* target.h (target_read_stralloc): New prototype.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #if !defined (TARGET_H)
27 #define TARGET_H
28
29 struct objfile;
30 struct ui_file;
31 struct mem_attrib;
32 struct target_ops;
33 struct bp_target_info;
34
35 /* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54 #include "bfd.h"
55 #include "symtab.h"
56 #include "dcache.h"
57 #include "memattr.h"
58
59 enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
67 };
68
69 enum thread_control_capabilities
70 {
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
74 };
75
76 /* Stuff for target_wait. */
77
78 /* Generally, what has the program done? */
79 enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
83
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
86 TARGET_WAITKIND_STOPPED,
87
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
91
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
95
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
100 TARGET_WAITKIND_FORKED,
101
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
105 TARGET_WAITKIND_VFORKED,
106
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
110 TARGET_WAITKIND_EXECD,
111
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
118
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
122 TARGET_WAITKIND_SPURIOUS,
123
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
132 like for instance the user typing. */
133 TARGET_WAITKIND_IGNORE
134 };
135
136 struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
151
152 /* Possible types of events that the inferior handler will have to
153 deal with. */
154 enum inferior_event_type
155 {
156 /* There is a request to quit the inferior, abandon it. */
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
159 being called. */
160 INF_REG_EVENT,
161 /* Deal with an error on the inferior. */
162 INF_ERROR,
163 /* We are called because a timer went off. */
164 INF_TIMER,
165 /* We are called to do stuff after the inferior stops. */
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
170 'step n' like commands. */
171 INF_EXEC_CONTINUE
172 };
173
174 /* Return the string for a signal. */
175 extern char *target_signal_to_string (enum target_signal);
176
177 /* Return the name (SIGHUP, etc.) for a signal. */
178 extern char *target_signal_to_name (enum target_signal);
179
180 /* Given a name (SIGHUP, etc.), return its signal. */
181 enum target_signal target_signal_from_name (char *);
182 \f
183 /* Target objects which can be transfered using target_read,
184 target_write, et cetera. */
185
186 enum target_object
187 {
188 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
189 TARGET_OBJECT_AVR,
190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
191 TARGET_OBJECT_MEMORY,
192 /* Kernel Unwind Table. See "ia64-tdep.c". */
193 TARGET_OBJECT_UNWIND_TABLE,
194 /* Transfer auxilliary vector. */
195 TARGET_OBJECT_AUXV,
196 /* StackGhost cookie. See "sparc-tdep.c". */
197 TARGET_OBJECT_WCOOKIE
198
199 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
200 };
201
202 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
203 OBJECT. The OFFSET, for a seekable object, specifies the
204 starting point. The ANNEX can be used to provide additional
205 data-specific information to the target.
206
207 Return the number of bytes actually transfered, or -1 if the
208 transfer is not supported or otherwise fails. Return of a positive
209 value less than LEN indicates that no further transfer is possible.
210 Unlike the raw to_xfer_partial interface, callers of these
211 functions do not need to retry partial transfers. */
212
213 extern LONGEST target_read (struct target_ops *ops,
214 enum target_object object,
215 const char *annex, gdb_byte *buf,
216 ULONGEST offset, LONGEST len);
217
218 extern LONGEST target_write (struct target_ops *ops,
219 enum target_object object,
220 const char *annex, const gdb_byte *buf,
221 ULONGEST offset, LONGEST len);
222
223 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
224 be read using OPS. The return value will be -1 if the transfer
225 fails or is not supported; 0 if the object is empty; or the length
226 of the object otherwise. If a positive value is returned, a
227 sufficiently large buffer will be allocated using xmalloc and
228 returned in *BUF_P containing the contents of the object.
229
230 This method should be used for objects sufficiently small to store
231 in a single xmalloc'd buffer, when no fixed bound on the object's
232 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
233 through this function. */
234
235 extern LONGEST target_read_alloc (struct target_ops *ops,
236 enum target_object object,
237 const char *annex, gdb_byte **buf_p);
238
239 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
240 returned as a string, allocated using xmalloc. If an error occurs
241 or the transfer is unsupported, NULL is returned. Empty objects
242 are returned as allocated but empty strings. A warning is issued
243 if the result contains any embedded NUL bytes. */
244
245 extern char *target_read_stralloc (struct target_ops *ops,
246 enum target_object object,
247 const char *annex);
248
249 /* Wrappers to target read/write that perform memory transfers. They
250 throw an error if the memory transfer fails.
251
252 NOTE: cagney/2003-10-23: The naming schema is lifted from
253 "frame.h". The parameter order is lifted from get_frame_memory,
254 which in turn lifted it from read_memory. */
255
256 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
257 gdb_byte *buf, LONGEST len);
258 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
259 CORE_ADDR addr, int len);
260 \f
261
262 /* If certain kinds of activity happen, target_wait should perform
263 callbacks. */
264 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
265 on TARGET_ACTIVITY_FD. */
266 extern int target_activity_fd;
267 /* Returns zero to leave the inferior alone, one to interrupt it. */
268 extern int (*target_activity_function) (void);
269 \f
270 struct thread_info; /* fwd decl for parameter list below: */
271
272 struct target_ops
273 {
274 struct target_ops *beneath; /* To the target under this one. */
275 char *to_shortname; /* Name this target type */
276 char *to_longname; /* Name for printing */
277 char *to_doc; /* Documentation. Does not include trailing
278 newline, and starts with a one-line descrip-
279 tion (probably similar to to_longname). */
280 /* Per-target scratch pad. */
281 void *to_data;
282 /* The open routine takes the rest of the parameters from the
283 command, and (if successful) pushes a new target onto the
284 stack. Targets should supply this routine, if only to provide
285 an error message. */
286 void (*to_open) (char *, int);
287 /* Old targets with a static target vector provide "to_close".
288 New re-entrant targets provide "to_xclose" and that is expected
289 to xfree everything (including the "struct target_ops"). */
290 void (*to_xclose) (struct target_ops *targ, int quitting);
291 void (*to_close) (int);
292 void (*to_attach) (char *, int);
293 void (*to_post_attach) (int);
294 void (*to_detach) (char *, int);
295 void (*to_disconnect) (struct target_ops *, char *, int);
296 void (*to_resume) (ptid_t, int, enum target_signal);
297 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
298 void (*to_fetch_registers) (int);
299 void (*to_store_registers) (int);
300 void (*to_prepare_to_store) (void);
301
302 /* Transfer LEN bytes of memory between GDB address MYADDR and
303 target address MEMADDR. If WRITE, transfer them to the target, else
304 transfer them from the target. TARGET is the target from which we
305 get this function.
306
307 Return value, N, is one of the following:
308
309 0 means that we can't handle this. If errno has been set, it is the
310 error which prevented us from doing it (FIXME: What about bfd_error?).
311
312 positive (call it N) means that we have transferred N bytes
313 starting at MEMADDR. We might be able to handle more bytes
314 beyond this length, but no promises.
315
316 negative (call its absolute value N) means that we cannot
317 transfer right at MEMADDR, but we could transfer at least
318 something at MEMADDR + N.
319
320 NOTE: cagney/2004-10-01: This has been entirely superseeded by
321 to_xfer_partial and inferior inheritance. */
322
323 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
324 int len, int write,
325 struct mem_attrib *attrib,
326 struct target_ops *target);
327
328 void (*to_files_info) (struct target_ops *);
329 int (*to_insert_breakpoint) (struct bp_target_info *);
330 int (*to_remove_breakpoint) (struct bp_target_info *);
331 int (*to_can_use_hw_breakpoint) (int, int, int);
332 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
333 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
334 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
335 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
336 int (*to_stopped_by_watchpoint) (void);
337 int to_have_continuable_watchpoint;
338 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
339 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
340 void (*to_terminal_init) (void);
341 void (*to_terminal_inferior) (void);
342 void (*to_terminal_ours_for_output) (void);
343 void (*to_terminal_ours) (void);
344 void (*to_terminal_save_ours) (void);
345 void (*to_terminal_info) (char *, int);
346 void (*to_kill) (void);
347 void (*to_load) (char *, int);
348 int (*to_lookup_symbol) (char *, CORE_ADDR *);
349 void (*to_create_inferior) (char *, char *, char **, int);
350 void (*to_post_startup_inferior) (ptid_t);
351 void (*to_acknowledge_created_inferior) (int);
352 void (*to_insert_fork_catchpoint) (int);
353 int (*to_remove_fork_catchpoint) (int);
354 void (*to_insert_vfork_catchpoint) (int);
355 int (*to_remove_vfork_catchpoint) (int);
356 int (*to_follow_fork) (struct target_ops *, int);
357 void (*to_insert_exec_catchpoint) (int);
358 int (*to_remove_exec_catchpoint) (int);
359 int (*to_reported_exec_events_per_exec_call) (void);
360 int (*to_has_exited) (int, int, int *);
361 void (*to_mourn_inferior) (void);
362 int (*to_can_run) (void);
363 void (*to_notice_signals) (ptid_t ptid);
364 int (*to_thread_alive) (ptid_t ptid);
365 void (*to_find_new_threads) (void);
366 char *(*to_pid_to_str) (ptid_t);
367 char *(*to_extra_thread_info) (struct thread_info *);
368 void (*to_stop) (void);
369 void (*to_rcmd) (char *command, struct ui_file *output);
370 struct symtab_and_line *(*to_enable_exception_callback) (enum
371 exception_event_kind,
372 int);
373 struct exception_event_record *(*to_get_current_exception_event) (void);
374 char *(*to_pid_to_exec_file) (int pid);
375 enum strata to_stratum;
376 int to_has_all_memory;
377 int to_has_memory;
378 int to_has_stack;
379 int to_has_registers;
380 int to_has_execution;
381 int to_has_thread_control; /* control thread execution */
382 struct section_table
383 *to_sections;
384 struct section_table
385 *to_sections_end;
386 /* ASYNC target controls */
387 int (*to_can_async_p) (void);
388 int (*to_is_async_p) (void);
389 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
390 void *context);
391 int to_async_mask_value;
392 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
393 unsigned long,
394 int, int, int,
395 void *),
396 void *);
397 char * (*to_make_corefile_notes) (bfd *, int *);
398
399 /* Return the thread-local address at OFFSET in the
400 thread-local storage for the thread PTID and the shared library
401 or executable file given by OBJFILE. If that block of
402 thread-local storage hasn't been allocated yet, this function
403 may return an error. */
404 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
405 CORE_ADDR load_module_addr,
406 CORE_ADDR offset);
407
408 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
409 OBJECT. The OFFSET, for a seekable object, specifies the
410 starting point. The ANNEX can be used to provide additional
411 data-specific information to the target.
412
413 Return the number of bytes actually transfered, zero when no
414 further transfer is possible, and -1 when the transfer is not
415 supported. Return of a positive value smaller than LEN does
416 not indicate the end of the object, only the end of the
417 transfer; higher level code should continue transferring if
418 desired. This is handled in target.c.
419
420 The interface does not support a "retry" mechanism. Instead it
421 assumes that at least one byte will be transfered on each
422 successful call.
423
424 NOTE: cagney/2003-10-17: The current interface can lead to
425 fragmented transfers. Lower target levels should not implement
426 hacks, such as enlarging the transfer, in an attempt to
427 compensate for this. Instead, the target stack should be
428 extended so that it implements supply/collect methods and a
429 look-aside object cache. With that available, the lowest
430 target can safely and freely "push" data up the stack.
431
432 See target_read and target_write for more information. One,
433 and only one, of readbuf or writebuf must be non-NULL. */
434
435 LONGEST (*to_xfer_partial) (struct target_ops *ops,
436 enum target_object object, const char *annex,
437 gdb_byte *readbuf, const gdb_byte *writebuf,
438 ULONGEST offset, LONGEST len);
439
440 int to_magic;
441 /* Need sub-structure for target machine related rather than comm related?
442 */
443 };
444
445 /* Magic number for checking ops size. If a struct doesn't end with this
446 number, somebody changed the declaration but didn't change all the
447 places that initialize one. */
448
449 #define OPS_MAGIC 3840
450
451 /* The ops structure for our "current" target process. This should
452 never be NULL. If there is no target, it points to the dummy_target. */
453
454 extern struct target_ops current_target;
455
456 /* Define easy words for doing these operations on our current target. */
457
458 #define target_shortname (current_target.to_shortname)
459 #define target_longname (current_target.to_longname)
460
461 /* Does whatever cleanup is required for a target that we are no
462 longer going to be calling. QUITTING indicates that GDB is exiting
463 and should not get hung on an error (otherwise it is important to
464 perform clean termination, even if it takes a while). This routine
465 is automatically always called when popping the target off the
466 target stack (to_beneath is undefined). Closing file descriptors
467 and freeing all memory allocated memory are typical things it
468 should do. */
469
470 void target_close (struct target_ops *targ, int quitting);
471
472 /* Attaches to a process on the target side. Arguments are as passed
473 to the `attach' command by the user. This routine can be called
474 when the target is not on the target-stack, if the target_can_run
475 routine returns 1; in that case, it must push itself onto the stack.
476 Upon exit, the target should be ready for normal operations, and
477 should be ready to deliver the status of the process immediately
478 (without waiting) to an upcoming target_wait call. */
479
480 #define target_attach(args, from_tty) \
481 (*current_target.to_attach) (args, from_tty)
482
483 /* The target_attach operation places a process under debugger control,
484 and stops the process.
485
486 This operation provides a target-specific hook that allows the
487 necessary bookkeeping to be performed after an attach completes. */
488 #define target_post_attach(pid) \
489 (*current_target.to_post_attach) (pid)
490
491 /* Takes a program previously attached to and detaches it.
492 The program may resume execution (some targets do, some don't) and will
493 no longer stop on signals, etc. We better not have left any breakpoints
494 in the program or it'll die when it hits one. ARGS is arguments
495 typed by the user (e.g. a signal to send the process). FROM_TTY
496 says whether to be verbose or not. */
497
498 extern void target_detach (char *, int);
499
500 /* Disconnect from the current target without resuming it (leaving it
501 waiting for a debugger). */
502
503 extern void target_disconnect (char *, int);
504
505 /* Resume execution of the target process PTID. STEP says whether to
506 single-step or to run free; SIGGNAL is the signal to be given to
507 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
508 pass TARGET_SIGNAL_DEFAULT. */
509
510 #define target_resume(ptid, step, siggnal) \
511 do { \
512 dcache_invalidate(target_dcache); \
513 (*current_target.to_resume) (ptid, step, siggnal); \
514 } while (0)
515
516 /* Wait for process pid to do something. PTID = -1 to wait for any
517 pid to do something. Return pid of child, or -1 in case of error;
518 store status through argument pointer STATUS. Note that it is
519 _NOT_ OK to throw_exception() out of target_wait() without popping
520 the debugging target from the stack; GDB isn't prepared to get back
521 to the prompt with a debugging target but without the frame cache,
522 stop_pc, etc., set up. */
523
524 #define target_wait(ptid, status) \
525 (*current_target.to_wait) (ptid, status)
526
527 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
528
529 #define target_fetch_registers(regno) \
530 (*current_target.to_fetch_registers) (regno)
531
532 /* Store at least register REGNO, or all regs if REGNO == -1.
533 It can store as many registers as it wants to, so target_prepare_to_store
534 must have been previously called. Calls error() if there are problems. */
535
536 #define target_store_registers(regs) \
537 (*current_target.to_store_registers) (regs)
538
539 /* Get ready to modify the registers array. On machines which store
540 individual registers, this doesn't need to do anything. On machines
541 which store all the registers in one fell swoop, this makes sure
542 that REGISTERS contains all the registers from the program being
543 debugged. */
544
545 #define target_prepare_to_store() \
546 (*current_target.to_prepare_to_store) ()
547
548 extern DCACHE *target_dcache;
549
550 extern int do_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
551 int write, struct mem_attrib *attrib);
552
553 extern int target_read_string (CORE_ADDR, char **, int, int *);
554
555 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
556
557 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
558 int len);
559
560 extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
561 struct mem_attrib *, struct target_ops *);
562
563 extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
564 struct mem_attrib *, struct target_ops *);
565
566 /* Make a single attempt at transfering LEN bytes. On a successful
567 transfer, the number of bytes actually transfered is returned and
568 ERR is set to 0. When a transfer fails, -1 is returned (the number
569 of bytes actually transfered is not defined) and ERR is set to a
570 non-zero error indication. */
571
572 extern int target_read_memory_partial (CORE_ADDR addr, gdb_byte *buf,
573 int len, int *err);
574
575 extern int target_write_memory_partial (CORE_ADDR addr, gdb_byte *buf,
576 int len, int *err);
577
578 extern char *child_pid_to_exec_file (int);
579
580 extern char *child_core_file_to_sym_file (char *);
581
582 #if defined(CHILD_POST_ATTACH)
583 extern void child_post_attach (int);
584 #endif
585
586 extern void child_post_startup_inferior (ptid_t);
587
588 extern void child_acknowledge_created_inferior (int);
589
590 extern void child_insert_fork_catchpoint (int);
591
592 extern int child_remove_fork_catchpoint (int);
593
594 extern void child_insert_vfork_catchpoint (int);
595
596 extern int child_remove_vfork_catchpoint (int);
597
598 extern void child_acknowledge_created_inferior (int);
599
600 extern int child_follow_fork (struct target_ops *, int);
601
602 extern void child_insert_exec_catchpoint (int);
603
604 extern int child_remove_exec_catchpoint (int);
605
606 extern int child_reported_exec_events_per_exec_call (void);
607
608 extern int child_has_exited (int, int, int *);
609
610 extern int child_thread_alive (ptid_t);
611
612 /* From infrun.c. */
613
614 extern int inferior_has_forked (int pid, int *child_pid);
615
616 extern int inferior_has_vforked (int pid, int *child_pid);
617
618 extern int inferior_has_execd (int pid, char **execd_pathname);
619
620 /* From exec.c */
621
622 extern void print_section_info (struct target_ops *, bfd *);
623
624 /* Print a line about the current target. */
625
626 #define target_files_info() \
627 (*current_target.to_files_info) (&current_target)
628
629 /* Insert a breakpoint at address BP_TGT->placed_address in the target
630 machine. Result is 0 for success, or an errno value. */
631
632 #define target_insert_breakpoint(bp_tgt) \
633 (*current_target.to_insert_breakpoint) (bp_tgt)
634
635 /* Remove a breakpoint at address BP_TGT->placed_address in the target
636 machine. Result is 0 for success, or an errno value. */
637
638 #define target_remove_breakpoint(bp_tgt) \
639 (*current_target.to_remove_breakpoint) (bp_tgt)
640
641 /* Initialize the terminal settings we record for the inferior,
642 before we actually run the inferior. */
643
644 #define target_terminal_init() \
645 (*current_target.to_terminal_init) ()
646
647 /* Put the inferior's terminal settings into effect.
648 This is preparation for starting or resuming the inferior. */
649
650 #define target_terminal_inferior() \
651 (*current_target.to_terminal_inferior) ()
652
653 /* Put some of our terminal settings into effect,
654 enough to get proper results from our output,
655 but do not change into or out of RAW mode
656 so that no input is discarded.
657
658 After doing this, either terminal_ours or terminal_inferior
659 should be called to get back to a normal state of affairs. */
660
661 #define target_terminal_ours_for_output() \
662 (*current_target.to_terminal_ours_for_output) ()
663
664 /* Put our terminal settings into effect.
665 First record the inferior's terminal settings
666 so they can be restored properly later. */
667
668 #define target_terminal_ours() \
669 (*current_target.to_terminal_ours) ()
670
671 /* Save our terminal settings.
672 This is called from TUI after entering or leaving the curses
673 mode. Since curses modifies our terminal this call is here
674 to take this change into account. */
675
676 #define target_terminal_save_ours() \
677 (*current_target.to_terminal_save_ours) ()
678
679 /* Print useful information about our terminal status, if such a thing
680 exists. */
681
682 #define target_terminal_info(arg, from_tty) \
683 (*current_target.to_terminal_info) (arg, from_tty)
684
685 /* Kill the inferior process. Make it go away. */
686
687 #define target_kill() \
688 (*current_target.to_kill) ()
689
690 /* Load an executable file into the target process. This is expected
691 to not only bring new code into the target process, but also to
692 update GDB's symbol tables to match.
693
694 ARG contains command-line arguments, to be broken down with
695 buildargv (). The first non-switch argument is the filename to
696 load, FILE; the second is a number (as parsed by strtoul (..., ...,
697 0)), which is an offset to apply to the load addresses of FILE's
698 sections. The target may define switches, or other non-switch
699 arguments, as it pleases. */
700
701 extern void target_load (char *arg, int from_tty);
702
703 /* Look up a symbol in the target's symbol table. NAME is the symbol
704 name. ADDRP is a CORE_ADDR * pointing to where the value of the
705 symbol should be returned. The result is 0 if successful, nonzero
706 if the symbol does not exist in the target environment. This
707 function should not call error() if communication with the target
708 is interrupted, since it is called from symbol reading, but should
709 return nonzero, possibly doing a complain(). */
710
711 #define target_lookup_symbol(name, addrp) \
712 (*current_target.to_lookup_symbol) (name, addrp)
713
714 /* Start an inferior process and set inferior_ptid to its pid.
715 EXEC_FILE is the file to run.
716 ALLARGS is a string containing the arguments to the program.
717 ENV is the environment vector to pass. Errors reported with error().
718 On VxWorks and various standalone systems, we ignore exec_file. */
719
720 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
721 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
722
723
724 /* Some targets (such as ttrace-based HPUX) don't allow us to request
725 notification of inferior events such as fork and vork immediately
726 after the inferior is created. (This because of how gdb gets an
727 inferior created via invoking a shell to do it. In such a scenario,
728 if the shell init file has commands in it, the shell will fork and
729 exec for each of those commands, and we will see each such fork
730 event. Very bad.)
731
732 Such targets will supply an appropriate definition for this function. */
733
734 #define target_post_startup_inferior(ptid) \
735 (*current_target.to_post_startup_inferior) (ptid)
736
737 /* On some targets, the sequence of starting up an inferior requires
738 some synchronization between gdb and the new inferior process, PID. */
739
740 #define target_acknowledge_created_inferior(pid) \
741 (*current_target.to_acknowledge_created_inferior) (pid)
742
743 /* On some targets, we can catch an inferior fork or vfork event when
744 it occurs. These functions insert/remove an already-created
745 catchpoint for such events. */
746
747 #define target_insert_fork_catchpoint(pid) \
748 (*current_target.to_insert_fork_catchpoint) (pid)
749
750 #define target_remove_fork_catchpoint(pid) \
751 (*current_target.to_remove_fork_catchpoint) (pid)
752
753 #define target_insert_vfork_catchpoint(pid) \
754 (*current_target.to_insert_vfork_catchpoint) (pid)
755
756 #define target_remove_vfork_catchpoint(pid) \
757 (*current_target.to_remove_vfork_catchpoint) (pid)
758
759 /* If the inferior forks or vforks, this function will be called at
760 the next resume in order to perform any bookkeeping and fiddling
761 necessary to continue debugging either the parent or child, as
762 requested, and releasing the other. Information about the fork
763 or vfork event is available via get_last_target_status ().
764 This function returns 1 if the inferior should not be resumed
765 (i.e. there is another event pending). */
766
767 int target_follow_fork (int follow_child);
768
769 /* On some targets, we can catch an inferior exec event when it
770 occurs. These functions insert/remove an already-created
771 catchpoint for such events. */
772
773 #define target_insert_exec_catchpoint(pid) \
774 (*current_target.to_insert_exec_catchpoint) (pid)
775
776 #define target_remove_exec_catchpoint(pid) \
777 (*current_target.to_remove_exec_catchpoint) (pid)
778
779 /* Returns the number of exec events that are reported when a process
780 invokes a flavor of the exec() system call on this target, if exec
781 events are being reported. */
782
783 #define target_reported_exec_events_per_exec_call() \
784 (*current_target.to_reported_exec_events_per_exec_call) ()
785
786 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
787 exit code of PID, if any. */
788
789 #define target_has_exited(pid,wait_status,exit_status) \
790 (*current_target.to_has_exited) (pid,wait_status,exit_status)
791
792 /* The debugger has completed a blocking wait() call. There is now
793 some process event that must be processed. This function should
794 be defined by those targets that require the debugger to perform
795 cleanup or internal state changes in response to the process event. */
796
797 /* The inferior process has died. Do what is right. */
798
799 #define target_mourn_inferior() \
800 (*current_target.to_mourn_inferior) ()
801
802 /* Does target have enough data to do a run or attach command? */
803
804 #define target_can_run(t) \
805 ((t)->to_can_run) ()
806
807 /* post process changes to signal handling in the inferior. */
808
809 #define target_notice_signals(ptid) \
810 (*current_target.to_notice_signals) (ptid)
811
812 /* Check to see if a thread is still alive. */
813
814 #define target_thread_alive(ptid) \
815 (*current_target.to_thread_alive) (ptid)
816
817 /* Query for new threads and add them to the thread list. */
818
819 #define target_find_new_threads() \
820 (*current_target.to_find_new_threads) (); \
821
822 /* Make target stop in a continuable fashion. (For instance, under
823 Unix, this should act like SIGSTOP). This function is normally
824 used by GUIs to implement a stop button. */
825
826 #define target_stop current_target.to_stop
827
828 /* Send the specified COMMAND to the target's monitor
829 (shell,interpreter) for execution. The result of the query is
830 placed in OUTBUF. */
831
832 #define target_rcmd(command, outbuf) \
833 (*current_target.to_rcmd) (command, outbuf)
834
835
836 /* Get the symbol information for a breakpointable routine called when
837 an exception event occurs.
838 Intended mainly for C++, and for those
839 platforms/implementations where such a callback mechanism is available,
840 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
841 different mechanisms for debugging exceptions. */
842
843 #define target_enable_exception_callback(kind, enable) \
844 (*current_target.to_enable_exception_callback) (kind, enable)
845
846 /* Get the current exception event kind -- throw or catch, etc. */
847
848 #define target_get_current_exception_event() \
849 (*current_target.to_get_current_exception_event) ()
850
851 /* Does the target include all of memory, or only part of it? This
852 determines whether we look up the target chain for other parts of
853 memory if this target can't satisfy a request. */
854
855 #define target_has_all_memory \
856 (current_target.to_has_all_memory)
857
858 /* Does the target include memory? (Dummy targets don't.) */
859
860 #define target_has_memory \
861 (current_target.to_has_memory)
862
863 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
864 we start a process.) */
865
866 #define target_has_stack \
867 (current_target.to_has_stack)
868
869 /* Does the target have registers? (Exec files don't.) */
870
871 #define target_has_registers \
872 (current_target.to_has_registers)
873
874 /* Does the target have execution? Can we make it jump (through
875 hoops), or pop its stack a few times? FIXME: If this is to work that
876 way, it needs to check whether an inferior actually exists.
877 remote-udi.c and probably other targets can be the current target
878 when the inferior doesn't actually exist at the moment. Right now
879 this just tells us whether this target is *capable* of execution. */
880
881 #define target_has_execution \
882 (current_target.to_has_execution)
883
884 /* Can the target support the debugger control of thread execution?
885 a) Can it lock the thread scheduler?
886 b) Can it switch the currently running thread? */
887
888 #define target_can_lock_scheduler \
889 (current_target.to_has_thread_control & tc_schedlock)
890
891 #define target_can_switch_threads \
892 (current_target.to_has_thread_control & tc_switch)
893
894 /* Can the target support asynchronous execution? */
895 #define target_can_async_p() (current_target.to_can_async_p ())
896
897 /* Is the target in asynchronous execution mode? */
898 #define target_is_async_p() (current_target.to_is_async_p())
899
900 /* Put the target in async mode with the specified callback function. */
901 #define target_async(CALLBACK,CONTEXT) \
902 (current_target.to_async((CALLBACK), (CONTEXT)))
903
904 /* This is to be used ONLY within call_function_by_hand(). It provides
905 a workaround, to have inferior function calls done in sychronous
906 mode, even though the target is asynchronous. After
907 target_async_mask(0) is called, calls to target_can_async_p() will
908 return FALSE , so that target_resume() will not try to start the
909 target asynchronously. After the inferior stops, we IMMEDIATELY
910 restore the previous nature of the target, by calling
911 target_async_mask(1). After that, target_can_async_p() will return
912 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
913
914 FIXME ezannoni 1999-12-13: we won't need this once we move
915 the turning async on and off to the single execution commands,
916 from where it is done currently, in remote_resume(). */
917
918 #define target_async_mask_value \
919 (current_target.to_async_mask_value)
920
921 extern int target_async_mask (int mask);
922
923 /* Converts a process id to a string. Usually, the string just contains
924 `process xyz', but on some systems it may contain
925 `process xyz thread abc'. */
926
927 #undef target_pid_to_str
928 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
929
930 #ifndef target_tid_to_str
931 #define target_tid_to_str(PID) \
932 target_pid_to_str (PID)
933 extern char *normal_pid_to_str (ptid_t ptid);
934 #endif
935
936 /* Return a short string describing extra information about PID,
937 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
938 is okay. */
939
940 #define target_extra_thread_info(TP) \
941 (current_target.to_extra_thread_info (TP))
942
943 /*
944 * New Objfile Event Hook:
945 *
946 * Sometimes a GDB component wants to get notified whenever a new
947 * objfile is loaded. Mainly this is used by thread-debugging
948 * implementations that need to know when symbols for the target
949 * thread implemenation are available.
950 *
951 * The old way of doing this is to define a macro 'target_new_objfile'
952 * that points to the function that you want to be called on every
953 * objfile/shlib load.
954
955 The new way is to grab the function pointer,
956 'deprecated_target_new_objfile_hook', and point it to the function
957 that you want to be called on every objfile/shlib load.
958
959 If multiple clients are willing to be cooperative, they can each
960 save a pointer to the previous value of
961 deprecated_target_new_objfile_hook before modifying it, and arrange
962 for their function to call the previous function in the chain. In
963 that way, multiple clients can receive this notification (something
964 like with signal handlers). */
965
966 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
967
968 #ifndef target_pid_or_tid_to_str
969 #define target_pid_or_tid_to_str(ID) \
970 target_pid_to_str (ID)
971 #endif
972
973 /* Attempts to find the pathname of the executable file
974 that was run to create a specified process.
975
976 The process PID must be stopped when this operation is used.
977
978 If the executable file cannot be determined, NULL is returned.
979
980 Else, a pointer to a character string containing the pathname
981 is returned. This string should be copied into a buffer by
982 the client if the string will not be immediately used, or if
983 it must persist. */
984
985 #define target_pid_to_exec_file(pid) \
986 (current_target.to_pid_to_exec_file) (pid)
987
988 /*
989 * Iterator function for target memory regions.
990 * Calls a callback function once for each memory region 'mapped'
991 * in the child process. Defined as a simple macro rather than
992 * as a function macro so that it can be tested for nullity.
993 */
994
995 #define target_find_memory_regions(FUNC, DATA) \
996 (current_target.to_find_memory_regions) (FUNC, DATA)
997
998 /*
999 * Compose corefile .note section.
1000 */
1001
1002 #define target_make_corefile_notes(BFD, SIZE_P) \
1003 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1004
1005 /* Thread-local values. */
1006 #define target_get_thread_local_address \
1007 (current_target.to_get_thread_local_address)
1008 #define target_get_thread_local_address_p() \
1009 (target_get_thread_local_address != NULL)
1010
1011 /* Hook to call target dependent code just after inferior target process has
1012 started. */
1013
1014 #ifndef TARGET_CREATE_INFERIOR_HOOK
1015 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1016 #endif
1017
1018 /* Hardware watchpoint interfaces. */
1019
1020 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1021 write). */
1022
1023 #ifndef STOPPED_BY_WATCHPOINT
1024 #define STOPPED_BY_WATCHPOINT(w) \
1025 (*current_target.to_stopped_by_watchpoint) ()
1026 #endif
1027
1028 /* Non-zero if we have continuable watchpoints */
1029
1030 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1031 #define HAVE_CONTINUABLE_WATCHPOINT \
1032 (current_target.to_have_continuable_watchpoint)
1033 #endif
1034
1035 /* Provide defaults for hardware watchpoint functions. */
1036
1037 /* If the *_hw_beakpoint functions have not been defined
1038 elsewhere use the definitions in the target vector. */
1039
1040 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1041 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1042 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1043 (including this one?). OTHERTYPE is who knows what... */
1044
1045 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1046 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1047 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1048 #endif
1049
1050 #ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1051 #define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1052 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1053 #endif
1054
1055
1056 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1057 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1058 success, non-zero for failure. */
1059
1060 #ifndef target_insert_watchpoint
1061 #define target_insert_watchpoint(addr, len, type) \
1062 (*current_target.to_insert_watchpoint) (addr, len, type)
1063
1064 #define target_remove_watchpoint(addr, len, type) \
1065 (*current_target.to_remove_watchpoint) (addr, len, type)
1066 #endif
1067
1068 #ifndef target_insert_hw_breakpoint
1069 #define target_insert_hw_breakpoint(bp_tgt) \
1070 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
1071
1072 #define target_remove_hw_breakpoint(bp_tgt) \
1073 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
1074 #endif
1075
1076 extern int target_stopped_data_address_p (struct target_ops *);
1077
1078 #ifndef target_stopped_data_address
1079 #define target_stopped_data_address(target, x) \
1080 (*target.to_stopped_data_address) (target, x)
1081 #else
1082 /* Horrible hack to get around existing macros :-(. */
1083 #define target_stopped_data_address_p(CURRENT_TARGET) (1)
1084 #endif
1085
1086 /* This will only be defined by a target that supports catching vfork events,
1087 such as HP-UX.
1088
1089 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1090 child process after it has exec'd, causes the parent process to resume as
1091 well. To prevent the parent from running spontaneously, such targets should
1092 define this to a function that prevents that from happening. */
1093 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1094 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1095 #endif
1096
1097 /* This will only be defined by a target that supports catching vfork events,
1098 such as HP-UX.
1099
1100 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1101 process must be resumed when it delivers its exec event, before the parent
1102 vfork event will be delivered to us. */
1103
1104 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1105 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1106 #endif
1107
1108 /* Routines for maintenance of the target structures...
1109
1110 add_target: Add a target to the list of all possible targets.
1111
1112 push_target: Make this target the top of the stack of currently used
1113 targets, within its particular stratum of the stack. Result
1114 is 0 if now atop the stack, nonzero if not on top (maybe
1115 should warn user).
1116
1117 unpush_target: Remove this from the stack of currently used targets,
1118 no matter where it is on the list. Returns 0 if no
1119 change, 1 if removed from stack.
1120
1121 pop_target: Remove the top thing on the stack of current targets. */
1122
1123 extern void add_target (struct target_ops *);
1124
1125 extern int push_target (struct target_ops *);
1126
1127 extern int unpush_target (struct target_ops *);
1128
1129 extern void target_preopen (int);
1130
1131 extern void pop_target (void);
1132
1133 /* Struct section_table maps address ranges to file sections. It is
1134 mostly used with BFD files, but can be used without (e.g. for handling
1135 raw disks, or files not in formats handled by BFD). */
1136
1137 struct section_table
1138 {
1139 CORE_ADDR addr; /* Lowest address in section */
1140 CORE_ADDR endaddr; /* 1+highest address in section */
1141
1142 struct bfd_section *the_bfd_section;
1143
1144 bfd *bfd; /* BFD file pointer */
1145 };
1146
1147 /* Return the "section" containing the specified address. */
1148 struct section_table *target_section_by_addr (struct target_ops *target,
1149 CORE_ADDR addr);
1150
1151
1152 /* From mem-break.c */
1153
1154 extern int memory_remove_breakpoint (struct bp_target_info *);
1155
1156 extern int memory_insert_breakpoint (struct bp_target_info *);
1157
1158 extern int default_memory_remove_breakpoint (struct bp_target_info *);
1159
1160 extern int default_memory_insert_breakpoint (struct bp_target_info *);
1161
1162
1163 /* From target.c */
1164
1165 extern void initialize_targets (void);
1166
1167 extern void noprocess (void);
1168
1169 extern void find_default_attach (char *, int);
1170
1171 extern void find_default_create_inferior (char *, char *, char **, int);
1172
1173 extern struct target_ops *find_run_target (void);
1174
1175 extern struct target_ops *find_core_target (void);
1176
1177 extern struct target_ops *find_target_beneath (struct target_ops *);
1178
1179 extern int target_resize_to_sections (struct target_ops *target,
1180 int num_added);
1181
1182 extern void remove_target_sections (bfd *abfd);
1183
1184 \f
1185 /* Stuff that should be shared among the various remote targets. */
1186
1187 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1188 information (higher values, more information). */
1189 extern int remote_debug;
1190
1191 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1192 extern int baud_rate;
1193 /* Timeout limit for response from target. */
1194 extern int remote_timeout;
1195
1196 \f
1197 /* Functions for helping to write a native target. */
1198
1199 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1200 extern void store_waitstatus (struct target_waitstatus *, int);
1201
1202 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1203 targ_signal SIGNO has an equivalent ``host'' representation. */
1204 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1205 to the shorter target_signal_p() because it is far less ambigious.
1206 In this context ``target_signal'' refers to GDB's internal
1207 representation of the target's set of signals while ``host signal''
1208 refers to the target operating system's signal. Confused? */
1209
1210 extern int target_signal_to_host_p (enum target_signal signo);
1211
1212 /* Convert between host signal numbers and enum target_signal's.
1213 target_signal_to_host() returns 0 and prints a warning() on GDB's
1214 console if SIGNO has no equivalent host representation. */
1215 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1216 refering to the target operating system's signal numbering.
1217 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1218 gdb_signal'' would probably be better as it is refering to GDB's
1219 internal representation of a target operating system's signal. */
1220
1221 extern enum target_signal target_signal_from_host (int);
1222 extern int target_signal_to_host (enum target_signal);
1223
1224 /* Convert from a number used in a GDB command to an enum target_signal. */
1225 extern enum target_signal target_signal_from_command (int);
1226
1227 /* Any target can call this to switch to remote protocol (in remote.c). */
1228 extern void push_remote_target (char *name, int from_tty);
1229 \f
1230 /* Imported from machine dependent code */
1231
1232 /* Blank target vector entries are initialized to target_ignore. */
1233 void target_ignore (void);
1234
1235 extern struct target_ops deprecated_child_ops;
1236
1237 #endif /* !defined (TARGET_H) */
This page took 0.055466 seconds and 5 git commands to generate.