convert to_can_use_hw_breakpoint
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *);
463 int (*to_remove_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *);
465
466 /* Documentation of what the two routines below are expected to do is
467 provided with the corresponding target_* macros. */
468 int (*to_remove_watchpoint) (struct target_ops *,
469 CORE_ADDR, int, int, struct expression *);
470 int (*to_insert_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *);
472
473 int (*to_insert_mask_watchpoint) (struct target_ops *,
474 CORE_ADDR, CORE_ADDR, int);
475 int (*to_remove_mask_watchpoint) (struct target_ops *,
476 CORE_ADDR, CORE_ADDR, int);
477 int (*to_stopped_by_watchpoint) (struct target_ops *)
478 TARGET_DEFAULT_RETURN (0);
479 int to_have_steppable_watchpoint;
480 int to_have_continuable_watchpoint;
481 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
482 TARGET_DEFAULT_RETURN (0);
483 int (*to_watchpoint_addr_within_range) (struct target_ops *,
484 CORE_ADDR, CORE_ADDR, int);
485
486 /* Documentation of this routine is provided with the corresponding
487 target_* macro. */
488 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
489 CORE_ADDR, int);
490
491 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
492 CORE_ADDR, int, int,
493 struct expression *);
494 int (*to_masked_watch_num_registers) (struct target_ops *,
495 CORE_ADDR, CORE_ADDR);
496 void (*to_terminal_init) (struct target_ops *);
497 void (*to_terminal_inferior) (struct target_ops *);
498 void (*to_terminal_ours_for_output) (struct target_ops *);
499 void (*to_terminal_ours) (struct target_ops *);
500 void (*to_terminal_save_ours) (struct target_ops *);
501 void (*to_terminal_info) (struct target_ops *, const char *, int);
502 void (*to_kill) (struct target_ops *);
503 void (*to_load) (struct target_ops *, char *, int);
504 void (*to_create_inferior) (struct target_ops *,
505 char *, char *, char **, int);
506 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
507 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
508 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
509 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
510 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
511 int (*to_follow_fork) (struct target_ops *, int, int);
512 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
513 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
514 int (*to_set_syscall_catchpoint) (struct target_ops *,
515 int, int, int, int, int *);
516 int (*to_has_exited) (struct target_ops *, int, int, int *);
517 void (*to_mourn_inferior) (struct target_ops *);
518 int (*to_can_run) (struct target_ops *);
519
520 /* Documentation of this routine is provided with the corresponding
521 target_* macro. */
522 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
523
524 /* Documentation of this routine is provided with the
525 corresponding target_* function. */
526 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
527
528 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
529 void (*to_find_new_threads) (struct target_ops *);
530 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
531 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
532 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
533 void (*to_stop) (struct target_ops *, ptid_t);
534 void (*to_rcmd) (struct target_ops *,
535 char *command, struct ui_file *output)
536 TARGET_DEFAULT_FUNC (default_rcmd);
537 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
538 void (*to_log_command) (struct target_ops *, const char *);
539 struct target_section_table *(*to_get_section_table) (struct target_ops *);
540 enum strata to_stratum;
541 int (*to_has_all_memory) (struct target_ops *);
542 int (*to_has_memory) (struct target_ops *);
543 int (*to_has_stack) (struct target_ops *);
544 int (*to_has_registers) (struct target_ops *);
545 int (*to_has_execution) (struct target_ops *, ptid_t);
546 int to_has_thread_control; /* control thread execution */
547 int to_attach_no_wait;
548 /* ASYNC target controls */
549 int (*to_can_async_p) (struct target_ops *)
550 TARGET_DEFAULT_FUNC (find_default_can_async_p);
551 int (*to_is_async_p) (struct target_ops *)
552 TARGET_DEFAULT_FUNC (find_default_is_async_p);
553 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
554 TARGET_DEFAULT_NORETURN (tcomplain ());
555 int (*to_supports_non_stop) (struct target_ops *);
556 /* find_memory_regions support method for gcore */
557 int (*to_find_memory_regions) (struct target_ops *,
558 find_memory_region_ftype func, void *data);
559 /* make_corefile_notes support method for gcore */
560 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
561 /* get_bookmark support method for bookmarks */
562 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
563 /* goto_bookmark support method for bookmarks */
564 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
565 /* Return the thread-local address at OFFSET in the
566 thread-local storage for the thread PTID and the shared library
567 or executable file given by OBJFILE. If that block of
568 thread-local storage hasn't been allocated yet, this function
569 may return an error. */
570 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
571 ptid_t ptid,
572 CORE_ADDR load_module_addr,
573 CORE_ADDR offset);
574
575 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
576 OBJECT. The OFFSET, for a seekable object, specifies the
577 starting point. The ANNEX can be used to provide additional
578 data-specific information to the target.
579
580 Return the transferred status, error or OK (an
581 'enum target_xfer_status' value). Save the number of bytes
582 actually transferred in *XFERED_LEN if transfer is successful
583 (TARGET_XFER_OK) or the number unavailable bytes if the requested
584 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
585 smaller than LEN does not indicate the end of the object, only
586 the end of the transfer; higher level code should continue
587 transferring if desired. This is handled in target.c.
588
589 The interface does not support a "retry" mechanism. Instead it
590 assumes that at least one byte will be transfered on each
591 successful call.
592
593 NOTE: cagney/2003-10-17: The current interface can lead to
594 fragmented transfers. Lower target levels should not implement
595 hacks, such as enlarging the transfer, in an attempt to
596 compensate for this. Instead, the target stack should be
597 extended so that it implements supply/collect methods and a
598 look-aside object cache. With that available, the lowest
599 target can safely and freely "push" data up the stack.
600
601 See target_read and target_write for more information. One,
602 and only one, of readbuf or writebuf must be non-NULL. */
603
604 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
605 enum target_object object,
606 const char *annex,
607 gdb_byte *readbuf,
608 const gdb_byte *writebuf,
609 ULONGEST offset, ULONGEST len,
610 ULONGEST *xfered_len)
611 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
612
613 /* Returns the memory map for the target. A return value of NULL
614 means that no memory map is available. If a memory address
615 does not fall within any returned regions, it's assumed to be
616 RAM. The returned memory regions should not overlap.
617
618 The order of regions does not matter; target_memory_map will
619 sort regions by starting address. For that reason, this
620 function should not be called directly except via
621 target_memory_map.
622
623 This method should not cache data; if the memory map could
624 change unexpectedly, it should be invalidated, and higher
625 layers will re-fetch it. */
626 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
627
628 /* Erases the region of flash memory starting at ADDRESS, of
629 length LENGTH.
630
631 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
632 on flash block boundaries, as reported by 'to_memory_map'. */
633 void (*to_flash_erase) (struct target_ops *,
634 ULONGEST address, LONGEST length);
635
636 /* Finishes a flash memory write sequence. After this operation
637 all flash memory should be available for writing and the result
638 of reading from areas written by 'to_flash_write' should be
639 equal to what was written. */
640 void (*to_flash_done) (struct target_ops *);
641
642 /* Describe the architecture-specific features of this target.
643 Returns the description found, or NULL if no description
644 was available. */
645 const struct target_desc *(*to_read_description) (struct target_ops *ops);
646
647 /* Build the PTID of the thread on which a given task is running,
648 based on LWP and THREAD. These values are extracted from the
649 task Private_Data section of the Ada Task Control Block, and
650 their interpretation depends on the target. */
651 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
652 long lwp, long thread);
653
654 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
655 Return 0 if *READPTR is already at the end of the buffer.
656 Return -1 if there is insufficient buffer for a whole entry.
657 Return 1 if an entry was read into *TYPEP and *VALP. */
658 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
659 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
660
661 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
662 sequence of bytes in PATTERN with length PATTERN_LEN.
663
664 The result is 1 if found, 0 if not found, and -1 if there was an error
665 requiring halting of the search (e.g. memory read error).
666 If the pattern is found the address is recorded in FOUND_ADDRP. */
667 int (*to_search_memory) (struct target_ops *ops,
668 CORE_ADDR start_addr, ULONGEST search_space_len,
669 const gdb_byte *pattern, ULONGEST pattern_len,
670 CORE_ADDR *found_addrp);
671
672 /* Can target execute in reverse? */
673 int (*to_can_execute_reverse) (struct target_ops *);
674
675 /* The direction the target is currently executing. Must be
676 implemented on targets that support reverse execution and async
677 mode. The default simply returns forward execution. */
678 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
679
680 /* Does this target support debugging multiple processes
681 simultaneously? */
682 int (*to_supports_multi_process) (struct target_ops *);
683
684 /* Does this target support enabling and disabling tracepoints while a trace
685 experiment is running? */
686 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
687
688 /* Does this target support disabling address space randomization? */
689 int (*to_supports_disable_randomization) (struct target_ops *);
690
691 /* Does this target support the tracenz bytecode for string collection? */
692 int (*to_supports_string_tracing) (struct target_ops *);
693
694 /* Does this target support evaluation of breakpoint conditions on its
695 end? */
696 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
697
698 /* Does this target support evaluation of breakpoint commands on its
699 end? */
700 int (*to_can_run_breakpoint_commands) (struct target_ops *);
701
702 /* Determine current architecture of thread PTID.
703
704 The target is supposed to determine the architecture of the code where
705 the target is currently stopped at (on Cell, if a target is in spu_run,
706 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
707 This is architecture used to perform decr_pc_after_break adjustment,
708 and also determines the frame architecture of the innermost frame.
709 ptrace operations need to operate according to target_gdbarch ().
710
711 The default implementation always returns target_gdbarch (). */
712 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
713
714 /* Determine current address space of thread PTID.
715
716 The default implementation always returns the inferior's
717 address space. */
718 struct address_space *(*to_thread_address_space) (struct target_ops *,
719 ptid_t);
720
721 /* Target file operations. */
722
723 /* Open FILENAME on the target, using FLAGS and MODE. Return a
724 target file descriptor, or -1 if an error occurs (and set
725 *TARGET_ERRNO). */
726 int (*to_fileio_open) (struct target_ops *,
727 const char *filename, int flags, int mode,
728 int *target_errno);
729
730 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
731 Return the number of bytes written, or -1 if an error occurs
732 (and set *TARGET_ERRNO). */
733 int (*to_fileio_pwrite) (struct target_ops *,
734 int fd, const gdb_byte *write_buf, int len,
735 ULONGEST offset, int *target_errno);
736
737 /* Read up to LEN bytes FD on the target into READ_BUF.
738 Return the number of bytes read, or -1 if an error occurs
739 (and set *TARGET_ERRNO). */
740 int (*to_fileio_pread) (struct target_ops *,
741 int fd, gdb_byte *read_buf, int len,
742 ULONGEST offset, int *target_errno);
743
744 /* Close FD on the target. Return 0, or -1 if an error occurs
745 (and set *TARGET_ERRNO). */
746 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
747
748 /* Unlink FILENAME on the target. Return 0, or -1 if an error
749 occurs (and set *TARGET_ERRNO). */
750 int (*to_fileio_unlink) (struct target_ops *,
751 const char *filename, int *target_errno);
752
753 /* Read value of symbolic link FILENAME on the target. Return a
754 null-terminated string allocated via xmalloc, or NULL if an error
755 occurs (and set *TARGET_ERRNO). */
756 char *(*to_fileio_readlink) (struct target_ops *,
757 const char *filename, int *target_errno);
758
759
760 /* Implement the "info proc" command. */
761 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
762
763 /* Tracepoint-related operations. */
764
765 /* Prepare the target for a tracing run. */
766 void (*to_trace_init) (struct target_ops *);
767
768 /* Send full details of a tracepoint location to the target. */
769 void (*to_download_tracepoint) (struct target_ops *,
770 struct bp_location *location);
771
772 /* Is the target able to download tracepoint locations in current
773 state? */
774 int (*to_can_download_tracepoint) (struct target_ops *);
775
776 /* Send full details of a trace state variable to the target. */
777 void (*to_download_trace_state_variable) (struct target_ops *,
778 struct trace_state_variable *tsv);
779
780 /* Enable a tracepoint on the target. */
781 void (*to_enable_tracepoint) (struct target_ops *,
782 struct bp_location *location);
783
784 /* Disable a tracepoint on the target. */
785 void (*to_disable_tracepoint) (struct target_ops *,
786 struct bp_location *location);
787
788 /* Inform the target info of memory regions that are readonly
789 (such as text sections), and so it should return data from
790 those rather than look in the trace buffer. */
791 void (*to_trace_set_readonly_regions) (struct target_ops *);
792
793 /* Start a trace run. */
794 void (*to_trace_start) (struct target_ops *);
795
796 /* Get the current status of a tracing run. */
797 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
798
799 void (*to_get_tracepoint_status) (struct target_ops *,
800 struct breakpoint *tp,
801 struct uploaded_tp *utp);
802
803 /* Stop a trace run. */
804 void (*to_trace_stop) (struct target_ops *);
805
806 /* Ask the target to find a trace frame of the given type TYPE,
807 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
808 number of the trace frame, and also the tracepoint number at
809 TPP. If no trace frame matches, return -1. May throw if the
810 operation fails. */
811 int (*to_trace_find) (struct target_ops *,
812 enum trace_find_type type, int num,
813 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
814
815 /* Get the value of the trace state variable number TSV, returning
816 1 if the value is known and writing the value itself into the
817 location pointed to by VAL, else returning 0. */
818 int (*to_get_trace_state_variable_value) (struct target_ops *,
819 int tsv, LONGEST *val);
820
821 int (*to_save_trace_data) (struct target_ops *, const char *filename);
822
823 int (*to_upload_tracepoints) (struct target_ops *,
824 struct uploaded_tp **utpp);
825
826 int (*to_upload_trace_state_variables) (struct target_ops *,
827 struct uploaded_tsv **utsvp);
828
829 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
830 ULONGEST offset, LONGEST len);
831
832 /* Get the minimum length of instruction on which a fast tracepoint
833 may be set on the target. If this operation is unsupported,
834 return -1. If for some reason the minimum length cannot be
835 determined, return 0. */
836 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
837
838 /* Set the target's tracing behavior in response to unexpected
839 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
840 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
841 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
842 /* Set the size of trace buffer in the target. */
843 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
844
845 /* Add/change textual notes about the trace run, returning 1 if
846 successful, 0 otherwise. */
847 int (*to_set_trace_notes) (struct target_ops *,
848 const char *user, const char *notes,
849 const char *stopnotes);
850
851 /* Return the processor core that thread PTID was last seen on.
852 This information is updated only when:
853 - update_thread_list is called
854 - thread stops
855 If the core cannot be determined -- either for the specified
856 thread, or right now, or in this debug session, or for this
857 target -- return -1. */
858 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
859
860 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
861 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
862 a match, 0 if there's a mismatch, and -1 if an error is
863 encountered while reading memory. */
864 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
865 CORE_ADDR memaddr, ULONGEST size);
866
867 /* Return the address of the start of the Thread Information Block
868 a Windows OS specific feature. */
869 int (*to_get_tib_address) (struct target_ops *,
870 ptid_t ptid, CORE_ADDR *addr);
871
872 /* Send the new settings of write permission variables. */
873 void (*to_set_permissions) (struct target_ops *);
874
875 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
876 with its details. Return 1 on success, 0 on failure. */
877 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
878 struct static_tracepoint_marker *marker);
879
880 /* Return a vector of all tracepoints markers string id ID, or all
881 markers if ID is NULL. */
882 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
883 (struct target_ops *, const char *id);
884
885 /* Return a traceframe info object describing the current
886 traceframe's contents. If the target doesn't support
887 traceframe info, return NULL. If the current traceframe is not
888 selected (the current traceframe number is -1), the target can
889 choose to return either NULL or an empty traceframe info. If
890 NULL is returned, for example in remote target, GDB will read
891 from the live inferior. If an empty traceframe info is
892 returned, for example in tfile target, which means the
893 traceframe info is available, but the requested memory is not
894 available in it. GDB will try to see if the requested memory
895 is available in the read-only sections. This method should not
896 cache data; higher layers take care of caching, invalidating,
897 and re-fetching when necessary. */
898 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
899
900 /* Ask the target to use or not to use agent according to USE. Return 1
901 successful, 0 otherwise. */
902 int (*to_use_agent) (struct target_ops *, int use);
903
904 /* Is the target able to use agent in current state? */
905 int (*to_can_use_agent) (struct target_ops *);
906
907 /* Check whether the target supports branch tracing. */
908 int (*to_supports_btrace) (struct target_ops *)
909 TARGET_DEFAULT_RETURN (0);
910
911 /* Enable branch tracing for PTID and allocate a branch trace target
912 information struct for reading and for disabling branch trace. */
913 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
914 ptid_t ptid);
915
916 /* Disable branch tracing and deallocate TINFO. */
917 void (*to_disable_btrace) (struct target_ops *,
918 struct btrace_target_info *tinfo);
919
920 /* Disable branch tracing and deallocate TINFO. This function is similar
921 to to_disable_btrace, except that it is called during teardown and is
922 only allowed to perform actions that are safe. A counter-example would
923 be attempting to talk to a remote target. */
924 void (*to_teardown_btrace) (struct target_ops *,
925 struct btrace_target_info *tinfo);
926
927 /* Read branch trace data for the thread indicated by BTINFO into DATA.
928 DATA is cleared before new trace is added.
929 The branch trace will start with the most recent block and continue
930 towards older blocks. */
931 enum btrace_error (*to_read_btrace) (struct target_ops *self,
932 VEC (btrace_block_s) **data,
933 struct btrace_target_info *btinfo,
934 enum btrace_read_type type);
935
936 /* Stop trace recording. */
937 void (*to_stop_recording) (struct target_ops *);
938
939 /* Print information about the recording. */
940 void (*to_info_record) (struct target_ops *);
941
942 /* Save the recorded execution trace into a file. */
943 void (*to_save_record) (struct target_ops *, const char *filename);
944
945 /* Delete the recorded execution trace from the current position onwards. */
946 void (*to_delete_record) (struct target_ops *);
947
948 /* Query if the record target is currently replaying. */
949 int (*to_record_is_replaying) (struct target_ops *);
950
951 /* Go to the begin of the execution trace. */
952 void (*to_goto_record_begin) (struct target_ops *);
953
954 /* Go to the end of the execution trace. */
955 void (*to_goto_record_end) (struct target_ops *);
956
957 /* Go to a specific location in the recorded execution trace. */
958 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
959
960 /* Disassemble SIZE instructions in the recorded execution trace from
961 the current position.
962 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
963 disassemble SIZE succeeding instructions. */
964 void (*to_insn_history) (struct target_ops *, int size, int flags);
965
966 /* Disassemble SIZE instructions in the recorded execution trace around
967 FROM.
968 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
969 disassemble SIZE instructions after FROM. */
970 void (*to_insn_history_from) (struct target_ops *,
971 ULONGEST from, int size, int flags);
972
973 /* Disassemble a section of the recorded execution trace from instruction
974 BEGIN (inclusive) to instruction END (inclusive). */
975 void (*to_insn_history_range) (struct target_ops *,
976 ULONGEST begin, ULONGEST end, int flags);
977
978 /* Print a function trace of the recorded execution trace.
979 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
980 succeeding functions. */
981 void (*to_call_history) (struct target_ops *, int size, int flags);
982
983 /* Print a function trace of the recorded execution trace starting
984 at function FROM.
985 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
986 SIZE functions after FROM. */
987 void (*to_call_history_from) (struct target_ops *,
988 ULONGEST begin, int size, int flags);
989
990 /* Print a function trace of an execution trace section from function BEGIN
991 (inclusive) to function END (inclusive). */
992 void (*to_call_history_range) (struct target_ops *,
993 ULONGEST begin, ULONGEST end, int flags);
994
995 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
996 non-empty annex. */
997 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
998
999 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1000 it is not used. */
1001 const struct frame_unwind *to_get_unwinder;
1002 const struct frame_unwind *to_get_tailcall_unwinder;
1003
1004 /* Return the number of bytes by which the PC needs to be decremented
1005 after executing a breakpoint instruction.
1006 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1007 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1008 struct gdbarch *gdbarch);
1009
1010 int to_magic;
1011 /* Need sub-structure for target machine related rather than comm related?
1012 */
1013 };
1014
1015 /* Magic number for checking ops size. If a struct doesn't end with this
1016 number, somebody changed the declaration but didn't change all the
1017 places that initialize one. */
1018
1019 #define OPS_MAGIC 3840
1020
1021 /* The ops structure for our "current" target process. This should
1022 never be NULL. If there is no target, it points to the dummy_target. */
1023
1024 extern struct target_ops current_target;
1025
1026 /* Define easy words for doing these operations on our current target. */
1027
1028 #define target_shortname (current_target.to_shortname)
1029 #define target_longname (current_target.to_longname)
1030
1031 /* Does whatever cleanup is required for a target that we are no
1032 longer going to be calling. This routine is automatically always
1033 called after popping the target off the target stack - the target's
1034 own methods are no longer available through the target vector.
1035 Closing file descriptors and freeing all memory allocated memory are
1036 typical things it should do. */
1037
1038 void target_close (struct target_ops *targ);
1039
1040 /* Attaches to a process on the target side. Arguments are as passed
1041 to the `attach' command by the user. This routine can be called
1042 when the target is not on the target-stack, if the target_can_run
1043 routine returns 1; in that case, it must push itself onto the stack.
1044 Upon exit, the target should be ready for normal operations, and
1045 should be ready to deliver the status of the process immediately
1046 (without waiting) to an upcoming target_wait call. */
1047
1048 void target_attach (char *, int);
1049
1050 /* Some targets don't generate traps when attaching to the inferior,
1051 or their target_attach implementation takes care of the waiting.
1052 These targets must set to_attach_no_wait. */
1053
1054 #define target_attach_no_wait \
1055 (current_target.to_attach_no_wait)
1056
1057 /* The target_attach operation places a process under debugger control,
1058 and stops the process.
1059
1060 This operation provides a target-specific hook that allows the
1061 necessary bookkeeping to be performed after an attach completes. */
1062 #define target_post_attach(pid) \
1063 (*current_target.to_post_attach) (&current_target, pid)
1064
1065 /* Takes a program previously attached to and detaches it.
1066 The program may resume execution (some targets do, some don't) and will
1067 no longer stop on signals, etc. We better not have left any breakpoints
1068 in the program or it'll die when it hits one. ARGS is arguments
1069 typed by the user (e.g. a signal to send the process). FROM_TTY
1070 says whether to be verbose or not. */
1071
1072 extern void target_detach (const char *, int);
1073
1074 /* Disconnect from the current target without resuming it (leaving it
1075 waiting for a debugger). */
1076
1077 extern void target_disconnect (char *, int);
1078
1079 /* Resume execution of the target process PTID (or a group of
1080 threads). STEP says whether to single-step or to run free; SIGGNAL
1081 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1082 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1083 PTID means `step/resume only this process id'. A wildcard PTID
1084 (all threads, or all threads of process) means `step/resume
1085 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1086 matches) resume with their 'thread->suspend.stop_signal' signal
1087 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1088 if in "no pass" state. */
1089
1090 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1091
1092 /* Wait for process pid to do something. PTID = -1 to wait for any
1093 pid to do something. Return pid of child, or -1 in case of error;
1094 store status through argument pointer STATUS. Note that it is
1095 _NOT_ OK to throw_exception() out of target_wait() without popping
1096 the debugging target from the stack; GDB isn't prepared to get back
1097 to the prompt with a debugging target but without the frame cache,
1098 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1099 options. */
1100
1101 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1102 int options);
1103
1104 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1105
1106 extern void target_fetch_registers (struct regcache *regcache, int regno);
1107
1108 /* Store at least register REGNO, or all regs if REGNO == -1.
1109 It can store as many registers as it wants to, so target_prepare_to_store
1110 must have been previously called. Calls error() if there are problems. */
1111
1112 extern void target_store_registers (struct regcache *regcache, int regs);
1113
1114 /* Get ready to modify the registers array. On machines which store
1115 individual registers, this doesn't need to do anything. On machines
1116 which store all the registers in one fell swoop, this makes sure
1117 that REGISTERS contains all the registers from the program being
1118 debugged. */
1119
1120 #define target_prepare_to_store(regcache) \
1121 (*current_target.to_prepare_to_store) (&current_target, regcache)
1122
1123 /* Determine current address space of thread PTID. */
1124
1125 struct address_space *target_thread_address_space (ptid_t);
1126
1127 /* Implement the "info proc" command. This returns one if the request
1128 was handled, and zero otherwise. It can also throw an exception if
1129 an error was encountered while attempting to handle the
1130 request. */
1131
1132 int target_info_proc (char *, enum info_proc_what);
1133
1134 /* Returns true if this target can debug multiple processes
1135 simultaneously. */
1136
1137 #define target_supports_multi_process() \
1138 (*current_target.to_supports_multi_process) (&current_target)
1139
1140 /* Returns true if this target can disable address space randomization. */
1141
1142 int target_supports_disable_randomization (void);
1143
1144 /* Returns true if this target can enable and disable tracepoints
1145 while a trace experiment is running. */
1146
1147 #define target_supports_enable_disable_tracepoint() \
1148 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1149
1150 #define target_supports_string_tracing() \
1151 (*current_target.to_supports_string_tracing) (&current_target)
1152
1153 /* Returns true if this target can handle breakpoint conditions
1154 on its end. */
1155
1156 #define target_supports_evaluation_of_breakpoint_conditions() \
1157 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1158
1159 /* Returns true if this target can handle breakpoint commands
1160 on its end. */
1161
1162 #define target_can_run_breakpoint_commands() \
1163 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1164
1165 extern int target_read_string (CORE_ADDR, char **, int, int *);
1166
1167 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1168 ssize_t len);
1169
1170 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1171 ssize_t len);
1172
1173 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1174
1175 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1176
1177 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1178 ssize_t len);
1179
1180 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1181 ssize_t len);
1182
1183 /* Fetches the target's memory map. If one is found it is sorted
1184 and returned, after some consistency checking. Otherwise, NULL
1185 is returned. */
1186 VEC(mem_region_s) *target_memory_map (void);
1187
1188 /* Erase the specified flash region. */
1189 void target_flash_erase (ULONGEST address, LONGEST length);
1190
1191 /* Finish a sequence of flash operations. */
1192 void target_flash_done (void);
1193
1194 /* Describes a request for a memory write operation. */
1195 struct memory_write_request
1196 {
1197 /* Begining address that must be written. */
1198 ULONGEST begin;
1199 /* Past-the-end address. */
1200 ULONGEST end;
1201 /* The data to write. */
1202 gdb_byte *data;
1203 /* A callback baton for progress reporting for this request. */
1204 void *baton;
1205 };
1206 typedef struct memory_write_request memory_write_request_s;
1207 DEF_VEC_O(memory_write_request_s);
1208
1209 /* Enumeration specifying different flash preservation behaviour. */
1210 enum flash_preserve_mode
1211 {
1212 flash_preserve,
1213 flash_discard
1214 };
1215
1216 /* Write several memory blocks at once. This version can be more
1217 efficient than making several calls to target_write_memory, in
1218 particular because it can optimize accesses to flash memory.
1219
1220 Moreover, this is currently the only memory access function in gdb
1221 that supports writing to flash memory, and it should be used for
1222 all cases where access to flash memory is desirable.
1223
1224 REQUESTS is the vector (see vec.h) of memory_write_request.
1225 PRESERVE_FLASH_P indicates what to do with blocks which must be
1226 erased, but not completely rewritten.
1227 PROGRESS_CB is a function that will be periodically called to provide
1228 feedback to user. It will be called with the baton corresponding
1229 to the request currently being written. It may also be called
1230 with a NULL baton, when preserved flash sectors are being rewritten.
1231
1232 The function returns 0 on success, and error otherwise. */
1233 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1234 enum flash_preserve_mode preserve_flash_p,
1235 void (*progress_cb) (ULONGEST, void *));
1236
1237 /* Print a line about the current target. */
1238
1239 #define target_files_info() \
1240 (*current_target.to_files_info) (&current_target)
1241
1242 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1243 the target machine. Returns 0 for success, and returns non-zero or
1244 throws an error (with a detailed failure reason error code and
1245 message) otherwise. */
1246
1247 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1248 struct bp_target_info *bp_tgt);
1249
1250 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1251 machine. Result is 0 for success, non-zero for error. */
1252
1253 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1254 struct bp_target_info *bp_tgt);
1255
1256 /* Initialize the terminal settings we record for the inferior,
1257 before we actually run the inferior. */
1258
1259 #define target_terminal_init() \
1260 (*current_target.to_terminal_init) (&current_target)
1261
1262 /* Put the inferior's terminal settings into effect.
1263 This is preparation for starting or resuming the inferior. */
1264
1265 extern void target_terminal_inferior (void);
1266
1267 /* Put some of our terminal settings into effect,
1268 enough to get proper results from our output,
1269 but do not change into or out of RAW mode
1270 so that no input is discarded.
1271
1272 After doing this, either terminal_ours or terminal_inferior
1273 should be called to get back to a normal state of affairs. */
1274
1275 #define target_terminal_ours_for_output() \
1276 (*current_target.to_terminal_ours_for_output) (&current_target)
1277
1278 /* Put our terminal settings into effect.
1279 First record the inferior's terminal settings
1280 so they can be restored properly later. */
1281
1282 #define target_terminal_ours() \
1283 (*current_target.to_terminal_ours) (&current_target)
1284
1285 /* Save our terminal settings.
1286 This is called from TUI after entering or leaving the curses
1287 mode. Since curses modifies our terminal this call is here
1288 to take this change into account. */
1289
1290 #define target_terminal_save_ours() \
1291 (*current_target.to_terminal_save_ours) (&current_target)
1292
1293 /* Print useful information about our terminal status, if such a thing
1294 exists. */
1295
1296 #define target_terminal_info(arg, from_tty) \
1297 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1298
1299 /* Kill the inferior process. Make it go away. */
1300
1301 extern void target_kill (void);
1302
1303 /* Load an executable file into the target process. This is expected
1304 to not only bring new code into the target process, but also to
1305 update GDB's symbol tables to match.
1306
1307 ARG contains command-line arguments, to be broken down with
1308 buildargv (). The first non-switch argument is the filename to
1309 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1310 0)), which is an offset to apply to the load addresses of FILE's
1311 sections. The target may define switches, or other non-switch
1312 arguments, as it pleases. */
1313
1314 extern void target_load (char *arg, int from_tty);
1315
1316 /* Start an inferior process and set inferior_ptid to its pid.
1317 EXEC_FILE is the file to run.
1318 ALLARGS is a string containing the arguments to the program.
1319 ENV is the environment vector to pass. Errors reported with error().
1320 On VxWorks and various standalone systems, we ignore exec_file. */
1321
1322 void target_create_inferior (char *exec_file, char *args,
1323 char **env, int from_tty);
1324
1325 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1326 notification of inferior events such as fork and vork immediately
1327 after the inferior is created. (This because of how gdb gets an
1328 inferior created via invoking a shell to do it. In such a scenario,
1329 if the shell init file has commands in it, the shell will fork and
1330 exec for each of those commands, and we will see each such fork
1331 event. Very bad.)
1332
1333 Such targets will supply an appropriate definition for this function. */
1334
1335 #define target_post_startup_inferior(ptid) \
1336 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1337
1338 /* On some targets, we can catch an inferior fork or vfork event when
1339 it occurs. These functions insert/remove an already-created
1340 catchpoint for such events. They return 0 for success, 1 if the
1341 catchpoint type is not supported and -1 for failure. */
1342
1343 #define target_insert_fork_catchpoint(pid) \
1344 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1345
1346 #define target_remove_fork_catchpoint(pid) \
1347 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1348
1349 #define target_insert_vfork_catchpoint(pid) \
1350 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1351
1352 #define target_remove_vfork_catchpoint(pid) \
1353 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1354
1355 /* If the inferior forks or vforks, this function will be called at
1356 the next resume in order to perform any bookkeeping and fiddling
1357 necessary to continue debugging either the parent or child, as
1358 requested, and releasing the other. Information about the fork
1359 or vfork event is available via get_last_target_status ().
1360 This function returns 1 if the inferior should not be resumed
1361 (i.e. there is another event pending). */
1362
1363 int target_follow_fork (int follow_child, int detach_fork);
1364
1365 /* On some targets, we can catch an inferior exec event when it
1366 occurs. These functions insert/remove an already-created
1367 catchpoint for such events. They return 0 for success, 1 if the
1368 catchpoint type is not supported and -1 for failure. */
1369
1370 #define target_insert_exec_catchpoint(pid) \
1371 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1372
1373 #define target_remove_exec_catchpoint(pid) \
1374 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1375
1376 /* Syscall catch.
1377
1378 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1379 If NEEDED is zero, it means the target can disable the mechanism to
1380 catch system calls because there are no more catchpoints of this type.
1381
1382 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1383 being requested. In this case, both TABLE_SIZE and TABLE should
1384 be ignored.
1385
1386 TABLE_SIZE is the number of elements in TABLE. It only matters if
1387 ANY_COUNT is zero.
1388
1389 TABLE is an array of ints, indexed by syscall number. An element in
1390 this array is nonzero if that syscall should be caught. This argument
1391 only matters if ANY_COUNT is zero.
1392
1393 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1394 for failure. */
1395
1396 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1397 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1398 pid, needed, any_count, \
1399 table_size, table)
1400
1401 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1402 exit code of PID, if any. */
1403
1404 #define target_has_exited(pid,wait_status,exit_status) \
1405 (*current_target.to_has_exited) (&current_target, \
1406 pid,wait_status,exit_status)
1407
1408 /* The debugger has completed a blocking wait() call. There is now
1409 some process event that must be processed. This function should
1410 be defined by those targets that require the debugger to perform
1411 cleanup or internal state changes in response to the process event. */
1412
1413 /* The inferior process has died. Do what is right. */
1414
1415 void target_mourn_inferior (void);
1416
1417 /* Does target have enough data to do a run or attach command? */
1418
1419 #define target_can_run(t) \
1420 ((t)->to_can_run) (t)
1421
1422 /* Set list of signals to be handled in the target.
1423
1424 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1425 (enum gdb_signal). For every signal whose entry in this array is
1426 non-zero, the target is allowed -but not required- to skip reporting
1427 arrival of the signal to the GDB core by returning from target_wait,
1428 and to pass the signal directly to the inferior instead.
1429
1430 However, if the target is hardware single-stepping a thread that is
1431 about to receive a signal, it needs to be reported in any case, even
1432 if mentioned in a previous target_pass_signals call. */
1433
1434 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1435
1436 /* Set list of signals the target may pass to the inferior. This
1437 directly maps to the "handle SIGNAL pass/nopass" setting.
1438
1439 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1440 number (enum gdb_signal). For every signal whose entry in this
1441 array is non-zero, the target is allowed to pass the signal to the
1442 inferior. Signals not present in the array shall be silently
1443 discarded. This does not influence whether to pass signals to the
1444 inferior as a result of a target_resume call. This is useful in
1445 scenarios where the target needs to decide whether to pass or not a
1446 signal to the inferior without GDB core involvement, such as for
1447 example, when detaching (as threads may have been suspended with
1448 pending signals not reported to GDB). */
1449
1450 extern void target_program_signals (int nsig, unsigned char *program_signals);
1451
1452 /* Check to see if a thread is still alive. */
1453
1454 extern int target_thread_alive (ptid_t ptid);
1455
1456 /* Query for new threads and add them to the thread list. */
1457
1458 extern void target_find_new_threads (void);
1459
1460 /* Make target stop in a continuable fashion. (For instance, under
1461 Unix, this should act like SIGSTOP). This function is normally
1462 used by GUIs to implement a stop button. */
1463
1464 extern void target_stop (ptid_t ptid);
1465
1466 /* Send the specified COMMAND to the target's monitor
1467 (shell,interpreter) for execution. The result of the query is
1468 placed in OUTBUF. */
1469
1470 #define target_rcmd(command, outbuf) \
1471 (*current_target.to_rcmd) (&current_target, command, outbuf)
1472
1473
1474 /* Does the target include all of memory, or only part of it? This
1475 determines whether we look up the target chain for other parts of
1476 memory if this target can't satisfy a request. */
1477
1478 extern int target_has_all_memory_1 (void);
1479 #define target_has_all_memory target_has_all_memory_1 ()
1480
1481 /* Does the target include memory? (Dummy targets don't.) */
1482
1483 extern int target_has_memory_1 (void);
1484 #define target_has_memory target_has_memory_1 ()
1485
1486 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1487 we start a process.) */
1488
1489 extern int target_has_stack_1 (void);
1490 #define target_has_stack target_has_stack_1 ()
1491
1492 /* Does the target have registers? (Exec files don't.) */
1493
1494 extern int target_has_registers_1 (void);
1495 #define target_has_registers target_has_registers_1 ()
1496
1497 /* Does the target have execution? Can we make it jump (through
1498 hoops), or pop its stack a few times? This means that the current
1499 target is currently executing; for some targets, that's the same as
1500 whether or not the target is capable of execution, but there are
1501 also targets which can be current while not executing. In that
1502 case this will become true after target_create_inferior or
1503 target_attach. */
1504
1505 extern int target_has_execution_1 (ptid_t);
1506
1507 /* Like target_has_execution_1, but always passes inferior_ptid. */
1508
1509 extern int target_has_execution_current (void);
1510
1511 #define target_has_execution target_has_execution_current ()
1512
1513 /* Default implementations for process_stratum targets. Return true
1514 if there's a selected inferior, false otherwise. */
1515
1516 extern int default_child_has_all_memory (struct target_ops *ops);
1517 extern int default_child_has_memory (struct target_ops *ops);
1518 extern int default_child_has_stack (struct target_ops *ops);
1519 extern int default_child_has_registers (struct target_ops *ops);
1520 extern int default_child_has_execution (struct target_ops *ops,
1521 ptid_t the_ptid);
1522
1523 /* Can the target support the debugger control of thread execution?
1524 Can it lock the thread scheduler? */
1525
1526 #define target_can_lock_scheduler \
1527 (current_target.to_has_thread_control & tc_schedlock)
1528
1529 /* Should the target enable async mode if it is supported? Temporary
1530 cludge until async mode is a strict superset of sync mode. */
1531 extern int target_async_permitted;
1532
1533 /* Can the target support asynchronous execution? */
1534 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1535
1536 /* Is the target in asynchronous execution mode? */
1537 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1538
1539 int target_supports_non_stop (void);
1540
1541 /* Put the target in async mode with the specified callback function. */
1542 #define target_async(CALLBACK,CONTEXT) \
1543 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1544
1545 #define target_execution_direction() \
1546 (current_target.to_execution_direction (&current_target))
1547
1548 /* Converts a process id to a string. Usually, the string just contains
1549 `process xyz', but on some systems it may contain
1550 `process xyz thread abc'. */
1551
1552 extern char *target_pid_to_str (ptid_t ptid);
1553
1554 extern char *normal_pid_to_str (ptid_t ptid);
1555
1556 /* Return a short string describing extra information about PID,
1557 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1558 is okay. */
1559
1560 #define target_extra_thread_info(TP) \
1561 (current_target.to_extra_thread_info (&current_target, TP))
1562
1563 /* Return the thread's name. A NULL result means that the target
1564 could not determine this thread's name. */
1565
1566 extern char *target_thread_name (struct thread_info *);
1567
1568 /* Attempts to find the pathname of the executable file
1569 that was run to create a specified process.
1570
1571 The process PID must be stopped when this operation is used.
1572
1573 If the executable file cannot be determined, NULL is returned.
1574
1575 Else, a pointer to a character string containing the pathname
1576 is returned. This string should be copied into a buffer by
1577 the client if the string will not be immediately used, or if
1578 it must persist. */
1579
1580 #define target_pid_to_exec_file(pid) \
1581 (current_target.to_pid_to_exec_file) (&current_target, pid)
1582
1583 /* See the to_thread_architecture description in struct target_ops. */
1584
1585 #define target_thread_architecture(ptid) \
1586 (current_target.to_thread_architecture (&current_target, ptid))
1587
1588 /*
1589 * Iterator function for target memory regions.
1590 * Calls a callback function once for each memory region 'mapped'
1591 * in the child process. Defined as a simple macro rather than
1592 * as a function macro so that it can be tested for nullity.
1593 */
1594
1595 #define target_find_memory_regions(FUNC, DATA) \
1596 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1597
1598 /*
1599 * Compose corefile .note section.
1600 */
1601
1602 #define target_make_corefile_notes(BFD, SIZE_P) \
1603 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1604
1605 /* Bookmark interfaces. */
1606 #define target_get_bookmark(ARGS, FROM_TTY) \
1607 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1608
1609 #define target_goto_bookmark(ARG, FROM_TTY) \
1610 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1611
1612 /* Hardware watchpoint interfaces. */
1613
1614 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1615 write). Only the INFERIOR_PTID task is being queried. */
1616
1617 #define target_stopped_by_watchpoint() \
1618 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1619
1620 /* Non-zero if we have steppable watchpoints */
1621
1622 #define target_have_steppable_watchpoint \
1623 (current_target.to_have_steppable_watchpoint)
1624
1625 /* Non-zero if we have continuable watchpoints */
1626
1627 #define target_have_continuable_watchpoint \
1628 (current_target.to_have_continuable_watchpoint)
1629
1630 /* Provide defaults for hardware watchpoint functions. */
1631
1632 /* If the *_hw_beakpoint functions have not been defined
1633 elsewhere use the definitions in the target vector. */
1634
1635 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1636 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1637 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1638 (including this one?). OTHERTYPE is who knows what... */
1639
1640 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1641 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1642 TYPE, CNT, OTHERTYPE);
1643
1644 /* Returns the number of debug registers needed to watch the given
1645 memory region, or zero if not supported. */
1646
1647 #define target_region_ok_for_hw_watchpoint(addr, len) \
1648 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1649 addr, len)
1650
1651
1652 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1653 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1654 COND is the expression for its condition, or NULL if there's none.
1655 Returns 0 for success, 1 if the watchpoint type is not supported,
1656 -1 for failure. */
1657
1658 #define target_insert_watchpoint(addr, len, type, cond) \
1659 (*current_target.to_insert_watchpoint) (&current_target, \
1660 addr, len, type, cond)
1661
1662 #define target_remove_watchpoint(addr, len, type, cond) \
1663 (*current_target.to_remove_watchpoint) (&current_target, \
1664 addr, len, type, cond)
1665
1666 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1667 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1668 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1669 masked watchpoints are not supported, -1 for failure. */
1670
1671 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1672
1673 /* Remove a masked watchpoint at ADDR with the mask MASK.
1674 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1675 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1676 for failure. */
1677
1678 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1679
1680 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1681 the target machine. Returns 0 for success, and returns non-zero or
1682 throws an error (with a detailed failure reason error code and
1683 message) otherwise. */
1684
1685 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1686 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1687 gdbarch, bp_tgt)
1688
1689 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1690 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1691 gdbarch, bp_tgt)
1692
1693 /* Return number of debug registers needed for a ranged breakpoint,
1694 or -1 if ranged breakpoints are not supported. */
1695
1696 extern int target_ranged_break_num_registers (void);
1697
1698 /* Return non-zero if target knows the data address which triggered this
1699 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1700 INFERIOR_PTID task is being queried. */
1701 #define target_stopped_data_address(target, addr_p) \
1702 (*target.to_stopped_data_address) (target, addr_p)
1703
1704 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1705 LENGTH bytes beginning at START. */
1706 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1707 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1708
1709 /* Return non-zero if the target is capable of using hardware to evaluate
1710 the condition expression. In this case, if the condition is false when
1711 the watched memory location changes, execution may continue without the
1712 debugger being notified.
1713
1714 Due to limitations in the hardware implementation, it may be capable of
1715 avoiding triggering the watchpoint in some cases where the condition
1716 expression is false, but may report some false positives as well.
1717 For this reason, GDB will still evaluate the condition expression when
1718 the watchpoint triggers. */
1719 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1720 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1721 addr, len, type, cond)
1722
1723 /* Return number of debug registers needed for a masked watchpoint,
1724 -1 if masked watchpoints are not supported or -2 if the given address
1725 and mask combination cannot be used. */
1726
1727 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1728
1729 /* Target can execute in reverse? */
1730 #define target_can_execute_reverse \
1731 (current_target.to_can_execute_reverse ? \
1732 current_target.to_can_execute_reverse (&current_target) : 0)
1733
1734 extern const struct target_desc *target_read_description (struct target_ops *);
1735
1736 #define target_get_ada_task_ptid(lwp, tid) \
1737 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1738
1739 /* Utility implementation of searching memory. */
1740 extern int simple_search_memory (struct target_ops* ops,
1741 CORE_ADDR start_addr,
1742 ULONGEST search_space_len,
1743 const gdb_byte *pattern,
1744 ULONGEST pattern_len,
1745 CORE_ADDR *found_addrp);
1746
1747 /* Main entry point for searching memory. */
1748 extern int target_search_memory (CORE_ADDR start_addr,
1749 ULONGEST search_space_len,
1750 const gdb_byte *pattern,
1751 ULONGEST pattern_len,
1752 CORE_ADDR *found_addrp);
1753
1754 /* Target file operations. */
1755
1756 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1757 target file descriptor, or -1 if an error occurs (and set
1758 *TARGET_ERRNO). */
1759 extern int target_fileio_open (const char *filename, int flags, int mode,
1760 int *target_errno);
1761
1762 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1763 Return the number of bytes written, or -1 if an error occurs
1764 (and set *TARGET_ERRNO). */
1765 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1766 ULONGEST offset, int *target_errno);
1767
1768 /* Read up to LEN bytes FD on the target into READ_BUF.
1769 Return the number of bytes read, or -1 if an error occurs
1770 (and set *TARGET_ERRNO). */
1771 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1772 ULONGEST offset, int *target_errno);
1773
1774 /* Close FD on the target. Return 0, or -1 if an error occurs
1775 (and set *TARGET_ERRNO). */
1776 extern int target_fileio_close (int fd, int *target_errno);
1777
1778 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1779 occurs (and set *TARGET_ERRNO). */
1780 extern int target_fileio_unlink (const char *filename, int *target_errno);
1781
1782 /* Read value of symbolic link FILENAME on the target. Return a
1783 null-terminated string allocated via xmalloc, or NULL if an error
1784 occurs (and set *TARGET_ERRNO). */
1785 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1786
1787 /* Read target file FILENAME. The return value will be -1 if the transfer
1788 fails or is not supported; 0 if the object is empty; or the length
1789 of the object otherwise. If a positive value is returned, a
1790 sufficiently large buffer will be allocated using xmalloc and
1791 returned in *BUF_P containing the contents of the object.
1792
1793 This method should be used for objects sufficiently small to store
1794 in a single xmalloc'd buffer, when no fixed bound on the object's
1795 size is known in advance. */
1796 extern LONGEST target_fileio_read_alloc (const char *filename,
1797 gdb_byte **buf_p);
1798
1799 /* Read target file FILENAME. The result is NUL-terminated and
1800 returned as a string, allocated using xmalloc. If an error occurs
1801 or the transfer is unsupported, NULL is returned. Empty objects
1802 are returned as allocated but empty strings. A warning is issued
1803 if the result contains any embedded NUL bytes. */
1804 extern char *target_fileio_read_stralloc (const char *filename);
1805
1806
1807 /* Tracepoint-related operations. */
1808
1809 #define target_trace_init() \
1810 (*current_target.to_trace_init) (&current_target)
1811
1812 #define target_download_tracepoint(t) \
1813 (*current_target.to_download_tracepoint) (&current_target, t)
1814
1815 #define target_can_download_tracepoint() \
1816 (*current_target.to_can_download_tracepoint) (&current_target)
1817
1818 #define target_download_trace_state_variable(tsv) \
1819 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1820
1821 #define target_enable_tracepoint(loc) \
1822 (*current_target.to_enable_tracepoint) (&current_target, loc)
1823
1824 #define target_disable_tracepoint(loc) \
1825 (*current_target.to_disable_tracepoint) (&current_target, loc)
1826
1827 #define target_trace_start() \
1828 (*current_target.to_trace_start) (&current_target)
1829
1830 #define target_trace_set_readonly_regions() \
1831 (*current_target.to_trace_set_readonly_regions) (&current_target)
1832
1833 #define target_get_trace_status(ts) \
1834 (*current_target.to_get_trace_status) (&current_target, ts)
1835
1836 #define target_get_tracepoint_status(tp,utp) \
1837 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1838
1839 #define target_trace_stop() \
1840 (*current_target.to_trace_stop) (&current_target)
1841
1842 #define target_trace_find(type,num,addr1,addr2,tpp) \
1843 (*current_target.to_trace_find) (&current_target, \
1844 (type), (num), (addr1), (addr2), (tpp))
1845
1846 #define target_get_trace_state_variable_value(tsv,val) \
1847 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1848 (tsv), (val))
1849
1850 #define target_save_trace_data(filename) \
1851 (*current_target.to_save_trace_data) (&current_target, filename)
1852
1853 #define target_upload_tracepoints(utpp) \
1854 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1855
1856 #define target_upload_trace_state_variables(utsvp) \
1857 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1858
1859 #define target_get_raw_trace_data(buf,offset,len) \
1860 (*current_target.to_get_raw_trace_data) (&current_target, \
1861 (buf), (offset), (len))
1862
1863 #define target_get_min_fast_tracepoint_insn_len() \
1864 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1865
1866 #define target_set_disconnected_tracing(val) \
1867 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1868
1869 #define target_set_circular_trace_buffer(val) \
1870 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1871
1872 #define target_set_trace_buffer_size(val) \
1873 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1874
1875 #define target_set_trace_notes(user,notes,stopnotes) \
1876 (*current_target.to_set_trace_notes) (&current_target, \
1877 (user), (notes), (stopnotes))
1878
1879 #define target_get_tib_address(ptid, addr) \
1880 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1881
1882 #define target_set_permissions() \
1883 (*current_target.to_set_permissions) (&current_target)
1884
1885 #define target_static_tracepoint_marker_at(addr, marker) \
1886 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1887 addr, marker)
1888
1889 #define target_static_tracepoint_markers_by_strid(marker_id) \
1890 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1891 marker_id)
1892
1893 #define target_traceframe_info() \
1894 (*current_target.to_traceframe_info) (&current_target)
1895
1896 #define target_use_agent(use) \
1897 (*current_target.to_use_agent) (&current_target, use)
1898
1899 #define target_can_use_agent() \
1900 (*current_target.to_can_use_agent) (&current_target)
1901
1902 #define target_augmented_libraries_svr4_read() \
1903 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1904
1905 /* Command logging facility. */
1906
1907 #define target_log_command(p) \
1908 do \
1909 if (current_target.to_log_command) \
1910 (*current_target.to_log_command) (&current_target, \
1911 p); \
1912 while (0)
1913
1914
1915 extern int target_core_of_thread (ptid_t ptid);
1916
1917 /* See to_get_unwinder in struct target_ops. */
1918 extern const struct frame_unwind *target_get_unwinder (void);
1919
1920 /* See to_get_tailcall_unwinder in struct target_ops. */
1921 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1922
1923 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1924 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1925 if there's a mismatch, and -1 if an error is encountered while
1926 reading memory. Throws an error if the functionality is found not
1927 to be supported by the current target. */
1928 int target_verify_memory (const gdb_byte *data,
1929 CORE_ADDR memaddr, ULONGEST size);
1930
1931 /* Routines for maintenance of the target structures...
1932
1933 complete_target_initialization: Finalize a target_ops by filling in
1934 any fields needed by the target implementation.
1935
1936 add_target: Add a target to the list of all possible targets.
1937
1938 push_target: Make this target the top of the stack of currently used
1939 targets, within its particular stratum of the stack. Result
1940 is 0 if now atop the stack, nonzero if not on top (maybe
1941 should warn user).
1942
1943 unpush_target: Remove this from the stack of currently used targets,
1944 no matter where it is on the list. Returns 0 if no
1945 change, 1 if removed from stack. */
1946
1947 extern void add_target (struct target_ops *);
1948
1949 extern void add_target_with_completer (struct target_ops *t,
1950 completer_ftype *completer);
1951
1952 extern void complete_target_initialization (struct target_ops *t);
1953
1954 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1955 for maintaining backwards compatibility when renaming targets. */
1956
1957 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1958
1959 extern void push_target (struct target_ops *);
1960
1961 extern int unpush_target (struct target_ops *);
1962
1963 extern void target_pre_inferior (int);
1964
1965 extern void target_preopen (int);
1966
1967 /* Does whatever cleanup is required to get rid of all pushed targets. */
1968 extern void pop_all_targets (void);
1969
1970 /* Like pop_all_targets, but pops only targets whose stratum is
1971 strictly above ABOVE_STRATUM. */
1972 extern void pop_all_targets_above (enum strata above_stratum);
1973
1974 extern int target_is_pushed (struct target_ops *t);
1975
1976 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1977 CORE_ADDR offset);
1978
1979 /* Struct target_section maps address ranges to file sections. It is
1980 mostly used with BFD files, but can be used without (e.g. for handling
1981 raw disks, or files not in formats handled by BFD). */
1982
1983 struct target_section
1984 {
1985 CORE_ADDR addr; /* Lowest address in section */
1986 CORE_ADDR endaddr; /* 1+highest address in section */
1987
1988 struct bfd_section *the_bfd_section;
1989
1990 /* The "owner" of the section.
1991 It can be any unique value. It is set by add_target_sections
1992 and used by remove_target_sections.
1993 For example, for executables it is a pointer to exec_bfd and
1994 for shlibs it is the so_list pointer. */
1995 void *owner;
1996 };
1997
1998 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1999
2000 struct target_section_table
2001 {
2002 struct target_section *sections;
2003 struct target_section *sections_end;
2004 };
2005
2006 /* Return the "section" containing the specified address. */
2007 struct target_section *target_section_by_addr (struct target_ops *target,
2008 CORE_ADDR addr);
2009
2010 /* Return the target section table this target (or the targets
2011 beneath) currently manipulate. */
2012
2013 extern struct target_section_table *target_get_section_table
2014 (struct target_ops *target);
2015
2016 /* From mem-break.c */
2017
2018 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2019 struct bp_target_info *);
2020
2021 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2022 struct bp_target_info *);
2023
2024 extern int default_memory_remove_breakpoint (struct gdbarch *,
2025 struct bp_target_info *);
2026
2027 extern int default_memory_insert_breakpoint (struct gdbarch *,
2028 struct bp_target_info *);
2029
2030
2031 /* From target.c */
2032
2033 extern void initialize_targets (void);
2034
2035 extern void noprocess (void) ATTRIBUTE_NORETURN;
2036
2037 extern void target_require_runnable (void);
2038
2039 extern void find_default_attach (struct target_ops *, char *, int);
2040
2041 extern void find_default_create_inferior (struct target_ops *,
2042 char *, char *, char **, int);
2043
2044 extern struct target_ops *find_target_beneath (struct target_ops *);
2045
2046 /* Find the target at STRATUM. If no target is at that stratum,
2047 return NULL. */
2048
2049 struct target_ops *find_target_at (enum strata stratum);
2050
2051 /* Read OS data object of type TYPE from the target, and return it in
2052 XML format. The result is NUL-terminated and returned as a string,
2053 allocated using xmalloc. If an error occurs or the transfer is
2054 unsupported, NULL is returned. Empty objects are returned as
2055 allocated but empty strings. */
2056
2057 extern char *target_get_osdata (const char *type);
2058
2059 \f
2060 /* Stuff that should be shared among the various remote targets. */
2061
2062 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2063 information (higher values, more information). */
2064 extern int remote_debug;
2065
2066 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2067 extern int baud_rate;
2068 /* Timeout limit for response from target. */
2069 extern int remote_timeout;
2070
2071 \f
2072
2073 /* Set the show memory breakpoints mode to show, and installs a cleanup
2074 to restore it back to the current value. */
2075 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2076
2077 extern int may_write_registers;
2078 extern int may_write_memory;
2079 extern int may_insert_breakpoints;
2080 extern int may_insert_tracepoints;
2081 extern int may_insert_fast_tracepoints;
2082 extern int may_stop;
2083
2084 extern void update_target_permissions (void);
2085
2086 \f
2087 /* Imported from machine dependent code. */
2088
2089 /* Blank target vector entries are initialized to target_ignore. */
2090 void target_ignore (void);
2091
2092 /* See to_supports_btrace in struct target_ops. */
2093 #define target_supports_btrace() \
2094 (current_target.to_supports_btrace (&current_target))
2095
2096 /* See to_enable_btrace in struct target_ops. */
2097 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2098
2099 /* See to_disable_btrace in struct target_ops. */
2100 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2101
2102 /* See to_teardown_btrace in struct target_ops. */
2103 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2104
2105 /* See to_read_btrace in struct target_ops. */
2106 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2107 struct btrace_target_info *,
2108 enum btrace_read_type);
2109
2110 /* See to_stop_recording in struct target_ops. */
2111 extern void target_stop_recording (void);
2112
2113 /* See to_info_record in struct target_ops. */
2114 extern void target_info_record (void);
2115
2116 /* See to_save_record in struct target_ops. */
2117 extern void target_save_record (const char *filename);
2118
2119 /* Query if the target supports deleting the execution log. */
2120 extern int target_supports_delete_record (void);
2121
2122 /* See to_delete_record in struct target_ops. */
2123 extern void target_delete_record (void);
2124
2125 /* See to_record_is_replaying in struct target_ops. */
2126 extern int target_record_is_replaying (void);
2127
2128 /* See to_goto_record_begin in struct target_ops. */
2129 extern void target_goto_record_begin (void);
2130
2131 /* See to_goto_record_end in struct target_ops. */
2132 extern void target_goto_record_end (void);
2133
2134 /* See to_goto_record in struct target_ops. */
2135 extern void target_goto_record (ULONGEST insn);
2136
2137 /* See to_insn_history. */
2138 extern void target_insn_history (int size, int flags);
2139
2140 /* See to_insn_history_from. */
2141 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2142
2143 /* See to_insn_history_range. */
2144 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2145
2146 /* See to_call_history. */
2147 extern void target_call_history (int size, int flags);
2148
2149 /* See to_call_history_from. */
2150 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2151
2152 /* See to_call_history_range. */
2153 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2154
2155 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2156 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2157 struct gdbarch *gdbarch);
2158
2159 /* See to_decr_pc_after_break. */
2160 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2161
2162 #endif /* !defined (TARGET_H) */
This page took 0.093987 seconds and 5 git commands to generate.