or vfork event is available via get_last_target_status ().
1632 This function returns 1 if the inferior should not be resumed
1633 (i.e. there is another event pending). */
1634
1635 int target_follow_fork (int follow_child, int detach_fork);
1636
1637 /* Handle the target-specific bookkeeping required when the inferior
1638 makes an exec call. INF is the exec'd inferior. */
1639
1640 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1641
1642 /* On some targets, we can catch an inferior exec event when it
1643 occurs. These functions insert/remove an already-created
1644 catchpoint for such events. They return 0 for success, 1 if the
1645 catchpoint type is not supported and -1 for failure. */
1646
1647 #define target_insert_exec_catchpoint(pid) \
1648 (current_top_target ()->insert_exec_catchpoint) (pid)
1649
1650 #define target_remove_exec_catchpoint(pid) \
1651 (current_top_target ()->remove_exec_catchpoint) (pid)
1652
1653 /* Syscall catch.
1654
1655 NEEDED is true if any syscall catch (of any kind) is requested.
1656 If NEEDED is false, it means the target can disable the mechanism to
1657 catch system calls because there are no more catchpoints of this type.
1658
1659 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1660 being requested. In this case, SYSCALL_COUNTS should be ignored.
1661
1662 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1663 element in this array is nonzero if that syscall should be caught.
1664 This argument only matters if ANY_COUNT is zero.
1665
1666 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1667 for failure. */
1668
1669 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1670 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1671 syscall_counts)
1672
1673 /* The debugger has completed a blocking wait() call. There is now
1674 some process event that must be processed. This function should
1675 be defined by those targets that require the debugger to perform
1676 cleanup or internal state changes in response to the process event. */
1677
1678 /* For target_mourn_inferior see target/target.h. */
1679
1680 /* Does target have enough data to do a run or attach command? */
1681
1682 extern int target_can_run ();
1683
1684 /* Set list of signals to be handled in the target.
1685
1686 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1687 (enum gdb_signal). For every signal whose entry in this array is
1688 non-zero, the target is allowed -but not required- to skip reporting
1689 arrival of the signal to the GDB core by returning from target_wait,
1690 and to pass the signal directly to the inferior instead.
1691
1692 However, if the target is hardware single-stepping a thread that is
1693 about to receive a signal, it needs to be reported in any case, even
1694 if mentioned in a previous target_pass_signals call. */
1695
1696 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1697
1698 /* Set list of signals the target may pass to the inferior. This
1699 directly maps to the "handle SIGNAL pass/nopass" setting.
1700
1701 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1702 number (enum gdb_signal). For every signal whose entry in this
1703 array is non-zero, the target is allowed to pass the signal to the
1704 inferior. Signals not present in the array shall be silently
1705 discarded. This does not influence whether to pass signals to the
1706 inferior as a result of a target_resume call. This is useful in
1707 scenarios where the target needs to decide whether to pass or not a
1708 signal to the inferior without GDB core involvement, such as for
1709 example, when detaching (as threads may have been suspended with
1710 pending signals not reported to GDB). */
1711
1712 extern void target_program_signals (int nsig, unsigned char *program_signals);
1713
1714 /* Check to see if a thread is still alive. */
1715
1716 extern int target_thread_alive (ptid_t ptid);
1717
1718 /* Sync the target's threads with GDB's thread list. */
1719
1720 extern void target_update_thread_list (void);
1721
1722 /* Make target stop in a continuable fashion. (For instance, under
1723 Unix, this should act like SIGSTOP). Note that this function is
1724 asynchronous: it does not wait for the target to become stopped
1725 before returning. If this is the behavior you want please use
1726 target_stop_and_wait. */
1727
1728 extern void target_stop (ptid_t ptid);
1729
1730 /* Interrupt the target. Unlike target_stop, this does not specify
1731 which thread/process reports the stop. For most target this acts
1732 like raising a SIGINT, though that's not absolutely required. This
1733 function is asynchronous. */
1734
1735 extern void target_interrupt ();
1736
1737 /* Pass a ^C, as determined to have been pressed by checking the quit
1738 flag, to the target, as if the user had typed the ^C on the
1739 inferior's controlling terminal while the inferior was in the
1740 foreground. Remote targets may take the opportunity to detect the
1741 remote side is not responding and offer to disconnect. */
1742
1743 extern void target_pass_ctrlc (void);
1744
1745 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1746 target_interrupt. */
1747 extern void default_target_pass_ctrlc (struct target_ops *ops);
1748
1749 /* Send the specified COMMAND to the target's monitor
1750 (shell,interpreter) for execution. The result of the query is
1751 placed in OUTBUF. */
1752
1753 #define target_rcmd(command, outbuf) \
1754 (current_top_target ()->rcmd) (command, outbuf)
1755
1756
1757 /* Does the target include all of memory, or only part of it? This
1758 determines whether we look up the target chain for other parts of
1759 memory if this target can't satisfy a request. */
1760
1761 extern int target_has_all_memory_1 (void);
1762 #define target_has_all_memory target_has_all_memory_1 ()
1763
1764 /* Does the target include memory? (Dummy targets don't.) */
1765
1766 extern int target_has_memory_1 (void);
1767 #define target_has_memory target_has_memory_1 ()
1768
1769 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1770 we start a process.) */
1771
1772 extern int target_has_stack_1 (void);
1773 #define target_has_stack target_has_stack_1 ()
1774
1775 /* Does the target have registers? (Exec files don't.) */
1776
1777 extern int target_has_registers_1 (void);
1778 #define target_has_registers target_has_registers_1 ()
1779
1780 /* Does the target have execution? Can we make it jump (through
1781 hoops), or pop its stack a few times? This means that the current
1782 target is currently executing; for some targets, that's the same as
1783 whether or not the target is capable of execution, but there are
1784 also targets which can be current while not executing. In that
1785 case this will become true after to_create_inferior or
1786 to_attach. */
1787
1788 extern int target_has_execution_1 (ptid_t);
1789
1790 /* Like target_has_execution_1, but always passes inferior_ptid. */
1791
1792 extern int target_has_execution_current (void);
1793
1794 #define target_has_execution target_has_execution_current ()
1795
1796 /* Default implementations for process_stratum targets. Return true
1797 if there's a selected inferior, false otherwise. */
1798
1799 extern int default_child_has_all_memory ();
1800 extern int default_child_has_memory ();
1801 extern int default_child_has_stack ();
1802 extern int default_child_has_registers ();
1803 extern int default_child_has_execution (ptid_t the_ptid);
1804
1805 /* Can the target support the debugger control of thread execution?
1806 Can it lock the thread scheduler? */
1807
1808 #define target_can_lock_scheduler \
1809 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1810
1811 /* Controls whether async mode is permitted. */
1812 extern int target_async_permitted;
1813
1814 /* Can the target support asynchronous execution? */
1815 #define target_can_async_p() (current_top_target ()->can_async_p ())
1816
1817 /* Is the target in asynchronous execution mode? */
1818 #define target_is_async_p() (current_top_target ()->is_async_p ())
1819
1820 /* Enables/disabled async target events. */
1821 extern void target_async (int enable);
1822
1823 /* Enables/disables thread create and exit events. */
1824 extern void target_thread_events (int enable);
1825
1826 /* Whether support for controlling the target backends always in
1827 non-stop mode is enabled. */
1828 extern enum auto_boolean target_non_stop_enabled;
1829
1830 /* Is the target in non-stop mode? Some targets control the inferior
1831 in non-stop mode even with "set non-stop off". Always true if "set
1832 non-stop" is on. */
1833 extern int target_is_non_stop_p (void);
1834
1835 #define target_execution_direction() \
1836 (current_top_target ()->execution_direction ())
1837
1838 /* Converts a process id to a string. Usually, the string just contains
1839 `process xyz', but on some systems it may contain
1840 `process xyz thread abc'. */
1841
1842 extern const char *target_pid_to_str (ptid_t ptid);
1843
1844 extern const char *normal_pid_to_str (ptid_t ptid);
1845
1846 /* Return a short string describing extra information about PID,
1847 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1848 is okay. */
1849
1850 #define target_extra_thread_info(TP) \
1851 (current_top_target ()->extra_thread_info (TP))
1852
1853 /* Return the thread's name, or NULL if the target is unable to determine it.
1854 The returned value must not be freed by the caller. */
1855
1856 extern const char *target_thread_name (struct thread_info *);
1857
1858 /* Given a pointer to a thread library specific thread handle and
1859 its length, return a pointer to the corresponding thread_info struct. */
1860
1861 extern struct thread_info *target_thread_handle_to_thread_info
1862 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1863
1864 /* Attempts to find the pathname of the executable file
1865 that was run to create a specified process.
1866
1867 The process PID must be stopped when this operation is used.
1868
1869 If the executable file cannot be determined, NULL is returned.
1870
1871 Else, a pointer to a character string containing the pathname
1872 is returned. This string should be copied into a buffer by
1873 the client if the string will not be immediately used, or if
1874 it must persist. */
1875
1876 #define target_pid_to_exec_file(pid) \
1877 (current_top_target ()->pid_to_exec_file) (pid)
1878
1879 /* See the to_thread_architecture description in struct target_ops. */
1880
1881 #define target_thread_architecture(ptid) \
1882 (current_top_target ()->thread_architecture (ptid))
1883
1884 /*
1885 * Iterator function for target memory regions.
1886 * Calls a callback function once for each memory region 'mapped'
1887 * in the child process. Defined as a simple macro rather than
1888 * as a function macro so that it can be tested for nullity.
1889 */
1890
1891 #define target_find_memory_regions(FUNC, DATA) \
1892 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1893
1894 /*
1895 * Compose corefile .note section.
1896 */
1897
1898 #define target_make_corefile_notes(BFD, SIZE_P) \
1899 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1900
1901 /* Bookmark interfaces. */
1902 #define target_get_bookmark(ARGS, FROM_TTY) \
1903 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1904
1905 #define target_goto_bookmark(ARG, FROM_TTY) \
1906 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1907
1908 /* Hardware watchpoint interfaces. */
1909
1910 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1911 write). Only the INFERIOR_PTID task is being queried. */
1912
1913 #define target_stopped_by_watchpoint() \
1914 ((current_top_target ()->stopped_by_watchpoint) ())
1915
1916 /* Returns non-zero if the target stopped because it executed a
1917 software breakpoint instruction. */
1918
1919 #define target_stopped_by_sw_breakpoint() \
1920 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1921
1922 #define target_supports_stopped_by_sw_breakpoint() \
1923 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1924
1925 #define target_stopped_by_hw_breakpoint() \
1926 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1927
1928 #define target_supports_stopped_by_hw_breakpoint() \
1929 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1930
1931 /* Non-zero if we have steppable watchpoints */
1932
1933 #define target_have_steppable_watchpoint \
1934 (current_top_target ()->have_steppable_watchpoint ())
1935
1936 /* Non-zero if we have continuable watchpoints */
1937
1938 #define target_have_continuable_watchpoint \
1939 (current_top_target ()->have_continuable_watchpoint ())
1940
1941 /* Provide defaults for hardware watchpoint functions. */
1942
1943 /* If the *_hw_beakpoint functions have not been defined
1944 elsewhere use the definitions in the target vector. */
1945
1946 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1947 Returns negative if the target doesn't have enough hardware debug
1948 registers available. Return zero if hardware watchpoint of type
1949 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1950 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1951 CNT is the number of such watchpoints used so far, including this
1952 one. OTHERTYPE is the number of watchpoints of other types than
1953 this one used so far. */
1954
1955 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1956 (current_top_target ()->can_use_hw_breakpoint) ( \
1957 TYPE, CNT, OTHERTYPE)
1958
1959 /* Returns the number of debug registers needed to watch the given
1960 memory region, or zero if not supported. */
1961
1962 #define target_region_ok_for_hw_watchpoint(addr, len) \
1963 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1964
1965
1966 #define target_can_do_single_step() \
1967 (current_top_target ()->can_do_single_step) ()
1968
1969 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1970 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1971 COND is the expression for its condition, or NULL if there's none.
1972 Returns 0 for success, 1 if the watchpoint type is not supported,
1973 -1 for failure. */
1974
1975 #define target_insert_watchpoint(addr, len, type, cond) \
1976 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
1977
1978 #define target_remove_watchpoint(addr, len, type, cond) \
1979 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
1980
1981 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1982 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1983 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1984 masked watchpoints are not supported, -1 for failure. */
1985
1986 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1987 enum target_hw_bp_type);
1988
1989 /* Remove a masked watchpoint at ADDR with the mask MASK.
1990 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1991 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1992 for failure. */
1993
1994 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1995 enum target_hw_bp_type);
1996
1997 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1998 the target machine. Returns 0 for success, and returns non-zero or
1999 throws an error (with a detailed failure reason error code and
2000 message) otherwise. */
2001
2002 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2003 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2004
2005 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2006 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2007
2008 /* Return number of debug registers needed for a ranged breakpoint,
2009 or -1 if ranged breakpoints are not supported. */
2010
2011 extern int target_ranged_break_num_registers (void);
2012
2013 /* Return non-zero if target knows the data address which triggered this
2014 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2015 INFERIOR_PTID task is being queried. */
2016 #define target_stopped_data_address(target, addr_p) \
2017 (target)->stopped_data_address (addr_p)
2018
2019 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2020 LENGTH bytes beginning at START. */
2021 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2022 (target)->watchpoint_addr_within_range (addr, start, length)
2023
2024 /* Return non-zero if the target is capable of using hardware to evaluate
2025 the condition expression. In this case, if the condition is false when
2026 the watched memory location changes, execution may continue without the
2027 debugger being notified.
2028
2029 Due to limitations in the hardware implementation, it may be capable of
2030 avoiding triggering the watchpoint in some cases where the condition
2031 expression is false, but may report some false positives as well.
2032 For this reason, GDB will still evaluate the condition expression when
2033 the watchpoint triggers. */
2034 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2035 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2036
2037 /* Return number of debug registers needed for a masked watchpoint,
2038 -1 if masked watchpoints are not supported or -2 if the given address
2039 and mask combination cannot be used. */
2040
2041 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2042
2043 /* Target can execute in reverse? */
2044 #define target_can_execute_reverse \
2045 current_top_target ()->can_execute_reverse ()
2046
2047 extern const struct target_desc *target_read_description (struct target_ops *);
2048
2049 #define target_get_ada_task_ptid(lwp, tid) \
2050 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2051
2052 /* Utility implementation of searching memory. */
2053 extern int simple_search_memory (struct target_ops* ops,
2054 CORE_ADDR start_addr,
2055 ULONGEST search_space_len,
2056 const gdb_byte *pattern,
2057 ULONGEST pattern_len,
2058 CORE_ADDR *found_addrp);
2059
2060 /* Main entry point for searching memory. */
2061 extern int target_search_memory (CORE_ADDR start_addr,
2062 ULONGEST search_space_len,
2063 const gdb_byte *pattern,
2064 ULONGEST pattern_len,
2065 CORE_ADDR *found_addrp);
2066
2067 /* Target file operations. */
2068
2069 /* Return nonzero if the filesystem seen by the current inferior
2070 is the local filesystem, zero otherwise. */
2071 #define target_filesystem_is_local() \
2072 current_top_target ()->filesystem_is_local ()
2073
2074 /* Open FILENAME on the target, in the filesystem as seen by INF,
2075 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2076 by the debugger (GDB or, for remote targets, the remote stub).
2077 Return a target file descriptor, or -1 if an error occurs (and
2078 set *TARGET_ERRNO). */
2079 extern int target_fileio_open (struct inferior *inf,
2080 const char *filename, int flags,
2081 int mode, int *target_errno);
2082
2083 /* Like target_fileio_open, but print a warning message if the
2084 file is being accessed over a link that may be slow. */
2085 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2086 const char *filename,
2087 int flags,
2088 int mode,
2089 int *target_errno);
2090
2091 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2092 Return the number of bytes written, or -1 if an error occurs
2093 (and set *TARGET_ERRNO). */
2094 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2095 ULONGEST offset, int *target_errno);
2096
2097 /* Read up to LEN bytes FD on the target into READ_BUF.
2098 Return the number of bytes read, or -1 if an error occurs
2099 (and set *TARGET_ERRNO). */
2100 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2101 ULONGEST offset, int *target_errno);
2102
2103 /* Get information about the file opened as FD on the target
2104 and put it in SB. Return 0 on success, or -1 if an error
2105 occurs (and set *TARGET_ERRNO). */
2106 extern int target_fileio_fstat (int fd, struct stat *sb,
2107 int *target_errno);
2108
2109 /* Close FD on the target. Return 0, or -1 if an error occurs
2110 (and set *TARGET_ERRNO). */
2111 extern int target_fileio_close (int fd, int *target_errno);
2112
2113 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2114 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2115 for remote targets, the remote stub). Return 0, or -1 if an error
2116 occurs (and set *TARGET_ERRNO). */
2117 extern int target_fileio_unlink (struct inferior *inf,
2118 const char *filename,
2119 int *target_errno);
2120
2121 /* Read value of symbolic link FILENAME on the target, in the
2122 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2123 by the debugger (GDB or, for remote targets, the remote stub).
2124 Return a null-terminated string allocated via xmalloc, or NULL if
2125 an error occurs (and set *TARGET_ERRNO). */
2126 extern gdb::optional<std::string> target_fileio_readlink
2127 (struct inferior *inf, const char *filename, int *target_errno);
2128
2129 /* Read target file FILENAME, in the filesystem as seen by INF. If
2130 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2131 remote targets, the remote stub). The return value will be -1 if
2132 the transfer fails or is not supported; 0 if the object is empty;
2133 or the length of the object otherwise. If a positive value is
2134 returned, a sufficiently large buffer will be allocated using
2135 xmalloc and returned in *BUF_P containing the contents of the
2136 object.
2137
2138 This method should be used for objects sufficiently small to store
2139 in a single xmalloc'd buffer, when no fixed bound on the object's
2140 size is known in advance. */
2141 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2142 const char *filename,
2143 gdb_byte **buf_p);
2144
2145 /* Read target file FILENAME, in the filesystem as seen by INF. If
2146 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2147 remote targets, the remote stub). The result is NUL-terminated and
2148 returned as a string, allocated using xmalloc. If an error occurs
2149 or the transfer is unsupported, NULL is returned. Empty objects
2150 are returned as allocated but empty strings. A warning is issued
2151 if the result contains any embedded NUL bytes. */
2152 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2153 (struct inferior *inf, const char *filename);
2154
2155
2156 /* Tracepoint-related operations. */
2157
2158 #define target_trace_init() \
2159 (current_top_target ()->trace_init) ()
2160
2161 #define target_download_tracepoint(t) \
2162 (current_top_target ()->download_tracepoint) (t)
2163
2164 #define target_can_download_tracepoint() \
2165 (current_top_target ()->can_download_tracepoint) ()
2166
2167 #define target_download_trace_state_variable(tsv) \
2168 (current_top_target ()->download_trace_state_variable) (tsv)
2169
2170 #define target_enable_tracepoint(loc) \
2171 (current_top_target ()->enable_tracepoint) (loc)
2172
2173 #define target_disable_tracepoint(loc) \
2174 (current_top_target ()->disable_tracepoint) (loc)
2175
2176 #define target_trace_start() \
2177 (current_top_target ()->trace_start) ()
2178
2179 #define target_trace_set_readonly_regions() \
2180 (current_top_target ()->trace_set_readonly_regions) ()
2181
2182 #define target_get_trace_status(ts) \
2183 (current_top_target ()->get_trace_status) (ts)
2184
2185 #define target_get_tracepoint_status(tp,utp) \
2186 (current_top_target ()->get_tracepoint_status) (tp, utp)
2187
2188 #define target_trace_stop() \
2189 (current_top_target ()->trace_stop) ()
2190
2191 #define target_trace_find(type,num,addr1,addr2,tpp) \
2192 (current_top_target ()->trace_find) (\
2193 (type), (num), (addr1), (addr2), (tpp))
2194
2195 #define target_get_trace_state_variable_value(tsv,val) \
2196 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2197
2198 #define target_save_trace_data(filename) \
2199 (current_top_target ()->save_trace_data) (filename)
2200
2201 #define target_upload_tracepoints(utpp) \
2202 (current_top_target ()->upload_tracepoints) (utpp)
2203
2204 #define target_upload_trace_state_variables(utsvp) \
2205 (current_top_target ()->upload_trace_state_variables) (utsvp)
2206
2207 #define target_get_raw_trace_data(buf,offset,len) \
2208 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2209
2210 #define target_get_min_fast_tracepoint_insn_len() \
2211 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2212
2213 #define target_set_disconnected_tracing(val) \
2214 (current_top_target ()->set_disconnected_tracing) (val)
2215
2216 #define target_set_circular_trace_buffer(val) \
2217 (current_top_target ()->set_circular_trace_buffer) (val)
2218
2219 #define target_set_trace_buffer_size(val) \
2220 (current_top_target ()->set_trace_buffer_size) (val)
2221
2222 #define target_set_trace_notes(user,notes,stopnotes) \
2223 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2224
2225 #define target_get_tib_address(ptid, addr) \
2226 (current_top_target ()->get_tib_address) ((ptid), (addr))
2227
2228 #define target_set_permissions() \
2229 (current_top_target ()->set_permissions) ()
2230
2231 #define target_static_tracepoint_marker_at(addr, marker) \
2232 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2233
2234 #define target_static_tracepoint_markers_by_strid(marker_id) \
2235 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2236
2237 #define target_traceframe_info() \
2238 (current_top_target ()->traceframe_info) ()
2239
2240 #define target_use_agent(use) \
2241 (current_top_target ()->use_agent) (use)
2242
2243 #define target_can_use_agent() \
2244 (current_top_target ()->can_use_agent) ()
2245
2246 #define target_augmented_libraries_svr4_read() \
2247 (current_top_target ()->augmented_libraries_svr4_read) ()
2248
2249 /* Command logging facility. */
2250
2251 #define target_log_command(p) \
2252 (current_top_target ()->log_command) (p)
2253
2254
2255 extern int target_core_of_thread (ptid_t ptid);
2256
2257 /* See to_get_unwinder in struct target_ops. */
2258 extern const struct frame_unwind *target_get_unwinder (void);
2259
2260 /* See to_get_tailcall_unwinder in struct target_ops. */
2261 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2262
2263 /* This implements basic memory verification, reading target memory
2264 and performing the comparison here (as opposed to accelerated
2265 verification making use of the qCRC packet, for example). */
2266
2267 extern int simple_verify_memory (struct target_ops* ops,
2268 const gdb_byte *data,
2269 CORE_ADDR memaddr, ULONGEST size);
2270
2271 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2272 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2273 if there's a mismatch, and -1 if an error is encountered while
2274 reading memory. Throws an error if the functionality is found not
2275 to be supported by the current target. */
2276 int target_verify_memory (const gdb_byte *data,
2277 CORE_ADDR memaddr, ULONGEST size);
2278
2279 /* Routines for maintenance of the target structures...
2280
2281 add_target: Add a target to the list of all possible targets.
2282 This only makes sense for targets that should be activated using
2283 the "target TARGET_NAME ..." command.
2284
2285 push_target: Make this target the top of the stack of currently used
2286 targets, within its particular stratum of the stack. Result
2287 is 0 if now atop the stack, nonzero if not on top (maybe
2288 should warn user).
2289
2290 unpush_target: Remove this from the stack of currently used targets,
2291 no matter where it is on the list. Returns 0 if no
2292 change, 1 if removed from stack. */
2293
2294 /* Type of callback called when the user activates a target with
2295 "target TARGET_NAME". The callback routine takes the rest of the
2296 parameters from the command, and (if successful) pushes a new
2297 target onto the stack. */
2298 typedef void target_open_ftype (const char *args, int from_tty);
2299
2300 /* Add the target described by INFO to the list of possible targets
2301 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2302 as the command's completer if not NULL. */
2303
2304 extern void add_target (const target_info &info,
2305 target_open_ftype *func,
2306 completer_ftype *completer = NULL);
2307
2308 /* Adds a command ALIAS for the target described by INFO and marks it
2309 deprecated. This is useful for maintaining backwards compatibility
2310 when renaming targets. */
2311
2312 extern void add_deprecated_target_alias (const target_info &info,
2313 const char *alias);
2314
2315 extern void push_target (struct target_ops *);
2316
2317 extern int unpush_target (struct target_ops *);
2318
2319 extern void target_pre_inferior (int);
2320
2321 extern void target_preopen (int);
2322
2323 /* Does whatever cleanup is required to get rid of all pushed targets. */
2324 extern void pop_all_targets (void);
2325
2326 /* Like pop_all_targets, but pops only targets whose stratum is at or
2327 above STRATUM. */
2328 extern void pop_all_targets_at_and_above (enum strata stratum);
2329
2330 /* Like pop_all_targets, but pops only targets whose stratum is
2331 strictly above ABOVE_STRATUM. */
2332 extern void pop_all_targets_above (enum strata above_stratum);
2333
2334 extern int target_is_pushed (struct target_ops *t);
2335
2336 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2337 CORE_ADDR offset);
2338
2339 /* Struct target_section maps address ranges to file sections. It is
2340 mostly used with BFD files, but can be used without (e.g. for handling
2341 raw disks, or files not in formats handled by BFD). */
2342
2343 struct target_section
2344 {
2345 CORE_ADDR addr; /* Lowest address in section */
2346 CORE_ADDR endaddr; /* 1+highest address in section */
2347
2348 struct bfd_section *the_bfd_section;
2349
2350 /* The "owner" of the section.
2351 It can be any unique value. It is set by add_target_sections
2352 and used by remove_target_sections.
2353 For example, for executables it is a pointer to exec_bfd and
2354 for shlibs it is the so_list pointer. */
2355 void *owner;
2356 };
2357
2358 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2359
2360 struct target_section_table
2361 {
2362 struct target_section *sections;
2363 struct target_section *sections_end;
2364 };
2365
2366 /* Return the "section" containing the specified address. */
2367 struct target_section *target_section_by_addr (struct target_ops *target,
2368 CORE_ADDR addr);
2369
2370 /* Return the target section table this target (or the targets
2371 beneath) currently manipulate. */
2372
2373 extern struct target_section_table *target_get_section_table
2374 (struct target_ops *target);
2375
2376 /* From mem-break.c */
2377
2378 extern int memory_remove_breakpoint (struct target_ops *,
2379 struct gdbarch *, struct bp_target_info *,
2380 enum remove_bp_reason);
2381
2382 extern int memory_insert_breakpoint (struct target_ops *,
2383 struct gdbarch *, struct bp_target_info *);
2384
2385 /* Convenience template use to add memory breakpoints support to a
2386 target. */
2387
2388 template <typename BaseTarget>
2389 struct memory_breakpoint_target : public BaseTarget
2390 {
2391 int insert_breakpoint (struct gdbarch *gdbarch,
2392 struct bp_target_info *bp_tgt) override
2393 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2394
2395 int remove_breakpoint (struct gdbarch *gdbarch,
2396 struct bp_target_info *bp_tgt,
2397 enum remove_bp_reason reason) override
2398 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2399 };
2400
2401 /* Check whether the memory at the breakpoint's placed address still
2402 contains the expected breakpoint instruction. */
2403
2404 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2405 struct bp_target_info *bp_tgt);
2406
2407 extern int default_memory_remove_breakpoint (struct gdbarch *,
2408 struct bp_target_info *);
2409
2410 extern int default_memory_insert_breakpoint (struct gdbarch *,
2411 struct bp_target_info *);
2412
2413
2414 /* From target.c */
2415
2416 extern void initialize_targets (void);
2417
2418 extern void noprocess (void) ATTRIBUTE_NORETURN;
2419
2420 extern void target_require_runnable (void);
2421
2422 /* Find the target at STRATUM. If no target is at that stratum,
2423 return NULL. */
2424
2425 struct target_ops *find_target_at (enum strata stratum);
2426
2427 /* Read OS data object of type TYPE from the target, and return it in XML
2428 format. The return value follows the same rules as target_read_stralloc. */
2429
2430 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2431
2432 /* Stuff that should be shared among the various remote targets. */
2433
2434 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2435 information (higher values, more information). */
2436 extern int remote_debug;
2437
2438 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2439 extern int baud_rate;
2440
2441 /* Parity for serial port */
2442 extern int serial_parity;
2443
2444 /* Timeout limit for response from target. */
2445 extern int remote_timeout;
2446
2447 \f
2448
2449 /* Set the show memory breakpoints mode to show, and return a
2450 scoped_restore to restore it back to the current value. */
2451 extern scoped_restore_tmpl<int>
2452 make_scoped_restore_show_memory_breakpoints (int show);
2453
2454 extern int may_write_registers;
2455 extern int may_write_memory;
2456 extern int may_insert_breakpoints;
2457 extern int may_insert_tracepoints;
2458 extern int may_insert_fast_tracepoints;
2459 extern int may_stop;
2460
2461 extern void update_target_permissions (void);
2462
2463 \f
2464 /* Imported from machine dependent code. */
2465
2466 /* See to_enable_btrace in struct target_ops. */
2467 extern struct btrace_target_info *
2468 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2469
2470 /* See to_disable_btrace in struct target_ops. */
2471 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2472
2473 /* See to_teardown_btrace in struct target_ops. */
2474 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2475
2476 /* See to_read_btrace in struct target_ops. */
2477 extern enum btrace_error target_read_btrace (struct btrace_data *,
2478 struct btrace_target_info *,
2479 enum btrace_read_type);
2480
2481 /* See to_btrace_conf in struct target_ops. */
2482 extern const struct btrace_config *
2483 target_btrace_conf (const struct btrace_target_info *);
2484
2485 /* See to_stop_recording in struct target_ops. */
2486 extern void target_stop_recording (void);
2487
2488 /* See to_save_record in struct target_ops. */
2489 extern void target_save_record (const char *filename);
2490
2491 /* Query if the target supports deleting the execution log. */
2492 extern int target_supports_delete_record (void);
2493
2494 /* See to_delete_record in struct target_ops. */
2495 extern void target_delete_record (void);
2496
2497 /* See to_record_method. */
2498 extern enum record_method target_record_method (ptid_t ptid);
2499
2500 /* See to_record_is_replaying in struct target_ops. */
2501 extern int target_record_is_replaying (ptid_t ptid);
2502
2503 /* See to_record_will_replay in struct target_ops. */
2504 extern int target_record_will_replay (ptid_t ptid, int dir);
2505
2506 /* See to_record_stop_replaying in struct target_ops. */
2507 extern void target_record_stop_replaying (void);
2508
2509 /* See to_goto_record_begin in struct target_ops. */
2510 extern void target_goto_record_begin (void);
2511
2512 /* See to_goto_record_end in struct target_ops. */
2513 extern void target_goto_record_end (void);
2514
2515 /* See to_goto_record in struct target_ops. */
2516 extern void target_goto_record (ULONGEST insn);
2517
2518 /* See to_insn_history. */
2519 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2520
2521 /* See to_insn_history_from. */
2522 extern void target_insn_history_from (ULONGEST from, int size,
2523 gdb_disassembly_flags flags);
2524
2525 /* See to_insn_history_range. */
2526 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2527 gdb_disassembly_flags flags);
2528
2529 /* See to_call_history. */
2530 extern void target_call_history (int size, record_print_flags flags);
2531
2532 /* See to_call_history_from. */
2533 extern void target_call_history_from (ULONGEST begin, int size,
2534 record_print_flags flags);
2535
2536 /* See to_call_history_range. */
2537 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2538 record_print_flags flags);
2539
2540 /* See to_prepare_to_generate_core. */
2541 extern void target_prepare_to_generate_core (void);
2542
2543 /* See to_done_generating_core. */
2544 extern void target_done_generating_core (void);
2545
2546 #if GDB_SELF_TEST
2547 namespace selftests {
2548
2549 /* A mock process_stratum target_ops that doesn't read/write registers
2550 anywhere. */
2551
2552 class test_target_ops : public target_ops
2553 {
2554 public:
2555 test_target_ops ()
2556 : target_ops {}
2557 {
2558 to_stratum = process_stratum;
2559 }
2560
2561 const target_info &info () const override;
2562
2563 bool has_registers () override
2564 {
2565 return true;
2566 }
2567
2568 bool has_stack () override
2569 {
2570 return true;
2571 }
2572
2573 bool has_memory () override
2574 {
2575 return true;
2576 }
2577
2578 void prepare_to_store (regcache *regs) override
2579 {
2580 }
2581
2582 void store_registers (regcache *regs, int regno) override
2583 {
2584 }
2585 };
2586
2587
2588 } // namespace selftests
2589 #endif /* GDB_SELF_TEST */
2590
2591 #endif /* !defined (TARGET_H) */
This page took 0.084893 seconds and 5 git commands to generate.