convert to_insert_fork_catchpoint
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
525 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
526 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
527 int (*to_follow_fork) (struct target_ops *, int, int);
528 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
529 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
530 int (*to_set_syscall_catchpoint) (struct target_ops *,
531 int, int, int, int, int *);
532 int (*to_has_exited) (struct target_ops *, int, int, int *);
533 void (*to_mourn_inferior) (struct target_ops *);
534 int (*to_can_run) (struct target_ops *);
535
536 /* Documentation of this routine is provided with the corresponding
537 target_* macro. */
538 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
539
540 /* Documentation of this routine is provided with the
541 corresponding target_* function. */
542 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
543
544 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
545 void (*to_find_new_threads) (struct target_ops *);
546 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
547 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
548 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
549 void (*to_stop) (struct target_ops *, ptid_t);
550 void (*to_rcmd) (struct target_ops *,
551 char *command, struct ui_file *output)
552 TARGET_DEFAULT_FUNC (default_rcmd);
553 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
554 void (*to_log_command) (struct target_ops *, const char *);
555 struct target_section_table *(*to_get_section_table) (struct target_ops *);
556 enum strata to_stratum;
557 int (*to_has_all_memory) (struct target_ops *);
558 int (*to_has_memory) (struct target_ops *);
559 int (*to_has_stack) (struct target_ops *);
560 int (*to_has_registers) (struct target_ops *);
561 int (*to_has_execution) (struct target_ops *, ptid_t);
562 int to_has_thread_control; /* control thread execution */
563 int to_attach_no_wait;
564 /* ASYNC target controls */
565 int (*to_can_async_p) (struct target_ops *)
566 TARGET_DEFAULT_FUNC (find_default_can_async_p);
567 int (*to_is_async_p) (struct target_ops *)
568 TARGET_DEFAULT_FUNC (find_default_is_async_p);
569 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
570 TARGET_DEFAULT_NORETURN (tcomplain ());
571 int (*to_supports_non_stop) (struct target_ops *);
572 /* find_memory_regions support method for gcore */
573 int (*to_find_memory_regions) (struct target_ops *,
574 find_memory_region_ftype func, void *data);
575 /* make_corefile_notes support method for gcore */
576 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
577 /* get_bookmark support method for bookmarks */
578 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
579 /* goto_bookmark support method for bookmarks */
580 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
581 /* Return the thread-local address at OFFSET in the
582 thread-local storage for the thread PTID and the shared library
583 or executable file given by OBJFILE. If that block of
584 thread-local storage hasn't been allocated yet, this function
585 may return an error. */
586 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
587 ptid_t ptid,
588 CORE_ADDR load_module_addr,
589 CORE_ADDR offset);
590
591 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
592 OBJECT. The OFFSET, for a seekable object, specifies the
593 starting point. The ANNEX can be used to provide additional
594 data-specific information to the target.
595
596 Return the transferred status, error or OK (an
597 'enum target_xfer_status' value). Save the number of bytes
598 actually transferred in *XFERED_LEN if transfer is successful
599 (TARGET_XFER_OK) or the number unavailable bytes if the requested
600 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
601 smaller than LEN does not indicate the end of the object, only
602 the end of the transfer; higher level code should continue
603 transferring if desired. This is handled in target.c.
604
605 The interface does not support a "retry" mechanism. Instead it
606 assumes that at least one byte will be transfered on each
607 successful call.
608
609 NOTE: cagney/2003-10-17: The current interface can lead to
610 fragmented transfers. Lower target levels should not implement
611 hacks, such as enlarging the transfer, in an attempt to
612 compensate for this. Instead, the target stack should be
613 extended so that it implements supply/collect methods and a
614 look-aside object cache. With that available, the lowest
615 target can safely and freely "push" data up the stack.
616
617 See target_read and target_write for more information. One,
618 and only one, of readbuf or writebuf must be non-NULL. */
619
620 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
621 enum target_object object,
622 const char *annex,
623 gdb_byte *readbuf,
624 const gdb_byte *writebuf,
625 ULONGEST offset, ULONGEST len,
626 ULONGEST *xfered_len)
627 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
628
629 /* Returns the memory map for the target. A return value of NULL
630 means that no memory map is available. If a memory address
631 does not fall within any returned regions, it's assumed to be
632 RAM. The returned memory regions should not overlap.
633
634 The order of regions does not matter; target_memory_map will
635 sort regions by starting address. For that reason, this
636 function should not be called directly except via
637 target_memory_map.
638
639 This method should not cache data; if the memory map could
640 change unexpectedly, it should be invalidated, and higher
641 layers will re-fetch it. */
642 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
643
644 /* Erases the region of flash memory starting at ADDRESS, of
645 length LENGTH.
646
647 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
648 on flash block boundaries, as reported by 'to_memory_map'. */
649 void (*to_flash_erase) (struct target_ops *,
650 ULONGEST address, LONGEST length);
651
652 /* Finishes a flash memory write sequence. After this operation
653 all flash memory should be available for writing and the result
654 of reading from areas written by 'to_flash_write' should be
655 equal to what was written. */
656 void (*to_flash_done) (struct target_ops *);
657
658 /* Describe the architecture-specific features of this target.
659 Returns the description found, or NULL if no description
660 was available. */
661 const struct target_desc *(*to_read_description) (struct target_ops *ops);
662
663 /* Build the PTID of the thread on which a given task is running,
664 based on LWP and THREAD. These values are extracted from the
665 task Private_Data section of the Ada Task Control Block, and
666 their interpretation depends on the target. */
667 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
668 long lwp, long thread);
669
670 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
671 Return 0 if *READPTR is already at the end of the buffer.
672 Return -1 if there is insufficient buffer for a whole entry.
673 Return 1 if an entry was read into *TYPEP and *VALP. */
674 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
675 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
676
677 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
678 sequence of bytes in PATTERN with length PATTERN_LEN.
679
680 The result is 1 if found, 0 if not found, and -1 if there was an error
681 requiring halting of the search (e.g. memory read error).
682 If the pattern is found the address is recorded in FOUND_ADDRP. */
683 int (*to_search_memory) (struct target_ops *ops,
684 CORE_ADDR start_addr, ULONGEST search_space_len,
685 const gdb_byte *pattern, ULONGEST pattern_len,
686 CORE_ADDR *found_addrp);
687
688 /* Can target execute in reverse? */
689 int (*to_can_execute_reverse) (struct target_ops *);
690
691 /* The direction the target is currently executing. Must be
692 implemented on targets that support reverse execution and async
693 mode. The default simply returns forward execution. */
694 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
695
696 /* Does this target support debugging multiple processes
697 simultaneously? */
698 int (*to_supports_multi_process) (struct target_ops *);
699
700 /* Does this target support enabling and disabling tracepoints while a trace
701 experiment is running? */
702 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
703
704 /* Does this target support disabling address space randomization? */
705 int (*to_supports_disable_randomization) (struct target_ops *);
706
707 /* Does this target support the tracenz bytecode for string collection? */
708 int (*to_supports_string_tracing) (struct target_ops *);
709
710 /* Does this target support evaluation of breakpoint conditions on its
711 end? */
712 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
713
714 /* Does this target support evaluation of breakpoint commands on its
715 end? */
716 int (*to_can_run_breakpoint_commands) (struct target_ops *);
717
718 /* Determine current architecture of thread PTID.
719
720 The target is supposed to determine the architecture of the code where
721 the target is currently stopped at (on Cell, if a target is in spu_run,
722 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
723 This is architecture used to perform decr_pc_after_break adjustment,
724 and also determines the frame architecture of the innermost frame.
725 ptrace operations need to operate according to target_gdbarch ().
726
727 The default implementation always returns target_gdbarch (). */
728 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
729
730 /* Determine current address space of thread PTID.
731
732 The default implementation always returns the inferior's
733 address space. */
734 struct address_space *(*to_thread_address_space) (struct target_ops *,
735 ptid_t);
736
737 /* Target file operations. */
738
739 /* Open FILENAME on the target, using FLAGS and MODE. Return a
740 target file descriptor, or -1 if an error occurs (and set
741 *TARGET_ERRNO). */
742 int (*to_fileio_open) (struct target_ops *,
743 const char *filename, int flags, int mode,
744 int *target_errno);
745
746 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
747 Return the number of bytes written, or -1 if an error occurs
748 (and set *TARGET_ERRNO). */
749 int (*to_fileio_pwrite) (struct target_ops *,
750 int fd, const gdb_byte *write_buf, int len,
751 ULONGEST offset, int *target_errno);
752
753 /* Read up to LEN bytes FD on the target into READ_BUF.
754 Return the number of bytes read, or -1 if an error occurs
755 (and set *TARGET_ERRNO). */
756 int (*to_fileio_pread) (struct target_ops *,
757 int fd, gdb_byte *read_buf, int len,
758 ULONGEST offset, int *target_errno);
759
760 /* Close FD on the target. Return 0, or -1 if an error occurs
761 (and set *TARGET_ERRNO). */
762 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
763
764 /* Unlink FILENAME on the target. Return 0, or -1 if an error
765 occurs (and set *TARGET_ERRNO). */
766 int (*to_fileio_unlink) (struct target_ops *,
767 const char *filename, int *target_errno);
768
769 /* Read value of symbolic link FILENAME on the target. Return a
770 null-terminated string allocated via xmalloc, or NULL if an error
771 occurs (and set *TARGET_ERRNO). */
772 char *(*to_fileio_readlink) (struct target_ops *,
773 const char *filename, int *target_errno);
774
775
776 /* Implement the "info proc" command. */
777 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
778
779 /* Tracepoint-related operations. */
780
781 /* Prepare the target for a tracing run. */
782 void (*to_trace_init) (struct target_ops *);
783
784 /* Send full details of a tracepoint location to the target. */
785 void (*to_download_tracepoint) (struct target_ops *,
786 struct bp_location *location);
787
788 /* Is the target able to download tracepoint locations in current
789 state? */
790 int (*to_can_download_tracepoint) (struct target_ops *);
791
792 /* Send full details of a trace state variable to the target. */
793 void (*to_download_trace_state_variable) (struct target_ops *,
794 struct trace_state_variable *tsv);
795
796 /* Enable a tracepoint on the target. */
797 void (*to_enable_tracepoint) (struct target_ops *,
798 struct bp_location *location);
799
800 /* Disable a tracepoint on the target. */
801 void (*to_disable_tracepoint) (struct target_ops *,
802 struct bp_location *location);
803
804 /* Inform the target info of memory regions that are readonly
805 (such as text sections), and so it should return data from
806 those rather than look in the trace buffer. */
807 void (*to_trace_set_readonly_regions) (struct target_ops *);
808
809 /* Start a trace run. */
810 void (*to_trace_start) (struct target_ops *);
811
812 /* Get the current status of a tracing run. */
813 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
814
815 void (*to_get_tracepoint_status) (struct target_ops *,
816 struct breakpoint *tp,
817 struct uploaded_tp *utp);
818
819 /* Stop a trace run. */
820 void (*to_trace_stop) (struct target_ops *);
821
822 /* Ask the target to find a trace frame of the given type TYPE,
823 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
824 number of the trace frame, and also the tracepoint number at
825 TPP. If no trace frame matches, return -1. May throw if the
826 operation fails. */
827 int (*to_trace_find) (struct target_ops *,
828 enum trace_find_type type, int num,
829 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
830
831 /* Get the value of the trace state variable number TSV, returning
832 1 if the value is known and writing the value itself into the
833 location pointed to by VAL, else returning 0. */
834 int (*to_get_trace_state_variable_value) (struct target_ops *,
835 int tsv, LONGEST *val);
836
837 int (*to_save_trace_data) (struct target_ops *, const char *filename);
838
839 int (*to_upload_tracepoints) (struct target_ops *,
840 struct uploaded_tp **utpp);
841
842 int (*to_upload_trace_state_variables) (struct target_ops *,
843 struct uploaded_tsv **utsvp);
844
845 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
846 ULONGEST offset, LONGEST len);
847
848 /* Get the minimum length of instruction on which a fast tracepoint
849 may be set on the target. If this operation is unsupported,
850 return -1. If for some reason the minimum length cannot be
851 determined, return 0. */
852 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
853
854 /* Set the target's tracing behavior in response to unexpected
855 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
856 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
857 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
858 /* Set the size of trace buffer in the target. */
859 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
860
861 /* Add/change textual notes about the trace run, returning 1 if
862 successful, 0 otherwise. */
863 int (*to_set_trace_notes) (struct target_ops *,
864 const char *user, const char *notes,
865 const char *stopnotes);
866
867 /* Return the processor core that thread PTID was last seen on.
868 This information is updated only when:
869 - update_thread_list is called
870 - thread stops
871 If the core cannot be determined -- either for the specified
872 thread, or right now, or in this debug session, or for this
873 target -- return -1. */
874 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
875
876 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
877 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
878 a match, 0 if there's a mismatch, and -1 if an error is
879 encountered while reading memory. */
880 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
881 CORE_ADDR memaddr, ULONGEST size);
882
883 /* Return the address of the start of the Thread Information Block
884 a Windows OS specific feature. */
885 int (*to_get_tib_address) (struct target_ops *,
886 ptid_t ptid, CORE_ADDR *addr);
887
888 /* Send the new settings of write permission variables. */
889 void (*to_set_permissions) (struct target_ops *);
890
891 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
892 with its details. Return 1 on success, 0 on failure. */
893 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
894 struct static_tracepoint_marker *marker);
895
896 /* Return a vector of all tracepoints markers string id ID, or all
897 markers if ID is NULL. */
898 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
899 (struct target_ops *, const char *id);
900
901 /* Return a traceframe info object describing the current
902 traceframe's contents. If the target doesn't support
903 traceframe info, return NULL. If the current traceframe is not
904 selected (the current traceframe number is -1), the target can
905 choose to return either NULL or an empty traceframe info. If
906 NULL is returned, for example in remote target, GDB will read
907 from the live inferior. If an empty traceframe info is
908 returned, for example in tfile target, which means the
909 traceframe info is available, but the requested memory is not
910 available in it. GDB will try to see if the requested memory
911 is available in the read-only sections. This method should not
912 cache data; higher layers take care of caching, invalidating,
913 and re-fetching when necessary. */
914 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
915
916 /* Ask the target to use or not to use agent according to USE. Return 1
917 successful, 0 otherwise. */
918 int (*to_use_agent) (struct target_ops *, int use);
919
920 /* Is the target able to use agent in current state? */
921 int (*to_can_use_agent) (struct target_ops *);
922
923 /* Check whether the target supports branch tracing. */
924 int (*to_supports_btrace) (struct target_ops *)
925 TARGET_DEFAULT_RETURN (0);
926
927 /* Enable branch tracing for PTID and allocate a branch trace target
928 information struct for reading and for disabling branch trace. */
929 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
930 ptid_t ptid);
931
932 /* Disable branch tracing and deallocate TINFO. */
933 void (*to_disable_btrace) (struct target_ops *,
934 struct btrace_target_info *tinfo);
935
936 /* Disable branch tracing and deallocate TINFO. This function is similar
937 to to_disable_btrace, except that it is called during teardown and is
938 only allowed to perform actions that are safe. A counter-example would
939 be attempting to talk to a remote target. */
940 void (*to_teardown_btrace) (struct target_ops *,
941 struct btrace_target_info *tinfo);
942
943 /* Read branch trace data for the thread indicated by BTINFO into DATA.
944 DATA is cleared before new trace is added.
945 The branch trace will start with the most recent block and continue
946 towards older blocks. */
947 enum btrace_error (*to_read_btrace) (struct target_ops *self,
948 VEC (btrace_block_s) **data,
949 struct btrace_target_info *btinfo,
950 enum btrace_read_type type);
951
952 /* Stop trace recording. */
953 void (*to_stop_recording) (struct target_ops *);
954
955 /* Print information about the recording. */
956 void (*to_info_record) (struct target_ops *);
957
958 /* Save the recorded execution trace into a file. */
959 void (*to_save_record) (struct target_ops *, const char *filename);
960
961 /* Delete the recorded execution trace from the current position onwards. */
962 void (*to_delete_record) (struct target_ops *);
963
964 /* Query if the record target is currently replaying. */
965 int (*to_record_is_replaying) (struct target_ops *);
966
967 /* Go to the begin of the execution trace. */
968 void (*to_goto_record_begin) (struct target_ops *);
969
970 /* Go to the end of the execution trace. */
971 void (*to_goto_record_end) (struct target_ops *);
972
973 /* Go to a specific location in the recorded execution trace. */
974 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
975
976 /* Disassemble SIZE instructions in the recorded execution trace from
977 the current position.
978 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
979 disassemble SIZE succeeding instructions. */
980 void (*to_insn_history) (struct target_ops *, int size, int flags);
981
982 /* Disassemble SIZE instructions in the recorded execution trace around
983 FROM.
984 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
985 disassemble SIZE instructions after FROM. */
986 void (*to_insn_history_from) (struct target_ops *,
987 ULONGEST from, int size, int flags);
988
989 /* Disassemble a section of the recorded execution trace from instruction
990 BEGIN (inclusive) to instruction END (inclusive). */
991 void (*to_insn_history_range) (struct target_ops *,
992 ULONGEST begin, ULONGEST end, int flags);
993
994 /* Print a function trace of the recorded execution trace.
995 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
996 succeeding functions. */
997 void (*to_call_history) (struct target_ops *, int size, int flags);
998
999 /* Print a function trace of the recorded execution trace starting
1000 at function FROM.
1001 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1002 SIZE functions after FROM. */
1003 void (*to_call_history_from) (struct target_ops *,
1004 ULONGEST begin, int size, int flags);
1005
1006 /* Print a function trace of an execution trace section from function BEGIN
1007 (inclusive) to function END (inclusive). */
1008 void (*to_call_history_range) (struct target_ops *,
1009 ULONGEST begin, ULONGEST end, int flags);
1010
1011 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1012 non-empty annex. */
1013 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1014
1015 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1016 it is not used. */
1017 const struct frame_unwind *to_get_unwinder;
1018 const struct frame_unwind *to_get_tailcall_unwinder;
1019
1020 /* Return the number of bytes by which the PC needs to be decremented
1021 after executing a breakpoint instruction.
1022 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1023 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1024 struct gdbarch *gdbarch);
1025
1026 int to_magic;
1027 /* Need sub-structure for target machine related rather than comm related?
1028 */
1029 };
1030
1031 /* Magic number for checking ops size. If a struct doesn't end with this
1032 number, somebody changed the declaration but didn't change all the
1033 places that initialize one. */
1034
1035 #define OPS_MAGIC 3840
1036
1037 /* The ops structure for our "current" target process. This should
1038 never be NULL. If there is no target, it points to the dummy_target. */
1039
1040 extern struct target_ops current_target;
1041
1042 /* Define easy words for doing these operations on our current target. */
1043
1044 #define target_shortname (current_target.to_shortname)
1045 #define target_longname (current_target.to_longname)
1046
1047 /* Does whatever cleanup is required for a target that we are no
1048 longer going to be calling. This routine is automatically always
1049 called after popping the target off the target stack - the target's
1050 own methods are no longer available through the target vector.
1051 Closing file descriptors and freeing all memory allocated memory are
1052 typical things it should do. */
1053
1054 void target_close (struct target_ops *targ);
1055
1056 /* Attaches to a process on the target side. Arguments are as passed
1057 to the `attach' command by the user. This routine can be called
1058 when the target is not on the target-stack, if the target_can_run
1059 routine returns 1; in that case, it must push itself onto the stack.
1060 Upon exit, the target should be ready for normal operations, and
1061 should be ready to deliver the status of the process immediately
1062 (without waiting) to an upcoming target_wait call. */
1063
1064 void target_attach (char *, int);
1065
1066 /* Some targets don't generate traps when attaching to the inferior,
1067 or their target_attach implementation takes care of the waiting.
1068 These targets must set to_attach_no_wait. */
1069
1070 #define target_attach_no_wait \
1071 (current_target.to_attach_no_wait)
1072
1073 /* The target_attach operation places a process under debugger control,
1074 and stops the process.
1075
1076 This operation provides a target-specific hook that allows the
1077 necessary bookkeeping to be performed after an attach completes. */
1078 #define target_post_attach(pid) \
1079 (*current_target.to_post_attach) (&current_target, pid)
1080
1081 /* Takes a program previously attached to and detaches it.
1082 The program may resume execution (some targets do, some don't) and will
1083 no longer stop on signals, etc. We better not have left any breakpoints
1084 in the program or it'll die when it hits one. ARGS is arguments
1085 typed by the user (e.g. a signal to send the process). FROM_TTY
1086 says whether to be verbose or not. */
1087
1088 extern void target_detach (const char *, int);
1089
1090 /* Disconnect from the current target without resuming it (leaving it
1091 waiting for a debugger). */
1092
1093 extern void target_disconnect (char *, int);
1094
1095 /* Resume execution of the target process PTID (or a group of
1096 threads). STEP says whether to single-step or to run free; SIGGNAL
1097 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1098 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1099 PTID means `step/resume only this process id'. A wildcard PTID
1100 (all threads, or all threads of process) means `step/resume
1101 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1102 matches) resume with their 'thread->suspend.stop_signal' signal
1103 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1104 if in "no pass" state. */
1105
1106 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1107
1108 /* Wait for process pid to do something. PTID = -1 to wait for any
1109 pid to do something. Return pid of child, or -1 in case of error;
1110 store status through argument pointer STATUS. Note that it is
1111 _NOT_ OK to throw_exception() out of target_wait() without popping
1112 the debugging target from the stack; GDB isn't prepared to get back
1113 to the prompt with a debugging target but without the frame cache,
1114 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1115 options. */
1116
1117 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1118 int options);
1119
1120 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1121
1122 extern void target_fetch_registers (struct regcache *regcache, int regno);
1123
1124 /* Store at least register REGNO, or all regs if REGNO == -1.
1125 It can store as many registers as it wants to, so target_prepare_to_store
1126 must have been previously called. Calls error() if there are problems. */
1127
1128 extern void target_store_registers (struct regcache *regcache, int regs);
1129
1130 /* Get ready to modify the registers array. On machines which store
1131 individual registers, this doesn't need to do anything. On machines
1132 which store all the registers in one fell swoop, this makes sure
1133 that REGISTERS contains all the registers from the program being
1134 debugged. */
1135
1136 #define target_prepare_to_store(regcache) \
1137 (*current_target.to_prepare_to_store) (&current_target, regcache)
1138
1139 /* Determine current address space of thread PTID. */
1140
1141 struct address_space *target_thread_address_space (ptid_t);
1142
1143 /* Implement the "info proc" command. This returns one if the request
1144 was handled, and zero otherwise. It can also throw an exception if
1145 an error was encountered while attempting to handle the
1146 request. */
1147
1148 int target_info_proc (char *, enum info_proc_what);
1149
1150 /* Returns true if this target can debug multiple processes
1151 simultaneously. */
1152
1153 #define target_supports_multi_process() \
1154 (*current_target.to_supports_multi_process) (&current_target)
1155
1156 /* Returns true if this target can disable address space randomization. */
1157
1158 int target_supports_disable_randomization (void);
1159
1160 /* Returns true if this target can enable and disable tracepoints
1161 while a trace experiment is running. */
1162
1163 #define target_supports_enable_disable_tracepoint() \
1164 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1165
1166 #define target_supports_string_tracing() \
1167 (*current_target.to_supports_string_tracing) (&current_target)
1168
1169 /* Returns true if this target can handle breakpoint conditions
1170 on its end. */
1171
1172 #define target_supports_evaluation_of_breakpoint_conditions() \
1173 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1174
1175 /* Returns true if this target can handle breakpoint commands
1176 on its end. */
1177
1178 #define target_can_run_breakpoint_commands() \
1179 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1180
1181 extern int target_read_string (CORE_ADDR, char **, int, int *);
1182
1183 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1184 ssize_t len);
1185
1186 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1187 ssize_t len);
1188
1189 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1190
1191 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1192
1193 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1194 ssize_t len);
1195
1196 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1197 ssize_t len);
1198
1199 /* Fetches the target's memory map. If one is found it is sorted
1200 and returned, after some consistency checking. Otherwise, NULL
1201 is returned. */
1202 VEC(mem_region_s) *target_memory_map (void);
1203
1204 /* Erase the specified flash region. */
1205 void target_flash_erase (ULONGEST address, LONGEST length);
1206
1207 /* Finish a sequence of flash operations. */
1208 void target_flash_done (void);
1209
1210 /* Describes a request for a memory write operation. */
1211 struct memory_write_request
1212 {
1213 /* Begining address that must be written. */
1214 ULONGEST begin;
1215 /* Past-the-end address. */
1216 ULONGEST end;
1217 /* The data to write. */
1218 gdb_byte *data;
1219 /* A callback baton for progress reporting for this request. */
1220 void *baton;
1221 };
1222 typedef struct memory_write_request memory_write_request_s;
1223 DEF_VEC_O(memory_write_request_s);
1224
1225 /* Enumeration specifying different flash preservation behaviour. */
1226 enum flash_preserve_mode
1227 {
1228 flash_preserve,
1229 flash_discard
1230 };
1231
1232 /* Write several memory blocks at once. This version can be more
1233 efficient than making several calls to target_write_memory, in
1234 particular because it can optimize accesses to flash memory.
1235
1236 Moreover, this is currently the only memory access function in gdb
1237 that supports writing to flash memory, and it should be used for
1238 all cases where access to flash memory is desirable.
1239
1240 REQUESTS is the vector (see vec.h) of memory_write_request.
1241 PRESERVE_FLASH_P indicates what to do with blocks which must be
1242 erased, but not completely rewritten.
1243 PROGRESS_CB is a function that will be periodically called to provide
1244 feedback to user. It will be called with the baton corresponding
1245 to the request currently being written. It may also be called
1246 with a NULL baton, when preserved flash sectors are being rewritten.
1247
1248 The function returns 0 on success, and error otherwise. */
1249 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1250 enum flash_preserve_mode preserve_flash_p,
1251 void (*progress_cb) (ULONGEST, void *));
1252
1253 /* Print a line about the current target. */
1254
1255 #define target_files_info() \
1256 (*current_target.to_files_info) (&current_target)
1257
1258 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1259 the target machine. Returns 0 for success, and returns non-zero or
1260 throws an error (with a detailed failure reason error code and
1261 message) otherwise. */
1262
1263 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1264 struct bp_target_info *bp_tgt);
1265
1266 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1267 machine. Result is 0 for success, non-zero for error. */
1268
1269 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1270 struct bp_target_info *bp_tgt);
1271
1272 /* Initialize the terminal settings we record for the inferior,
1273 before we actually run the inferior. */
1274
1275 #define target_terminal_init() \
1276 (*current_target.to_terminal_init) (&current_target)
1277
1278 /* Put the inferior's terminal settings into effect.
1279 This is preparation for starting or resuming the inferior. */
1280
1281 extern void target_terminal_inferior (void);
1282
1283 /* Put some of our terminal settings into effect,
1284 enough to get proper results from our output,
1285 but do not change into or out of RAW mode
1286 so that no input is discarded.
1287
1288 After doing this, either terminal_ours or terminal_inferior
1289 should be called to get back to a normal state of affairs. */
1290
1291 #define target_terminal_ours_for_output() \
1292 (*current_target.to_terminal_ours_for_output) (&current_target)
1293
1294 /* Put our terminal settings into effect.
1295 First record the inferior's terminal settings
1296 so they can be restored properly later. */
1297
1298 #define target_terminal_ours() \
1299 (*current_target.to_terminal_ours) (&current_target)
1300
1301 /* Save our terminal settings.
1302 This is called from TUI after entering or leaving the curses
1303 mode. Since curses modifies our terminal this call is here
1304 to take this change into account. */
1305
1306 #define target_terminal_save_ours() \
1307 (*current_target.to_terminal_save_ours) (&current_target)
1308
1309 /* Print useful information about our terminal status, if such a thing
1310 exists. */
1311
1312 #define target_terminal_info(arg, from_tty) \
1313 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1314
1315 /* Kill the inferior process. Make it go away. */
1316
1317 extern void target_kill (void);
1318
1319 /* Load an executable file into the target process. This is expected
1320 to not only bring new code into the target process, but also to
1321 update GDB's symbol tables to match.
1322
1323 ARG contains command-line arguments, to be broken down with
1324 buildargv (). The first non-switch argument is the filename to
1325 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1326 0)), which is an offset to apply to the load addresses of FILE's
1327 sections. The target may define switches, or other non-switch
1328 arguments, as it pleases. */
1329
1330 extern void target_load (char *arg, int from_tty);
1331
1332 /* Start an inferior process and set inferior_ptid to its pid.
1333 EXEC_FILE is the file to run.
1334 ALLARGS is a string containing the arguments to the program.
1335 ENV is the environment vector to pass. Errors reported with error().
1336 On VxWorks and various standalone systems, we ignore exec_file. */
1337
1338 void target_create_inferior (char *exec_file, char *args,
1339 char **env, int from_tty);
1340
1341 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1342 notification of inferior events such as fork and vork immediately
1343 after the inferior is created. (This because of how gdb gets an
1344 inferior created via invoking a shell to do it. In such a scenario,
1345 if the shell init file has commands in it, the shell will fork and
1346 exec for each of those commands, and we will see each such fork
1347 event. Very bad.)
1348
1349 Such targets will supply an appropriate definition for this function. */
1350
1351 #define target_post_startup_inferior(ptid) \
1352 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1353
1354 /* On some targets, we can catch an inferior fork or vfork event when
1355 it occurs. These functions insert/remove an already-created
1356 catchpoint for such events. They return 0 for success, 1 if the
1357 catchpoint type is not supported and -1 for failure. */
1358
1359 #define target_insert_fork_catchpoint(pid) \
1360 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1361
1362 #define target_remove_fork_catchpoint(pid) \
1363 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1364
1365 #define target_insert_vfork_catchpoint(pid) \
1366 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1367
1368 #define target_remove_vfork_catchpoint(pid) \
1369 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1370
1371 /* If the inferior forks or vforks, this function will be called at
1372 the next resume in order to perform any bookkeeping and fiddling
1373 necessary to continue debugging either the parent or child, as
1374 requested, and releasing the other. Information about the fork
1375 or vfork event is available via get_last_target_status ().
1376 This function returns 1 if the inferior should not be resumed
1377 (i.e. there is another event pending). */
1378
1379 int target_follow_fork (int follow_child, int detach_fork);
1380
1381 /* On some targets, we can catch an inferior exec event when it
1382 occurs. These functions insert/remove an already-created
1383 catchpoint for such events. They return 0 for success, 1 if the
1384 catchpoint type is not supported and -1 for failure. */
1385
1386 #define target_insert_exec_catchpoint(pid) \
1387 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1388
1389 #define target_remove_exec_catchpoint(pid) \
1390 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1391
1392 /* Syscall catch.
1393
1394 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1395 If NEEDED is zero, it means the target can disable the mechanism to
1396 catch system calls because there are no more catchpoints of this type.
1397
1398 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1399 being requested. In this case, both TABLE_SIZE and TABLE should
1400 be ignored.
1401
1402 TABLE_SIZE is the number of elements in TABLE. It only matters if
1403 ANY_COUNT is zero.
1404
1405 TABLE is an array of ints, indexed by syscall number. An element in
1406 this array is nonzero if that syscall should be caught. This argument
1407 only matters if ANY_COUNT is zero.
1408
1409 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1410 for failure. */
1411
1412 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1413 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1414 pid, needed, any_count, \
1415 table_size, table)
1416
1417 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1418 exit code of PID, if any. */
1419
1420 #define target_has_exited(pid,wait_status,exit_status) \
1421 (*current_target.to_has_exited) (&current_target, \
1422 pid,wait_status,exit_status)
1423
1424 /* The debugger has completed a blocking wait() call. There is now
1425 some process event that must be processed. This function should
1426 be defined by those targets that require the debugger to perform
1427 cleanup or internal state changes in response to the process event. */
1428
1429 /* The inferior process has died. Do what is right. */
1430
1431 void target_mourn_inferior (void);
1432
1433 /* Does target have enough data to do a run or attach command? */
1434
1435 #define target_can_run(t) \
1436 ((t)->to_can_run) (t)
1437
1438 /* Set list of signals to be handled in the target.
1439
1440 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1441 (enum gdb_signal). For every signal whose entry in this array is
1442 non-zero, the target is allowed -but not required- to skip reporting
1443 arrival of the signal to the GDB core by returning from target_wait,
1444 and to pass the signal directly to the inferior instead.
1445
1446 However, if the target is hardware single-stepping a thread that is
1447 about to receive a signal, it needs to be reported in any case, even
1448 if mentioned in a previous target_pass_signals call. */
1449
1450 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1451
1452 /* Set list of signals the target may pass to the inferior. This
1453 directly maps to the "handle SIGNAL pass/nopass" setting.
1454
1455 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1456 number (enum gdb_signal). For every signal whose entry in this
1457 array is non-zero, the target is allowed to pass the signal to the
1458 inferior. Signals not present in the array shall be silently
1459 discarded. This does not influence whether to pass signals to the
1460 inferior as a result of a target_resume call. This is useful in
1461 scenarios where the target needs to decide whether to pass or not a
1462 signal to the inferior without GDB core involvement, such as for
1463 example, when detaching (as threads may have been suspended with
1464 pending signals not reported to GDB). */
1465
1466 extern void target_program_signals (int nsig, unsigned char *program_signals);
1467
1468 /* Check to see if a thread is still alive. */
1469
1470 extern int target_thread_alive (ptid_t ptid);
1471
1472 /* Query for new threads and add them to the thread list. */
1473
1474 extern void target_find_new_threads (void);
1475
1476 /* Make target stop in a continuable fashion. (For instance, under
1477 Unix, this should act like SIGSTOP). This function is normally
1478 used by GUIs to implement a stop button. */
1479
1480 extern void target_stop (ptid_t ptid);
1481
1482 /* Send the specified COMMAND to the target's monitor
1483 (shell,interpreter) for execution. The result of the query is
1484 placed in OUTBUF. */
1485
1486 #define target_rcmd(command, outbuf) \
1487 (*current_target.to_rcmd) (&current_target, command, outbuf)
1488
1489
1490 /* Does the target include all of memory, or only part of it? This
1491 determines whether we look up the target chain for other parts of
1492 memory if this target can't satisfy a request. */
1493
1494 extern int target_has_all_memory_1 (void);
1495 #define target_has_all_memory target_has_all_memory_1 ()
1496
1497 /* Does the target include memory? (Dummy targets don't.) */
1498
1499 extern int target_has_memory_1 (void);
1500 #define target_has_memory target_has_memory_1 ()
1501
1502 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1503 we start a process.) */
1504
1505 extern int target_has_stack_1 (void);
1506 #define target_has_stack target_has_stack_1 ()
1507
1508 /* Does the target have registers? (Exec files don't.) */
1509
1510 extern int target_has_registers_1 (void);
1511 #define target_has_registers target_has_registers_1 ()
1512
1513 /* Does the target have execution? Can we make it jump (through
1514 hoops), or pop its stack a few times? This means that the current
1515 target is currently executing; for some targets, that's the same as
1516 whether or not the target is capable of execution, but there are
1517 also targets which can be current while not executing. In that
1518 case this will become true after target_create_inferior or
1519 target_attach. */
1520
1521 extern int target_has_execution_1 (ptid_t);
1522
1523 /* Like target_has_execution_1, but always passes inferior_ptid. */
1524
1525 extern int target_has_execution_current (void);
1526
1527 #define target_has_execution target_has_execution_current ()
1528
1529 /* Default implementations for process_stratum targets. Return true
1530 if there's a selected inferior, false otherwise. */
1531
1532 extern int default_child_has_all_memory (struct target_ops *ops);
1533 extern int default_child_has_memory (struct target_ops *ops);
1534 extern int default_child_has_stack (struct target_ops *ops);
1535 extern int default_child_has_registers (struct target_ops *ops);
1536 extern int default_child_has_execution (struct target_ops *ops,
1537 ptid_t the_ptid);
1538
1539 /* Can the target support the debugger control of thread execution?
1540 Can it lock the thread scheduler? */
1541
1542 #define target_can_lock_scheduler \
1543 (current_target.to_has_thread_control & tc_schedlock)
1544
1545 /* Should the target enable async mode if it is supported? Temporary
1546 cludge until async mode is a strict superset of sync mode. */
1547 extern int target_async_permitted;
1548
1549 /* Can the target support asynchronous execution? */
1550 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1551
1552 /* Is the target in asynchronous execution mode? */
1553 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1554
1555 int target_supports_non_stop (void);
1556
1557 /* Put the target in async mode with the specified callback function. */
1558 #define target_async(CALLBACK,CONTEXT) \
1559 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1560
1561 #define target_execution_direction() \
1562 (current_target.to_execution_direction (&current_target))
1563
1564 /* Converts a process id to a string. Usually, the string just contains
1565 `process xyz', but on some systems it may contain
1566 `process xyz thread abc'. */
1567
1568 extern char *target_pid_to_str (ptid_t ptid);
1569
1570 extern char *normal_pid_to_str (ptid_t ptid);
1571
1572 /* Return a short string describing extra information about PID,
1573 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1574 is okay. */
1575
1576 #define target_extra_thread_info(TP) \
1577 (current_target.to_extra_thread_info (&current_target, TP))
1578
1579 /* Return the thread's name. A NULL result means that the target
1580 could not determine this thread's name. */
1581
1582 extern char *target_thread_name (struct thread_info *);
1583
1584 /* Attempts to find the pathname of the executable file
1585 that was run to create a specified process.
1586
1587 The process PID must be stopped when this operation is used.
1588
1589 If the executable file cannot be determined, NULL is returned.
1590
1591 Else, a pointer to a character string containing the pathname
1592 is returned. This string should be copied into a buffer by
1593 the client if the string will not be immediately used, or if
1594 it must persist. */
1595
1596 #define target_pid_to_exec_file(pid) \
1597 (current_target.to_pid_to_exec_file) (&current_target, pid)
1598
1599 /* See the to_thread_architecture description in struct target_ops. */
1600
1601 #define target_thread_architecture(ptid) \
1602 (current_target.to_thread_architecture (&current_target, ptid))
1603
1604 /*
1605 * Iterator function for target memory regions.
1606 * Calls a callback function once for each memory region 'mapped'
1607 * in the child process. Defined as a simple macro rather than
1608 * as a function macro so that it can be tested for nullity.
1609 */
1610
1611 #define target_find_memory_regions(FUNC, DATA) \
1612 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1613
1614 /*
1615 * Compose corefile .note section.
1616 */
1617
1618 #define target_make_corefile_notes(BFD, SIZE_P) \
1619 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1620
1621 /* Bookmark interfaces. */
1622 #define target_get_bookmark(ARGS, FROM_TTY) \
1623 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1624
1625 #define target_goto_bookmark(ARG, FROM_TTY) \
1626 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1627
1628 /* Hardware watchpoint interfaces. */
1629
1630 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1631 write). Only the INFERIOR_PTID task is being queried. */
1632
1633 #define target_stopped_by_watchpoint() \
1634 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1635
1636 /* Non-zero if we have steppable watchpoints */
1637
1638 #define target_have_steppable_watchpoint \
1639 (current_target.to_have_steppable_watchpoint)
1640
1641 /* Non-zero if we have continuable watchpoints */
1642
1643 #define target_have_continuable_watchpoint \
1644 (current_target.to_have_continuable_watchpoint)
1645
1646 /* Provide defaults for hardware watchpoint functions. */
1647
1648 /* If the *_hw_beakpoint functions have not been defined
1649 elsewhere use the definitions in the target vector. */
1650
1651 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1652 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1653 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1654 (including this one?). OTHERTYPE is who knows what... */
1655
1656 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1657 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1658 TYPE, CNT, OTHERTYPE);
1659
1660 /* Returns the number of debug registers needed to watch the given
1661 memory region, or zero if not supported. */
1662
1663 #define target_region_ok_for_hw_watchpoint(addr, len) \
1664 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1665 addr, len)
1666
1667
1668 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1669 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1670 COND is the expression for its condition, or NULL if there's none.
1671 Returns 0 for success, 1 if the watchpoint type is not supported,
1672 -1 for failure. */
1673
1674 #define target_insert_watchpoint(addr, len, type, cond) \
1675 (*current_target.to_insert_watchpoint) (&current_target, \
1676 addr, len, type, cond)
1677
1678 #define target_remove_watchpoint(addr, len, type, cond) \
1679 (*current_target.to_remove_watchpoint) (&current_target, \
1680 addr, len, type, cond)
1681
1682 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1683 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1684 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1685 masked watchpoints are not supported, -1 for failure. */
1686
1687 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1688
1689 /* Remove a masked watchpoint at ADDR with the mask MASK.
1690 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1691 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1692 for failure. */
1693
1694 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1695
1696 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1697 the target machine. Returns 0 for success, and returns non-zero or
1698 throws an error (with a detailed failure reason error code and
1699 message) otherwise. */
1700
1701 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1702 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1703 gdbarch, bp_tgt)
1704
1705 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1706 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1707 gdbarch, bp_tgt)
1708
1709 /* Return number of debug registers needed for a ranged breakpoint,
1710 or -1 if ranged breakpoints are not supported. */
1711
1712 extern int target_ranged_break_num_registers (void);
1713
1714 /* Return non-zero if target knows the data address which triggered this
1715 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1716 INFERIOR_PTID task is being queried. */
1717 #define target_stopped_data_address(target, addr_p) \
1718 (*target.to_stopped_data_address) (target, addr_p)
1719
1720 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1721 LENGTH bytes beginning at START. */
1722 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1723 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1724
1725 /* Return non-zero if the target is capable of using hardware to evaluate
1726 the condition expression. In this case, if the condition is false when
1727 the watched memory location changes, execution may continue without the
1728 debugger being notified.
1729
1730 Due to limitations in the hardware implementation, it may be capable of
1731 avoiding triggering the watchpoint in some cases where the condition
1732 expression is false, but may report some false positives as well.
1733 For this reason, GDB will still evaluate the condition expression when
1734 the watchpoint triggers. */
1735 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1736 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1737 addr, len, type, cond)
1738
1739 /* Return number of debug registers needed for a masked watchpoint,
1740 -1 if masked watchpoints are not supported or -2 if the given address
1741 and mask combination cannot be used. */
1742
1743 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1744
1745 /* Target can execute in reverse? */
1746 #define target_can_execute_reverse \
1747 (current_target.to_can_execute_reverse ? \
1748 current_target.to_can_execute_reverse (&current_target) : 0)
1749
1750 extern const struct target_desc *target_read_description (struct target_ops *);
1751
1752 #define target_get_ada_task_ptid(lwp, tid) \
1753 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1754
1755 /* Utility implementation of searching memory. */
1756 extern int simple_search_memory (struct target_ops* ops,
1757 CORE_ADDR start_addr,
1758 ULONGEST search_space_len,
1759 const gdb_byte *pattern,
1760 ULONGEST pattern_len,
1761 CORE_ADDR *found_addrp);
1762
1763 /* Main entry point for searching memory. */
1764 extern int target_search_memory (CORE_ADDR start_addr,
1765 ULONGEST search_space_len,
1766 const gdb_byte *pattern,
1767 ULONGEST pattern_len,
1768 CORE_ADDR *found_addrp);
1769
1770 /* Target file operations. */
1771
1772 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1773 target file descriptor, or -1 if an error occurs (and set
1774 *TARGET_ERRNO). */
1775 extern int target_fileio_open (const char *filename, int flags, int mode,
1776 int *target_errno);
1777
1778 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1779 Return the number of bytes written, or -1 if an error occurs
1780 (and set *TARGET_ERRNO). */
1781 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1782 ULONGEST offset, int *target_errno);
1783
1784 /* Read up to LEN bytes FD on the target into READ_BUF.
1785 Return the number of bytes read, or -1 if an error occurs
1786 (and set *TARGET_ERRNO). */
1787 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1788 ULONGEST offset, int *target_errno);
1789
1790 /* Close FD on the target. Return 0, or -1 if an error occurs
1791 (and set *TARGET_ERRNO). */
1792 extern int target_fileio_close (int fd, int *target_errno);
1793
1794 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1795 occurs (and set *TARGET_ERRNO). */
1796 extern int target_fileio_unlink (const char *filename, int *target_errno);
1797
1798 /* Read value of symbolic link FILENAME on the target. Return a
1799 null-terminated string allocated via xmalloc, or NULL if an error
1800 occurs (and set *TARGET_ERRNO). */
1801 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1802
1803 /* Read target file FILENAME. The return value will be -1 if the transfer
1804 fails or is not supported; 0 if the object is empty; or the length
1805 of the object otherwise. If a positive value is returned, a
1806 sufficiently large buffer will be allocated using xmalloc and
1807 returned in *BUF_P containing the contents of the object.
1808
1809 This method should be used for objects sufficiently small to store
1810 in a single xmalloc'd buffer, when no fixed bound on the object's
1811 size is known in advance. */
1812 extern LONGEST target_fileio_read_alloc (const char *filename,
1813 gdb_byte **buf_p);
1814
1815 /* Read target file FILENAME. The result is NUL-terminated and
1816 returned as a string, allocated using xmalloc. If an error occurs
1817 or the transfer is unsupported, NULL is returned. Empty objects
1818 are returned as allocated but empty strings. A warning is issued
1819 if the result contains any embedded NUL bytes. */
1820 extern char *target_fileio_read_stralloc (const char *filename);
1821
1822
1823 /* Tracepoint-related operations. */
1824
1825 #define target_trace_init() \
1826 (*current_target.to_trace_init) (&current_target)
1827
1828 #define target_download_tracepoint(t) \
1829 (*current_target.to_download_tracepoint) (&current_target, t)
1830
1831 #define target_can_download_tracepoint() \
1832 (*current_target.to_can_download_tracepoint) (&current_target)
1833
1834 #define target_download_trace_state_variable(tsv) \
1835 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1836
1837 #define target_enable_tracepoint(loc) \
1838 (*current_target.to_enable_tracepoint) (&current_target, loc)
1839
1840 #define target_disable_tracepoint(loc) \
1841 (*current_target.to_disable_tracepoint) (&current_target, loc)
1842
1843 #define target_trace_start() \
1844 (*current_target.to_trace_start) (&current_target)
1845
1846 #define target_trace_set_readonly_regions() \
1847 (*current_target.to_trace_set_readonly_regions) (&current_target)
1848
1849 #define target_get_trace_status(ts) \
1850 (*current_target.to_get_trace_status) (&current_target, ts)
1851
1852 #define target_get_tracepoint_status(tp,utp) \
1853 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1854
1855 #define target_trace_stop() \
1856 (*current_target.to_trace_stop) (&current_target)
1857
1858 #define target_trace_find(type,num,addr1,addr2,tpp) \
1859 (*current_target.to_trace_find) (&current_target, \
1860 (type), (num), (addr1), (addr2), (tpp))
1861
1862 #define target_get_trace_state_variable_value(tsv,val) \
1863 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1864 (tsv), (val))
1865
1866 #define target_save_trace_data(filename) \
1867 (*current_target.to_save_trace_data) (&current_target, filename)
1868
1869 #define target_upload_tracepoints(utpp) \
1870 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1871
1872 #define target_upload_trace_state_variables(utsvp) \
1873 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1874
1875 #define target_get_raw_trace_data(buf,offset,len) \
1876 (*current_target.to_get_raw_trace_data) (&current_target, \
1877 (buf), (offset), (len))
1878
1879 #define target_get_min_fast_tracepoint_insn_len() \
1880 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1881
1882 #define target_set_disconnected_tracing(val) \
1883 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1884
1885 #define target_set_circular_trace_buffer(val) \
1886 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1887
1888 #define target_set_trace_buffer_size(val) \
1889 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1890
1891 #define target_set_trace_notes(user,notes,stopnotes) \
1892 (*current_target.to_set_trace_notes) (&current_target, \
1893 (user), (notes), (stopnotes))
1894
1895 #define target_get_tib_address(ptid, addr) \
1896 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1897
1898 #define target_set_permissions() \
1899 (*current_target.to_set_permissions) (&current_target)
1900
1901 #define target_static_tracepoint_marker_at(addr, marker) \
1902 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1903 addr, marker)
1904
1905 #define target_static_tracepoint_markers_by_strid(marker_id) \
1906 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1907 marker_id)
1908
1909 #define target_traceframe_info() \
1910 (*current_target.to_traceframe_info) (&current_target)
1911
1912 #define target_use_agent(use) \
1913 (*current_target.to_use_agent) (&current_target, use)
1914
1915 #define target_can_use_agent() \
1916 (*current_target.to_can_use_agent) (&current_target)
1917
1918 #define target_augmented_libraries_svr4_read() \
1919 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1920
1921 /* Command logging facility. */
1922
1923 #define target_log_command(p) \
1924 do \
1925 if (current_target.to_log_command) \
1926 (*current_target.to_log_command) (&current_target, \
1927 p); \
1928 while (0)
1929
1930
1931 extern int target_core_of_thread (ptid_t ptid);
1932
1933 /* See to_get_unwinder in struct target_ops. */
1934 extern const struct frame_unwind *target_get_unwinder (void);
1935
1936 /* See to_get_tailcall_unwinder in struct target_ops. */
1937 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1938
1939 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1940 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1941 if there's a mismatch, and -1 if an error is encountered while
1942 reading memory. Throws an error if the functionality is found not
1943 to be supported by the current target. */
1944 int target_verify_memory (const gdb_byte *data,
1945 CORE_ADDR memaddr, ULONGEST size);
1946
1947 /* Routines for maintenance of the target structures...
1948
1949 complete_target_initialization: Finalize a target_ops by filling in
1950 any fields needed by the target implementation.
1951
1952 add_target: Add a target to the list of all possible targets.
1953
1954 push_target: Make this target the top of the stack of currently used
1955 targets, within its particular stratum of the stack. Result
1956 is 0 if now atop the stack, nonzero if not on top (maybe
1957 should warn user).
1958
1959 unpush_target: Remove this from the stack of currently used targets,
1960 no matter where it is on the list. Returns 0 if no
1961 change, 1 if removed from stack. */
1962
1963 extern void add_target (struct target_ops *);
1964
1965 extern void add_target_with_completer (struct target_ops *t,
1966 completer_ftype *completer);
1967
1968 extern void complete_target_initialization (struct target_ops *t);
1969
1970 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1971 for maintaining backwards compatibility when renaming targets. */
1972
1973 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1974
1975 extern void push_target (struct target_ops *);
1976
1977 extern int unpush_target (struct target_ops *);
1978
1979 extern void target_pre_inferior (int);
1980
1981 extern void target_preopen (int);
1982
1983 /* Does whatever cleanup is required to get rid of all pushed targets. */
1984 extern void pop_all_targets (void);
1985
1986 /* Like pop_all_targets, but pops only targets whose stratum is
1987 strictly above ABOVE_STRATUM. */
1988 extern void pop_all_targets_above (enum strata above_stratum);
1989
1990 extern int target_is_pushed (struct target_ops *t);
1991
1992 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1993 CORE_ADDR offset);
1994
1995 /* Struct target_section maps address ranges to file sections. It is
1996 mostly used with BFD files, but can be used without (e.g. for handling
1997 raw disks, or files not in formats handled by BFD). */
1998
1999 struct target_section
2000 {
2001 CORE_ADDR addr; /* Lowest address in section */
2002 CORE_ADDR endaddr; /* 1+highest address in section */
2003
2004 struct bfd_section *the_bfd_section;
2005
2006 /* The "owner" of the section.
2007 It can be any unique value. It is set by add_target_sections
2008 and used by remove_target_sections.
2009 For example, for executables it is a pointer to exec_bfd and
2010 for shlibs it is the so_list pointer. */
2011 void *owner;
2012 };
2013
2014 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2015
2016 struct target_section_table
2017 {
2018 struct target_section *sections;
2019 struct target_section *sections_end;
2020 };
2021
2022 /* Return the "section" containing the specified address. */
2023 struct target_section *target_section_by_addr (struct target_ops *target,
2024 CORE_ADDR addr);
2025
2026 /* Return the target section table this target (or the targets
2027 beneath) currently manipulate. */
2028
2029 extern struct target_section_table *target_get_section_table
2030 (struct target_ops *target);
2031
2032 /* From mem-break.c */
2033
2034 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2035 struct bp_target_info *);
2036
2037 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2038 struct bp_target_info *);
2039
2040 extern int default_memory_remove_breakpoint (struct gdbarch *,
2041 struct bp_target_info *);
2042
2043 extern int default_memory_insert_breakpoint (struct gdbarch *,
2044 struct bp_target_info *);
2045
2046
2047 /* From target.c */
2048
2049 extern void initialize_targets (void);
2050
2051 extern void noprocess (void) ATTRIBUTE_NORETURN;
2052
2053 extern void target_require_runnable (void);
2054
2055 extern void find_default_attach (struct target_ops *, char *, int);
2056
2057 extern void find_default_create_inferior (struct target_ops *,
2058 char *, char *, char **, int);
2059
2060 extern struct target_ops *find_target_beneath (struct target_ops *);
2061
2062 /* Find the target at STRATUM. If no target is at that stratum,
2063 return NULL. */
2064
2065 struct target_ops *find_target_at (enum strata stratum);
2066
2067 /* Read OS data object of type TYPE from the target, and return it in
2068 XML format. The result is NUL-terminated and returned as a string,
2069 allocated using xmalloc. If an error occurs or the transfer is
2070 unsupported, NULL is returned. Empty objects are returned as
2071 allocated but empty strings. */
2072
2073 extern char *target_get_osdata (const char *type);
2074
2075 \f
2076 /* Stuff that should be shared among the various remote targets. */
2077
2078 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2079 information (higher values, more information). */
2080 extern int remote_debug;
2081
2082 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2083 extern int baud_rate;
2084 /* Timeout limit for response from target. */
2085 extern int remote_timeout;
2086
2087 \f
2088
2089 /* Set the show memory breakpoints mode to show, and installs a cleanup
2090 to restore it back to the current value. */
2091 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2092
2093 extern int may_write_registers;
2094 extern int may_write_memory;
2095 extern int may_insert_breakpoints;
2096 extern int may_insert_tracepoints;
2097 extern int may_insert_fast_tracepoints;
2098 extern int may_stop;
2099
2100 extern void update_target_permissions (void);
2101
2102 \f
2103 /* Imported from machine dependent code. */
2104
2105 /* Blank target vector entries are initialized to target_ignore. */
2106 void target_ignore (void);
2107
2108 /* See to_supports_btrace in struct target_ops. */
2109 #define target_supports_btrace() \
2110 (current_target.to_supports_btrace (&current_target))
2111
2112 /* See to_enable_btrace in struct target_ops. */
2113 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2114
2115 /* See to_disable_btrace in struct target_ops. */
2116 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2117
2118 /* See to_teardown_btrace in struct target_ops. */
2119 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2120
2121 /* See to_read_btrace in struct target_ops. */
2122 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2123 struct btrace_target_info *,
2124 enum btrace_read_type);
2125
2126 /* See to_stop_recording in struct target_ops. */
2127 extern void target_stop_recording (void);
2128
2129 /* See to_info_record in struct target_ops. */
2130 extern void target_info_record (void);
2131
2132 /* See to_save_record in struct target_ops. */
2133 extern void target_save_record (const char *filename);
2134
2135 /* Query if the target supports deleting the execution log. */
2136 extern int target_supports_delete_record (void);
2137
2138 /* See to_delete_record in struct target_ops. */
2139 extern void target_delete_record (void);
2140
2141 /* See to_record_is_replaying in struct target_ops. */
2142 extern int target_record_is_replaying (void);
2143
2144 /* See to_goto_record_begin in struct target_ops. */
2145 extern void target_goto_record_begin (void);
2146
2147 /* See to_goto_record_end in struct target_ops. */
2148 extern void target_goto_record_end (void);
2149
2150 /* See to_goto_record in struct target_ops. */
2151 extern void target_goto_record (ULONGEST insn);
2152
2153 /* See to_insn_history. */
2154 extern void target_insn_history (int size, int flags);
2155
2156 /* See to_insn_history_from. */
2157 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2158
2159 /* See to_insn_history_range. */
2160 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2161
2162 /* See to_call_history. */
2163 extern void target_call_history (int size, int flags);
2164
2165 /* See to_call_history_from. */
2166 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2167
2168 /* See to_call_history_range. */
2169 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2170
2171 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2172 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2173 struct gdbarch *gdbarch);
2174
2175 /* See to_decr_pc_after_break. */
2176 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2177
2178 #endif /* !defined (TARGET_H) */
This page took 0.118855 seconds and 5 git commands to generate.