2003-10-15 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 struct objfile;
27 struct ui_file;
28 struct mem_attrib;
29
30 /* This include file defines the interface between the main part
31 of the debugger, and the part which is target-specific, or
32 specific to the communications interface between us and the
33 target.
34
35 A TARGET is an interface between the debugger and a particular
36 kind of file or process. Targets can be STACKED in STRATA,
37 so that more than one target can potentially respond to a request.
38 In particular, memory accesses will walk down the stack of targets
39 until they find a target that is interested in handling that particular
40 address. STRATA are artificial boundaries on the stack, within
41 which particular kinds of targets live. Strata exist so that
42 people don't get confused by pushing e.g. a process target and then
43 a file target, and wondering why they can't see the current values
44 of variables any more (the file target is handling them and they
45 never get to the process target). So when you push a file target,
46 it goes into the file stratum, which is always below the process
47 stratum. */
48
49 #include "bfd.h"
50 #include "symtab.h"
51 #include "dcache.h"
52 #include "memattr.h"
53
54 enum strata
55 {
56 dummy_stratum, /* The lowest of the low */
57 file_stratum, /* Executable files, etc */
58 core_stratum, /* Core dump files */
59 download_stratum, /* Downloading of remote targets */
60 process_stratum, /* Executing processes */
61 thread_stratum /* Executing threads */
62 };
63
64 enum thread_control_capabilities
65 {
66 tc_none = 0, /* Default: can't control thread execution. */
67 tc_schedlock = 1, /* Can lock the thread scheduler. */
68 tc_switch = 2 /* Can switch the running thread on demand. */
69 };
70
71 /* Stuff for target_wait. */
72
73 /* Generally, what has the program done? */
74 enum target_waitkind
75 {
76 /* The program has exited. The exit status is in value.integer. */
77 TARGET_WAITKIND_EXITED,
78
79 /* The program has stopped with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_STOPPED,
82
83 /* The program has terminated with a signal. Which signal is in
84 value.sig. */
85 TARGET_WAITKIND_SIGNALLED,
86
87 /* The program is letting us know that it dynamically loaded something
88 (e.g. it called load(2) on AIX). */
89 TARGET_WAITKIND_LOADED,
90
91 /* The program has forked. A "related" process' ID is in
92 value.related_pid. I.e., if the child forks, value.related_pid
93 is the parent's ID. */
94
95 TARGET_WAITKIND_FORKED,
96
97 /* The program has vforked. A "related" process's ID is in
98 value.related_pid. */
99
100 TARGET_WAITKIND_VFORKED,
101
102 /* The program has exec'ed a new executable file. The new file's
103 pathname is pointed to by value.execd_pathname. */
104
105 TARGET_WAITKIND_EXECD,
106
107 /* The program has entered or returned from a system call. On
108 HP-UX, this is used in the hardware watchpoint implementation.
109 The syscall's unique integer ID number is in value.syscall_id */
110
111 TARGET_WAITKIND_SYSCALL_ENTRY,
112 TARGET_WAITKIND_SYSCALL_RETURN,
113
114 /* Nothing happened, but we stopped anyway. This perhaps should be handled
115 within target_wait, but I'm not sure target_wait should be resuming the
116 inferior. */
117 TARGET_WAITKIND_SPURIOUS,
118
119 /* An event has occured, but we should wait again.
120 Remote_async_wait() returns this when there is an event
121 on the inferior, but the rest of the world is not interested in
122 it. The inferior has not stopped, but has just sent some output
123 to the console, for instance. In this case, we want to go back
124 to the event loop and wait there for another event from the
125 inferior, rather than being stuck in the remote_async_wait()
126 function. This way the event loop is responsive to other events,
127 like for instance the user typing. */
128 TARGET_WAITKIND_IGNORE
129 };
130
131 struct target_waitstatus
132 {
133 enum target_waitkind kind;
134
135 /* Forked child pid, execd pathname, exit status or signal number. */
136 union
137 {
138 int integer;
139 enum target_signal sig;
140 int related_pid;
141 char *execd_pathname;
142 int syscall_id;
143 }
144 value;
145 };
146
147 /* Possible types of events that the inferior handler will have to
148 deal with. */
149 enum inferior_event_type
150 {
151 /* There is a request to quit the inferior, abandon it. */
152 INF_QUIT_REQ,
153 /* Process a normal inferior event which will result in target_wait
154 being called. */
155 INF_REG_EVENT,
156 /* Deal with an error on the inferior. */
157 INF_ERROR,
158 /* We are called because a timer went off. */
159 INF_TIMER,
160 /* We are called to do stuff after the inferior stops. */
161 INF_EXEC_COMPLETE,
162 /* We are called to do some stuff after the inferior stops, but we
163 are expected to reenter the proceed() and
164 handle_inferior_event() functions. This is used only in case of
165 'step n' like commands. */
166 INF_EXEC_CONTINUE
167 };
168
169 /* Return the string for a signal. */
170 extern char *target_signal_to_string (enum target_signal);
171
172 /* Return the name (SIGHUP, etc.) for a signal. */
173 extern char *target_signal_to_name (enum target_signal);
174
175 /* Given a name (SIGHUP, etc.), return its signal. */
176 enum target_signal target_signal_from_name (char *);
177 \f
178
179 /* If certain kinds of activity happen, target_wait should perform
180 callbacks. */
181 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
182 on TARGET_ACTIVITY_FD. */
183 extern int target_activity_fd;
184 /* Returns zero to leave the inferior alone, one to interrupt it. */
185 extern int (*target_activity_function) (void);
186 \f
187 struct thread_info; /* fwd decl for parameter list below: */
188
189 struct target_ops
190 {
191 struct target_ops *beneath; /* To the target under this one. */
192 char *to_shortname; /* Name this target type */
193 char *to_longname; /* Name for printing */
194 char *to_doc; /* Documentation. Does not include trailing
195 newline, and starts with a one-line descrip-
196 tion (probably similar to to_longname). */
197 void (*to_open) (char *, int);
198 void (*to_close) (int);
199 void (*to_attach) (char *, int);
200 void (*to_post_attach) (int);
201 void (*to_detach) (char *, int);
202 void (*to_disconnect) (char *, int);
203 void (*to_resume) (ptid_t, int, enum target_signal);
204 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
205 void (*to_post_wait) (ptid_t, int);
206 void (*to_fetch_registers) (int);
207 void (*to_store_registers) (int);
208 void (*to_prepare_to_store) (void);
209
210 /* Transfer LEN bytes of memory between GDB address MYADDR and
211 target address MEMADDR. If WRITE, transfer them to the target, else
212 transfer them from the target. TARGET is the target from which we
213 get this function.
214
215 Return value, N, is one of the following:
216
217 0 means that we can't handle this. If errno has been set, it is the
218 error which prevented us from doing it (FIXME: What about bfd_error?).
219
220 positive (call it N) means that we have transferred N bytes
221 starting at MEMADDR. We might be able to handle more bytes
222 beyond this length, but no promises.
223
224 negative (call its absolute value N) means that we cannot
225 transfer right at MEMADDR, but we could transfer at least
226 something at MEMADDR + N. */
227
228 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
229 int len, int write,
230 struct mem_attrib *attrib,
231 struct target_ops *target);
232
233 void (*to_files_info) (struct target_ops *);
234 int (*to_insert_breakpoint) (CORE_ADDR, char *);
235 int (*to_remove_breakpoint) (CORE_ADDR, char *);
236 int (*to_can_use_hw_breakpoint) (int, int, int);
237 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
238 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
239 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
240 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
241 int (*to_stopped_by_watchpoint) (void);
242 int to_have_continuable_watchpoint;
243 CORE_ADDR (*to_stopped_data_address) (void);
244 int (*to_region_size_ok_for_hw_watchpoint) (int);
245 void (*to_terminal_init) (void);
246 void (*to_terminal_inferior) (void);
247 void (*to_terminal_ours_for_output) (void);
248 void (*to_terminal_ours) (void);
249 void (*to_terminal_save_ours) (void);
250 void (*to_terminal_info) (char *, int);
251 void (*to_kill) (void);
252 void (*to_load) (char *, int);
253 int (*to_lookup_symbol) (char *, CORE_ADDR *);
254 void (*to_create_inferior) (char *, char *, char **);
255 void (*to_post_startup_inferior) (ptid_t);
256 void (*to_acknowledge_created_inferior) (int);
257 int (*to_insert_fork_catchpoint) (int);
258 int (*to_remove_fork_catchpoint) (int);
259 int (*to_insert_vfork_catchpoint) (int);
260 int (*to_remove_vfork_catchpoint) (int);
261 int (*to_follow_fork) (int);
262 int (*to_insert_exec_catchpoint) (int);
263 int (*to_remove_exec_catchpoint) (int);
264 int (*to_reported_exec_events_per_exec_call) (void);
265 int (*to_has_exited) (int, int, int *);
266 void (*to_mourn_inferior) (void);
267 int (*to_can_run) (void);
268 void (*to_notice_signals) (ptid_t ptid);
269 int (*to_thread_alive) (ptid_t ptid);
270 void (*to_find_new_threads) (void);
271 char *(*to_pid_to_str) (ptid_t);
272 char *(*to_extra_thread_info) (struct thread_info *);
273 void (*to_stop) (void);
274 int (*to_query) (int /*char */ , char *, char *, int *);
275 void (*to_rcmd) (char *command, struct ui_file *output);
276 struct symtab_and_line *(*to_enable_exception_callback) (enum
277 exception_event_kind,
278 int);
279 struct exception_event_record *(*to_get_current_exception_event) (void);
280 char *(*to_pid_to_exec_file) (int pid);
281 enum strata to_stratum;
282 int to_has_all_memory;
283 int to_has_memory;
284 int to_has_stack;
285 int to_has_registers;
286 int to_has_execution;
287 int to_has_thread_control; /* control thread execution */
288 struct section_table
289 *to_sections;
290 struct section_table
291 *to_sections_end;
292 /* ASYNC target controls */
293 int (*to_can_async_p) (void);
294 int (*to_is_async_p) (void);
295 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
296 void *context);
297 int to_async_mask_value;
298 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
299 unsigned long,
300 int, int, int,
301 void *),
302 void *);
303 char * (*to_make_corefile_notes) (bfd *, int *);
304
305 /* Return the thread-local address at OFFSET in the
306 thread-local storage for the thread PTID and the shared library
307 or executable file given by OBJFILE. If that block of
308 thread-local storage hasn't been allocated yet, this function
309 may return an error. */
310 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
311 struct objfile *objfile,
312 CORE_ADDR offset);
313
314 int to_magic;
315 /* Need sub-structure for target machine related rather than comm related?
316 */
317 };
318
319 /* Magic number for checking ops size. If a struct doesn't end with this
320 number, somebody changed the declaration but didn't change all the
321 places that initialize one. */
322
323 #define OPS_MAGIC 3840
324
325 /* The ops structure for our "current" target process. This should
326 never be NULL. If there is no target, it points to the dummy_target. */
327
328 extern struct target_ops current_target;
329
330 /* Define easy words for doing these operations on our current target. */
331
332 #define target_shortname (current_target.to_shortname)
333 #define target_longname (current_target.to_longname)
334
335 /* The open routine takes the rest of the parameters from the command,
336 and (if successful) pushes a new target onto the stack.
337 Targets should supply this routine, if only to provide an error message. */
338
339 #define target_open(name, from_tty) \
340 do { \
341 dcache_invalidate (target_dcache); \
342 (*current_target.to_open) (name, from_tty); \
343 } while (0)
344
345 /* Does whatever cleanup is required for a target that we are no longer
346 going to be calling. Argument says whether we are quitting gdb and
347 should not get hung in case of errors, or whether we want a clean
348 termination even if it takes a while. This routine is automatically
349 always called just before a routine is popped off the target stack.
350 Closing file descriptors and freeing memory are typical things it should
351 do. */
352
353 #define target_close(quitting) \
354 (*current_target.to_close) (quitting)
355
356 /* Attaches to a process on the target side. Arguments are as passed
357 to the `attach' command by the user. This routine can be called
358 when the target is not on the target-stack, if the target_can_run
359 routine returns 1; in that case, it must push itself onto the stack.
360 Upon exit, the target should be ready for normal operations, and
361 should be ready to deliver the status of the process immediately
362 (without waiting) to an upcoming target_wait call. */
363
364 #define target_attach(args, from_tty) \
365 (*current_target.to_attach) (args, from_tty)
366
367 /* The target_attach operation places a process under debugger control,
368 and stops the process.
369
370 This operation provides a target-specific hook that allows the
371 necessary bookkeeping to be performed after an attach completes. */
372 #define target_post_attach(pid) \
373 (*current_target.to_post_attach) (pid)
374
375 /* Takes a program previously attached to and detaches it.
376 The program may resume execution (some targets do, some don't) and will
377 no longer stop on signals, etc. We better not have left any breakpoints
378 in the program or it'll die when it hits one. ARGS is arguments
379 typed by the user (e.g. a signal to send the process). FROM_TTY
380 says whether to be verbose or not. */
381
382 extern void target_detach (char *, int);
383
384 /* Disconnect from the current target without resuming it (leaving it
385 waiting for a debugger). */
386
387 extern void target_disconnect (char *, int);
388
389 /* Resume execution of the target process PTID. STEP says whether to
390 single-step or to run free; SIGGNAL is the signal to be given to
391 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
392 pass TARGET_SIGNAL_DEFAULT. */
393
394 #define target_resume(ptid, step, siggnal) \
395 do { \
396 dcache_invalidate(target_dcache); \
397 (*current_target.to_resume) (ptid, step, siggnal); \
398 } while (0)
399
400 /* Wait for process pid to do something. PTID = -1 to wait for any
401 pid to do something. Return pid of child, or -1 in case of error;
402 store status through argument pointer STATUS. Note that it is
403 _NOT_ OK to throw_exception() out of target_wait() without popping
404 the debugging target from the stack; GDB isn't prepared to get back
405 to the prompt with a debugging target but without the frame cache,
406 stop_pc, etc., set up. */
407
408 #define target_wait(ptid, status) \
409 (*current_target.to_wait) (ptid, status)
410
411 /* The target_wait operation waits for a process event to occur, and
412 thereby stop the process.
413
414 On some targets, certain events may happen in sequences. gdb's
415 correct response to any single event of such a sequence may require
416 knowledge of what earlier events in the sequence have been seen.
417
418 This operation provides a target-specific hook that allows the
419 necessary bookkeeping to be performed to track such sequences. */
420
421 #define target_post_wait(ptid, status) \
422 (*current_target.to_post_wait) (ptid, status)
423
424 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
425
426 #define target_fetch_registers(regno) \
427 (*current_target.to_fetch_registers) (regno)
428
429 /* Store at least register REGNO, or all regs if REGNO == -1.
430 It can store as many registers as it wants to, so target_prepare_to_store
431 must have been previously called. Calls error() if there are problems. */
432
433 #define target_store_registers(regs) \
434 (*current_target.to_store_registers) (regs)
435
436 /* Get ready to modify the registers array. On machines which store
437 individual registers, this doesn't need to do anything. On machines
438 which store all the registers in one fell swoop, this makes sure
439 that REGISTERS contains all the registers from the program being
440 debugged. */
441
442 #define target_prepare_to_store() \
443 (*current_target.to_prepare_to_store) ()
444
445 extern DCACHE *target_dcache;
446
447 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
448 struct mem_attrib *attrib);
449
450 extern int target_read_string (CORE_ADDR, char **, int, int *);
451
452 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
453
454 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
455
456 extern int xfer_memory (CORE_ADDR, char *, int, int,
457 struct mem_attrib *, struct target_ops *);
458
459 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
460 struct mem_attrib *, struct target_ops *);
461
462 /* Make a single attempt at transfering LEN bytes. On a successful
463 transfer, the number of bytes actually transfered is returned and
464 ERR is set to 0. When a transfer fails, -1 is returned (the number
465 of bytes actually transfered is not defined) and ERR is set to a
466 non-zero error indication. */
467
468 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
469 int *err);
470
471 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
472 int *err);
473
474 extern char *child_pid_to_exec_file (int);
475
476 extern char *child_core_file_to_sym_file (char *);
477
478 #if defined(CHILD_POST_ATTACH)
479 extern void child_post_attach (int);
480 #endif
481
482 extern void child_post_wait (ptid_t, int);
483
484 extern void child_post_startup_inferior (ptid_t);
485
486 extern void child_acknowledge_created_inferior (int);
487
488 extern int child_insert_fork_catchpoint (int);
489
490 extern int child_remove_fork_catchpoint (int);
491
492 extern int child_insert_vfork_catchpoint (int);
493
494 extern int child_remove_vfork_catchpoint (int);
495
496 extern void child_acknowledge_created_inferior (int);
497
498 extern int child_follow_fork (int);
499
500 extern int child_insert_exec_catchpoint (int);
501
502 extern int child_remove_exec_catchpoint (int);
503
504 extern int child_reported_exec_events_per_exec_call (void);
505
506 extern int child_has_exited (int, int, int *);
507
508 extern int child_thread_alive (ptid_t);
509
510 /* From infrun.c. */
511
512 extern int inferior_has_forked (int pid, int *child_pid);
513
514 extern int inferior_has_vforked (int pid, int *child_pid);
515
516 extern int inferior_has_execd (int pid, char **execd_pathname);
517
518 /* From exec.c */
519
520 extern void print_section_info (struct target_ops *, bfd *);
521
522 /* Print a line about the current target. */
523
524 #define target_files_info() \
525 (*current_target.to_files_info) (&current_target)
526
527 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
528 a pointer to memory allocated for saving the target contents. It
529 is guaranteed by the caller to be long enough to save the number of
530 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
531 success, or an errno value. */
532
533 #define target_insert_breakpoint(addr, save) \
534 (*current_target.to_insert_breakpoint) (addr, save)
535
536 /* Remove a breakpoint at address ADDR in the target machine.
537 SAVE is a pointer to the same save area
538 that was previously passed to target_insert_breakpoint.
539 Result is 0 for success, or an errno value. */
540
541 #define target_remove_breakpoint(addr, save) \
542 (*current_target.to_remove_breakpoint) (addr, save)
543
544 /* Initialize the terminal settings we record for the inferior,
545 before we actually run the inferior. */
546
547 #define target_terminal_init() \
548 (*current_target.to_terminal_init) ()
549
550 /* Put the inferior's terminal settings into effect.
551 This is preparation for starting or resuming the inferior. */
552
553 #define target_terminal_inferior() \
554 (*current_target.to_terminal_inferior) ()
555
556 /* Put some of our terminal settings into effect,
557 enough to get proper results from our output,
558 but do not change into or out of RAW mode
559 so that no input is discarded.
560
561 After doing this, either terminal_ours or terminal_inferior
562 should be called to get back to a normal state of affairs. */
563
564 #define target_terminal_ours_for_output() \
565 (*current_target.to_terminal_ours_for_output) ()
566
567 /* Put our terminal settings into effect.
568 First record the inferior's terminal settings
569 so they can be restored properly later. */
570
571 #define target_terminal_ours() \
572 (*current_target.to_terminal_ours) ()
573
574 /* Save our terminal settings.
575 This is called from TUI after entering or leaving the curses
576 mode. Since curses modifies our terminal this call is here
577 to take this change into account. */
578
579 #define target_terminal_save_ours() \
580 (*current_target.to_terminal_save_ours) ()
581
582 /* Print useful information about our terminal status, if such a thing
583 exists. */
584
585 #define target_terminal_info(arg, from_tty) \
586 (*current_target.to_terminal_info) (arg, from_tty)
587
588 /* Kill the inferior process. Make it go away. */
589
590 #define target_kill() \
591 (*current_target.to_kill) ()
592
593 /* Load an executable file into the target process. This is expected
594 to not only bring new code into the target process, but also to
595 update GDB's symbol tables to match. */
596
597 extern void target_load (char *arg, int from_tty);
598
599 /* Look up a symbol in the target's symbol table. NAME is the symbol
600 name. ADDRP is a CORE_ADDR * pointing to where the value of the
601 symbol should be returned. The result is 0 if successful, nonzero
602 if the symbol does not exist in the target environment. This
603 function should not call error() if communication with the target
604 is interrupted, since it is called from symbol reading, but should
605 return nonzero, possibly doing a complain(). */
606
607 #define target_lookup_symbol(name, addrp) \
608 (*current_target.to_lookup_symbol) (name, addrp)
609
610 /* Start an inferior process and set inferior_ptid to its pid.
611 EXEC_FILE is the file to run.
612 ALLARGS is a string containing the arguments to the program.
613 ENV is the environment vector to pass. Errors reported with error().
614 On VxWorks and various standalone systems, we ignore exec_file. */
615
616 #define target_create_inferior(exec_file, args, env) \
617 (*current_target.to_create_inferior) (exec_file, args, env)
618
619
620 /* Some targets (such as ttrace-based HPUX) don't allow us to request
621 notification of inferior events such as fork and vork immediately
622 after the inferior is created. (This because of how gdb gets an
623 inferior created via invoking a shell to do it. In such a scenario,
624 if the shell init file has commands in it, the shell will fork and
625 exec for each of those commands, and we will see each such fork
626 event. Very bad.)
627
628 Such targets will supply an appropriate definition for this function. */
629
630 #define target_post_startup_inferior(ptid) \
631 (*current_target.to_post_startup_inferior) (ptid)
632
633 /* On some targets, the sequence of starting up an inferior requires
634 some synchronization between gdb and the new inferior process, PID. */
635
636 #define target_acknowledge_created_inferior(pid) \
637 (*current_target.to_acknowledge_created_inferior) (pid)
638
639 /* On some targets, we can catch an inferior fork or vfork event when
640 it occurs. These functions insert/remove an already-created
641 catchpoint for such events. */
642
643 #define target_insert_fork_catchpoint(pid) \
644 (*current_target.to_insert_fork_catchpoint) (pid)
645
646 #define target_remove_fork_catchpoint(pid) \
647 (*current_target.to_remove_fork_catchpoint) (pid)
648
649 #define target_insert_vfork_catchpoint(pid) \
650 (*current_target.to_insert_vfork_catchpoint) (pid)
651
652 #define target_remove_vfork_catchpoint(pid) \
653 (*current_target.to_remove_vfork_catchpoint) (pid)
654
655 /* If the inferior forks or vforks, this function will be called at
656 the next resume in order to perform any bookkeeping and fiddling
657 necessary to continue debugging either the parent or child, as
658 requested, and releasing the other. Information about the fork
659 or vfork event is available via get_last_target_status ().
660 This function returns 1 if the inferior should not be resumed
661 (i.e. there is another event pending). */
662
663 #define target_follow_fork(follow_child) \
664 (*current_target.to_follow_fork) (follow_child)
665
666 /* On some targets, we can catch an inferior exec event when it
667 occurs. These functions insert/remove an already-created
668 catchpoint for such events. */
669
670 #define target_insert_exec_catchpoint(pid) \
671 (*current_target.to_insert_exec_catchpoint) (pid)
672
673 #define target_remove_exec_catchpoint(pid) \
674 (*current_target.to_remove_exec_catchpoint) (pid)
675
676 /* Returns the number of exec events that are reported when a process
677 invokes a flavor of the exec() system call on this target, if exec
678 events are being reported. */
679
680 #define target_reported_exec_events_per_exec_call() \
681 (*current_target.to_reported_exec_events_per_exec_call) ()
682
683 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
684 exit code of PID, if any. */
685
686 #define target_has_exited(pid,wait_status,exit_status) \
687 (*current_target.to_has_exited) (pid,wait_status,exit_status)
688
689 /* The debugger has completed a blocking wait() call. There is now
690 some process event that must be processed. This function should
691 be defined by those targets that require the debugger to perform
692 cleanup or internal state changes in response to the process event. */
693
694 /* The inferior process has died. Do what is right. */
695
696 #define target_mourn_inferior() \
697 (*current_target.to_mourn_inferior) ()
698
699 /* Does target have enough data to do a run or attach command? */
700
701 #define target_can_run(t) \
702 ((t)->to_can_run) ()
703
704 /* post process changes to signal handling in the inferior. */
705
706 #define target_notice_signals(ptid) \
707 (*current_target.to_notice_signals) (ptid)
708
709 /* Check to see if a thread is still alive. */
710
711 #define target_thread_alive(ptid) \
712 (*current_target.to_thread_alive) (ptid)
713
714 /* Query for new threads and add them to the thread list. */
715
716 #define target_find_new_threads() \
717 (*current_target.to_find_new_threads) (); \
718
719 /* Make target stop in a continuable fashion. (For instance, under
720 Unix, this should act like SIGSTOP). This function is normally
721 used by GUIs to implement a stop button. */
722
723 #define target_stop current_target.to_stop
724
725 /* Queries the target side for some information. The first argument is a
726 letter specifying the type of the query, which is used to determine who
727 should process it. The second argument is a string that specifies which
728 information is desired and the third is a buffer that carries back the
729 response from the target side. The fourth parameter is the size of the
730 output buffer supplied. */
731
732 #define target_query(query_type, query, resp_buffer, bufffer_size) \
733 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
734
735 /* Send the specified COMMAND to the target's monitor
736 (shell,interpreter) for execution. The result of the query is
737 placed in OUTBUF. */
738
739 #define target_rcmd(command, outbuf) \
740 (*current_target.to_rcmd) (command, outbuf)
741
742
743 /* Get the symbol information for a breakpointable routine called when
744 an exception event occurs.
745 Intended mainly for C++, and for those
746 platforms/implementations where such a callback mechanism is available,
747 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
748 different mechanisms for debugging exceptions. */
749
750 #define target_enable_exception_callback(kind, enable) \
751 (*current_target.to_enable_exception_callback) (kind, enable)
752
753 /* Get the current exception event kind -- throw or catch, etc. */
754
755 #define target_get_current_exception_event() \
756 (*current_target.to_get_current_exception_event) ()
757
758 /* Does the target include all of memory, or only part of it? This
759 determines whether we look up the target chain for other parts of
760 memory if this target can't satisfy a request. */
761
762 #define target_has_all_memory \
763 (current_target.to_has_all_memory)
764
765 /* Does the target include memory? (Dummy targets don't.) */
766
767 #define target_has_memory \
768 (current_target.to_has_memory)
769
770 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
771 we start a process.) */
772
773 #define target_has_stack \
774 (current_target.to_has_stack)
775
776 /* Does the target have registers? (Exec files don't.) */
777
778 #define target_has_registers \
779 (current_target.to_has_registers)
780
781 /* Does the target have execution? Can we make it jump (through
782 hoops), or pop its stack a few times? FIXME: If this is to work that
783 way, it needs to check whether an inferior actually exists.
784 remote-udi.c and probably other targets can be the current target
785 when the inferior doesn't actually exist at the moment. Right now
786 this just tells us whether this target is *capable* of execution. */
787
788 #define target_has_execution \
789 (current_target.to_has_execution)
790
791 /* Can the target support the debugger control of thread execution?
792 a) Can it lock the thread scheduler?
793 b) Can it switch the currently running thread? */
794
795 #define target_can_lock_scheduler \
796 (current_target.to_has_thread_control & tc_schedlock)
797
798 #define target_can_switch_threads \
799 (current_target.to_has_thread_control & tc_switch)
800
801 /* Can the target support asynchronous execution? */
802 #define target_can_async_p() (current_target.to_can_async_p ())
803
804 /* Is the target in asynchronous execution mode? */
805 #define target_is_async_p() (current_target.to_is_async_p())
806
807 /* Put the target in async mode with the specified callback function. */
808 #define target_async(CALLBACK,CONTEXT) \
809 (current_target.to_async((CALLBACK), (CONTEXT)))
810
811 /* This is to be used ONLY within call_function_by_hand(). It provides
812 a workaround, to have inferior function calls done in sychronous
813 mode, even though the target is asynchronous. After
814 target_async_mask(0) is called, calls to target_can_async_p() will
815 return FALSE , so that target_resume() will not try to start the
816 target asynchronously. After the inferior stops, we IMMEDIATELY
817 restore the previous nature of the target, by calling
818 target_async_mask(1). After that, target_can_async_p() will return
819 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
820
821 FIXME ezannoni 1999-12-13: we won't need this once we move
822 the turning async on and off to the single execution commands,
823 from where it is done currently, in remote_resume(). */
824
825 #define target_async_mask_value \
826 (current_target.to_async_mask_value)
827
828 extern int target_async_mask (int mask);
829
830 extern void target_link (char *, CORE_ADDR *);
831
832 /* Converts a process id to a string. Usually, the string just contains
833 `process xyz', but on some systems it may contain
834 `process xyz thread abc'. */
835
836 #undef target_pid_to_str
837 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
838
839 #ifndef target_tid_to_str
840 #define target_tid_to_str(PID) \
841 target_pid_to_str (PID)
842 extern char *normal_pid_to_str (ptid_t ptid);
843 #endif
844
845 /* Return a short string describing extra information about PID,
846 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
847 is okay. */
848
849 #define target_extra_thread_info(TP) \
850 (current_target.to_extra_thread_info (TP))
851
852 /*
853 * New Objfile Event Hook:
854 *
855 * Sometimes a GDB component wants to get notified whenever a new
856 * objfile is loaded. Mainly this is used by thread-debugging
857 * implementations that need to know when symbols for the target
858 * thread implemenation are available.
859 *
860 * The old way of doing this is to define a macro 'target_new_objfile'
861 * that points to the function that you want to be called on every
862 * objfile/shlib load.
863 *
864 * The new way is to grab the function pointer, 'target_new_objfile_hook',
865 * and point it to the function that you want to be called on every
866 * objfile/shlib load.
867 *
868 * If multiple clients are willing to be cooperative, they can each
869 * save a pointer to the previous value of target_new_objfile_hook
870 * before modifying it, and arrange for their function to call the
871 * previous function in the chain. In that way, multiple clients
872 * can receive this notification (something like with signal handlers).
873 */
874
875 extern void (*target_new_objfile_hook) (struct objfile *);
876
877 #ifndef target_pid_or_tid_to_str
878 #define target_pid_or_tid_to_str(ID) \
879 target_pid_to_str (ID)
880 #endif
881
882 /* Attempts to find the pathname of the executable file
883 that was run to create a specified process.
884
885 The process PID must be stopped when this operation is used.
886
887 If the executable file cannot be determined, NULL is returned.
888
889 Else, a pointer to a character string containing the pathname
890 is returned. This string should be copied into a buffer by
891 the client if the string will not be immediately used, or if
892 it must persist. */
893
894 #define target_pid_to_exec_file(pid) \
895 (current_target.to_pid_to_exec_file) (pid)
896
897 /*
898 * Iterator function for target memory regions.
899 * Calls a callback function once for each memory region 'mapped'
900 * in the child process. Defined as a simple macro rather than
901 * as a function macro so that it can be tested for nullity.
902 */
903
904 #define target_find_memory_regions(FUNC, DATA) \
905 (current_target.to_find_memory_regions) (FUNC, DATA)
906
907 /*
908 * Compose corefile .note section.
909 */
910
911 #define target_make_corefile_notes(BFD, SIZE_P) \
912 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
913
914 /* Thread-local values. */
915 #define target_get_thread_local_address \
916 (current_target.to_get_thread_local_address)
917 #define target_get_thread_local_address_p() \
918 (target_get_thread_local_address != NULL)
919
920 /* Hook to call target dependent code just after inferior target process has
921 started. */
922
923 #ifndef TARGET_CREATE_INFERIOR_HOOK
924 #define TARGET_CREATE_INFERIOR_HOOK(PID)
925 #endif
926
927 /* Hardware watchpoint interfaces. */
928
929 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
930 write). */
931
932 #ifndef STOPPED_BY_WATCHPOINT
933 #define STOPPED_BY_WATCHPOINT(w) \
934 (*current_target.to_stopped_by_watchpoint) ()
935 #endif
936
937 /* Non-zero if we have continuable watchpoints */
938
939 #ifndef HAVE_CONTINUABLE_WATCHPOINT
940 #define HAVE_CONTINUABLE_WATCHPOINT \
941 (current_target.to_have_continuable_watchpoint)
942 #endif
943
944 /* HP-UX supplies these operations, which respectively disable and enable
945 the memory page-protections that are used to implement hardware watchpoints
946 on that platform. See wait_for_inferior's use of these. */
947
948 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
949 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
950 #endif
951
952 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
953 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
954 #endif
955
956 /* Provide defaults for hardware watchpoint functions. */
957
958 /* If the *_hw_beakpoint functions have not been defined
959 elsewhere use the definitions in the target vector. */
960
961 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
962 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
963 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
964 (including this one?). OTHERTYPE is who knows what... */
965
966 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
967 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
968 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
969 #endif
970
971 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
972 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
973 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
974 #endif
975
976
977 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
978 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
979 success, non-zero for failure. */
980
981 #ifndef target_insert_watchpoint
982 #define target_insert_watchpoint(addr, len, type) \
983 (*current_target.to_insert_watchpoint) (addr, len, type)
984
985 #define target_remove_watchpoint(addr, len, type) \
986 (*current_target.to_remove_watchpoint) (addr, len, type)
987 #endif
988
989 #ifndef target_insert_hw_breakpoint
990 #define target_insert_hw_breakpoint(addr, save) \
991 (*current_target.to_insert_hw_breakpoint) (addr, save)
992
993 #define target_remove_hw_breakpoint(addr, save) \
994 (*current_target.to_remove_hw_breakpoint) (addr, save)
995 #endif
996
997 #ifndef target_stopped_data_address
998 #define target_stopped_data_address() \
999 (*current_target.to_stopped_data_address) ()
1000 #endif
1001
1002 /* If defined, then we need to decr pc by this much after a hardware break-
1003 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1004
1005 #ifndef DECR_PC_AFTER_HW_BREAK
1006 #define DECR_PC_AFTER_HW_BREAK 0
1007 #endif
1008
1009 /* Sometimes gdb may pick up what appears to be a valid target address
1010 from a minimal symbol, but the value really means, essentially,
1011 "This is an index into a table which is populated when the inferior
1012 is run. Therefore, do not attempt to use this as a PC." */
1013
1014 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1015 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1016 #endif
1017
1018 /* This will only be defined by a target that supports catching vfork events,
1019 such as HP-UX.
1020
1021 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1022 child process after it has exec'd, causes the parent process to resume as
1023 well. To prevent the parent from running spontaneously, such targets should
1024 define this to a function that prevents that from happening. */
1025 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1026 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1027 #endif
1028
1029 /* This will only be defined by a target that supports catching vfork events,
1030 such as HP-UX.
1031
1032 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1033 process must be resumed when it delivers its exec event, before the parent
1034 vfork event will be delivered to us. */
1035
1036 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1037 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1038 #endif
1039
1040 /* Routines for maintenance of the target structures...
1041
1042 add_target: Add a target to the list of all possible targets.
1043
1044 push_target: Make this target the top of the stack of currently used
1045 targets, within its particular stratum of the stack. Result
1046 is 0 if now atop the stack, nonzero if not on top (maybe
1047 should warn user).
1048
1049 unpush_target: Remove this from the stack of currently used targets,
1050 no matter where it is on the list. Returns 0 if no
1051 change, 1 if removed from stack.
1052
1053 pop_target: Remove the top thing on the stack of current targets. */
1054
1055 extern void add_target (struct target_ops *);
1056
1057 extern int push_target (struct target_ops *);
1058
1059 extern int unpush_target (struct target_ops *);
1060
1061 extern void target_preopen (int);
1062
1063 extern void pop_target (void);
1064
1065 /* Struct section_table maps address ranges to file sections. It is
1066 mostly used with BFD files, but can be used without (e.g. for handling
1067 raw disks, or files not in formats handled by BFD). */
1068
1069 struct section_table
1070 {
1071 CORE_ADDR addr; /* Lowest address in section */
1072 CORE_ADDR endaddr; /* 1+highest address in section */
1073
1074 sec_ptr the_bfd_section;
1075
1076 bfd *bfd; /* BFD file pointer */
1077 };
1078
1079 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1080 Returns 0 if OK, 1 on error. */
1081
1082 extern int build_section_table (bfd *, struct section_table **,
1083 struct section_table **);
1084
1085 /* From mem-break.c */
1086
1087 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1088
1089 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1090
1091 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1092
1093 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1094
1095
1096 /* From target.c */
1097
1098 extern void initialize_targets (void);
1099
1100 extern void noprocess (void);
1101
1102 extern void find_default_attach (char *, int);
1103
1104 extern void find_default_create_inferior (char *, char *, char **);
1105
1106 extern struct target_ops *find_run_target (void);
1107
1108 extern struct target_ops *find_core_target (void);
1109
1110 extern struct target_ops *find_target_beneath (struct target_ops *);
1111
1112 extern int target_resize_to_sections (struct target_ops *target,
1113 int num_added);
1114
1115 extern void remove_target_sections (bfd *abfd);
1116
1117 \f
1118 /* Stuff that should be shared among the various remote targets. */
1119
1120 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1121 information (higher values, more information). */
1122 extern int remote_debug;
1123
1124 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1125 extern int baud_rate;
1126 /* Timeout limit for response from target. */
1127 extern int remote_timeout;
1128
1129 \f
1130 /* Functions for helping to write a native target. */
1131
1132 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1133 extern void store_waitstatus (struct target_waitstatus *, int);
1134
1135 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1136 targ_signal SIGNO has an equivalent ``host'' representation. */
1137 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1138 to the shorter target_signal_p() because it is far less ambigious.
1139 In this context ``target_signal'' refers to GDB's internal
1140 representation of the target's set of signals while ``host signal''
1141 refers to the target operating system's signal. Confused? */
1142
1143 extern int target_signal_to_host_p (enum target_signal signo);
1144
1145 /* Convert between host signal numbers and enum target_signal's.
1146 target_signal_to_host() returns 0 and prints a warning() on GDB's
1147 console if SIGNO has no equivalent host representation. */
1148 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1149 refering to the target operating system's signal numbering.
1150 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1151 gdb_signal'' would probably be better as it is refering to GDB's
1152 internal representation of a target operating system's signal. */
1153
1154 extern enum target_signal target_signal_from_host (int);
1155 extern int target_signal_to_host (enum target_signal);
1156
1157 /* Convert from a number used in a GDB command to an enum target_signal. */
1158 extern enum target_signal target_signal_from_command (int);
1159
1160 /* Any target can call this to switch to remote protocol (in remote.c). */
1161 extern void push_remote_target (char *name, int from_tty);
1162 \f
1163 /* Imported from machine dependent code */
1164
1165 /* Blank target vector entries are initialized to target_ignore. */
1166 void target_ignore (void);
1167
1168 #endif /* !defined (TARGET_H) */
This page took 0.055804 seconds and 5 git commands to generate.