2003-10-31 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by John Gilmore.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #if !defined (TARGET_H)
26 #define TARGET_H
27
28 struct objfile;
29 struct ui_file;
30 struct mem_attrib;
31 struct target_ops;
32
33 /* This include file defines the interface between the main part
34 of the debugger, and the part which is target-specific, or
35 specific to the communications interface between us and the
36 target.
37
38 A TARGET is an interface between the debugger and a particular
39 kind of file or process. Targets can be STACKED in STRATA,
40 so that more than one target can potentially respond to a request.
41 In particular, memory accesses will walk down the stack of targets
42 until they find a target that is interested in handling that particular
43 address. STRATA are artificial boundaries on the stack, within
44 which particular kinds of targets live. Strata exist so that
45 people don't get confused by pushing e.g. a process target and then
46 a file target, and wondering why they can't see the current values
47 of variables any more (the file target is handling them and they
48 never get to the process target). So when you push a file target,
49 it goes into the file stratum, which is always below the process
50 stratum. */
51
52 #include "bfd.h"
53 #include "symtab.h"
54 #include "dcache.h"
55 #include "memattr.h"
56
57 enum strata
58 {
59 dummy_stratum, /* The lowest of the low */
60 file_stratum, /* Executable files, etc */
61 core_stratum, /* Core dump files */
62 download_stratum, /* Downloading of remote targets */
63 process_stratum, /* Executing processes */
64 thread_stratum /* Executing threads */
65 };
66
67 enum thread_control_capabilities
68 {
69 tc_none = 0, /* Default: can't control thread execution. */
70 tc_schedlock = 1, /* Can lock the thread scheduler. */
71 tc_switch = 2 /* Can switch the running thread on demand. */
72 };
73
74 /* Stuff for target_wait. */
75
76 /* Generally, what has the program done? */
77 enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
81
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
84 TARGET_WAITKIND_STOPPED,
85
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
89
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
93
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
98 TARGET_WAITKIND_FORKED,
99
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
103 TARGET_WAITKIND_VFORKED,
104
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
108 TARGET_WAITKIND_EXECD,
109
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
116
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
120 TARGET_WAITKIND_SPURIOUS,
121
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
130 like for instance the user typing. */
131 TARGET_WAITKIND_IGNORE
132 };
133
134 struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
149
150 /* Possible types of events that the inferior handler will have to
151 deal with. */
152 enum inferior_event_type
153 {
154 /* There is a request to quit the inferior, abandon it. */
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
157 being called. */
158 INF_REG_EVENT,
159 /* Deal with an error on the inferior. */
160 INF_ERROR,
161 /* We are called because a timer went off. */
162 INF_TIMER,
163 /* We are called to do stuff after the inferior stops. */
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
168 'step n' like commands. */
169 INF_EXEC_CONTINUE
170 };
171
172 /* Return the string for a signal. */
173 extern char *target_signal_to_string (enum target_signal);
174
175 /* Return the name (SIGHUP, etc.) for a signal. */
176 extern char *target_signal_to_name (enum target_signal);
177
178 /* Given a name (SIGHUP, etc.), return its signal. */
179 enum target_signal target_signal_from_name (char *);
180 \f
181 /* Request the transfer of up to LEN 8-bit bytes of the target's
182 OBJECT. The OFFSET, for a seekable object, specifies the starting
183 point. The ANNEX can be used to provide additional data-specific
184 information to the target.
185
186 Return the number of bytes actually transfered, zero when no
187 further transfer is possible, and -1 when the transfer is not
188 supported.
189
190 NOTE: cagney/2003-10-17: The current interface does not support a
191 "retry" mechanism. Instead it assumes that at least one byte will
192 be transfered on each call.
193
194 NOTE: cagney/2003-10-17: The current interface can lead to
195 fragmented transfers. Lower target levels should not implement
196 hacks, such as enlarging the transfer, in an attempt to compensate
197 for this. Instead, the target stack should be extended so that it
198 implements supply/collect methods and a look-aside object cache.
199 With that available, the lowest target can safely and freely "push"
200 data up the stack.
201
202 NOTE: cagney/2003-10-17: Unlike the old query and the memory
203 transfer mechanisms, these methods are explicitly parameterized by
204 the target that it should be applied to.
205
206 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207 methods, these new methods perform partial transfers. The only
208 difference is that these new methods thought to include "partial"
209 in the name. The old code's failure to do this lead to much
210 confusion and duplication of effort as each target object attempted
211 to locally take responsibility for something it didn't have to
212 worry about.
213
214 NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
215 backward compatibility with the "target_query" method that this
216 replaced, when OFFSET and LEN are both zero, return the "minimum"
217 buffer size. See "remote.c" for further information. */
218
219 enum target_object
220 {
221 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
222 TARGET_OBJECT_KOD,
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
226 TARGET_OBJECT_MEMORY
227 /* Possible future ojbects: TARGET_OJBECT_FILE, TARGET_OBJECT_PROC,
228 TARGET_OBJECT_AUXV, ... */
229 };
230
231 extern LONGEST target_read_partial (struct target_ops *ops,
232 enum target_object object,
233 const char *annex, void *buf,
234 ULONGEST offset, LONGEST len);
235
236 extern LONGEST target_write_partial (struct target_ops *ops,
237 enum target_object object,
238 const char *annex, const void *buf,
239 ULONGEST offset, LONGEST len);
240
241 /* Wrappers to perform the full transfer. */
242 extern LONGEST target_read (struct target_ops *ops,
243 enum target_object object,
244 const char *annex, void *buf,
245 ULONGEST offset, LONGEST len);
246
247 extern LONGEST target_write (struct target_ops *ops,
248 enum target_object object,
249 const char *annex, const void *buf,
250 ULONGEST offset, LONGEST len);
251
252 /* Wrappers to target read/write that perform memory transfers. They
253 throw an error if the memory transfer fails.
254
255 NOTE: cagney/2003-10-23: The naming schema is lifted from
256 "frame.h". The parameter order is lifted from get_frame_memory,
257 which in turn lifted it from read_memory. */
258
259 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
260 void *buf, LONGEST len);
261 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
262 CORE_ADDR addr, int len);
263 \f
264
265 /* If certain kinds of activity happen, target_wait should perform
266 callbacks. */
267 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
268 on TARGET_ACTIVITY_FD. */
269 extern int target_activity_fd;
270 /* Returns zero to leave the inferior alone, one to interrupt it. */
271 extern int (*target_activity_function) (void);
272 \f
273 struct thread_info; /* fwd decl for parameter list below: */
274
275 struct target_ops
276 {
277 struct target_ops *beneath; /* To the target under this one. */
278 char *to_shortname; /* Name this target type */
279 char *to_longname; /* Name for printing */
280 char *to_doc; /* Documentation. Does not include trailing
281 newline, and starts with a one-line descrip-
282 tion (probably similar to to_longname). */
283 /* The open routine takes the rest of the parameters from the
284 command, and (if successful) pushes a new target onto the
285 stack. Targets should supply this routine, if only to provide
286 an error message. */
287 void (*to_open) (char *, int);
288 /* Old targets with a static target vector provide "to_close".
289 New re-entrant targets provide "to_xclose" and that is expected
290 to xfree everything (including the "struct target_ops"). */
291 void (*to_xclose) (struct target_ops *targ, int quitting);
292 void (*to_close) (int);
293 void (*to_attach) (char *, int);
294 void (*to_post_attach) (int);
295 void (*to_detach) (char *, int);
296 void (*to_disconnect) (char *, int);
297 void (*to_resume) (ptid_t, int, enum target_signal);
298 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
299 void (*to_post_wait) (ptid_t, int);
300 void (*to_fetch_registers) (int);
301 void (*to_store_registers) (int);
302 void (*to_prepare_to_store) (void);
303
304 /* Transfer LEN bytes of memory between GDB address MYADDR and
305 target address MEMADDR. If WRITE, transfer them to the target, else
306 transfer them from the target. TARGET is the target from which we
307 get this function.
308
309 Return value, N, is one of the following:
310
311 0 means that we can't handle this. If errno has been set, it is the
312 error which prevented us from doing it (FIXME: What about bfd_error?).
313
314 positive (call it N) means that we have transferred N bytes
315 starting at MEMADDR. We might be able to handle more bytes
316 beyond this length, but no promises.
317
318 negative (call its absolute value N) means that we cannot
319 transfer right at MEMADDR, but we could transfer at least
320 something at MEMADDR + N. */
321
322 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
323 int len, int write,
324 struct mem_attrib *attrib,
325 struct target_ops *target);
326
327 void (*to_files_info) (struct target_ops *);
328 int (*to_insert_breakpoint) (CORE_ADDR, char *);
329 int (*to_remove_breakpoint) (CORE_ADDR, char *);
330 int (*to_can_use_hw_breakpoint) (int, int, int);
331 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
332 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
333 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
334 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
335 int (*to_stopped_by_watchpoint) (void);
336 int to_have_continuable_watchpoint;
337 CORE_ADDR (*to_stopped_data_address) (void);
338 int (*to_region_size_ok_for_hw_watchpoint) (int);
339 void (*to_terminal_init) (void);
340 void (*to_terminal_inferior) (void);
341 void (*to_terminal_ours_for_output) (void);
342 void (*to_terminal_ours) (void);
343 void (*to_terminal_save_ours) (void);
344 void (*to_terminal_info) (char *, int);
345 void (*to_kill) (void);
346 void (*to_load) (char *, int);
347 int (*to_lookup_symbol) (char *, CORE_ADDR *);
348 void (*to_create_inferior) (char *, char *, char **);
349 void (*to_post_startup_inferior) (ptid_t);
350 void (*to_acknowledge_created_inferior) (int);
351 int (*to_insert_fork_catchpoint) (int);
352 int (*to_remove_fork_catchpoint) (int);
353 int (*to_insert_vfork_catchpoint) (int);
354 int (*to_remove_vfork_catchpoint) (int);
355 int (*to_follow_fork) (int);
356 int (*to_insert_exec_catchpoint) (int);
357 int (*to_remove_exec_catchpoint) (int);
358 int (*to_reported_exec_events_per_exec_call) (void);
359 int (*to_has_exited) (int, int, int *);
360 void (*to_mourn_inferior) (void);
361 int (*to_can_run) (void);
362 void (*to_notice_signals) (ptid_t ptid);
363 int (*to_thread_alive) (ptid_t ptid);
364 void (*to_find_new_threads) (void);
365 char *(*to_pid_to_str) (ptid_t);
366 char *(*to_extra_thread_info) (struct thread_info *);
367 void (*to_stop) (void);
368 void (*to_rcmd) (char *command, struct ui_file *output);
369 struct symtab_and_line *(*to_enable_exception_callback) (enum
370 exception_event_kind,
371 int);
372 struct exception_event_record *(*to_get_current_exception_event) (void);
373 char *(*to_pid_to_exec_file) (int pid);
374 enum strata to_stratum;
375 int to_has_all_memory;
376 int to_has_memory;
377 int to_has_stack;
378 int to_has_registers;
379 int to_has_execution;
380 int to_has_thread_control; /* control thread execution */
381 struct section_table
382 *to_sections;
383 struct section_table
384 *to_sections_end;
385 /* ASYNC target controls */
386 int (*to_can_async_p) (void);
387 int (*to_is_async_p) (void);
388 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
389 void *context);
390 int to_async_mask_value;
391 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
392 unsigned long,
393 int, int, int,
394 void *),
395 void *);
396 char * (*to_make_corefile_notes) (bfd *, int *);
397
398 /* Return the thread-local address at OFFSET in the
399 thread-local storage for the thread PTID and the shared library
400 or executable file given by OBJFILE. If that block of
401 thread-local storage hasn't been allocated yet, this function
402 may return an error. */
403 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
404 struct objfile *objfile,
405 CORE_ADDR offset);
406
407 /* Perform partial transfers on OBJECT. See target_read_partial
408 and target_write_partial for details of each variant. One, and
409 only one, of readbuf or writebuf must be non-NULL. */
410 LONGEST (*to_xfer_partial) (struct target_ops *ops,
411 enum target_object object,
412 const char *annex, const void *writebuf,
413 void *readbuf, ULONGEST offset, LONGEST len);
414
415 int to_magic;
416 /* Need sub-structure for target machine related rather than comm related?
417 */
418 };
419
420 /* Magic number for checking ops size. If a struct doesn't end with this
421 number, somebody changed the declaration but didn't change all the
422 places that initialize one. */
423
424 #define OPS_MAGIC 3840
425
426 /* The ops structure for our "current" target process. This should
427 never be NULL. If there is no target, it points to the dummy_target. */
428
429 extern struct target_ops current_target;
430
431 /* Define easy words for doing these operations on our current target. */
432
433 #define target_shortname (current_target.to_shortname)
434 #define target_longname (current_target.to_longname)
435
436 /* Does whatever cleanup is required for a target that we are no
437 longer going to be calling. QUITTING indicates that GDB is exiting
438 and should not get hung on an error (otherwise it is important to
439 perform clean termination, even if it takes a while). This routine
440 is automatically always called when popping the target off the
441 target stack (to_beneath is undefined). Closing file descriptors
442 and freeing all memory allocated memory are typical things it
443 should do. */
444
445 void target_close (struct target_ops *targ, int quitting);
446
447 /* Attaches to a process on the target side. Arguments are as passed
448 to the `attach' command by the user. This routine can be called
449 when the target is not on the target-stack, if the target_can_run
450 routine returns 1; in that case, it must push itself onto the stack.
451 Upon exit, the target should be ready for normal operations, and
452 should be ready to deliver the status of the process immediately
453 (without waiting) to an upcoming target_wait call. */
454
455 #define target_attach(args, from_tty) \
456 (*current_target.to_attach) (args, from_tty)
457
458 /* The target_attach operation places a process under debugger control,
459 and stops the process.
460
461 This operation provides a target-specific hook that allows the
462 necessary bookkeeping to be performed after an attach completes. */
463 #define target_post_attach(pid) \
464 (*current_target.to_post_attach) (pid)
465
466 /* Takes a program previously attached to and detaches it.
467 The program may resume execution (some targets do, some don't) and will
468 no longer stop on signals, etc. We better not have left any breakpoints
469 in the program or it'll die when it hits one. ARGS is arguments
470 typed by the user (e.g. a signal to send the process). FROM_TTY
471 says whether to be verbose or not. */
472
473 extern void target_detach (char *, int);
474
475 /* Disconnect from the current target without resuming it (leaving it
476 waiting for a debugger). */
477
478 extern void target_disconnect (char *, int);
479
480 /* Resume execution of the target process PTID. STEP says whether to
481 single-step or to run free; SIGGNAL is the signal to be given to
482 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
483 pass TARGET_SIGNAL_DEFAULT. */
484
485 #define target_resume(ptid, step, siggnal) \
486 do { \
487 dcache_invalidate(target_dcache); \
488 (*current_target.to_resume) (ptid, step, siggnal); \
489 } while (0)
490
491 /* Wait for process pid to do something. PTID = -1 to wait for any
492 pid to do something. Return pid of child, or -1 in case of error;
493 store status through argument pointer STATUS. Note that it is
494 _NOT_ OK to throw_exception() out of target_wait() without popping
495 the debugging target from the stack; GDB isn't prepared to get back
496 to the prompt with a debugging target but without the frame cache,
497 stop_pc, etc., set up. */
498
499 #define target_wait(ptid, status) \
500 (*current_target.to_wait) (ptid, status)
501
502 /* The target_wait operation waits for a process event to occur, and
503 thereby stop the process.
504
505 On some targets, certain events may happen in sequences. gdb's
506 correct response to any single event of such a sequence may require
507 knowledge of what earlier events in the sequence have been seen.
508
509 This operation provides a target-specific hook that allows the
510 necessary bookkeeping to be performed to track such sequences. */
511
512 #define target_post_wait(ptid, status) \
513 (*current_target.to_post_wait) (ptid, status)
514
515 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
516
517 #define target_fetch_registers(regno) \
518 (*current_target.to_fetch_registers) (regno)
519
520 /* Store at least register REGNO, or all regs if REGNO == -1.
521 It can store as many registers as it wants to, so target_prepare_to_store
522 must have been previously called. Calls error() if there are problems. */
523
524 #define target_store_registers(regs) \
525 (*current_target.to_store_registers) (regs)
526
527 /* Get ready to modify the registers array. On machines which store
528 individual registers, this doesn't need to do anything. On machines
529 which store all the registers in one fell swoop, this makes sure
530 that REGISTERS contains all the registers from the program being
531 debugged. */
532
533 #define target_prepare_to_store() \
534 (*current_target.to_prepare_to_store) ()
535
536 extern DCACHE *target_dcache;
537
538 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
539 struct mem_attrib *attrib);
540
541 extern int target_read_string (CORE_ADDR, char **, int, int *);
542
543 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
544
545 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
546
547 extern int xfer_memory (CORE_ADDR, char *, int, int,
548 struct mem_attrib *, struct target_ops *);
549
550 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
551 struct mem_attrib *, struct target_ops *);
552
553 /* Make a single attempt at transfering LEN bytes. On a successful
554 transfer, the number of bytes actually transfered is returned and
555 ERR is set to 0. When a transfer fails, -1 is returned (the number
556 of bytes actually transfered is not defined) and ERR is set to a
557 non-zero error indication. */
558
559 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
560 int *err);
561
562 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
563 int *err);
564
565 extern char *child_pid_to_exec_file (int);
566
567 extern char *child_core_file_to_sym_file (char *);
568
569 #if defined(CHILD_POST_ATTACH)
570 extern void child_post_attach (int);
571 #endif
572
573 extern void child_post_wait (ptid_t, int);
574
575 extern void child_post_startup_inferior (ptid_t);
576
577 extern void child_acknowledge_created_inferior (int);
578
579 extern int child_insert_fork_catchpoint (int);
580
581 extern int child_remove_fork_catchpoint (int);
582
583 extern int child_insert_vfork_catchpoint (int);
584
585 extern int child_remove_vfork_catchpoint (int);
586
587 extern void child_acknowledge_created_inferior (int);
588
589 extern int child_follow_fork (int);
590
591 extern int child_insert_exec_catchpoint (int);
592
593 extern int child_remove_exec_catchpoint (int);
594
595 extern int child_reported_exec_events_per_exec_call (void);
596
597 extern int child_has_exited (int, int, int *);
598
599 extern int child_thread_alive (ptid_t);
600
601 /* From infrun.c. */
602
603 extern int inferior_has_forked (int pid, int *child_pid);
604
605 extern int inferior_has_vforked (int pid, int *child_pid);
606
607 extern int inferior_has_execd (int pid, char **execd_pathname);
608
609 /* From exec.c */
610
611 extern void print_section_info (struct target_ops *, bfd *);
612
613 /* Print a line about the current target. */
614
615 #define target_files_info() \
616 (*current_target.to_files_info) (&current_target)
617
618 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
619 a pointer to memory allocated for saving the target contents. It
620 is guaranteed by the caller to be long enough to save the number of
621 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
622 success, or an errno value. */
623
624 #define target_insert_breakpoint(addr, save) \
625 (*current_target.to_insert_breakpoint) (addr, save)
626
627 /* Remove a breakpoint at address ADDR in the target machine.
628 SAVE is a pointer to the same save area
629 that was previously passed to target_insert_breakpoint.
630 Result is 0 for success, or an errno value. */
631
632 #define target_remove_breakpoint(addr, save) \
633 (*current_target.to_remove_breakpoint) (addr, save)
634
635 /* Initialize the terminal settings we record for the inferior,
636 before we actually run the inferior. */
637
638 #define target_terminal_init() \
639 (*current_target.to_terminal_init) ()
640
641 /* Put the inferior's terminal settings into effect.
642 This is preparation for starting or resuming the inferior. */
643
644 #define target_terminal_inferior() \
645 (*current_target.to_terminal_inferior) ()
646
647 /* Put some of our terminal settings into effect,
648 enough to get proper results from our output,
649 but do not change into or out of RAW mode
650 so that no input is discarded.
651
652 After doing this, either terminal_ours or terminal_inferior
653 should be called to get back to a normal state of affairs. */
654
655 #define target_terminal_ours_for_output() \
656 (*current_target.to_terminal_ours_for_output) ()
657
658 /* Put our terminal settings into effect.
659 First record the inferior's terminal settings
660 so they can be restored properly later. */
661
662 #define target_terminal_ours() \
663 (*current_target.to_terminal_ours) ()
664
665 /* Save our terminal settings.
666 This is called from TUI after entering or leaving the curses
667 mode. Since curses modifies our terminal this call is here
668 to take this change into account. */
669
670 #define target_terminal_save_ours() \
671 (*current_target.to_terminal_save_ours) ()
672
673 /* Print useful information about our terminal status, if such a thing
674 exists. */
675
676 #define target_terminal_info(arg, from_tty) \
677 (*current_target.to_terminal_info) (arg, from_tty)
678
679 /* Kill the inferior process. Make it go away. */
680
681 #define target_kill() \
682 (*current_target.to_kill) ()
683
684 /* Load an executable file into the target process. This is expected
685 to not only bring new code into the target process, but also to
686 update GDB's symbol tables to match. */
687
688 extern void target_load (char *arg, int from_tty);
689
690 /* Look up a symbol in the target's symbol table. NAME is the symbol
691 name. ADDRP is a CORE_ADDR * pointing to where the value of the
692 symbol should be returned. The result is 0 if successful, nonzero
693 if the symbol does not exist in the target environment. This
694 function should not call error() if communication with the target
695 is interrupted, since it is called from symbol reading, but should
696 return nonzero, possibly doing a complain(). */
697
698 #define target_lookup_symbol(name, addrp) \
699 (*current_target.to_lookup_symbol) (name, addrp)
700
701 /* Start an inferior process and set inferior_ptid to its pid.
702 EXEC_FILE is the file to run.
703 ALLARGS is a string containing the arguments to the program.
704 ENV is the environment vector to pass. Errors reported with error().
705 On VxWorks and various standalone systems, we ignore exec_file. */
706
707 #define target_create_inferior(exec_file, args, env) \
708 (*current_target.to_create_inferior) (exec_file, args, env)
709
710
711 /* Some targets (such as ttrace-based HPUX) don't allow us to request
712 notification of inferior events such as fork and vork immediately
713 after the inferior is created. (This because of how gdb gets an
714 inferior created via invoking a shell to do it. In such a scenario,
715 if the shell init file has commands in it, the shell will fork and
716 exec for each of those commands, and we will see each such fork
717 event. Very bad.)
718
719 Such targets will supply an appropriate definition for this function. */
720
721 #define target_post_startup_inferior(ptid) \
722 (*current_target.to_post_startup_inferior) (ptid)
723
724 /* On some targets, the sequence of starting up an inferior requires
725 some synchronization between gdb and the new inferior process, PID. */
726
727 #define target_acknowledge_created_inferior(pid) \
728 (*current_target.to_acknowledge_created_inferior) (pid)
729
730 /* On some targets, we can catch an inferior fork or vfork event when
731 it occurs. These functions insert/remove an already-created
732 catchpoint for such events. */
733
734 #define target_insert_fork_catchpoint(pid) \
735 (*current_target.to_insert_fork_catchpoint) (pid)
736
737 #define target_remove_fork_catchpoint(pid) \
738 (*current_target.to_remove_fork_catchpoint) (pid)
739
740 #define target_insert_vfork_catchpoint(pid) \
741 (*current_target.to_insert_vfork_catchpoint) (pid)
742
743 #define target_remove_vfork_catchpoint(pid) \
744 (*current_target.to_remove_vfork_catchpoint) (pid)
745
746 /* If the inferior forks or vforks, this function will be called at
747 the next resume in order to perform any bookkeeping and fiddling
748 necessary to continue debugging either the parent or child, as
749 requested, and releasing the other. Information about the fork
750 or vfork event is available via get_last_target_status ().
751 This function returns 1 if the inferior should not be resumed
752 (i.e. there is another event pending). */
753
754 #define target_follow_fork(follow_child) \
755 (*current_target.to_follow_fork) (follow_child)
756
757 /* On some targets, we can catch an inferior exec event when it
758 occurs. These functions insert/remove an already-created
759 catchpoint for such events. */
760
761 #define target_insert_exec_catchpoint(pid) \
762 (*current_target.to_insert_exec_catchpoint) (pid)
763
764 #define target_remove_exec_catchpoint(pid) \
765 (*current_target.to_remove_exec_catchpoint) (pid)
766
767 /* Returns the number of exec events that are reported when a process
768 invokes a flavor of the exec() system call on this target, if exec
769 events are being reported. */
770
771 #define target_reported_exec_events_per_exec_call() \
772 (*current_target.to_reported_exec_events_per_exec_call) ()
773
774 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
775 exit code of PID, if any. */
776
777 #define target_has_exited(pid,wait_status,exit_status) \
778 (*current_target.to_has_exited) (pid,wait_status,exit_status)
779
780 /* The debugger has completed a blocking wait() call. There is now
781 some process event that must be processed. This function should
782 be defined by those targets that require the debugger to perform
783 cleanup or internal state changes in response to the process event. */
784
785 /* The inferior process has died. Do what is right. */
786
787 #define target_mourn_inferior() \
788 (*current_target.to_mourn_inferior) ()
789
790 /* Does target have enough data to do a run or attach command? */
791
792 #define target_can_run(t) \
793 ((t)->to_can_run) ()
794
795 /* post process changes to signal handling in the inferior. */
796
797 #define target_notice_signals(ptid) \
798 (*current_target.to_notice_signals) (ptid)
799
800 /* Check to see if a thread is still alive. */
801
802 #define target_thread_alive(ptid) \
803 (*current_target.to_thread_alive) (ptid)
804
805 /* Query for new threads and add them to the thread list. */
806
807 #define target_find_new_threads() \
808 (*current_target.to_find_new_threads) (); \
809
810 /* Make target stop in a continuable fashion. (For instance, under
811 Unix, this should act like SIGSTOP). This function is normally
812 used by GUIs to implement a stop button. */
813
814 #define target_stop current_target.to_stop
815
816 /* Send the specified COMMAND to the target's monitor
817 (shell,interpreter) for execution. The result of the query is
818 placed in OUTBUF. */
819
820 #define target_rcmd(command, outbuf) \
821 (*current_target.to_rcmd) (command, outbuf)
822
823
824 /* Get the symbol information for a breakpointable routine called when
825 an exception event occurs.
826 Intended mainly for C++, and for those
827 platforms/implementations where such a callback mechanism is available,
828 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
829 different mechanisms for debugging exceptions. */
830
831 #define target_enable_exception_callback(kind, enable) \
832 (*current_target.to_enable_exception_callback) (kind, enable)
833
834 /* Get the current exception event kind -- throw or catch, etc. */
835
836 #define target_get_current_exception_event() \
837 (*current_target.to_get_current_exception_event) ()
838
839 /* Does the target include all of memory, or only part of it? This
840 determines whether we look up the target chain for other parts of
841 memory if this target can't satisfy a request. */
842
843 #define target_has_all_memory \
844 (current_target.to_has_all_memory)
845
846 /* Does the target include memory? (Dummy targets don't.) */
847
848 #define target_has_memory \
849 (current_target.to_has_memory)
850
851 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
852 we start a process.) */
853
854 #define target_has_stack \
855 (current_target.to_has_stack)
856
857 /* Does the target have registers? (Exec files don't.) */
858
859 #define target_has_registers \
860 (current_target.to_has_registers)
861
862 /* Does the target have execution? Can we make it jump (through
863 hoops), or pop its stack a few times? FIXME: If this is to work that
864 way, it needs to check whether an inferior actually exists.
865 remote-udi.c and probably other targets can be the current target
866 when the inferior doesn't actually exist at the moment. Right now
867 this just tells us whether this target is *capable* of execution. */
868
869 #define target_has_execution \
870 (current_target.to_has_execution)
871
872 /* Can the target support the debugger control of thread execution?
873 a) Can it lock the thread scheduler?
874 b) Can it switch the currently running thread? */
875
876 #define target_can_lock_scheduler \
877 (current_target.to_has_thread_control & tc_schedlock)
878
879 #define target_can_switch_threads \
880 (current_target.to_has_thread_control & tc_switch)
881
882 /* Can the target support asynchronous execution? */
883 #define target_can_async_p() (current_target.to_can_async_p ())
884
885 /* Is the target in asynchronous execution mode? */
886 #define target_is_async_p() (current_target.to_is_async_p())
887
888 /* Put the target in async mode with the specified callback function. */
889 #define target_async(CALLBACK,CONTEXT) \
890 (current_target.to_async((CALLBACK), (CONTEXT)))
891
892 /* This is to be used ONLY within call_function_by_hand(). It provides
893 a workaround, to have inferior function calls done in sychronous
894 mode, even though the target is asynchronous. After
895 target_async_mask(0) is called, calls to target_can_async_p() will
896 return FALSE , so that target_resume() will not try to start the
897 target asynchronously. After the inferior stops, we IMMEDIATELY
898 restore the previous nature of the target, by calling
899 target_async_mask(1). After that, target_can_async_p() will return
900 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
901
902 FIXME ezannoni 1999-12-13: we won't need this once we move
903 the turning async on and off to the single execution commands,
904 from where it is done currently, in remote_resume(). */
905
906 #define target_async_mask_value \
907 (current_target.to_async_mask_value)
908
909 extern int target_async_mask (int mask);
910
911 extern void target_link (char *, CORE_ADDR *);
912
913 /* Converts a process id to a string. Usually, the string just contains
914 `process xyz', but on some systems it may contain
915 `process xyz thread abc'. */
916
917 #undef target_pid_to_str
918 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
919
920 #ifndef target_tid_to_str
921 #define target_tid_to_str(PID) \
922 target_pid_to_str (PID)
923 extern char *normal_pid_to_str (ptid_t ptid);
924 #endif
925
926 /* Return a short string describing extra information about PID,
927 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
928 is okay. */
929
930 #define target_extra_thread_info(TP) \
931 (current_target.to_extra_thread_info (TP))
932
933 /*
934 * New Objfile Event Hook:
935 *
936 * Sometimes a GDB component wants to get notified whenever a new
937 * objfile is loaded. Mainly this is used by thread-debugging
938 * implementations that need to know when symbols for the target
939 * thread implemenation are available.
940 *
941 * The old way of doing this is to define a macro 'target_new_objfile'
942 * that points to the function that you want to be called on every
943 * objfile/shlib load.
944 *
945 * The new way is to grab the function pointer, 'target_new_objfile_hook',
946 * and point it to the function that you want to be called on every
947 * objfile/shlib load.
948 *
949 * If multiple clients are willing to be cooperative, they can each
950 * save a pointer to the previous value of target_new_objfile_hook
951 * before modifying it, and arrange for their function to call the
952 * previous function in the chain. In that way, multiple clients
953 * can receive this notification (something like with signal handlers).
954 */
955
956 extern void (*target_new_objfile_hook) (struct objfile *);
957
958 #ifndef target_pid_or_tid_to_str
959 #define target_pid_or_tid_to_str(ID) \
960 target_pid_to_str (ID)
961 #endif
962
963 /* Attempts to find the pathname of the executable file
964 that was run to create a specified process.
965
966 The process PID must be stopped when this operation is used.
967
968 If the executable file cannot be determined, NULL is returned.
969
970 Else, a pointer to a character string containing the pathname
971 is returned. This string should be copied into a buffer by
972 the client if the string will not be immediately used, or if
973 it must persist. */
974
975 #define target_pid_to_exec_file(pid) \
976 (current_target.to_pid_to_exec_file) (pid)
977
978 /*
979 * Iterator function for target memory regions.
980 * Calls a callback function once for each memory region 'mapped'
981 * in the child process. Defined as a simple macro rather than
982 * as a function macro so that it can be tested for nullity.
983 */
984
985 #define target_find_memory_regions(FUNC, DATA) \
986 (current_target.to_find_memory_regions) (FUNC, DATA)
987
988 /*
989 * Compose corefile .note section.
990 */
991
992 #define target_make_corefile_notes(BFD, SIZE_P) \
993 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
994
995 /* Thread-local values. */
996 #define target_get_thread_local_address \
997 (current_target.to_get_thread_local_address)
998 #define target_get_thread_local_address_p() \
999 (target_get_thread_local_address != NULL)
1000
1001 /* Hook to call target dependent code just after inferior target process has
1002 started. */
1003
1004 #ifndef TARGET_CREATE_INFERIOR_HOOK
1005 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1006 #endif
1007
1008 /* Hardware watchpoint interfaces. */
1009
1010 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1011 write). */
1012
1013 #ifndef STOPPED_BY_WATCHPOINT
1014 #define STOPPED_BY_WATCHPOINT(w) \
1015 (*current_target.to_stopped_by_watchpoint) ()
1016 #endif
1017
1018 /* Non-zero if we have continuable watchpoints */
1019
1020 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1021 #define HAVE_CONTINUABLE_WATCHPOINT \
1022 (current_target.to_have_continuable_watchpoint)
1023 #endif
1024
1025 /* HP-UX supplies these operations, which respectively disable and enable
1026 the memory page-protections that are used to implement hardware watchpoints
1027 on that platform. See wait_for_inferior's use of these. */
1028
1029 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1030 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1031 #endif
1032
1033 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1034 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1035 #endif
1036
1037 /* Provide defaults for hardware watchpoint functions. */
1038
1039 /* If the *_hw_beakpoint functions have not been defined
1040 elsewhere use the definitions in the target vector. */
1041
1042 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1043 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1044 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1045 (including this one?). OTHERTYPE is who knows what... */
1046
1047 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1048 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1049 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1050 #endif
1051
1052 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1053 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1054 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1055 #endif
1056
1057
1058 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1059 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1060 success, non-zero for failure. */
1061
1062 #ifndef target_insert_watchpoint
1063 #define target_insert_watchpoint(addr, len, type) \
1064 (*current_target.to_insert_watchpoint) (addr, len, type)
1065
1066 #define target_remove_watchpoint(addr, len, type) \
1067 (*current_target.to_remove_watchpoint) (addr, len, type)
1068 #endif
1069
1070 #ifndef target_insert_hw_breakpoint
1071 #define target_insert_hw_breakpoint(addr, save) \
1072 (*current_target.to_insert_hw_breakpoint) (addr, save)
1073
1074 #define target_remove_hw_breakpoint(addr, save) \
1075 (*current_target.to_remove_hw_breakpoint) (addr, save)
1076 #endif
1077
1078 #ifndef target_stopped_data_address
1079 #define target_stopped_data_address() \
1080 (*current_target.to_stopped_data_address) ()
1081 #endif
1082
1083 /* If defined, then we need to decr pc by this much after a hardware break-
1084 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1085
1086 #ifndef DECR_PC_AFTER_HW_BREAK
1087 #define DECR_PC_AFTER_HW_BREAK 0
1088 #endif
1089
1090 /* Sometimes gdb may pick up what appears to be a valid target address
1091 from a minimal symbol, but the value really means, essentially,
1092 "This is an index into a table which is populated when the inferior
1093 is run. Therefore, do not attempt to use this as a PC." */
1094
1095 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1096 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1097 #endif
1098
1099 /* This will only be defined by a target that supports catching vfork events,
1100 such as HP-UX.
1101
1102 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1103 child process after it has exec'd, causes the parent process to resume as
1104 well. To prevent the parent from running spontaneously, such targets should
1105 define this to a function that prevents that from happening. */
1106 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1107 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1108 #endif
1109
1110 /* This will only be defined by a target that supports catching vfork events,
1111 such as HP-UX.
1112
1113 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1114 process must be resumed when it delivers its exec event, before the parent
1115 vfork event will be delivered to us. */
1116
1117 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1118 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1119 #endif
1120
1121 /* Routines for maintenance of the target structures...
1122
1123 add_target: Add a target to the list of all possible targets.
1124
1125 push_target: Make this target the top of the stack of currently used
1126 targets, within its particular stratum of the stack. Result
1127 is 0 if now atop the stack, nonzero if not on top (maybe
1128 should warn user).
1129
1130 unpush_target: Remove this from the stack of currently used targets,
1131 no matter where it is on the list. Returns 0 if no
1132 change, 1 if removed from stack.
1133
1134 pop_target: Remove the top thing on the stack of current targets. */
1135
1136 extern void add_target (struct target_ops *);
1137
1138 extern int push_target (struct target_ops *);
1139
1140 extern int unpush_target (struct target_ops *);
1141
1142 extern void target_preopen (int);
1143
1144 extern void pop_target (void);
1145
1146 /* Struct section_table maps address ranges to file sections. It is
1147 mostly used with BFD files, but can be used without (e.g. for handling
1148 raw disks, or files not in formats handled by BFD). */
1149
1150 struct section_table
1151 {
1152 CORE_ADDR addr; /* Lowest address in section */
1153 CORE_ADDR endaddr; /* 1+highest address in section */
1154
1155 sec_ptr the_bfd_section;
1156
1157 bfd *bfd; /* BFD file pointer */
1158 };
1159
1160 /* Return the "section" containing the specified address. */
1161 struct section_table *target_section_by_addr (struct target_ops *target,
1162 CORE_ADDR addr);
1163
1164
1165 /* From mem-break.c */
1166
1167 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1168
1169 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1170
1171 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1172
1173 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1174
1175
1176 /* From target.c */
1177
1178 extern void initialize_targets (void);
1179
1180 extern void noprocess (void);
1181
1182 extern void find_default_attach (char *, int);
1183
1184 extern void find_default_create_inferior (char *, char *, char **);
1185
1186 extern struct target_ops *find_run_target (void);
1187
1188 extern struct target_ops *find_core_target (void);
1189
1190 extern struct target_ops *find_target_beneath (struct target_ops *);
1191
1192 extern int target_resize_to_sections (struct target_ops *target,
1193 int num_added);
1194
1195 extern void remove_target_sections (bfd *abfd);
1196
1197 \f
1198 /* Stuff that should be shared among the various remote targets. */
1199
1200 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1201 information (higher values, more information). */
1202 extern int remote_debug;
1203
1204 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1205 extern int baud_rate;
1206 /* Timeout limit for response from target. */
1207 extern int remote_timeout;
1208
1209 \f
1210 /* Functions for helping to write a native target. */
1211
1212 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1213 extern void store_waitstatus (struct target_waitstatus *, int);
1214
1215 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1216 targ_signal SIGNO has an equivalent ``host'' representation. */
1217 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1218 to the shorter target_signal_p() because it is far less ambigious.
1219 In this context ``target_signal'' refers to GDB's internal
1220 representation of the target's set of signals while ``host signal''
1221 refers to the target operating system's signal. Confused? */
1222
1223 extern int target_signal_to_host_p (enum target_signal signo);
1224
1225 /* Convert between host signal numbers and enum target_signal's.
1226 target_signal_to_host() returns 0 and prints a warning() on GDB's
1227 console if SIGNO has no equivalent host representation. */
1228 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1229 refering to the target operating system's signal numbering.
1230 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1231 gdb_signal'' would probably be better as it is refering to GDB's
1232 internal representation of a target operating system's signal. */
1233
1234 extern enum target_signal target_signal_from_host (int);
1235 extern int target_signal_to_host (enum target_signal);
1236
1237 /* Convert from a number used in a GDB command to an enum target_signal. */
1238 extern enum target_signal target_signal_from_command (int);
1239
1240 /* Any target can call this to switch to remote protocol (in remote.c). */
1241 extern void push_remote_target (char *name, int from_tty);
1242 \f
1243 /* Imported from machine dependent code */
1244
1245 /* Blank target vector entries are initialized to target_ignore. */
1246 void target_ignore (void);
1247
1248 #endif /* !defined (TARGET_H) */
This page took 0.054754 seconds and 5 git commands to generate.