gdb: remote target_longname
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
41
42 #include "infrun.h" /* For enum exec_direction_kind. */
43 #include "breakpoint.h" /* For enum bptype. */
44 #include "gdbsupport/scoped_restore.h"
45 #include "gdbsupport/refcounted-object.h"
46 #include "target-section.h"
47
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
51 target.
52
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
65 stratum.
66
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
70
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
75 #include "bfd.h"
76 #include "symtab.h"
77 #include "memattr.h"
78 #include "gdbsupport/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (target_wait_flags target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
141 TARGET_OBJECT_MEMORY,
142 /* Memory, avoiding GDB's data cache and trusting the executable.
143 Target implementations of to_xfer_partial never need to handle
144 this object, and most callers should not use it. */
145 TARGET_OBJECT_RAW_MEMORY,
146 /* Memory known to be part of the target's stack. This is cached even
147 if it is not in a region marked as such, since it is known to be
148 "normal" RAM. */
149 TARGET_OBJECT_STACK_MEMORY,
150 /* Memory known to be part of the target code. This is cached even
151 if it is not in a region marked as such. */
152 TARGET_OBJECT_CODE_MEMORY,
153 /* Kernel Unwind Table. See "ia64-tdep.c". */
154 TARGET_OBJECT_UNWIND_TABLE,
155 /* Transfer auxilliary vector. */
156 TARGET_OBJECT_AUXV,
157 /* StackGhost cookie. See "sparc-tdep.c". */
158 TARGET_OBJECT_WCOOKIE,
159 /* Target memory map in XML format. */
160 TARGET_OBJECT_MEMORY_MAP,
161 /* Flash memory. This object can be used to write contents to
162 a previously erased flash memory. Using it without erasing
163 flash can have unexpected results. Addresses are physical
164 address on target, and not relative to flash start. */
165 TARGET_OBJECT_FLASH,
166 /* Available target-specific features, e.g. registers and coprocessors.
167 See "target-descriptions.c". ANNEX should never be empty. */
168 TARGET_OBJECT_AVAILABLE_FEATURES,
169 /* Currently loaded libraries, in XML format. */
170 TARGET_OBJECT_LIBRARIES,
171 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_SVR4,
173 /* Currently loaded libraries specific to AIX systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_AIX,
175 /* Get OS specific data. The ANNEX specifies the type (running
176 processes, etc.). The data being transfered is expected to follow
177 the DTD specified in features/osdata.dtd. */
178 TARGET_OBJECT_OSDATA,
179 /* Extra signal info. Usually the contents of `siginfo_t' on unix
180 platforms. */
181 TARGET_OBJECT_SIGNAL_INFO,
182 /* The list of threads that are being debugged. */
183 TARGET_OBJECT_THREADS,
184 /* Collected static trace data. */
185 TARGET_OBJECT_STATIC_TRACE_DATA,
186 /* Traceframe info, in XML format. */
187 TARGET_OBJECT_TRACEFRAME_INFO,
188 /* Load maps for FDPIC systems. */
189 TARGET_OBJECT_FDPIC,
190 /* Darwin dynamic linker info data. */
191 TARGET_OBJECT_DARWIN_DYLD_INFO,
192 /* OpenVMS Unwind Information Block. */
193 TARGET_OBJECT_OPENVMS_UIB,
194 /* Branch trace data, in XML format. */
195 TARGET_OBJECT_BTRACE,
196 /* Branch trace configuration, in XML format. */
197 TARGET_OBJECT_BTRACE_CONF,
198 /* The pathname of the executable file that was run to create
199 a specified process. ANNEX should be a string representation
200 of the process ID of the process in question, in hexadecimal
201 format. */
202 TARGET_OBJECT_EXEC_FILE,
203 /* FreeBSD virtual memory mappings. */
204 TARGET_OBJECT_FREEBSD_VMMAP,
205 /* FreeBSD process strings. */
206 TARGET_OBJECT_FREEBSD_PS_STRINGS,
207 /* Possible future objects: TARGET_OBJECT_FILE, ... */
208 };
209
210 /* Possible values returned by target_xfer_partial, etc. */
211
212 enum target_xfer_status
213 {
214 /* Some bytes are transferred. */
215 TARGET_XFER_OK = 1,
216
217 /* No further transfer is possible. */
218 TARGET_XFER_EOF = 0,
219
220 /* The piece of the object requested is unavailable. */
221 TARGET_XFER_UNAVAILABLE = 2,
222
223 /* Generic I/O error. Note that it's important that this is '-1',
224 as we still have target_xfer-related code returning hardcoded
225 '-1' on error. */
226 TARGET_XFER_E_IO = -1,
227
228 /* Keep list in sync with target_xfer_status_to_string. */
229 };
230
231 /* Return the string form of STATUS. */
232
233 extern const char *
234 target_xfer_status_to_string (enum target_xfer_status status);
235
236 typedef enum target_xfer_status
237 target_xfer_partial_ftype (struct target_ops *ops,
238 enum target_object object,
239 const char *annex,
240 gdb_byte *readbuf,
241 const gdb_byte *writebuf,
242 ULONGEST offset,
243 ULONGEST len,
244 ULONGEST *xfered_len);
245
246 enum target_xfer_status
247 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
248 const gdb_byte *writebuf, ULONGEST memaddr,
249 LONGEST len, ULONGEST *xfered_len);
250
251 /* Request that OPS transfer up to LEN addressable units of the target's
252 OBJECT. When reading from a memory object, the size of an addressable unit
253 is architecture dependent and can be found using
254 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
255 byte long. BUF should point to a buffer large enough to hold the read data,
256 taking into account the addressable unit size. The OFFSET, for a seekable
257 object, specifies the starting point. The ANNEX can be used to provide
258 additional data-specific information to the target.
259
260 Return the number of addressable units actually transferred, or a negative
261 error code (an 'enum target_xfer_error' value) if the transfer is not
262 supported or otherwise fails. Return of a positive value less than
263 LEN indicates that no further transfer is possible. Unlike the raw
264 to_xfer_partial interface, callers of these functions do not need
265 to retry partial transfers. */
266
267 extern LONGEST target_read (struct target_ops *ops,
268 enum target_object object,
269 const char *annex, gdb_byte *buf,
270 ULONGEST offset, LONGEST len);
271
272 struct memory_read_result
273 {
274 memory_read_result (ULONGEST begin_, ULONGEST end_,
275 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
276 : begin (begin_),
277 end (end_),
278 data (std::move (data_))
279 {
280 }
281
282 ~memory_read_result () = default;
283
284 memory_read_result (memory_read_result &&other) = default;
285
286 DISABLE_COPY_AND_ASSIGN (memory_read_result);
287
288 /* First address that was read. */
289 ULONGEST begin;
290 /* Past-the-end address. */
291 ULONGEST end;
292 /* The data. */
293 gdb::unique_xmalloc_ptr<gdb_byte> data;
294 };
295
296 extern std::vector<memory_read_result> read_memory_robust
297 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
298
299 /* Request that OPS transfer up to LEN addressable units from BUF to the
300 target's OBJECT. When writing to a memory object, the addressable unit
301 size is architecture dependent and can be found using
302 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
303 byte long. The OFFSET, for a seekable object, specifies the starting point.
304 The ANNEX can be used to provide additional data-specific information to
305 the target.
306
307 Return the number of addressable units actually transferred, or a negative
308 error code (an 'enum target_xfer_status' value) if the transfer is not
309 supported or otherwise fails. Return of a positive value less than
310 LEN indicates that no further transfer is possible. Unlike the raw
311 to_xfer_partial interface, callers of these functions do not need to
312 retry partial transfers. */
313
314 extern LONGEST target_write (struct target_ops *ops,
315 enum target_object object,
316 const char *annex, const gdb_byte *buf,
317 ULONGEST offset, LONGEST len);
318
319 /* Similar to target_write, except that it also calls PROGRESS with
320 the number of bytes written and the opaque BATON after every
321 successful partial write (and before the first write). This is
322 useful for progress reporting and user interaction while writing
323 data. To abort the transfer, the progress callback can throw an
324 exception. */
325
326 LONGEST target_write_with_progress (struct target_ops *ops,
327 enum target_object object,
328 const char *annex, const gdb_byte *buf,
329 ULONGEST offset, LONGEST len,
330 void (*progress) (ULONGEST, void *),
331 void *baton);
332
333 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
334 using OPS. The return value will be uninstantiated if the transfer fails or
335 is not supported.
336
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
341
342 extern gdb::optional<gdb::byte_vector> target_read_alloc
343 (struct target_ops *ops, enum target_object object, const char *annex);
344
345 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
346 (therefore usable as a NUL-terminated string). If an error occurs or the
347 transfer is unsupported, the return value will be uninstantiated. Empty
348 objects are returned as allocated but empty strings. Therefore, on success,
349 the returned vector is guaranteed to have at least one element. A warning is
350 issued if the result contains any embedded NUL bytes. */
351
352 extern gdb::optional<gdb::char_vector> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
354
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
357
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
360
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
364
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
370 \f
371 struct thread_info; /* fwd decl for parameter list below: */
372
373 /* The type of the callback to the to_async method. */
374
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
377
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
385
386 #define TARGET_DEBUG_PRINTER(FUNC)
387
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
391
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
395
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
399
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
402
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
406
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
411
412 /* Each target that can be activated with "target TARGET_NAME" passes
413 the address of one of these objects to add_target, which uses the
414 object's address as unique identifier, and registers the "target
415 TARGET_NAME" command using SHORTNAME as target name. */
416
417 struct target_info
418 {
419 /* Name of this target. */
420 const char *shortname;
421
422 /* Name for printing. */
423 const char *longname;
424
425 /* Documentation. Does not include trailing newline, and starts
426 with a one-line description (probably similar to longname). */
427 const char *doc;
428 };
429
430 struct target_ops
431 : public refcounted_object
432 {
433 /* Return this target's stratum. */
434 virtual strata stratum () const = 0;
435
436 /* To the target under this one. */
437 target_ops *beneath () const;
438
439 /* Free resources associated with the target. Note that singleton
440 targets, like e.g., native targets, are global objects, not
441 heap allocated, and are thus only deleted on GDB exit. The
442 main teardown entry point is the "close" method, below. */
443 virtual ~target_ops () {}
444
445 /* Return a reference to this target's unique target_info
446 object. */
447 virtual const target_info &info () const = 0;
448
449 /* Name this target type. */
450 const char *shortname () const
451 { return info ().shortname; }
452
453 const char *longname () const
454 { return info ().longname; }
455
456 /* Close the target. This is where the target can handle
457 teardown. Heap-allocated targets should delete themselves
458 before returning. */
459 virtual void close ();
460
461 /* Attaches to a process on the target side. Arguments are as
462 passed to the `attach' command by the user. This routine can
463 be called when the target is not on the target-stack, if the
464 target_ops::can_run method returns 1; in that case, it must push
465 itself onto the stack. Upon exit, the target should be ready
466 for normal operations, and should be ready to deliver the
467 status of the process immediately (without waiting) to an
468 upcoming target_wait call. */
469 virtual bool can_attach ();
470 virtual void attach (const char *, int);
471 virtual void post_attach (int)
472 TARGET_DEFAULT_IGNORE ();
473
474 /* Detaches from the inferior. Note that on targets that support
475 async execution (i.e., targets where it is possible to detach
476 from programs with threads running), the target is responsible
477 for removing breakpoints from the program before the actual
478 detach, otherwise the program dies when it hits one. */
479 virtual void detach (inferior *, int)
480 TARGET_DEFAULT_IGNORE ();
481
482 virtual void disconnect (const char *, int)
483 TARGET_DEFAULT_NORETURN (tcomplain ());
484 virtual void resume (ptid_t,
485 int TARGET_DEBUG_PRINTER (target_debug_print_step),
486 enum gdb_signal)
487 TARGET_DEFAULT_NORETURN (noprocess ());
488 virtual void commit_resume ()
489 TARGET_DEFAULT_IGNORE ();
490 /* See target_wait's description. Note that implementations of
491 this method must not assume that inferior_ptid on entry is
492 pointing at the thread or inferior that ends up reporting an
493 event. The reported event could be for some other thread in
494 the current inferior or even for a different process of the
495 current target. inferior_ptid may also be null_ptid on
496 entry. */
497 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
498 target_wait_flags options)
499 TARGET_DEFAULT_FUNC (default_target_wait);
500 virtual void fetch_registers (struct regcache *, int)
501 TARGET_DEFAULT_IGNORE ();
502 virtual void store_registers (struct regcache *, int)
503 TARGET_DEFAULT_NORETURN (noprocess ());
504 virtual void prepare_to_store (struct regcache *)
505 TARGET_DEFAULT_NORETURN (noprocess ());
506
507 virtual void files_info ()
508 TARGET_DEFAULT_IGNORE ();
509 virtual int insert_breakpoint (struct gdbarch *,
510 struct bp_target_info *)
511 TARGET_DEFAULT_NORETURN (noprocess ());
512 virtual int remove_breakpoint (struct gdbarch *,
513 struct bp_target_info *,
514 enum remove_bp_reason)
515 TARGET_DEFAULT_NORETURN (noprocess ());
516
517 /* Returns true if the target stopped because it executed a
518 software breakpoint. This is necessary for correct background
519 execution / non-stop mode operation, and for correct PC
520 adjustment on targets where the PC needs to be adjusted when a
521 software breakpoint triggers. In these modes, by the time GDB
522 processes a breakpoint event, the breakpoint may already be
523 done from the target, so GDB needs to be able to tell whether
524 it should ignore the event and whether it should adjust the PC.
525 See adjust_pc_after_break. */
526 virtual bool stopped_by_sw_breakpoint ()
527 TARGET_DEFAULT_RETURN (false);
528 /* Returns true if the above method is supported. */
529 virtual bool supports_stopped_by_sw_breakpoint ()
530 TARGET_DEFAULT_RETURN (false);
531
532 /* Returns true if the target stopped for a hardware breakpoint.
533 Likewise, if the target supports hardware breakpoints, this
534 method is necessary for correct background execution / non-stop
535 mode operation. Even though hardware breakpoints do not
536 require PC adjustment, GDB needs to be able to tell whether the
537 hardware breakpoint event is a delayed event for a breakpoint
538 that is already gone and should thus be ignored. */
539 virtual bool stopped_by_hw_breakpoint ()
540 TARGET_DEFAULT_RETURN (false);
541 /* Returns true if the above method is supported. */
542 virtual bool supports_stopped_by_hw_breakpoint ()
543 TARGET_DEFAULT_RETURN (false);
544
545 virtual int can_use_hw_breakpoint (enum bptype, int, int)
546 TARGET_DEFAULT_RETURN (0);
547 virtual int ranged_break_num_registers ()
548 TARGET_DEFAULT_RETURN (-1);
549 virtual int insert_hw_breakpoint (struct gdbarch *,
550 struct bp_target_info *)
551 TARGET_DEFAULT_RETURN (-1);
552 virtual int remove_hw_breakpoint (struct gdbarch *,
553 struct bp_target_info *)
554 TARGET_DEFAULT_RETURN (-1);
555
556 /* Documentation of what the two routines below are expected to do is
557 provided with the corresponding target_* macros. */
558 virtual int remove_watchpoint (CORE_ADDR, int,
559 enum target_hw_bp_type, struct expression *)
560 TARGET_DEFAULT_RETURN (-1);
561 virtual int insert_watchpoint (CORE_ADDR, int,
562 enum target_hw_bp_type, struct expression *)
563 TARGET_DEFAULT_RETURN (-1);
564
565 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
566 enum target_hw_bp_type)
567 TARGET_DEFAULT_RETURN (1);
568 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
569 enum target_hw_bp_type)
570 TARGET_DEFAULT_RETURN (1);
571 virtual bool stopped_by_watchpoint ()
572 TARGET_DEFAULT_RETURN (false);
573 virtual bool have_steppable_watchpoint ()
574 TARGET_DEFAULT_RETURN (false);
575 virtual bool stopped_data_address (CORE_ADDR *)
576 TARGET_DEFAULT_RETURN (false);
577 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
578 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
579
580 /* Documentation of this routine is provided with the corresponding
581 target_* macro. */
582 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
583 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
584
585 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
586 struct expression *)
587 TARGET_DEFAULT_RETURN (false);
588 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
589 TARGET_DEFAULT_RETURN (-1);
590
591 /* Return 1 for sure target can do single step. Return -1 for
592 unknown. Return 0 for target can't do. */
593 virtual int can_do_single_step ()
594 TARGET_DEFAULT_RETURN (-1);
595
596 virtual bool supports_terminal_ours ()
597 TARGET_DEFAULT_RETURN (false);
598 virtual void terminal_init ()
599 TARGET_DEFAULT_IGNORE ();
600 virtual void terminal_inferior ()
601 TARGET_DEFAULT_IGNORE ();
602 virtual void terminal_save_inferior ()
603 TARGET_DEFAULT_IGNORE ();
604 virtual void terminal_ours_for_output ()
605 TARGET_DEFAULT_IGNORE ();
606 virtual void terminal_ours ()
607 TARGET_DEFAULT_IGNORE ();
608 virtual void terminal_info (const char *, int)
609 TARGET_DEFAULT_FUNC (default_terminal_info);
610 virtual void kill ()
611 TARGET_DEFAULT_NORETURN (noprocess ());
612 virtual void load (const char *, int)
613 TARGET_DEFAULT_NORETURN (tcomplain ());
614 /* Start an inferior process and set inferior_ptid to its pid.
615 EXEC_FILE is the file to run.
616 ALLARGS is a string containing the arguments to the program.
617 ENV is the environment vector to pass. Errors reported with error().
618 On VxWorks and various standalone systems, we ignore exec_file. */
619 virtual bool can_create_inferior ();
620 virtual void create_inferior (const char *, const std::string &,
621 char **, int);
622 virtual void post_startup_inferior (ptid_t)
623 TARGET_DEFAULT_IGNORE ();
624 virtual int insert_fork_catchpoint (int)
625 TARGET_DEFAULT_RETURN (1);
626 virtual int remove_fork_catchpoint (int)
627 TARGET_DEFAULT_RETURN (1);
628 virtual int insert_vfork_catchpoint (int)
629 TARGET_DEFAULT_RETURN (1);
630 virtual int remove_vfork_catchpoint (int)
631 TARGET_DEFAULT_RETURN (1);
632 virtual bool follow_fork (bool, bool)
633 TARGET_DEFAULT_FUNC (default_follow_fork);
634 virtual int insert_exec_catchpoint (int)
635 TARGET_DEFAULT_RETURN (1);
636 virtual int remove_exec_catchpoint (int)
637 TARGET_DEFAULT_RETURN (1);
638 virtual void follow_exec (struct inferior *, const char *)
639 TARGET_DEFAULT_IGNORE ();
640 virtual int set_syscall_catchpoint (int, bool, int,
641 gdb::array_view<const int>)
642 TARGET_DEFAULT_RETURN (1);
643 virtual void mourn_inferior ()
644 TARGET_DEFAULT_FUNC (default_mourn_inferior);
645
646 /* Note that can_run is special and can be invoked on an unpushed
647 target. Targets defining this method must also define
648 to_can_async_p and to_supports_non_stop. */
649 virtual bool can_run ();
650
651 /* Documentation of this routine is provided with the corresponding
652 target_* macro. */
653 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
654 TARGET_DEFAULT_IGNORE ();
655
656 /* Documentation of this routine is provided with the
657 corresponding target_* function. */
658 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
659 TARGET_DEFAULT_IGNORE ();
660
661 virtual bool thread_alive (ptid_t ptid)
662 TARGET_DEFAULT_RETURN (false);
663 virtual void update_thread_list ()
664 TARGET_DEFAULT_IGNORE ();
665 virtual std::string pid_to_str (ptid_t)
666 TARGET_DEFAULT_FUNC (default_pid_to_str);
667 virtual const char *extra_thread_info (thread_info *)
668 TARGET_DEFAULT_RETURN (NULL);
669 virtual const char *thread_name (thread_info *)
670 TARGET_DEFAULT_RETURN (NULL);
671 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
672 int,
673 inferior *inf)
674 TARGET_DEFAULT_RETURN (NULL);
675 /* See target_thread_info_to_thread_handle. */
676 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
677 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
678 virtual void stop (ptid_t)
679 TARGET_DEFAULT_IGNORE ();
680 virtual void interrupt ()
681 TARGET_DEFAULT_IGNORE ();
682 virtual void pass_ctrlc ()
683 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
684 virtual void rcmd (const char *command, struct ui_file *output)
685 TARGET_DEFAULT_FUNC (default_rcmd);
686 virtual char *pid_to_exec_file (int pid)
687 TARGET_DEFAULT_RETURN (NULL);
688 virtual void log_command (const char *)
689 TARGET_DEFAULT_IGNORE ();
690 virtual const target_section_table *get_section_table ()
691 TARGET_DEFAULT_RETURN (default_get_section_table ());
692
693 /* Provide default values for all "must have" methods. */
694 virtual bool has_all_memory () { return false; }
695 virtual bool has_memory () { return false; }
696 virtual bool has_stack () { return false; }
697 virtual bool has_registers () { return false; }
698 virtual bool has_execution (inferior *inf) { return false; }
699
700 /* Control thread execution. */
701 virtual thread_control_capabilities get_thread_control_capabilities ()
702 TARGET_DEFAULT_RETURN (tc_none);
703 virtual bool attach_no_wait ()
704 TARGET_DEFAULT_RETURN (0);
705 /* This method must be implemented in some situations. See the
706 comment on 'can_run'. */
707 virtual bool can_async_p ()
708 TARGET_DEFAULT_RETURN (false);
709 virtual bool is_async_p ()
710 TARGET_DEFAULT_RETURN (false);
711 virtual void async (int)
712 TARGET_DEFAULT_NORETURN (tcomplain ());
713 virtual int async_wait_fd ()
714 TARGET_DEFAULT_NORETURN (noprocess ());
715 virtual void thread_events (int)
716 TARGET_DEFAULT_IGNORE ();
717 /* This method must be implemented in some situations. See the
718 comment on 'can_run'. */
719 virtual bool supports_non_stop ()
720 TARGET_DEFAULT_RETURN (false);
721 /* Return true if the target operates in non-stop mode even with
722 "set non-stop off". */
723 virtual bool always_non_stop_p ()
724 TARGET_DEFAULT_RETURN (false);
725 /* find_memory_regions support method for gcore */
726 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
727 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
728 /* make_corefile_notes support method for gcore */
729 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
730 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
731 /* get_bookmark support method for bookmarks */
732 virtual gdb_byte *get_bookmark (const char *, int)
733 TARGET_DEFAULT_NORETURN (tcomplain ());
734 /* goto_bookmark support method for bookmarks */
735 virtual void goto_bookmark (const gdb_byte *, int)
736 TARGET_DEFAULT_NORETURN (tcomplain ());
737 /* Return the thread-local address at OFFSET in the
738 thread-local storage for the thread PTID and the shared library
739 or executable file given by LOAD_MODULE_ADDR. If that block of
740 thread-local storage hasn't been allocated yet, this function
741 may throw an error. LOAD_MODULE_ADDR may be zero for statically
742 linked multithreaded inferiors. */
743 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
744 CORE_ADDR load_module_addr,
745 CORE_ADDR offset)
746 TARGET_DEFAULT_NORETURN (generic_tls_error ());
747
748 /* Request that OPS transfer up to LEN addressable units of the target's
749 OBJECT. When reading from a memory object, the size of an addressable
750 unit is architecture dependent and can be found using
751 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
752 1 byte long. The OFFSET, for a seekable object, specifies the
753 starting point. The ANNEX can be used to provide additional
754 data-specific information to the target.
755
756 Return the transferred status, error or OK (an
757 'enum target_xfer_status' value). Save the number of addressable units
758 actually transferred in *XFERED_LEN if transfer is successful
759 (TARGET_XFER_OK) or the number unavailable units if the requested
760 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
761 smaller than LEN does not indicate the end of the object, only
762 the end of the transfer; higher level code should continue
763 transferring if desired. This is handled in target.c.
764
765 The interface does not support a "retry" mechanism. Instead it
766 assumes that at least one addressable unit will be transfered on each
767 successful call.
768
769 NOTE: cagney/2003-10-17: The current interface can lead to
770 fragmented transfers. Lower target levels should not implement
771 hacks, such as enlarging the transfer, in an attempt to
772 compensate for this. Instead, the target stack should be
773 extended so that it implements supply/collect methods and a
774 look-aside object cache. With that available, the lowest
775 target can safely and freely "push" data up the stack.
776
777 See target_read and target_write for more information. One,
778 and only one, of readbuf or writebuf must be non-NULL. */
779
780 virtual enum target_xfer_status xfer_partial (enum target_object object,
781 const char *annex,
782 gdb_byte *readbuf,
783 const gdb_byte *writebuf,
784 ULONGEST offset, ULONGEST len,
785 ULONGEST *xfered_len)
786 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
787
788 /* Return the limit on the size of any single memory transfer
789 for the target. */
790
791 virtual ULONGEST get_memory_xfer_limit ()
792 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
793
794 /* Returns the memory map for the target. A return value of NULL
795 means that no memory map is available. If a memory address
796 does not fall within any returned regions, it's assumed to be
797 RAM. The returned memory regions should not overlap.
798
799 The order of regions does not matter; target_memory_map will
800 sort regions by starting address. For that reason, this
801 function should not be called directly except via
802 target_memory_map.
803
804 This method should not cache data; if the memory map could
805 change unexpectedly, it should be invalidated, and higher
806 layers will re-fetch it. */
807 virtual std::vector<mem_region> memory_map ()
808 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
809
810 /* Erases the region of flash memory starting at ADDRESS, of
811 length LENGTH.
812
813 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
814 on flash block boundaries, as reported by 'to_memory_map'. */
815 virtual void flash_erase (ULONGEST address, LONGEST length)
816 TARGET_DEFAULT_NORETURN (tcomplain ());
817
818 /* Finishes a flash memory write sequence. After this operation
819 all flash memory should be available for writing and the result
820 of reading from areas written by 'to_flash_write' should be
821 equal to what was written. */
822 virtual void flash_done ()
823 TARGET_DEFAULT_NORETURN (tcomplain ());
824
825 /* Describe the architecture-specific features of this target. If
826 OPS doesn't have a description, this should delegate to the
827 "beneath" target. Returns the description found, or NULL if no
828 description was available. */
829 virtual const struct target_desc *read_description ()
830 TARGET_DEFAULT_RETURN (NULL);
831
832 /* Build the PTID of the thread on which a given task is running,
833 based on LWP and THREAD. These values are extracted from the
834 task Private_Data section of the Ada Task Control Block, and
835 their interpretation depends on the target. */
836 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
837 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
838
839 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
840 Return 0 if *READPTR is already at the end of the buffer.
841 Return -1 if there is insufficient buffer for a whole entry.
842 Return 1 if an entry was read into *TYPEP and *VALP. */
843 virtual int auxv_parse (gdb_byte **readptr,
844 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
845 TARGET_DEFAULT_FUNC (default_auxv_parse);
846
847 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
848 sequence of bytes in PATTERN with length PATTERN_LEN.
849
850 The result is 1 if found, 0 if not found, and -1 if there was an error
851 requiring halting of the search (e.g. memory read error).
852 If the pattern is found the address is recorded in FOUND_ADDRP. */
853 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
854 const gdb_byte *pattern, ULONGEST pattern_len,
855 CORE_ADDR *found_addrp)
856 TARGET_DEFAULT_FUNC (default_search_memory);
857
858 /* Can target execute in reverse? */
859 virtual bool can_execute_reverse ()
860 TARGET_DEFAULT_RETURN (false);
861
862 /* The direction the target is currently executing. Must be
863 implemented on targets that support reverse execution and async
864 mode. The default simply returns forward execution. */
865 virtual enum exec_direction_kind execution_direction ()
866 TARGET_DEFAULT_FUNC (default_execution_direction);
867
868 /* Does this target support debugging multiple processes
869 simultaneously? */
870 virtual bool supports_multi_process ()
871 TARGET_DEFAULT_RETURN (false);
872
873 /* Does this target support enabling and disabling tracepoints while a trace
874 experiment is running? */
875 virtual bool supports_enable_disable_tracepoint ()
876 TARGET_DEFAULT_RETURN (false);
877
878 /* Does this target support disabling address space randomization? */
879 virtual bool supports_disable_randomization ()
880 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
881
882 /* Does this target support the tracenz bytecode for string collection? */
883 virtual bool supports_string_tracing ()
884 TARGET_DEFAULT_RETURN (false);
885
886 /* Does this target support evaluation of breakpoint conditions on its
887 end? */
888 virtual bool supports_evaluation_of_breakpoint_conditions ()
889 TARGET_DEFAULT_RETURN (false);
890
891 /* Does this target support native dumpcore API? */
892 virtual bool supports_dumpcore ()
893 TARGET_DEFAULT_RETURN (false);
894
895 /* Generate the core file with native target API. */
896 virtual void dumpcore (const char *filename)
897 TARGET_DEFAULT_IGNORE ();
898
899 /* Does this target support evaluation of breakpoint commands on its
900 end? */
901 virtual bool can_run_breakpoint_commands ()
902 TARGET_DEFAULT_RETURN (false);
903
904 /* Determine current architecture of thread PTID.
905
906 The target is supposed to determine the architecture of the code where
907 the target is currently stopped at. The architecture information is
908 used to perform decr_pc_after_break adjustment, and also to determine
909 the frame architecture of the innermost frame. ptrace operations need to
910 operate according to target_gdbarch (). */
911 virtual struct gdbarch *thread_architecture (ptid_t)
912 TARGET_DEFAULT_RETURN (NULL);
913
914 /* Determine current address space of thread PTID. */
915 virtual struct address_space *thread_address_space (ptid_t)
916 TARGET_DEFAULT_RETURN (NULL);
917
918 /* Target file operations. */
919
920 /* Return nonzero if the filesystem seen by the current inferior
921 is the local filesystem, zero otherwise. */
922 virtual bool filesystem_is_local ()
923 TARGET_DEFAULT_RETURN (true);
924
925 /* Open FILENAME on the target, in the filesystem as seen by INF,
926 using FLAGS and MODE. If INF is NULL, use the filesystem seen
927 by the debugger (GDB or, for remote targets, the remote stub).
928 If WARN_IF_SLOW is nonzero, print a warning message if the file
929 is being accessed over a link that may be slow. Return a
930 target file descriptor, or -1 if an error occurs (and set
931 *TARGET_ERRNO). */
932 virtual int fileio_open (struct inferior *inf, const char *filename,
933 int flags, int mode, int warn_if_slow,
934 int *target_errno);
935
936 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
937 Return the number of bytes written, or -1 if an error occurs
938 (and set *TARGET_ERRNO). */
939 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
940 ULONGEST offset, int *target_errno);
941
942 /* Read up to LEN bytes FD on the target into READ_BUF.
943 Return the number of bytes read, or -1 if an error occurs
944 (and set *TARGET_ERRNO). */
945 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
946 ULONGEST offset, int *target_errno);
947
948 /* Get information about the file opened as FD and put it in
949 SB. Return 0 on success, or -1 if an error occurs (and set
950 *TARGET_ERRNO). */
951 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
952
953 /* Close FD on the target. Return 0, or -1 if an error occurs
954 (and set *TARGET_ERRNO). */
955 virtual int fileio_close (int fd, int *target_errno);
956
957 /* Unlink FILENAME on the target, in the filesystem as seen by
958 INF. If INF is NULL, use the filesystem seen by the debugger
959 (GDB or, for remote targets, the remote stub). Return 0, or
960 -1 if an error occurs (and set *TARGET_ERRNO). */
961 virtual int fileio_unlink (struct inferior *inf,
962 const char *filename,
963 int *target_errno);
964
965 /* Read value of symbolic link FILENAME on the target, in the
966 filesystem as seen by INF. If INF is NULL, use the filesystem
967 seen by the debugger (GDB or, for remote targets, the remote
968 stub). Return a string, or an empty optional if an error
969 occurs (and set *TARGET_ERRNO). */
970 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
971 const char *filename,
972 int *target_errno);
973
974 /* Implement the "info proc" command. Returns true if the target
975 actually implemented the command, false otherwise. */
976 virtual bool info_proc (const char *, enum info_proc_what);
977
978 /* Tracepoint-related operations. */
979
980 /* Prepare the target for a tracing run. */
981 virtual void trace_init ()
982 TARGET_DEFAULT_NORETURN (tcomplain ());
983
984 /* Send full details of a tracepoint location to the target. */
985 virtual void download_tracepoint (struct bp_location *location)
986 TARGET_DEFAULT_NORETURN (tcomplain ());
987
988 /* Is the target able to download tracepoint locations in current
989 state? */
990 virtual bool can_download_tracepoint ()
991 TARGET_DEFAULT_RETURN (false);
992
993 /* Send full details of a trace state variable to the target. */
994 virtual void download_trace_state_variable (const trace_state_variable &tsv)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Enable a tracepoint on the target. */
998 virtual void enable_tracepoint (struct bp_location *location)
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Disable a tracepoint on the target. */
1002 virtual void disable_tracepoint (struct bp_location *location)
1003 TARGET_DEFAULT_NORETURN (tcomplain ());
1004
1005 /* Inform the target info of memory regions that are readonly
1006 (such as text sections), and so it should return data from
1007 those rather than look in the trace buffer. */
1008 virtual void trace_set_readonly_regions ()
1009 TARGET_DEFAULT_NORETURN (tcomplain ());
1010
1011 /* Start a trace run. */
1012 virtual void trace_start ()
1013 TARGET_DEFAULT_NORETURN (tcomplain ());
1014
1015 /* Get the current status of a tracing run. */
1016 virtual int get_trace_status (struct trace_status *ts)
1017 TARGET_DEFAULT_RETURN (-1);
1018
1019 virtual void get_tracepoint_status (struct breakpoint *tp,
1020 struct uploaded_tp *utp)
1021 TARGET_DEFAULT_NORETURN (tcomplain ());
1022
1023 /* Stop a trace run. */
1024 virtual void trace_stop ()
1025 TARGET_DEFAULT_NORETURN (tcomplain ());
1026
1027 /* Ask the target to find a trace frame of the given type TYPE,
1028 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1029 number of the trace frame, and also the tracepoint number at
1030 TPP. If no trace frame matches, return -1. May throw if the
1031 operation fails. */
1032 virtual int trace_find (enum trace_find_type type, int num,
1033 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1034 TARGET_DEFAULT_RETURN (-1);
1035
1036 /* Get the value of the trace state variable number TSV, returning
1037 1 if the value is known and writing the value itself into the
1038 location pointed to by VAL, else returning 0. */
1039 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1040 TARGET_DEFAULT_RETURN (false);
1041
1042 virtual int save_trace_data (const char *filename)
1043 TARGET_DEFAULT_NORETURN (tcomplain ());
1044
1045 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1046 TARGET_DEFAULT_RETURN (0);
1047
1048 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1049 TARGET_DEFAULT_RETURN (0);
1050
1051 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1052 ULONGEST offset, LONGEST len)
1053 TARGET_DEFAULT_NORETURN (tcomplain ());
1054
1055 /* Get the minimum length of instruction on which a fast tracepoint
1056 may be set on the target. If this operation is unsupported,
1057 return -1. If for some reason the minimum length cannot be
1058 determined, return 0. */
1059 virtual int get_min_fast_tracepoint_insn_len ()
1060 TARGET_DEFAULT_RETURN (-1);
1061
1062 /* Set the target's tracing behavior in response to unexpected
1063 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1064 virtual void set_disconnected_tracing (int val)
1065 TARGET_DEFAULT_IGNORE ();
1066 virtual void set_circular_trace_buffer (int val)
1067 TARGET_DEFAULT_IGNORE ();
1068 /* Set the size of trace buffer in the target. */
1069 virtual void set_trace_buffer_size (LONGEST val)
1070 TARGET_DEFAULT_IGNORE ();
1071
1072 /* Add/change textual notes about the trace run, returning 1 if
1073 successful, 0 otherwise. */
1074 virtual bool set_trace_notes (const char *user, const char *notes,
1075 const char *stopnotes)
1076 TARGET_DEFAULT_RETURN (false);
1077
1078 /* Return the processor core that thread PTID was last seen on.
1079 This information is updated only when:
1080 - update_thread_list is called
1081 - thread stops
1082 If the core cannot be determined -- either for the specified
1083 thread, or right now, or in this debug session, or for this
1084 target -- return -1. */
1085 virtual int core_of_thread (ptid_t ptid)
1086 TARGET_DEFAULT_RETURN (-1);
1087
1088 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1089 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1090 a match, 0 if there's a mismatch, and -1 if an error is
1091 encountered while reading memory. */
1092 virtual int verify_memory (const gdb_byte *data,
1093 CORE_ADDR memaddr, ULONGEST size)
1094 TARGET_DEFAULT_FUNC (default_verify_memory);
1095
1096 /* Return the address of the start of the Thread Information Block
1097 a Windows OS specific feature. */
1098 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1099 TARGET_DEFAULT_NORETURN (tcomplain ());
1100
1101 /* Send the new settings of write permission variables. */
1102 virtual void set_permissions ()
1103 TARGET_DEFAULT_IGNORE ();
1104
1105 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1106 with its details. Return true on success, false on failure. */
1107 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1108 static_tracepoint_marker *marker)
1109 TARGET_DEFAULT_RETURN (false);
1110
1111 /* Return a vector of all tracepoints markers string id ID, or all
1112 markers if ID is NULL. */
1113 virtual std::vector<static_tracepoint_marker>
1114 static_tracepoint_markers_by_strid (const char *id)
1115 TARGET_DEFAULT_NORETURN (tcomplain ());
1116
1117 /* Return a traceframe info object describing the current
1118 traceframe's contents. This method should not cache data;
1119 higher layers take care of caching, invalidating, and
1120 re-fetching when necessary. */
1121 virtual traceframe_info_up traceframe_info ()
1122 TARGET_DEFAULT_NORETURN (tcomplain ());
1123
1124 /* Ask the target to use or not to use agent according to USE.
1125 Return true if successful, false otherwise. */
1126 virtual bool use_agent (bool use)
1127 TARGET_DEFAULT_NORETURN (tcomplain ());
1128
1129 /* Is the target able to use agent in current state? */
1130 virtual bool can_use_agent ()
1131 TARGET_DEFAULT_RETURN (false);
1132
1133 /* Enable branch tracing for PTID using CONF configuration.
1134 Return a branch trace target information struct for reading and for
1135 disabling branch trace. */
1136 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1137 const struct btrace_config *conf)
1138 TARGET_DEFAULT_NORETURN (tcomplain ());
1139
1140 /* Disable branch tracing and deallocate TINFO. */
1141 virtual void disable_btrace (struct btrace_target_info *tinfo)
1142 TARGET_DEFAULT_NORETURN (tcomplain ());
1143
1144 /* Disable branch tracing and deallocate TINFO. This function is similar
1145 to to_disable_btrace, except that it is called during teardown and is
1146 only allowed to perform actions that are safe. A counter-example would
1147 be attempting to talk to a remote target. */
1148 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1149 TARGET_DEFAULT_NORETURN (tcomplain ());
1150
1151 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1152 DATA is cleared before new trace is added. */
1153 virtual enum btrace_error read_btrace (struct btrace_data *data,
1154 struct btrace_target_info *btinfo,
1155 enum btrace_read_type type)
1156 TARGET_DEFAULT_NORETURN (tcomplain ());
1157
1158 /* Get the branch trace configuration. */
1159 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1160 TARGET_DEFAULT_RETURN (NULL);
1161
1162 /* Current recording method. */
1163 virtual enum record_method record_method (ptid_t ptid)
1164 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1165
1166 /* Stop trace recording. */
1167 virtual void stop_recording ()
1168 TARGET_DEFAULT_IGNORE ();
1169
1170 /* Print information about the recording. */
1171 virtual void info_record ()
1172 TARGET_DEFAULT_IGNORE ();
1173
1174 /* Save the recorded execution trace into a file. */
1175 virtual void save_record (const char *filename)
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178 /* Delete the recorded execution trace from the current position
1179 onwards. */
1180 virtual bool supports_delete_record ()
1181 TARGET_DEFAULT_RETURN (false);
1182 virtual void delete_record ()
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1184
1185 /* Query if the record target is currently replaying PTID. */
1186 virtual bool record_is_replaying (ptid_t ptid)
1187 TARGET_DEFAULT_RETURN (false);
1188
1189 /* Query if the record target will replay PTID if it were resumed in
1190 execution direction DIR. */
1191 virtual bool record_will_replay (ptid_t ptid, int dir)
1192 TARGET_DEFAULT_RETURN (false);
1193
1194 /* Stop replaying. */
1195 virtual void record_stop_replaying ()
1196 TARGET_DEFAULT_IGNORE ();
1197
1198 /* Go to the begin of the execution trace. */
1199 virtual void goto_record_begin ()
1200 TARGET_DEFAULT_NORETURN (tcomplain ());
1201
1202 /* Go to the end of the execution trace. */
1203 virtual void goto_record_end ()
1204 TARGET_DEFAULT_NORETURN (tcomplain ());
1205
1206 /* Go to a specific location in the recorded execution trace. */
1207 virtual void goto_record (ULONGEST insn)
1208 TARGET_DEFAULT_NORETURN (tcomplain ());
1209
1210 /* Disassemble SIZE instructions in the recorded execution trace from
1211 the current position.
1212 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1213 disassemble SIZE succeeding instructions. */
1214 virtual void insn_history (int size, gdb_disassembly_flags flags)
1215 TARGET_DEFAULT_NORETURN (tcomplain ());
1216
1217 /* Disassemble SIZE instructions in the recorded execution trace around
1218 FROM.
1219 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1220 disassemble SIZE instructions after FROM. */
1221 virtual void insn_history_from (ULONGEST from, int size,
1222 gdb_disassembly_flags flags)
1223 TARGET_DEFAULT_NORETURN (tcomplain ());
1224
1225 /* Disassemble a section of the recorded execution trace from instruction
1226 BEGIN (inclusive) to instruction END (inclusive). */
1227 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1228 gdb_disassembly_flags flags)
1229 TARGET_DEFAULT_NORETURN (tcomplain ());
1230
1231 /* Print a function trace of the recorded execution trace.
1232 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1233 succeeding functions. */
1234 virtual void call_history (int size, record_print_flags flags)
1235 TARGET_DEFAULT_NORETURN (tcomplain ());
1236
1237 /* Print a function trace of the recorded execution trace starting
1238 at function FROM.
1239 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1240 SIZE functions after FROM. */
1241 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1242 TARGET_DEFAULT_NORETURN (tcomplain ());
1243
1244 /* Print a function trace of an execution trace section from function BEGIN
1245 (inclusive) to function END (inclusive). */
1246 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1247 TARGET_DEFAULT_NORETURN (tcomplain ());
1248
1249 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1250 non-empty annex. */
1251 virtual bool augmented_libraries_svr4_read ()
1252 TARGET_DEFAULT_RETURN (false);
1253
1254 /* Those unwinders are tried before any other arch unwinders. If
1255 SELF doesn't have unwinders, it should delegate to the
1256 "beneath" target. */
1257 virtual const struct frame_unwind *get_unwinder ()
1258 TARGET_DEFAULT_RETURN (NULL);
1259
1260 virtual const struct frame_unwind *get_tailcall_unwinder ()
1261 TARGET_DEFAULT_RETURN (NULL);
1262
1263 /* Prepare to generate a core file. */
1264 virtual void prepare_to_generate_core ()
1265 TARGET_DEFAULT_IGNORE ();
1266
1267 /* Cleanup after generating a core file. */
1268 virtual void done_generating_core ()
1269 TARGET_DEFAULT_IGNORE ();
1270 };
1271
1272 /* Deleter for std::unique_ptr. See comments in
1273 target_ops::~target_ops and target_ops::close about heap-allocated
1274 targets. */
1275 struct target_ops_deleter
1276 {
1277 void operator() (target_ops *target)
1278 {
1279 target->close ();
1280 }
1281 };
1282
1283 /* A unique pointer for target_ops. */
1284 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1285
1286 /* Decref a target and close if, if there are no references left. */
1287 extern void decref_target (target_ops *t);
1288
1289 /* A policy class to interface gdb::ref_ptr with target_ops. */
1290
1291 struct target_ops_ref_policy
1292 {
1293 static void incref (target_ops *t)
1294 {
1295 t->incref ();
1296 }
1297
1298 static void decref (target_ops *t)
1299 {
1300 decref_target (t);
1301 }
1302 };
1303
1304 /* A gdb::ref_ptr pointer to a target_ops. */
1305 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1306
1307 /* Native target backends call this once at initialization time to
1308 inform the core about which is the target that can respond to "run"
1309 or "attach". Note: native targets are always singletons. */
1310 extern void set_native_target (target_ops *target);
1311
1312 /* Get the registered native target, if there's one. Otherwise return
1313 NULL. */
1314 extern target_ops *get_native_target ();
1315
1316 /* Type that manages a target stack. See description of target stacks
1317 and strata at the top of the file. */
1318
1319 class target_stack
1320 {
1321 public:
1322 target_stack () = default;
1323 DISABLE_COPY_AND_ASSIGN (target_stack);
1324
1325 /* Push a new target into the stack of the existing target
1326 accessors, possibly superseding some existing accessor. */
1327 void push (target_ops *t);
1328
1329 /* Remove a target from the stack, wherever it may be. Return true
1330 if it was removed, false otherwise. */
1331 bool unpush (target_ops *t);
1332
1333 /* Returns true if T is pushed on the target stack. */
1334 bool is_pushed (target_ops *t) const
1335 { return at (t->stratum ()) == t; }
1336
1337 /* Return the target at STRATUM. */
1338 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1339
1340 /* Return the target at the top of the stack. */
1341 target_ops *top () const { return at (m_top); }
1342
1343 /* Find the next target down the stack from the specified target. */
1344 target_ops *find_beneath (const target_ops *t) const;
1345
1346 private:
1347 /* The stratum of the top target. */
1348 enum strata m_top {};
1349
1350 /* The stack, represented as an array, with one slot per stratum.
1351 If no target is pushed at some stratum, the corresponding slot is
1352 null. */
1353 target_ops *m_stack[(int) debug_stratum + 1] {};
1354 };
1355
1356 /* The ops structure for our "current" target process. This should
1357 never be NULL. If there is no target, it points to the dummy_target. */
1358
1359 extern target_ops *current_top_target ();
1360
1361 /* Return the dummy target. */
1362 extern target_ops *get_dummy_target ();
1363
1364 /* Define easy words for doing these operations on our current target. */
1365
1366 #define target_shortname (current_top_target ()->shortname ())
1367
1368 /* Does whatever cleanup is required for a target that we are no
1369 longer going to be calling. This routine is automatically always
1370 called after popping the target off the target stack - the target's
1371 own methods are no longer available through the target vector.
1372 Closing file descriptors and freeing all memory allocated memory are
1373 typical things it should do. */
1374
1375 void target_close (struct target_ops *targ);
1376
1377 /* Find the correct target to use for "attach". If a target on the
1378 current stack supports attaching, then it is returned. Otherwise,
1379 the default run target is returned. */
1380
1381 extern struct target_ops *find_attach_target (void);
1382
1383 /* Find the correct target to use for "run". If a target on the
1384 current stack supports creating a new inferior, then it is
1385 returned. Otherwise, the default run target is returned. */
1386
1387 extern struct target_ops *find_run_target (void);
1388
1389 /* Some targets don't generate traps when attaching to the inferior,
1390 or their target_attach implementation takes care of the waiting.
1391 These targets must set to_attach_no_wait. */
1392
1393 #define target_attach_no_wait() \
1394 (current_top_target ()->attach_no_wait ())
1395
1396 /* The target_attach operation places a process under debugger control,
1397 and stops the process.
1398
1399 This operation provides a target-specific hook that allows the
1400 necessary bookkeeping to be performed after an attach completes. */
1401 #define target_post_attach(pid) \
1402 (current_top_target ()->post_attach) (pid)
1403
1404 /* Display a message indicating we're about to detach from the current
1405 inferior process. */
1406
1407 extern void target_announce_detach (int from_tty);
1408
1409 /* Takes a program previously attached to and detaches it.
1410 The program may resume execution (some targets do, some don't) and will
1411 no longer stop on signals, etc. We better not have left any breakpoints
1412 in the program or it'll die when it hits one. FROM_TTY says whether to be
1413 verbose or not. */
1414
1415 extern void target_detach (inferior *inf, int from_tty);
1416
1417 /* Disconnect from the current target without resuming it (leaving it
1418 waiting for a debugger). */
1419
1420 extern void target_disconnect (const char *, int);
1421
1422 /* Resume execution (or prepare for execution) of a target thread,
1423 process or all processes. STEP says whether to hardware
1424 single-step or to run free; SIGGNAL is the signal to be given to
1425 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1426 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1427 process id'. A wildcard PTID (all threads, or all threads of
1428 process) means `step/resume INFERIOR_PTID, and let other threads
1429 (for which the wildcard PTID matches) resume with their
1430 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1431 is in "pass" state, or with no signal if in "no pass" state.
1432
1433 In order to efficiently handle batches of resumption requests,
1434 targets may implement this method such that it records the
1435 resumption request, but defers the actual resumption to the
1436 target_commit_resume method implementation. See
1437 target_commit_resume below. */
1438 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1439
1440 /* Commit a series of resumption requests previously prepared with
1441 target_resume calls.
1442
1443 GDB always calls target_commit_resume after calling target_resume
1444 one or more times. A target may thus use this method in
1445 coordination with the target_resume method to batch target-side
1446 resumption requests. In that case, the target doesn't actually
1447 resume in its target_resume implementation. Instead, it prepares
1448 the resumption in target_resume, and defers the actual resumption
1449 to target_commit_resume. E.g., the remote target uses this to
1450 coalesce multiple resumption requests in a single vCont packet. */
1451 extern void target_commit_resume ();
1452
1453 /* Setup to defer target_commit_resume calls, and reactivate
1454 target_commit_resume on destruction, if it was previously
1455 active. */
1456 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1457
1458 /* For target_read_memory see target/target.h. */
1459
1460 /* The default target_ops::to_wait implementation. */
1461
1462 extern ptid_t default_target_wait (struct target_ops *ops,
1463 ptid_t ptid,
1464 struct target_waitstatus *status,
1465 target_wait_flags options);
1466
1467 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1468
1469 extern void target_fetch_registers (struct regcache *regcache, int regno);
1470
1471 /* Store at least register REGNO, or all regs if REGNO == -1.
1472 It can store as many registers as it wants to, so target_prepare_to_store
1473 must have been previously called. Calls error() if there are problems. */
1474
1475 extern void target_store_registers (struct regcache *regcache, int regs);
1476
1477 /* Get ready to modify the registers array. On machines which store
1478 individual registers, this doesn't need to do anything. On machines
1479 which store all the registers in one fell swoop, this makes sure
1480 that REGISTERS contains all the registers from the program being
1481 debugged. */
1482
1483 #define target_prepare_to_store(regcache) \
1484 (current_top_target ()->prepare_to_store) (regcache)
1485
1486 /* Determine current address space of thread PTID. */
1487
1488 struct address_space *target_thread_address_space (ptid_t);
1489
1490 /* Implement the "info proc" command. This returns one if the request
1491 was handled, and zero otherwise. It can also throw an exception if
1492 an error was encountered while attempting to handle the
1493 request. */
1494
1495 int target_info_proc (const char *, enum info_proc_what);
1496
1497 /* Returns true if this target can disable address space randomization. */
1498
1499 int target_supports_disable_randomization (void);
1500
1501 /* Returns true if this target can enable and disable tracepoints
1502 while a trace experiment is running. */
1503
1504 #define target_supports_enable_disable_tracepoint() \
1505 (current_top_target ()->supports_enable_disable_tracepoint) ()
1506
1507 #define target_supports_string_tracing() \
1508 (current_top_target ()->supports_string_tracing) ()
1509
1510 /* Returns true if this target can handle breakpoint conditions
1511 on its end. */
1512
1513 #define target_supports_evaluation_of_breakpoint_conditions() \
1514 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1515
1516 /* Does this target support dumpcore API? */
1517
1518 #define target_supports_dumpcore() \
1519 (current_top_target ()->supports_dumpcore) ()
1520
1521 /* Generate the core file with target API. */
1522
1523 #define target_dumpcore(x) \
1524 (current_top_target ()->dumpcore (x))
1525
1526 /* Returns true if this target can handle breakpoint commands
1527 on its end. */
1528
1529 #define target_can_run_breakpoint_commands() \
1530 (current_top_target ()->can_run_breakpoint_commands) ()
1531
1532 /* Read a string from target memory at address MEMADDR. The string
1533 will be at most LEN bytes long (note that excess bytes may be read
1534 in some cases -- but these will not be returned). Returns nullptr
1535 on error. */
1536
1537 extern gdb::unique_xmalloc_ptr<char> target_read_string
1538 (CORE_ADDR memaddr, int len, int *bytes_read = nullptr);
1539
1540 /* For target_read_memory see target/target.h. */
1541
1542 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1543 ssize_t len);
1544
1545 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1546
1547 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1548
1549 /* For target_write_memory see target/target.h. */
1550
1551 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1552 ssize_t len);
1553
1554 /* Fetches the target's memory map. If one is found it is sorted
1555 and returned, after some consistency checking. Otherwise, NULL
1556 is returned. */
1557 std::vector<mem_region> target_memory_map (void);
1558
1559 /* Erases all flash memory regions on the target. */
1560 void flash_erase_command (const char *cmd, int from_tty);
1561
1562 /* Erase the specified flash region. */
1563 void target_flash_erase (ULONGEST address, LONGEST length);
1564
1565 /* Finish a sequence of flash operations. */
1566 void target_flash_done (void);
1567
1568 /* Describes a request for a memory write operation. */
1569 struct memory_write_request
1570 {
1571 memory_write_request (ULONGEST begin_, ULONGEST end_,
1572 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1573 : begin (begin_), end (end_), data (data_), baton (baton_)
1574 {}
1575
1576 /* Begining address that must be written. */
1577 ULONGEST begin;
1578 /* Past-the-end address. */
1579 ULONGEST end;
1580 /* The data to write. */
1581 gdb_byte *data;
1582 /* A callback baton for progress reporting for this request. */
1583 void *baton;
1584 };
1585
1586 /* Enumeration specifying different flash preservation behaviour. */
1587 enum flash_preserve_mode
1588 {
1589 flash_preserve,
1590 flash_discard
1591 };
1592
1593 /* Write several memory blocks at once. This version can be more
1594 efficient than making several calls to target_write_memory, in
1595 particular because it can optimize accesses to flash memory.
1596
1597 Moreover, this is currently the only memory access function in gdb
1598 that supports writing to flash memory, and it should be used for
1599 all cases where access to flash memory is desirable.
1600
1601 REQUESTS is the vector of memory_write_request.
1602 PRESERVE_FLASH_P indicates what to do with blocks which must be
1603 erased, but not completely rewritten.
1604 PROGRESS_CB is a function that will be periodically called to provide
1605 feedback to user. It will be called with the baton corresponding
1606 to the request currently being written. It may also be called
1607 with a NULL baton, when preserved flash sectors are being rewritten.
1608
1609 The function returns 0 on success, and error otherwise. */
1610 int target_write_memory_blocks
1611 (const std::vector<memory_write_request> &requests,
1612 enum flash_preserve_mode preserve_flash_p,
1613 void (*progress_cb) (ULONGEST, void *));
1614
1615 /* Print a line about the current target. */
1616
1617 #define target_files_info() \
1618 (current_top_target ()->files_info) ()
1619
1620 /* Insert a breakpoint at address BP_TGT->placed_address in
1621 the target machine. Returns 0 for success, and returns non-zero or
1622 throws an error (with a detailed failure reason error code and
1623 message) otherwise. */
1624
1625 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1626 struct bp_target_info *bp_tgt);
1627
1628 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1629 machine. Result is 0 for success, non-zero for error. */
1630
1631 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1632 struct bp_target_info *bp_tgt,
1633 enum remove_bp_reason reason);
1634
1635 /* Return true if the target stack has a non-default
1636 "terminal_ours" method. */
1637
1638 extern bool target_supports_terminal_ours (void);
1639
1640 /* Kill the inferior process. Make it go away. */
1641
1642 extern void target_kill (void);
1643
1644 /* Load an executable file into the target process. This is expected
1645 to not only bring new code into the target process, but also to
1646 update GDB's symbol tables to match.
1647
1648 ARG contains command-line arguments, to be broken down with
1649 buildargv (). The first non-switch argument is the filename to
1650 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1651 0)), which is an offset to apply to the load addresses of FILE's
1652 sections. The target may define switches, or other non-switch
1653 arguments, as it pleases. */
1654
1655 extern void target_load (const char *arg, int from_tty);
1656
1657 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1658 notification of inferior events such as fork and vork immediately
1659 after the inferior is created. (This because of how gdb gets an
1660 inferior created via invoking a shell to do it. In such a scenario,
1661 if the shell init file has commands in it, the shell will fork and
1662 exec for each of those commands, and we will see each such fork
1663 event. Very bad.)
1664
1665 Such targets will supply an appropriate definition for this function. */
1666
1667 #define target_post_startup_inferior(ptid) \
1668 (current_top_target ()->post_startup_inferior) (ptid)
1669
1670 /* On some targets, we can catch an inferior fork or vfork event when
1671 it occurs. These functions insert/remove an already-created
1672 catchpoint for such events. They return 0 for success, 1 if the
1673 catchpoint type is not supported and -1 for failure. */
1674
1675 #define target_insert_fork_catchpoint(pid) \
1676 (current_top_target ()->insert_fork_catchpoint) (pid)
1677
1678 #define target_remove_fork_catchpoint(pid) \
1679 (current_top_target ()->remove_fork_catchpoint) (pid)
1680
1681 #define target_insert_vfork_catchpoint(pid) \
1682 (current_top_target ()->insert_vfork_catchpoint) (pid)
1683
1684 #define target_remove_vfork_catchpoint(pid) \
1685 (current_top_target ()->remove_vfork_catchpoint) (pid)
1686
1687 /* If the inferior forks or vforks, this function will be called at
1688 the next resume in order to perform any bookkeeping and fiddling
1689 necessary to continue debugging either the parent or child, as
1690 requested, and releasing the other. Information about the fork
1691 or vfork event is available via get_last_target_status ().
1692 This function returns true if the inferior should not be resumed
1693 (i.e. there is another event pending). */
1694
1695 bool target_follow_fork (bool follow_child, bool detach_fork);
1696
1697 /* Handle the target-specific bookkeeping required when the inferior
1698 makes an exec call. INF is the exec'd inferior. */
1699
1700 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1701
1702 /* On some targets, we can catch an inferior exec event when it
1703 occurs. These functions insert/remove an already-created
1704 catchpoint for such events. They return 0 for success, 1 if the
1705 catchpoint type is not supported and -1 for failure. */
1706
1707 #define target_insert_exec_catchpoint(pid) \
1708 (current_top_target ()->insert_exec_catchpoint) (pid)
1709
1710 #define target_remove_exec_catchpoint(pid) \
1711 (current_top_target ()->remove_exec_catchpoint) (pid)
1712
1713 /* Syscall catch.
1714
1715 NEEDED is true if any syscall catch (of any kind) is requested.
1716 If NEEDED is false, it means the target can disable the mechanism to
1717 catch system calls because there are no more catchpoints of this type.
1718
1719 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1720 being requested. In this case, SYSCALL_COUNTS should be ignored.
1721
1722 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1723 element in this array is nonzero if that syscall should be caught.
1724 This argument only matters if ANY_COUNT is zero.
1725
1726 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1727 for failure. */
1728
1729 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1730 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1731 syscall_counts)
1732
1733 /* The debugger has completed a blocking wait() call. There is now
1734 some process event that must be processed. This function should
1735 be defined by those targets that require the debugger to perform
1736 cleanup or internal state changes in response to the process event. */
1737
1738 /* For target_mourn_inferior see target/target.h. */
1739
1740 /* Does target have enough data to do a run or attach command? */
1741
1742 extern int target_can_run ();
1743
1744 /* Set list of signals to be handled in the target.
1745
1746 PASS_SIGNALS is an array indexed by target signal number
1747 (enum gdb_signal). For every signal whose entry in this array is
1748 non-zero, the target is allowed -but not required- to skip reporting
1749 arrival of the signal to the GDB core by returning from target_wait,
1750 and to pass the signal directly to the inferior instead.
1751
1752 However, if the target is hardware single-stepping a thread that is
1753 about to receive a signal, it needs to be reported in any case, even
1754 if mentioned in a previous target_pass_signals call. */
1755
1756 extern void target_pass_signals
1757 (gdb::array_view<const unsigned char> pass_signals);
1758
1759 /* Set list of signals the target may pass to the inferior. This
1760 directly maps to the "handle SIGNAL pass/nopass" setting.
1761
1762 PROGRAM_SIGNALS is an array indexed by target signal
1763 number (enum gdb_signal). For every signal whose entry in this
1764 array is non-zero, the target is allowed to pass the signal to the
1765 inferior. Signals not present in the array shall be silently
1766 discarded. This does not influence whether to pass signals to the
1767 inferior as a result of a target_resume call. This is useful in
1768 scenarios where the target needs to decide whether to pass or not a
1769 signal to the inferior without GDB core involvement, such as for
1770 example, when detaching (as threads may have been suspended with
1771 pending signals not reported to GDB). */
1772
1773 extern void target_program_signals
1774 (gdb::array_view<const unsigned char> program_signals);
1775
1776 /* Check to see if a thread is still alive. */
1777
1778 extern int target_thread_alive (ptid_t ptid);
1779
1780 /* Sync the target's threads with GDB's thread list. */
1781
1782 extern void target_update_thread_list (void);
1783
1784 /* Make target stop in a continuable fashion. (For instance, under
1785 Unix, this should act like SIGSTOP). Note that this function is
1786 asynchronous: it does not wait for the target to become stopped
1787 before returning. If this is the behavior you want please use
1788 target_stop_and_wait. */
1789
1790 extern void target_stop (ptid_t ptid);
1791
1792 /* Interrupt the target. Unlike target_stop, this does not specify
1793 which thread/process reports the stop. For most target this acts
1794 like raising a SIGINT, though that's not absolutely required. This
1795 function is asynchronous. */
1796
1797 extern void target_interrupt ();
1798
1799 /* Pass a ^C, as determined to have been pressed by checking the quit
1800 flag, to the target, as if the user had typed the ^C on the
1801 inferior's controlling terminal while the inferior was in the
1802 foreground. Remote targets may take the opportunity to detect the
1803 remote side is not responding and offer to disconnect. */
1804
1805 extern void target_pass_ctrlc (void);
1806
1807 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1808 target_interrupt. */
1809 extern void default_target_pass_ctrlc (struct target_ops *ops);
1810
1811 /* Send the specified COMMAND to the target's monitor
1812 (shell,interpreter) for execution. The result of the query is
1813 placed in OUTBUF. */
1814
1815 #define target_rcmd(command, outbuf) \
1816 (current_top_target ()->rcmd) (command, outbuf)
1817
1818
1819 /* Does the target include memory? (Dummy targets don't.) */
1820
1821 extern int target_has_memory ();
1822
1823 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1824 we start a process.) */
1825
1826 extern int target_has_stack ();
1827
1828 /* Does the target have registers? (Exec files don't.) */
1829
1830 extern int target_has_registers ();
1831
1832 /* Does the target have execution? Can we make it jump (through
1833 hoops), or pop its stack a few times? This means that the current
1834 target is currently executing; for some targets, that's the same as
1835 whether or not the target is capable of execution, but there are
1836 also targets which can be current while not executing. In that
1837 case this will become true after to_create_inferior or
1838 to_attach. INF is the inferior to use; nullptr means to use the
1839 current inferior. */
1840
1841 extern bool target_has_execution (inferior *inf = nullptr);
1842
1843 /* Can the target support the debugger control of thread execution?
1844 Can it lock the thread scheduler? */
1845
1846 static inline bool
1847 target_can_lock_scheduler ()
1848 {
1849 return (current_top_target ()->get_thread_control_capabilities ()
1850 & tc_schedlock) != 0;
1851 }
1852
1853 /* Controls whether async mode is permitted. */
1854 extern bool target_async_permitted;
1855
1856 /* Can the target support asynchronous execution? */
1857 #define target_can_async_p() (current_top_target ()->can_async_p ())
1858
1859 /* Is the target in asynchronous execution mode? */
1860 #define target_is_async_p() (current_top_target ()->is_async_p ())
1861
1862 /* Enables/disabled async target events. */
1863 extern void target_async (int enable);
1864
1865 /* Enables/disables thread create and exit events. */
1866 extern void target_thread_events (int enable);
1867
1868 /* Whether support for controlling the target backends always in
1869 non-stop mode is enabled. */
1870 extern enum auto_boolean target_non_stop_enabled;
1871
1872 /* Is the target in non-stop mode? Some targets control the inferior
1873 in non-stop mode even with "set non-stop off". Always true if "set
1874 non-stop" is on. */
1875 extern bool target_is_non_stop_p ();
1876
1877 /* Return true if at least one inferior has a non-stop target. */
1878 extern bool exists_non_stop_target ();
1879
1880 #define target_execution_direction() \
1881 (current_top_target ()->execution_direction ())
1882
1883 /* Converts a process id to a string. Usually, the string just contains
1884 `process xyz', but on some systems it may contain
1885 `process xyz thread abc'. */
1886
1887 extern std::string target_pid_to_str (ptid_t ptid);
1888
1889 extern std::string normal_pid_to_str (ptid_t ptid);
1890
1891 /* Return a short string describing extra information about PID,
1892 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1893 is okay. */
1894
1895 #define target_extra_thread_info(TP) \
1896 (current_top_target ()->extra_thread_info (TP))
1897
1898 /* Return the thread's name, or NULL if the target is unable to determine it.
1899 The returned value must not be freed by the caller. */
1900
1901 extern const char *target_thread_name (struct thread_info *);
1902
1903 /* Given a pointer to a thread library specific thread handle and
1904 its length, return a pointer to the corresponding thread_info struct. */
1905
1906 extern struct thread_info *target_thread_handle_to_thread_info
1907 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1908
1909 /* Given a thread, return the thread handle, a target-specific sequence of
1910 bytes which serves as a thread identifier within the program being
1911 debugged. */
1912 extern gdb::byte_vector target_thread_info_to_thread_handle
1913 (struct thread_info *);
1914
1915 /* Attempts to find the pathname of the executable file
1916 that was run to create a specified process.
1917
1918 The process PID must be stopped when this operation is used.
1919
1920 If the executable file cannot be determined, NULL is returned.
1921
1922 Else, a pointer to a character string containing the pathname
1923 is returned. This string should be copied into a buffer by
1924 the client if the string will not be immediately used, or if
1925 it must persist. */
1926
1927 #define target_pid_to_exec_file(pid) \
1928 (current_top_target ()->pid_to_exec_file) (pid)
1929
1930 /* See the to_thread_architecture description in struct target_ops. */
1931
1932 #define target_thread_architecture(ptid) \
1933 (current_top_target ()->thread_architecture (ptid))
1934
1935 /*
1936 * Iterator function for target memory regions.
1937 * Calls a callback function once for each memory region 'mapped'
1938 * in the child process. Defined as a simple macro rather than
1939 * as a function macro so that it can be tested for nullity.
1940 */
1941
1942 #define target_find_memory_regions(FUNC, DATA) \
1943 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1944
1945 /*
1946 * Compose corefile .note section.
1947 */
1948
1949 #define target_make_corefile_notes(BFD, SIZE_P) \
1950 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1951
1952 /* Bookmark interfaces. */
1953 #define target_get_bookmark(ARGS, FROM_TTY) \
1954 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1955
1956 #define target_goto_bookmark(ARG, FROM_TTY) \
1957 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1958
1959 /* Hardware watchpoint interfaces. */
1960
1961 /* GDB's current model is that there are three "kinds" of watchpoints,
1962 with respect to when they trigger and how you can move past them.
1963
1964 Those are: continuable, steppable, and non-steppable.
1965
1966 Continuable watchpoints are like x86's -- those trigger after the
1967 memory access's side effects are fully committed to memory. I.e.,
1968 they trap with the PC pointing at the next instruction already.
1969 Continuing past such a watchpoint is doable by just normally
1970 continuing, hence the name.
1971
1972 Both steppable and non-steppable watchpoints trap before the memory
1973 access. I.e, the PC points at the instruction that is accessing
1974 the memory. So GDB needs to single-step once past the current
1975 instruction in order to make the access effective and check whether
1976 the instruction's side effects change the watched expression.
1977
1978 Now, in order to step past that instruction, depending on
1979 architecture and target, you can have two situations:
1980
1981 - steppable watchpoints: you can single-step with the watchpoint
1982 still armed, and the watchpoint won't trigger again.
1983
1984 - non-steppable watchpoints: if you try to single-step with the
1985 watchpoint still armed, you'd trap the watchpoint again and the
1986 thread wouldn't make any progress. So GDB needs to temporarily
1987 remove the watchpoint in order to step past it.
1988
1989 If your target/architecture does not signal that it has either
1990 steppable or non-steppable watchpoints via either
1991 target_have_steppable_watchpoint or
1992 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1993 watchpoints. */
1994
1995 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1996 write). Only the INFERIOR_PTID task is being queried. */
1997
1998 #define target_stopped_by_watchpoint() \
1999 ((current_top_target ()->stopped_by_watchpoint) ())
2000
2001 /* Returns non-zero if the target stopped because it executed a
2002 software breakpoint instruction. */
2003
2004 #define target_stopped_by_sw_breakpoint() \
2005 ((current_top_target ()->stopped_by_sw_breakpoint) ())
2006
2007 #define target_supports_stopped_by_sw_breakpoint() \
2008 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
2009
2010 #define target_stopped_by_hw_breakpoint() \
2011 ((current_top_target ()->stopped_by_hw_breakpoint) ())
2012
2013 #define target_supports_stopped_by_hw_breakpoint() \
2014 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
2015
2016 /* Non-zero if we have steppable watchpoints */
2017
2018 static inline bool
2019 target_have_steppable_watchpoint ()
2020 {
2021 return current_top_target ()->have_steppable_watchpoint ();
2022 }
2023
2024 /* Provide defaults for hardware watchpoint functions. */
2025
2026 /* If the *_hw_beakpoint functions have not been defined
2027 elsewhere use the definitions in the target vector. */
2028
2029 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2030 Returns negative if the target doesn't have enough hardware debug
2031 registers available. Return zero if hardware watchpoint of type
2032 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2033 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2034 CNT is the number of such watchpoints used so far, including this
2035 one. OTHERTYPE is the number of watchpoints of other types than
2036 this one used so far. */
2037
2038 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
2039 (current_top_target ()->can_use_hw_breakpoint) ( \
2040 TYPE, CNT, OTHERTYPE)
2041
2042 /* Returns the number of debug registers needed to watch the given
2043 memory region, or zero if not supported. */
2044
2045 #define target_region_ok_for_hw_watchpoint(addr, len) \
2046 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
2047
2048
2049 #define target_can_do_single_step() \
2050 (current_top_target ()->can_do_single_step) ()
2051
2052 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2053 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2054 COND is the expression for its condition, or NULL if there's none.
2055 Returns 0 for success, 1 if the watchpoint type is not supported,
2056 -1 for failure. */
2057
2058 #define target_insert_watchpoint(addr, len, type, cond) \
2059 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2060
2061 #define target_remove_watchpoint(addr, len, type, cond) \
2062 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2063
2064 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2065 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2066 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2067 masked watchpoints are not supported, -1 for failure. */
2068
2069 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2070 enum target_hw_bp_type);
2071
2072 /* Remove a masked watchpoint at ADDR with the mask MASK.
2073 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2074 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2075 for failure. */
2076
2077 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2078 enum target_hw_bp_type);
2079
2080 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2081 the target machine. Returns 0 for success, and returns non-zero or
2082 throws an error (with a detailed failure reason error code and
2083 message) otherwise. */
2084
2085 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2086 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2087
2088 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2089 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2090
2091 /* Return number of debug registers needed for a ranged breakpoint,
2092 or -1 if ranged breakpoints are not supported. */
2093
2094 extern int target_ranged_break_num_registers (void);
2095
2096 /* Return non-zero if target knows the data address which triggered this
2097 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2098 INFERIOR_PTID task is being queried. */
2099 #define target_stopped_data_address(target, addr_p) \
2100 (target)->stopped_data_address (addr_p)
2101
2102 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2103 LENGTH bytes beginning at START. */
2104 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2105 (target)->watchpoint_addr_within_range (addr, start, length)
2106
2107 /* Return non-zero if the target is capable of using hardware to evaluate
2108 the condition expression. In this case, if the condition is false when
2109 the watched memory location changes, execution may continue without the
2110 debugger being notified.
2111
2112 Due to limitations in the hardware implementation, it may be capable of
2113 avoiding triggering the watchpoint in some cases where the condition
2114 expression is false, but may report some false positives as well.
2115 For this reason, GDB will still evaluate the condition expression when
2116 the watchpoint triggers. */
2117 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2118 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2119
2120 /* Return number of debug registers needed for a masked watchpoint,
2121 -1 if masked watchpoints are not supported or -2 if the given address
2122 and mask combination cannot be used. */
2123
2124 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2125
2126 /* Target can execute in reverse? */
2127 static inline bool
2128 target_can_execute_reverse ()
2129 {
2130 return current_top_target ()->can_execute_reverse ();
2131 }
2132
2133 extern const struct target_desc *target_read_description (struct target_ops *);
2134
2135 #define target_get_ada_task_ptid(lwp, tid) \
2136 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2137
2138 /* Main entry point for searching memory. */
2139 extern int target_search_memory (CORE_ADDR start_addr,
2140 ULONGEST search_space_len,
2141 const gdb_byte *pattern,
2142 ULONGEST pattern_len,
2143 CORE_ADDR *found_addrp);
2144
2145 /* Target file operations. */
2146
2147 /* Return nonzero if the filesystem seen by the current inferior
2148 is the local filesystem, zero otherwise. */
2149 #define target_filesystem_is_local() \
2150 current_top_target ()->filesystem_is_local ()
2151
2152 /* Open FILENAME on the target, in the filesystem as seen by INF,
2153 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2154 the debugger (GDB or, for remote targets, the remote stub). Return
2155 a target file descriptor, or -1 if an error occurs (and set
2156 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2157 if the file is being accessed over a link that may be slow. */
2158 extern int target_fileio_open (struct inferior *inf,
2159 const char *filename, int flags,
2160 int mode, bool warn_if_slow,
2161 int *target_errno);
2162
2163 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2164 Return the number of bytes written, or -1 if an error occurs
2165 (and set *TARGET_ERRNO). */
2166 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2167 ULONGEST offset, int *target_errno);
2168
2169 /* Read up to LEN bytes FD on the target into READ_BUF.
2170 Return the number of bytes read, or -1 if an error occurs
2171 (and set *TARGET_ERRNO). */
2172 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2173 ULONGEST offset, int *target_errno);
2174
2175 /* Get information about the file opened as FD on the target
2176 and put it in SB. Return 0 on success, or -1 if an error
2177 occurs (and set *TARGET_ERRNO). */
2178 extern int target_fileio_fstat (int fd, struct stat *sb,
2179 int *target_errno);
2180
2181 /* Close FD on the target. Return 0, or -1 if an error occurs
2182 (and set *TARGET_ERRNO). */
2183 extern int target_fileio_close (int fd, int *target_errno);
2184
2185 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2186 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2187 for remote targets, the remote stub). Return 0, or -1 if an error
2188 occurs (and set *TARGET_ERRNO). */
2189 extern int target_fileio_unlink (struct inferior *inf,
2190 const char *filename,
2191 int *target_errno);
2192
2193 /* Read value of symbolic link FILENAME on the target, in the
2194 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2195 by the debugger (GDB or, for remote targets, the remote stub).
2196 Return a null-terminated string allocated via xmalloc, or NULL if
2197 an error occurs (and set *TARGET_ERRNO). */
2198 extern gdb::optional<std::string> target_fileio_readlink
2199 (struct inferior *inf, const char *filename, int *target_errno);
2200
2201 /* Read target file FILENAME, in the filesystem as seen by INF. If
2202 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2203 remote targets, the remote stub). The return value will be -1 if
2204 the transfer fails or is not supported; 0 if the object is empty;
2205 or the length of the object otherwise. If a positive value is
2206 returned, a sufficiently large buffer will be allocated using
2207 xmalloc and returned in *BUF_P containing the contents of the
2208 object.
2209
2210 This method should be used for objects sufficiently small to store
2211 in a single xmalloc'd buffer, when no fixed bound on the object's
2212 size is known in advance. */
2213 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2214 const char *filename,
2215 gdb_byte **buf_p);
2216
2217 /* Read target file FILENAME, in the filesystem as seen by INF. If
2218 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2219 remote targets, the remote stub). The result is NUL-terminated and
2220 returned as a string, allocated using xmalloc. If an error occurs
2221 or the transfer is unsupported, NULL is returned. Empty objects
2222 are returned as allocated but empty strings. A warning is issued
2223 if the result contains any embedded NUL bytes. */
2224 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2225 (struct inferior *inf, const char *filename);
2226
2227
2228 /* Tracepoint-related operations. */
2229
2230 #define target_trace_init() \
2231 (current_top_target ()->trace_init) ()
2232
2233 #define target_download_tracepoint(t) \
2234 (current_top_target ()->download_tracepoint) (t)
2235
2236 #define target_can_download_tracepoint() \
2237 (current_top_target ()->can_download_tracepoint) ()
2238
2239 #define target_download_trace_state_variable(tsv) \
2240 (current_top_target ()->download_trace_state_variable) (tsv)
2241
2242 #define target_enable_tracepoint(loc) \
2243 (current_top_target ()->enable_tracepoint) (loc)
2244
2245 #define target_disable_tracepoint(loc) \
2246 (current_top_target ()->disable_tracepoint) (loc)
2247
2248 #define target_trace_start() \
2249 (current_top_target ()->trace_start) ()
2250
2251 #define target_trace_set_readonly_regions() \
2252 (current_top_target ()->trace_set_readonly_regions) ()
2253
2254 #define target_get_trace_status(ts) \
2255 (current_top_target ()->get_trace_status) (ts)
2256
2257 #define target_get_tracepoint_status(tp,utp) \
2258 (current_top_target ()->get_tracepoint_status) (tp, utp)
2259
2260 #define target_trace_stop() \
2261 (current_top_target ()->trace_stop) ()
2262
2263 #define target_trace_find(type,num,addr1,addr2,tpp) \
2264 (current_top_target ()->trace_find) (\
2265 (type), (num), (addr1), (addr2), (tpp))
2266
2267 #define target_get_trace_state_variable_value(tsv,val) \
2268 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2269
2270 #define target_save_trace_data(filename) \
2271 (current_top_target ()->save_trace_data) (filename)
2272
2273 #define target_upload_tracepoints(utpp) \
2274 (current_top_target ()->upload_tracepoints) (utpp)
2275
2276 #define target_upload_trace_state_variables(utsvp) \
2277 (current_top_target ()->upload_trace_state_variables) (utsvp)
2278
2279 #define target_get_raw_trace_data(buf,offset,len) \
2280 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2281
2282 #define target_get_min_fast_tracepoint_insn_len() \
2283 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2284
2285 #define target_set_disconnected_tracing(val) \
2286 (current_top_target ()->set_disconnected_tracing) (val)
2287
2288 #define target_set_circular_trace_buffer(val) \
2289 (current_top_target ()->set_circular_trace_buffer) (val)
2290
2291 #define target_set_trace_buffer_size(val) \
2292 (current_top_target ()->set_trace_buffer_size) (val)
2293
2294 #define target_set_trace_notes(user,notes,stopnotes) \
2295 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2296
2297 #define target_get_tib_address(ptid, addr) \
2298 (current_top_target ()->get_tib_address) ((ptid), (addr))
2299
2300 #define target_set_permissions() \
2301 (current_top_target ()->set_permissions) ()
2302
2303 #define target_static_tracepoint_marker_at(addr, marker) \
2304 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2305
2306 #define target_static_tracepoint_markers_by_strid(marker_id) \
2307 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2308
2309 #define target_traceframe_info() \
2310 (current_top_target ()->traceframe_info) ()
2311
2312 #define target_use_agent(use) \
2313 (current_top_target ()->use_agent) (use)
2314
2315 #define target_can_use_agent() \
2316 (current_top_target ()->can_use_agent) ()
2317
2318 #define target_augmented_libraries_svr4_read() \
2319 (current_top_target ()->augmented_libraries_svr4_read) ()
2320
2321 /* Command logging facility. */
2322
2323 #define target_log_command(p) \
2324 (current_top_target ()->log_command) (p)
2325
2326
2327 extern int target_core_of_thread (ptid_t ptid);
2328
2329 /* See to_get_unwinder in struct target_ops. */
2330 extern const struct frame_unwind *target_get_unwinder (void);
2331
2332 /* See to_get_tailcall_unwinder in struct target_ops. */
2333 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2334
2335 /* This implements basic memory verification, reading target memory
2336 and performing the comparison here (as opposed to accelerated
2337 verification making use of the qCRC packet, for example). */
2338
2339 extern int simple_verify_memory (struct target_ops* ops,
2340 const gdb_byte *data,
2341 CORE_ADDR memaddr, ULONGEST size);
2342
2343 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2344 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2345 if there's a mismatch, and -1 if an error is encountered while
2346 reading memory. Throws an error if the functionality is found not
2347 to be supported by the current target. */
2348 int target_verify_memory (const gdb_byte *data,
2349 CORE_ADDR memaddr, ULONGEST size);
2350
2351 /* Routines for maintenance of the target structures...
2352
2353 add_target: Add a target to the list of all possible targets.
2354 This only makes sense for targets that should be activated using
2355 the "target TARGET_NAME ..." command.
2356
2357 push_target: Make this target the top of the stack of currently used
2358 targets, within its particular stratum of the stack. Result
2359 is 0 if now atop the stack, nonzero if not on top (maybe
2360 should warn user).
2361
2362 unpush_target: Remove this from the stack of currently used targets,
2363 no matter where it is on the list. Returns 0 if no
2364 change, 1 if removed from stack. */
2365
2366 /* Type of callback called when the user activates a target with
2367 "target TARGET_NAME". The callback routine takes the rest of the
2368 parameters from the command, and (if successful) pushes a new
2369 target onto the stack. */
2370 typedef void target_open_ftype (const char *args, int from_tty);
2371
2372 /* Add the target described by INFO to the list of possible targets
2373 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2374 as the command's completer if not NULL. */
2375
2376 extern void add_target (const target_info &info,
2377 target_open_ftype *func,
2378 completer_ftype *completer = NULL);
2379
2380 /* Adds a command ALIAS for the target described by INFO and marks it
2381 deprecated. This is useful for maintaining backwards compatibility
2382 when renaming targets. */
2383
2384 extern void add_deprecated_target_alias (const target_info &info,
2385 const char *alias);
2386
2387 /* A unique_ptr helper to unpush a target. */
2388
2389 struct target_unpusher
2390 {
2391 void operator() (struct target_ops *ops) const;
2392 };
2393
2394 /* A unique_ptr that unpushes a target on destruction. */
2395
2396 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2397
2398 extern void target_pre_inferior (int);
2399
2400 extern void target_preopen (int);
2401
2402 /* Does whatever cleanup is required to get rid of all pushed targets. */
2403 extern void pop_all_targets (void);
2404
2405 /* Like pop_all_targets, but pops only targets whose stratum is at or
2406 above STRATUM. */
2407 extern void pop_all_targets_at_and_above (enum strata stratum);
2408
2409 /* Like pop_all_targets, but pops only targets whose stratum is
2410 strictly above ABOVE_STRATUM. */
2411 extern void pop_all_targets_above (enum strata above_stratum);
2412
2413 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2414 CORE_ADDR offset);
2415
2416 /* Return the "section" containing the specified address. */
2417 const struct target_section *target_section_by_addr (struct target_ops *target,
2418 CORE_ADDR addr);
2419
2420 /* Return the target section table this target (or the targets
2421 beneath) currently manipulate. */
2422
2423 extern const target_section_table *target_get_section_table
2424 (struct target_ops *target);
2425
2426 /* Default implementation of get_section_table for dummy_target. */
2427
2428 extern const target_section_table *default_get_section_table ();
2429
2430 /* From mem-break.c */
2431
2432 extern int memory_remove_breakpoint (struct target_ops *,
2433 struct gdbarch *, struct bp_target_info *,
2434 enum remove_bp_reason);
2435
2436 extern int memory_insert_breakpoint (struct target_ops *,
2437 struct gdbarch *, struct bp_target_info *);
2438
2439 /* Convenience template use to add memory breakpoints support to a
2440 target. */
2441
2442 template <typename BaseTarget>
2443 struct memory_breakpoint_target : public BaseTarget
2444 {
2445 int insert_breakpoint (struct gdbarch *gdbarch,
2446 struct bp_target_info *bp_tgt) override
2447 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2448
2449 int remove_breakpoint (struct gdbarch *gdbarch,
2450 struct bp_target_info *bp_tgt,
2451 enum remove_bp_reason reason) override
2452 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2453 };
2454
2455 /* Check whether the memory at the breakpoint's placed address still
2456 contains the expected breakpoint instruction. */
2457
2458 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2459 struct bp_target_info *bp_tgt);
2460
2461 extern int default_memory_remove_breakpoint (struct gdbarch *,
2462 struct bp_target_info *);
2463
2464 extern int default_memory_insert_breakpoint (struct gdbarch *,
2465 struct bp_target_info *);
2466
2467
2468 /* From target.c */
2469
2470 extern void initialize_targets (void);
2471
2472 extern void noprocess (void) ATTRIBUTE_NORETURN;
2473
2474 extern void target_require_runnable (void);
2475
2476 /* Find the target at STRATUM. If no target is at that stratum,
2477 return NULL. */
2478
2479 struct target_ops *find_target_at (enum strata stratum);
2480
2481 /* Read OS data object of type TYPE from the target, and return it in XML
2482 format. The return value follows the same rules as target_read_stralloc. */
2483
2484 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2485
2486 /* Stuff that should be shared among the various remote targets. */
2487
2488
2489 /* Timeout limit for response from target. */
2490 extern int remote_timeout;
2491
2492 \f
2493
2494 /* Set the show memory breakpoints mode to show, and return a
2495 scoped_restore to restore it back to the current value. */
2496 extern scoped_restore_tmpl<int>
2497 make_scoped_restore_show_memory_breakpoints (int show);
2498
2499 extern bool may_write_registers;
2500 extern bool may_write_memory;
2501 extern bool may_insert_breakpoints;
2502 extern bool may_insert_tracepoints;
2503 extern bool may_insert_fast_tracepoints;
2504 extern bool may_stop;
2505
2506 extern void update_target_permissions (void);
2507
2508 \f
2509 /* Imported from machine dependent code. */
2510
2511 /* See to_enable_btrace in struct target_ops. */
2512 extern struct btrace_target_info *
2513 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2514
2515 /* See to_disable_btrace in struct target_ops. */
2516 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2517
2518 /* See to_teardown_btrace in struct target_ops. */
2519 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2520
2521 /* See to_read_btrace in struct target_ops. */
2522 extern enum btrace_error target_read_btrace (struct btrace_data *,
2523 struct btrace_target_info *,
2524 enum btrace_read_type);
2525
2526 /* See to_btrace_conf in struct target_ops. */
2527 extern const struct btrace_config *
2528 target_btrace_conf (const struct btrace_target_info *);
2529
2530 /* See to_stop_recording in struct target_ops. */
2531 extern void target_stop_recording (void);
2532
2533 /* See to_save_record in struct target_ops. */
2534 extern void target_save_record (const char *filename);
2535
2536 /* Query if the target supports deleting the execution log. */
2537 extern int target_supports_delete_record (void);
2538
2539 /* See to_delete_record in struct target_ops. */
2540 extern void target_delete_record (void);
2541
2542 /* See to_record_method. */
2543 extern enum record_method target_record_method (ptid_t ptid);
2544
2545 /* See to_record_is_replaying in struct target_ops. */
2546 extern int target_record_is_replaying (ptid_t ptid);
2547
2548 /* See to_record_will_replay in struct target_ops. */
2549 extern int target_record_will_replay (ptid_t ptid, int dir);
2550
2551 /* See to_record_stop_replaying in struct target_ops. */
2552 extern void target_record_stop_replaying (void);
2553
2554 /* See to_goto_record_begin in struct target_ops. */
2555 extern void target_goto_record_begin (void);
2556
2557 /* See to_goto_record_end in struct target_ops. */
2558 extern void target_goto_record_end (void);
2559
2560 /* See to_goto_record in struct target_ops. */
2561 extern void target_goto_record (ULONGEST insn);
2562
2563 /* See to_insn_history. */
2564 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2565
2566 /* See to_insn_history_from. */
2567 extern void target_insn_history_from (ULONGEST from, int size,
2568 gdb_disassembly_flags flags);
2569
2570 /* See to_insn_history_range. */
2571 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2572 gdb_disassembly_flags flags);
2573
2574 /* See to_call_history. */
2575 extern void target_call_history (int size, record_print_flags flags);
2576
2577 /* See to_call_history_from. */
2578 extern void target_call_history_from (ULONGEST begin, int size,
2579 record_print_flags flags);
2580
2581 /* See to_call_history_range. */
2582 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2583 record_print_flags flags);
2584
2585 /* See to_prepare_to_generate_core. */
2586 extern void target_prepare_to_generate_core (void);
2587
2588 /* See to_done_generating_core. */
2589 extern void target_done_generating_core (void);
2590
2591 #endif /* !defined (TARGET_H) */
This page took 0.079319 seconds and 5 git commands to generate.