Move target-dcache out of target.c
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Kernel Unwind Table. See "ia64-tdep.c". */
149 TARGET_OBJECT_UNWIND_TABLE,
150 /* Transfer auxilliary vector. */
151 TARGET_OBJECT_AUXV,
152 /* StackGhost cookie. See "sparc-tdep.c". */
153 TARGET_OBJECT_WCOOKIE,
154 /* Target memory map in XML format. */
155 TARGET_OBJECT_MEMORY_MAP,
156 /* Flash memory. This object can be used to write contents to
157 a previously erased flash memory. Using it without erasing
158 flash can have unexpected results. Addresses are physical
159 address on target, and not relative to flash start. */
160 TARGET_OBJECT_FLASH,
161 /* Available target-specific features, e.g. registers and coprocessors.
162 See "target-descriptions.c". ANNEX should never be empty. */
163 TARGET_OBJECT_AVAILABLE_FEATURES,
164 /* Currently loaded libraries, in XML format. */
165 TARGET_OBJECT_LIBRARIES,
166 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
167 TARGET_OBJECT_LIBRARIES_SVR4,
168 /* Currently loaded libraries specific to AIX systems, in XML format. */
169 TARGET_OBJECT_LIBRARIES_AIX,
170 /* Get OS specific data. The ANNEX specifies the type (running
171 processes, etc.). The data being transfered is expected to follow
172 the DTD specified in features/osdata.dtd. */
173 TARGET_OBJECT_OSDATA,
174 /* Extra signal info. Usually the contents of `siginfo_t' on unix
175 platforms. */
176 TARGET_OBJECT_SIGNAL_INFO,
177 /* The list of threads that are being debugged. */
178 TARGET_OBJECT_THREADS,
179 /* Collected static trace data. */
180 TARGET_OBJECT_STATIC_TRACE_DATA,
181 /* The HP-UX registers (those that can be obtained or modified by using
182 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
183 TARGET_OBJECT_HPUX_UREGS,
184 /* The HP-UX shared library linkage pointer. ANNEX should be a string
185 image of the code address whose linkage pointer we are looking for.
186
187 The size of the data transfered is always 8 bytes (the size of an
188 address on ia64). */
189 TARGET_OBJECT_HPUX_SOLIB_GOT,
190 /* Traceframe info, in XML format. */
191 TARGET_OBJECT_TRACEFRAME_INFO,
192 /* Load maps for FDPIC systems. */
193 TARGET_OBJECT_FDPIC,
194 /* Darwin dynamic linker info data. */
195 TARGET_OBJECT_DARWIN_DYLD_INFO,
196 /* OpenVMS Unwind Information Block. */
197 TARGET_OBJECT_OPENVMS_UIB,
198 /* Branch trace data, in XML format. */
199 TARGET_OBJECT_BTRACE
200 /* Possible future objects: TARGET_OBJECT_FILE, ... */
201 };
202
203 /* Possible error codes returned by target_xfer_partial, etc. */
204
205 enum target_xfer_error
206 {
207 /* Generic I/O error. Note that it's important that this is '-1',
208 as we still have target_xfer-related code returning hardcoded
209 '-1' on error. */
210 TARGET_XFER_E_IO = -1,
211
212 /* Transfer failed because the piece of the object requested is
213 unavailable. */
214 TARGET_XFER_E_UNAVAILABLE = -2,
215
216 /* Keep list in sync with target_xfer_error_to_string. */
217 };
218
219 /* Return the string form of ERR. */
220
221 extern const char *target_xfer_error_to_string (enum target_xfer_error err);
222
223 /* Enumeration of the kinds of traceframe searches that a target may
224 be able to perform. */
225
226 enum trace_find_type
227 {
228 tfind_number,
229 tfind_pc,
230 tfind_tp,
231 tfind_range,
232 tfind_outside,
233 };
234
235 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
236 DEF_VEC_P(static_tracepoint_marker_p);
237
238 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
239 OBJECT. The OFFSET, for a seekable object, specifies the
240 starting point. The ANNEX can be used to provide additional
241 data-specific information to the target.
242
243 Return the number of bytes actually transfered, or a negative error
244 code (an 'enum target_xfer_error' value) if the transfer is not
245 supported or otherwise fails. Return of a positive value less than
246 LEN indicates that no further transfer is possible. Unlike the raw
247 to_xfer_partial interface, callers of these functions do not need
248 to retry partial transfers. */
249
250 extern LONGEST target_read (struct target_ops *ops,
251 enum target_object object,
252 const char *annex, gdb_byte *buf,
253 ULONGEST offset, LONGEST len);
254
255 struct memory_read_result
256 {
257 /* First address that was read. */
258 ULONGEST begin;
259 /* Past-the-end address. */
260 ULONGEST end;
261 /* The data. */
262 gdb_byte *data;
263 };
264 typedef struct memory_read_result memory_read_result_s;
265 DEF_VEC_O(memory_read_result_s);
266
267 extern void free_memory_read_result_vector (void *);
268
269 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
270 ULONGEST offset,
271 LONGEST len);
272
273 extern LONGEST target_write (struct target_ops *ops,
274 enum target_object object,
275 const char *annex, const gdb_byte *buf,
276 ULONGEST offset, LONGEST len);
277
278 /* Similar to target_write, except that it also calls PROGRESS with
279 the number of bytes written and the opaque BATON after every
280 successful partial write (and before the first write). This is
281 useful for progress reporting and user interaction while writing
282 data. To abort the transfer, the progress callback can throw an
283 exception. */
284
285 LONGEST target_write_with_progress (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, const gdb_byte *buf,
288 ULONGEST offset, LONGEST len,
289 void (*progress) (ULONGEST, void *),
290 void *baton);
291
292 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
293 be read using OPS. The return value will be -1 if the transfer
294 fails or is not supported; 0 if the object is empty; or the length
295 of the object otherwise. If a positive value is returned, a
296 sufficiently large buffer will be allocated using xmalloc and
297 returned in *BUF_P containing the contents of the object.
298
299 This method should be used for objects sufficiently small to store
300 in a single xmalloc'd buffer, when no fixed bound on the object's
301 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
302 through this function. */
303
304 extern LONGEST target_read_alloc (struct target_ops *ops,
305 enum target_object object,
306 const char *annex, gdb_byte **buf_p);
307
308 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
309 returned as a string, allocated using xmalloc. If an error occurs
310 or the transfer is unsupported, NULL is returned. Empty objects
311 are returned as allocated but empty strings. A warning is issued
312 if the result contains any embedded NUL bytes. */
313
314 extern char *target_read_stralloc (struct target_ops *ops,
315 enum target_object object,
316 const char *annex);
317
318 /* See target_ops->to_xfer_partial. */
319
320 extern LONGEST target_xfer_partial (struct target_ops *ops,
321 enum target_object object,
322 const char *annex,
323 void *readbuf, const void *writebuf,
324 ULONGEST offset, LONGEST len);
325
326 /* Wrappers to target read/write that perform memory transfers. They
327 throw an error if the memory transfer fails.
328
329 NOTE: cagney/2003-10-23: The naming schema is lifted from
330 "frame.h". The parameter order is lifted from get_frame_memory,
331 which in turn lifted it from read_memory. */
332
333 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
334 gdb_byte *buf, LONGEST len);
335 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
336 CORE_ADDR addr, int len,
337 enum bfd_endian byte_order);
338 \f
339 struct thread_info; /* fwd decl for parameter list below: */
340
341 struct target_ops
342 {
343 struct target_ops *beneath; /* To the target under this one. */
344 char *to_shortname; /* Name this target type */
345 char *to_longname; /* Name for printing */
346 char *to_doc; /* Documentation. Does not include trailing
347 newline, and starts with a one-line descrip-
348 tion (probably similar to to_longname). */
349 /* Per-target scratch pad. */
350 void *to_data;
351 /* The open routine takes the rest of the parameters from the
352 command, and (if successful) pushes a new target onto the
353 stack. Targets should supply this routine, if only to provide
354 an error message. */
355 void (*to_open) (char *, int);
356 /* Old targets with a static target vector provide "to_close".
357 New re-entrant targets provide "to_xclose" and that is expected
358 to xfree everything (including the "struct target_ops"). */
359 void (*to_xclose) (struct target_ops *targ);
360 void (*to_close) (void);
361 void (*to_attach) (struct target_ops *ops, char *, int);
362 void (*to_post_attach) (int);
363 void (*to_detach) (struct target_ops *ops, const char *, int);
364 void (*to_disconnect) (struct target_ops *, char *, int);
365 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
366 ptid_t (*to_wait) (struct target_ops *,
367 ptid_t, struct target_waitstatus *, int);
368 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
369 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
370 void (*to_prepare_to_store) (struct regcache *);
371
372 /* Transfer LEN bytes of memory between GDB address MYADDR and
373 target address MEMADDR. If WRITE, transfer them to the target, else
374 transfer them from the target. TARGET is the target from which we
375 get this function.
376
377 Return value, N, is one of the following:
378
379 0 means that we can't handle this. If errno has been set, it is the
380 error which prevented us from doing it (FIXME: What about bfd_error?).
381
382 positive (call it N) means that we have transferred N bytes
383 starting at MEMADDR. We might be able to handle more bytes
384 beyond this length, but no promises.
385
386 negative (call its absolute value N) means that we cannot
387 transfer right at MEMADDR, but we could transfer at least
388 something at MEMADDR + N.
389
390 NOTE: cagney/2004-10-01: This has been entirely superseeded by
391 to_xfer_partial and inferior inheritance. */
392
393 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
394 int len, int write,
395 struct mem_attrib *attrib,
396 struct target_ops *target);
397
398 void (*to_files_info) (struct target_ops *);
399 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
400 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
401 int (*to_can_use_hw_breakpoint) (int, int, int);
402 int (*to_ranged_break_num_registers) (struct target_ops *);
403 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
404 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
405
406 /* Documentation of what the two routines below are expected to do is
407 provided with the corresponding target_* macros. */
408 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
409 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
410
411 int (*to_insert_mask_watchpoint) (struct target_ops *,
412 CORE_ADDR, CORE_ADDR, int);
413 int (*to_remove_mask_watchpoint) (struct target_ops *,
414 CORE_ADDR, CORE_ADDR, int);
415 int (*to_stopped_by_watchpoint) (void);
416 int to_have_steppable_watchpoint;
417 int to_have_continuable_watchpoint;
418 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
419 int (*to_watchpoint_addr_within_range) (struct target_ops *,
420 CORE_ADDR, CORE_ADDR, int);
421
422 /* Documentation of this routine is provided with the corresponding
423 target_* macro. */
424 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
425
426 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
427 struct expression *);
428 int (*to_masked_watch_num_registers) (struct target_ops *,
429 CORE_ADDR, CORE_ADDR);
430 void (*to_terminal_init) (void);
431 void (*to_terminal_inferior) (void);
432 void (*to_terminal_ours_for_output) (void);
433 void (*to_terminal_ours) (void);
434 void (*to_terminal_save_ours) (void);
435 void (*to_terminal_info) (const char *, int);
436 void (*to_kill) (struct target_ops *);
437 void (*to_load) (char *, int);
438 void (*to_create_inferior) (struct target_ops *,
439 char *, char *, char **, int);
440 void (*to_post_startup_inferior) (ptid_t);
441 int (*to_insert_fork_catchpoint) (int);
442 int (*to_remove_fork_catchpoint) (int);
443 int (*to_insert_vfork_catchpoint) (int);
444 int (*to_remove_vfork_catchpoint) (int);
445 int (*to_follow_fork) (struct target_ops *, int, int);
446 int (*to_insert_exec_catchpoint) (int);
447 int (*to_remove_exec_catchpoint) (int);
448 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
449 int (*to_has_exited) (int, int, int *);
450 void (*to_mourn_inferior) (struct target_ops *);
451 int (*to_can_run) (void);
452
453 /* Documentation of this routine is provided with the corresponding
454 target_* macro. */
455 void (*to_pass_signals) (int, unsigned char *);
456
457 /* Documentation of this routine is provided with the
458 corresponding target_* function. */
459 void (*to_program_signals) (int, unsigned char *);
460
461 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
462 void (*to_find_new_threads) (struct target_ops *);
463 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
464 char *(*to_extra_thread_info) (struct thread_info *);
465 char *(*to_thread_name) (struct thread_info *);
466 void (*to_stop) (ptid_t);
467 void (*to_rcmd) (char *command, struct ui_file *output);
468 char *(*to_pid_to_exec_file) (int pid);
469 void (*to_log_command) (const char *);
470 struct target_section_table *(*to_get_section_table) (struct target_ops *);
471 enum strata to_stratum;
472 int (*to_has_all_memory) (struct target_ops *);
473 int (*to_has_memory) (struct target_ops *);
474 int (*to_has_stack) (struct target_ops *);
475 int (*to_has_registers) (struct target_ops *);
476 int (*to_has_execution) (struct target_ops *, ptid_t);
477 int to_has_thread_control; /* control thread execution */
478 int to_attach_no_wait;
479 /* ASYNC target controls */
480 int (*to_can_async_p) (void);
481 int (*to_is_async_p) (void);
482 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
483 int (*to_supports_non_stop) (void);
484 /* find_memory_regions support method for gcore */
485 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
486 /* make_corefile_notes support method for gcore */
487 char * (*to_make_corefile_notes) (bfd *, int *);
488 /* get_bookmark support method for bookmarks */
489 gdb_byte * (*to_get_bookmark) (char *, int);
490 /* goto_bookmark support method for bookmarks */
491 void (*to_goto_bookmark) (gdb_byte *, int);
492 /* Return the thread-local address at OFFSET in the
493 thread-local storage for the thread PTID and the shared library
494 or executable file given by OBJFILE. If that block of
495 thread-local storage hasn't been allocated yet, this function
496 may return an error. */
497 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
498 ptid_t ptid,
499 CORE_ADDR load_module_addr,
500 CORE_ADDR offset);
501
502 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
503 OBJECT. The OFFSET, for a seekable object, specifies the
504 starting point. The ANNEX can be used to provide additional
505 data-specific information to the target.
506
507 Return the number of bytes actually transfered, zero when no
508 further transfer is possible, and a negative error code (really
509 an 'enum target_xfer_error' value) when the transfer is not
510 supported. Return of a positive value smaller than LEN does
511 not indicate the end of the object, only the end of the
512 transfer; higher level code should continue transferring if
513 desired. This is handled in target.c.
514
515 The interface does not support a "retry" mechanism. Instead it
516 assumes that at least one byte will be transfered on each
517 successful call.
518
519 NOTE: cagney/2003-10-17: The current interface can lead to
520 fragmented transfers. Lower target levels should not implement
521 hacks, such as enlarging the transfer, in an attempt to
522 compensate for this. Instead, the target stack should be
523 extended so that it implements supply/collect methods and a
524 look-aside object cache. With that available, the lowest
525 target can safely and freely "push" data up the stack.
526
527 See target_read and target_write for more information. One,
528 and only one, of readbuf or writebuf must be non-NULL. */
529
530 LONGEST (*to_xfer_partial) (struct target_ops *ops,
531 enum target_object object, const char *annex,
532 gdb_byte *readbuf, const gdb_byte *writebuf,
533 ULONGEST offset, LONGEST len);
534
535 /* Returns the memory map for the target. A return value of NULL
536 means that no memory map is available. If a memory address
537 does not fall within any returned regions, it's assumed to be
538 RAM. The returned memory regions should not overlap.
539
540 The order of regions does not matter; target_memory_map will
541 sort regions by starting address. For that reason, this
542 function should not be called directly except via
543 target_memory_map.
544
545 This method should not cache data; if the memory map could
546 change unexpectedly, it should be invalidated, and higher
547 layers will re-fetch it. */
548 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
549
550 /* Erases the region of flash memory starting at ADDRESS, of
551 length LENGTH.
552
553 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
554 on flash block boundaries, as reported by 'to_memory_map'. */
555 void (*to_flash_erase) (struct target_ops *,
556 ULONGEST address, LONGEST length);
557
558 /* Finishes a flash memory write sequence. After this operation
559 all flash memory should be available for writing and the result
560 of reading from areas written by 'to_flash_write' should be
561 equal to what was written. */
562 void (*to_flash_done) (struct target_ops *);
563
564 /* Describe the architecture-specific features of this target.
565 Returns the description found, or NULL if no description
566 was available. */
567 const struct target_desc *(*to_read_description) (struct target_ops *ops);
568
569 /* Build the PTID of the thread on which a given task is running,
570 based on LWP and THREAD. These values are extracted from the
571 task Private_Data section of the Ada Task Control Block, and
572 their interpretation depends on the target. */
573 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
574
575 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
576 Return 0 if *READPTR is already at the end of the buffer.
577 Return -1 if there is insufficient buffer for a whole entry.
578 Return 1 if an entry was read into *TYPEP and *VALP. */
579 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
580 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
581
582 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
583 sequence of bytes in PATTERN with length PATTERN_LEN.
584
585 The result is 1 if found, 0 if not found, and -1 if there was an error
586 requiring halting of the search (e.g. memory read error).
587 If the pattern is found the address is recorded in FOUND_ADDRP. */
588 int (*to_search_memory) (struct target_ops *ops,
589 CORE_ADDR start_addr, ULONGEST search_space_len,
590 const gdb_byte *pattern, ULONGEST pattern_len,
591 CORE_ADDR *found_addrp);
592
593 /* Can target execute in reverse? */
594 int (*to_can_execute_reverse) (void);
595
596 /* The direction the target is currently executing. Must be
597 implemented on targets that support reverse execution and async
598 mode. The default simply returns forward execution. */
599 enum exec_direction_kind (*to_execution_direction) (void);
600
601 /* Does this target support debugging multiple processes
602 simultaneously? */
603 int (*to_supports_multi_process) (void);
604
605 /* Does this target support enabling and disabling tracepoints while a trace
606 experiment is running? */
607 int (*to_supports_enable_disable_tracepoint) (void);
608
609 /* Does this target support disabling address space randomization? */
610 int (*to_supports_disable_randomization) (void);
611
612 /* Does this target support the tracenz bytecode for string collection? */
613 int (*to_supports_string_tracing) (void);
614
615 /* Does this target support evaluation of breakpoint conditions on its
616 end? */
617 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
618
619 /* Does this target support evaluation of breakpoint commands on its
620 end? */
621 int (*to_can_run_breakpoint_commands) (void);
622
623 /* Determine current architecture of thread PTID.
624
625 The target is supposed to determine the architecture of the code where
626 the target is currently stopped at (on Cell, if a target is in spu_run,
627 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
628 This is architecture used to perform decr_pc_after_break adjustment,
629 and also determines the frame architecture of the innermost frame.
630 ptrace operations need to operate according to target_gdbarch ().
631
632 The default implementation always returns target_gdbarch (). */
633 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
634
635 /* Determine current address space of thread PTID.
636
637 The default implementation always returns the inferior's
638 address space. */
639 struct address_space *(*to_thread_address_space) (struct target_ops *,
640 ptid_t);
641
642 /* Target file operations. */
643
644 /* Open FILENAME on the target, using FLAGS and MODE. Return a
645 target file descriptor, or -1 if an error occurs (and set
646 *TARGET_ERRNO). */
647 int (*to_fileio_open) (const char *filename, int flags, int mode,
648 int *target_errno);
649
650 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
651 Return the number of bytes written, or -1 if an error occurs
652 (and set *TARGET_ERRNO). */
653 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
654 ULONGEST offset, int *target_errno);
655
656 /* Read up to LEN bytes FD on the target into READ_BUF.
657 Return the number of bytes read, or -1 if an error occurs
658 (and set *TARGET_ERRNO). */
659 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
660 ULONGEST offset, int *target_errno);
661
662 /* Close FD on the target. Return 0, or -1 if an error occurs
663 (and set *TARGET_ERRNO). */
664 int (*to_fileio_close) (int fd, int *target_errno);
665
666 /* Unlink FILENAME on the target. Return 0, or -1 if an error
667 occurs (and set *TARGET_ERRNO). */
668 int (*to_fileio_unlink) (const char *filename, int *target_errno);
669
670 /* Read value of symbolic link FILENAME on the target. Return a
671 null-terminated string allocated via xmalloc, or NULL if an error
672 occurs (and set *TARGET_ERRNO). */
673 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
674
675
676 /* Implement the "info proc" command. */
677 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
678
679 /* Tracepoint-related operations. */
680
681 /* Prepare the target for a tracing run. */
682 void (*to_trace_init) (void);
683
684 /* Send full details of a tracepoint location to the target. */
685 void (*to_download_tracepoint) (struct bp_location *location);
686
687 /* Is the target able to download tracepoint locations in current
688 state? */
689 int (*to_can_download_tracepoint) (void);
690
691 /* Send full details of a trace state variable to the target. */
692 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
693
694 /* Enable a tracepoint on the target. */
695 void (*to_enable_tracepoint) (struct bp_location *location);
696
697 /* Disable a tracepoint on the target. */
698 void (*to_disable_tracepoint) (struct bp_location *location);
699
700 /* Inform the target info of memory regions that are readonly
701 (such as text sections), and so it should return data from
702 those rather than look in the trace buffer. */
703 void (*to_trace_set_readonly_regions) (void);
704
705 /* Start a trace run. */
706 void (*to_trace_start) (void);
707
708 /* Get the current status of a tracing run. */
709 int (*to_get_trace_status) (struct trace_status *ts);
710
711 void (*to_get_tracepoint_status) (struct breakpoint *tp,
712 struct uploaded_tp *utp);
713
714 /* Stop a trace run. */
715 void (*to_trace_stop) (void);
716
717 /* Ask the target to find a trace frame of the given type TYPE,
718 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
719 number of the trace frame, and also the tracepoint number at
720 TPP. If no trace frame matches, return -1. May throw if the
721 operation fails. */
722 int (*to_trace_find) (enum trace_find_type type, int num,
723 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
724
725 /* Get the value of the trace state variable number TSV, returning
726 1 if the value is known and writing the value itself into the
727 location pointed to by VAL, else returning 0. */
728 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
729
730 int (*to_save_trace_data) (const char *filename);
731
732 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
733
734 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
735
736 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
737 ULONGEST offset, LONGEST len);
738
739 /* Get the minimum length of instruction on which a fast tracepoint
740 may be set on the target. If this operation is unsupported,
741 return -1. If for some reason the minimum length cannot be
742 determined, return 0. */
743 int (*to_get_min_fast_tracepoint_insn_len) (void);
744
745 /* Set the target's tracing behavior in response to unexpected
746 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
747 void (*to_set_disconnected_tracing) (int val);
748 void (*to_set_circular_trace_buffer) (int val);
749 /* Set the size of trace buffer in the target. */
750 void (*to_set_trace_buffer_size) (LONGEST val);
751
752 /* Add/change textual notes about the trace run, returning 1 if
753 successful, 0 otherwise. */
754 int (*to_set_trace_notes) (const char *user, const char *notes,
755 const char *stopnotes);
756
757 /* Return the processor core that thread PTID was last seen on.
758 This information is updated only when:
759 - update_thread_list is called
760 - thread stops
761 If the core cannot be determined -- either for the specified
762 thread, or right now, or in this debug session, or for this
763 target -- return -1. */
764 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
765
766 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
767 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
768 a match, 0 if there's a mismatch, and -1 if an error is
769 encountered while reading memory. */
770 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
771 CORE_ADDR memaddr, ULONGEST size);
772
773 /* Return the address of the start of the Thread Information Block
774 a Windows OS specific feature. */
775 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
776
777 /* Send the new settings of write permission variables. */
778 void (*to_set_permissions) (void);
779
780 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
781 with its details. Return 1 on success, 0 on failure. */
782 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
783 struct static_tracepoint_marker *marker);
784
785 /* Return a vector of all tracepoints markers string id ID, or all
786 markers if ID is NULL. */
787 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
788 (const char *id);
789
790 /* Return a traceframe info object describing the current
791 traceframe's contents. If the target doesn't support
792 traceframe info, return NULL. If the current traceframe is not
793 selected (the current traceframe number is -1), the target can
794 choose to return either NULL or an empty traceframe info. If
795 NULL is returned, for example in remote target, GDB will read
796 from the live inferior. If an empty traceframe info is
797 returned, for example in tfile target, which means the
798 traceframe info is available, but the requested memory is not
799 available in it. GDB will try to see if the requested memory
800 is available in the read-only sections. This method should not
801 cache data; higher layers take care of caching, invalidating,
802 and re-fetching when necessary. */
803 struct traceframe_info *(*to_traceframe_info) (void);
804
805 /* Ask the target to use or not to use agent according to USE. Return 1
806 successful, 0 otherwise. */
807 int (*to_use_agent) (int use);
808
809 /* Is the target able to use agent in current state? */
810 int (*to_can_use_agent) (void);
811
812 /* Check whether the target supports branch tracing. */
813 int (*to_supports_btrace) (void);
814
815 /* Enable branch tracing for PTID and allocate a branch trace target
816 information struct for reading and for disabling branch trace. */
817 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
818
819 /* Disable branch tracing and deallocate TINFO. */
820 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
821
822 /* Disable branch tracing and deallocate TINFO. This function is similar
823 to to_disable_btrace, except that it is called during teardown and is
824 only allowed to perform actions that are safe. A counter-example would
825 be attempting to talk to a remote target. */
826 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
827
828 /* Read branch trace data. */
829 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
830 enum btrace_read_type);
831
832 /* Stop trace recording. */
833 void (*to_stop_recording) (void);
834
835 /* Print information about the recording. */
836 void (*to_info_record) (void);
837
838 /* Save the recorded execution trace into a file. */
839 void (*to_save_record) (const char *filename);
840
841 /* Delete the recorded execution trace from the current position onwards. */
842 void (*to_delete_record) (void);
843
844 /* Query if the record target is currently replaying. */
845 int (*to_record_is_replaying) (void);
846
847 /* Go to the begin of the execution trace. */
848 void (*to_goto_record_begin) (void);
849
850 /* Go to the end of the execution trace. */
851 void (*to_goto_record_end) (void);
852
853 /* Go to a specific location in the recorded execution trace. */
854 void (*to_goto_record) (ULONGEST insn);
855
856 /* Disassemble SIZE instructions in the recorded execution trace from
857 the current position.
858 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
859 disassemble SIZE succeeding instructions. */
860 void (*to_insn_history) (int size, int flags);
861
862 /* Disassemble SIZE instructions in the recorded execution trace around
863 FROM.
864 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
865 disassemble SIZE instructions after FROM. */
866 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
867
868 /* Disassemble a section of the recorded execution trace from instruction
869 BEGIN (inclusive) to instruction END (exclusive). */
870 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
871
872 /* Print a function trace of the recorded execution trace.
873 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
874 succeeding functions. */
875 void (*to_call_history) (int size, int flags);
876
877 /* Print a function trace of the recorded execution trace starting
878 at function FROM.
879 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
880 SIZE functions after FROM. */
881 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
882
883 /* Print a function trace of an execution trace section from function BEGIN
884 (inclusive) to function END (exclusive). */
885 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
886
887 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
888 non-empty annex. */
889 int (*to_augmented_libraries_svr4_read) (void);
890
891 int to_magic;
892 /* Need sub-structure for target machine related rather than comm related?
893 */
894 };
895
896 /* Magic number for checking ops size. If a struct doesn't end with this
897 number, somebody changed the declaration but didn't change all the
898 places that initialize one. */
899
900 #define OPS_MAGIC 3840
901
902 /* The ops structure for our "current" target process. This should
903 never be NULL. If there is no target, it points to the dummy_target. */
904
905 extern struct target_ops current_target;
906
907 /* Define easy words for doing these operations on our current target. */
908
909 #define target_shortname (current_target.to_shortname)
910 #define target_longname (current_target.to_longname)
911
912 /* Does whatever cleanup is required for a target that we are no
913 longer going to be calling. This routine is automatically always
914 called after popping the target off the target stack - the target's
915 own methods are no longer available through the target vector.
916 Closing file descriptors and freeing all memory allocated memory are
917 typical things it should do. */
918
919 void target_close (struct target_ops *targ);
920
921 /* Attaches to a process on the target side. Arguments are as passed
922 to the `attach' command by the user. This routine can be called
923 when the target is not on the target-stack, if the target_can_run
924 routine returns 1; in that case, it must push itself onto the stack.
925 Upon exit, the target should be ready for normal operations, and
926 should be ready to deliver the status of the process immediately
927 (without waiting) to an upcoming target_wait call. */
928
929 void target_attach (char *, int);
930
931 /* Some targets don't generate traps when attaching to the inferior,
932 or their target_attach implementation takes care of the waiting.
933 These targets must set to_attach_no_wait. */
934
935 #define target_attach_no_wait \
936 (current_target.to_attach_no_wait)
937
938 /* The target_attach operation places a process under debugger control,
939 and stops the process.
940
941 This operation provides a target-specific hook that allows the
942 necessary bookkeeping to be performed after an attach completes. */
943 #define target_post_attach(pid) \
944 (*current_target.to_post_attach) (pid)
945
946 /* Takes a program previously attached to and detaches it.
947 The program may resume execution (some targets do, some don't) and will
948 no longer stop on signals, etc. We better not have left any breakpoints
949 in the program or it'll die when it hits one. ARGS is arguments
950 typed by the user (e.g. a signal to send the process). FROM_TTY
951 says whether to be verbose or not. */
952
953 extern void target_detach (const char *, int);
954
955 /* Disconnect from the current target without resuming it (leaving it
956 waiting for a debugger). */
957
958 extern void target_disconnect (char *, int);
959
960 /* Resume execution of the target process PTID (or a group of
961 threads). STEP says whether to single-step or to run free; SIGGNAL
962 is the signal to be given to the target, or GDB_SIGNAL_0 for no
963 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
964 PTID means `step/resume only this process id'. A wildcard PTID
965 (all threads, or all threads of process) means `step/resume
966 INFERIOR_PTID, and let other threads (for which the wildcard PTID
967 matches) resume with their 'thread->suspend.stop_signal' signal
968 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
969 if in "no pass" state. */
970
971 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
972
973 /* Wait for process pid to do something. PTID = -1 to wait for any
974 pid to do something. Return pid of child, or -1 in case of error;
975 store status through argument pointer STATUS. Note that it is
976 _NOT_ OK to throw_exception() out of target_wait() without popping
977 the debugging target from the stack; GDB isn't prepared to get back
978 to the prompt with a debugging target but without the frame cache,
979 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
980 options. */
981
982 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
983 int options);
984
985 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
986
987 extern void target_fetch_registers (struct regcache *regcache, int regno);
988
989 /* Store at least register REGNO, or all regs if REGNO == -1.
990 It can store as many registers as it wants to, so target_prepare_to_store
991 must have been previously called. Calls error() if there are problems. */
992
993 extern void target_store_registers (struct regcache *regcache, int regs);
994
995 /* Get ready to modify the registers array. On machines which store
996 individual registers, this doesn't need to do anything. On machines
997 which store all the registers in one fell swoop, this makes sure
998 that REGISTERS contains all the registers from the program being
999 debugged. */
1000
1001 #define target_prepare_to_store(regcache) \
1002 (*current_target.to_prepare_to_store) (regcache)
1003
1004 /* Determine current address space of thread PTID. */
1005
1006 struct address_space *target_thread_address_space (ptid_t);
1007
1008 /* Implement the "info proc" command. This returns one if the request
1009 was handled, and zero otherwise. It can also throw an exception if
1010 an error was encountered while attempting to handle the
1011 request. */
1012
1013 int target_info_proc (char *, enum info_proc_what);
1014
1015 /* Returns true if this target can debug multiple processes
1016 simultaneously. */
1017
1018 #define target_supports_multi_process() \
1019 (*current_target.to_supports_multi_process) ()
1020
1021 /* Returns true if this target can disable address space randomization. */
1022
1023 int target_supports_disable_randomization (void);
1024
1025 /* Returns true if this target can enable and disable tracepoints
1026 while a trace experiment is running. */
1027
1028 #define target_supports_enable_disable_tracepoint() \
1029 (*current_target.to_supports_enable_disable_tracepoint) ()
1030
1031 #define target_supports_string_tracing() \
1032 (*current_target.to_supports_string_tracing) ()
1033
1034 /* Returns true if this target can handle breakpoint conditions
1035 on its end. */
1036
1037 #define target_supports_evaluation_of_breakpoint_conditions() \
1038 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1039
1040 /* Returns true if this target can handle breakpoint commands
1041 on its end. */
1042
1043 #define target_can_run_breakpoint_commands() \
1044 (*current_target.to_can_run_breakpoint_commands) ()
1045
1046 extern int target_read_string (CORE_ADDR, char **, int, int *);
1047
1048 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1049 ssize_t len);
1050
1051 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1052
1053 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1054 ssize_t len);
1055
1056 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1057 ssize_t len);
1058
1059 /* Fetches the target's memory map. If one is found it is sorted
1060 and returned, after some consistency checking. Otherwise, NULL
1061 is returned. */
1062 VEC(mem_region_s) *target_memory_map (void);
1063
1064 /* Erase the specified flash region. */
1065 void target_flash_erase (ULONGEST address, LONGEST length);
1066
1067 /* Finish a sequence of flash operations. */
1068 void target_flash_done (void);
1069
1070 /* Describes a request for a memory write operation. */
1071 struct memory_write_request
1072 {
1073 /* Begining address that must be written. */
1074 ULONGEST begin;
1075 /* Past-the-end address. */
1076 ULONGEST end;
1077 /* The data to write. */
1078 gdb_byte *data;
1079 /* A callback baton for progress reporting for this request. */
1080 void *baton;
1081 };
1082 typedef struct memory_write_request memory_write_request_s;
1083 DEF_VEC_O(memory_write_request_s);
1084
1085 /* Enumeration specifying different flash preservation behaviour. */
1086 enum flash_preserve_mode
1087 {
1088 flash_preserve,
1089 flash_discard
1090 };
1091
1092 /* Write several memory blocks at once. This version can be more
1093 efficient than making several calls to target_write_memory, in
1094 particular because it can optimize accesses to flash memory.
1095
1096 Moreover, this is currently the only memory access function in gdb
1097 that supports writing to flash memory, and it should be used for
1098 all cases where access to flash memory is desirable.
1099
1100 REQUESTS is the vector (see vec.h) of memory_write_request.
1101 PRESERVE_FLASH_P indicates what to do with blocks which must be
1102 erased, but not completely rewritten.
1103 PROGRESS_CB is a function that will be periodically called to provide
1104 feedback to user. It will be called with the baton corresponding
1105 to the request currently being written. It may also be called
1106 with a NULL baton, when preserved flash sectors are being rewritten.
1107
1108 The function returns 0 on success, and error otherwise. */
1109 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1110 enum flash_preserve_mode preserve_flash_p,
1111 void (*progress_cb) (ULONGEST, void *));
1112
1113 /* Print a line about the current target. */
1114
1115 #define target_files_info() \
1116 (*current_target.to_files_info) (&current_target)
1117
1118 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1119 machine. Result is 0 for success, non-zero for error. */
1120
1121 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1122 struct bp_target_info *bp_tgt);
1123
1124 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1125 machine. Result is 0 for success, non-zero for error. */
1126
1127 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1128 struct bp_target_info *bp_tgt);
1129
1130 /* Initialize the terminal settings we record for the inferior,
1131 before we actually run the inferior. */
1132
1133 #define target_terminal_init() \
1134 (*current_target.to_terminal_init) ()
1135
1136 /* Put the inferior's terminal settings into effect.
1137 This is preparation for starting or resuming the inferior. */
1138
1139 extern void target_terminal_inferior (void);
1140
1141 /* Put some of our terminal settings into effect,
1142 enough to get proper results from our output,
1143 but do not change into or out of RAW mode
1144 so that no input is discarded.
1145
1146 After doing this, either terminal_ours or terminal_inferior
1147 should be called to get back to a normal state of affairs. */
1148
1149 #define target_terminal_ours_for_output() \
1150 (*current_target.to_terminal_ours_for_output) ()
1151
1152 /* Put our terminal settings into effect.
1153 First record the inferior's terminal settings
1154 so they can be restored properly later. */
1155
1156 #define target_terminal_ours() \
1157 (*current_target.to_terminal_ours) ()
1158
1159 /* Save our terminal settings.
1160 This is called from TUI after entering or leaving the curses
1161 mode. Since curses modifies our terminal this call is here
1162 to take this change into account. */
1163
1164 #define target_terminal_save_ours() \
1165 (*current_target.to_terminal_save_ours) ()
1166
1167 /* Print useful information about our terminal status, if such a thing
1168 exists. */
1169
1170 #define target_terminal_info(arg, from_tty) \
1171 (*current_target.to_terminal_info) (arg, from_tty)
1172
1173 /* Kill the inferior process. Make it go away. */
1174
1175 extern void target_kill (void);
1176
1177 /* Load an executable file into the target process. This is expected
1178 to not only bring new code into the target process, but also to
1179 update GDB's symbol tables to match.
1180
1181 ARG contains command-line arguments, to be broken down with
1182 buildargv (). The first non-switch argument is the filename to
1183 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1184 0)), which is an offset to apply to the load addresses of FILE's
1185 sections. The target may define switches, or other non-switch
1186 arguments, as it pleases. */
1187
1188 extern void target_load (char *arg, int from_tty);
1189
1190 /* Start an inferior process and set inferior_ptid to its pid.
1191 EXEC_FILE is the file to run.
1192 ALLARGS is a string containing the arguments to the program.
1193 ENV is the environment vector to pass. Errors reported with error().
1194 On VxWorks and various standalone systems, we ignore exec_file. */
1195
1196 void target_create_inferior (char *exec_file, char *args,
1197 char **env, int from_tty);
1198
1199 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1200 notification of inferior events such as fork and vork immediately
1201 after the inferior is created. (This because of how gdb gets an
1202 inferior created via invoking a shell to do it. In such a scenario,
1203 if the shell init file has commands in it, the shell will fork and
1204 exec for each of those commands, and we will see each such fork
1205 event. Very bad.)
1206
1207 Such targets will supply an appropriate definition for this function. */
1208
1209 #define target_post_startup_inferior(ptid) \
1210 (*current_target.to_post_startup_inferior) (ptid)
1211
1212 /* On some targets, we can catch an inferior fork or vfork event when
1213 it occurs. These functions insert/remove an already-created
1214 catchpoint for such events. They return 0 for success, 1 if the
1215 catchpoint type is not supported and -1 for failure. */
1216
1217 #define target_insert_fork_catchpoint(pid) \
1218 (*current_target.to_insert_fork_catchpoint) (pid)
1219
1220 #define target_remove_fork_catchpoint(pid) \
1221 (*current_target.to_remove_fork_catchpoint) (pid)
1222
1223 #define target_insert_vfork_catchpoint(pid) \
1224 (*current_target.to_insert_vfork_catchpoint) (pid)
1225
1226 #define target_remove_vfork_catchpoint(pid) \
1227 (*current_target.to_remove_vfork_catchpoint) (pid)
1228
1229 /* If the inferior forks or vforks, this function will be called at
1230 the next resume in order to perform any bookkeeping and fiddling
1231 necessary to continue debugging either the parent or child, as
1232 requested, and releasing the other. Information about the fork
1233 or vfork event is available via get_last_target_status ().
1234 This function returns 1 if the inferior should not be resumed
1235 (i.e. there is another event pending). */
1236
1237 int target_follow_fork (int follow_child, int detach_fork);
1238
1239 /* On some targets, we can catch an inferior exec event when it
1240 occurs. These functions insert/remove an already-created
1241 catchpoint for such events. They return 0 for success, 1 if the
1242 catchpoint type is not supported and -1 for failure. */
1243
1244 #define target_insert_exec_catchpoint(pid) \
1245 (*current_target.to_insert_exec_catchpoint) (pid)
1246
1247 #define target_remove_exec_catchpoint(pid) \
1248 (*current_target.to_remove_exec_catchpoint) (pid)
1249
1250 /* Syscall catch.
1251
1252 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1253 If NEEDED is zero, it means the target can disable the mechanism to
1254 catch system calls because there are no more catchpoints of this type.
1255
1256 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1257 being requested. In this case, both TABLE_SIZE and TABLE should
1258 be ignored.
1259
1260 TABLE_SIZE is the number of elements in TABLE. It only matters if
1261 ANY_COUNT is zero.
1262
1263 TABLE is an array of ints, indexed by syscall number. An element in
1264 this array is nonzero if that syscall should be caught. This argument
1265 only matters if ANY_COUNT is zero.
1266
1267 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1268 for failure. */
1269
1270 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1271 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1272 table_size, table)
1273
1274 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1275 exit code of PID, if any. */
1276
1277 #define target_has_exited(pid,wait_status,exit_status) \
1278 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1279
1280 /* The debugger has completed a blocking wait() call. There is now
1281 some process event that must be processed. This function should
1282 be defined by those targets that require the debugger to perform
1283 cleanup or internal state changes in response to the process event. */
1284
1285 /* The inferior process has died. Do what is right. */
1286
1287 void target_mourn_inferior (void);
1288
1289 /* Does target have enough data to do a run or attach command? */
1290
1291 #define target_can_run(t) \
1292 ((t)->to_can_run) ()
1293
1294 /* Set list of signals to be handled in the target.
1295
1296 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1297 (enum gdb_signal). For every signal whose entry in this array is
1298 non-zero, the target is allowed -but not required- to skip reporting
1299 arrival of the signal to the GDB core by returning from target_wait,
1300 and to pass the signal directly to the inferior instead.
1301
1302 However, if the target is hardware single-stepping a thread that is
1303 about to receive a signal, it needs to be reported in any case, even
1304 if mentioned in a previous target_pass_signals call. */
1305
1306 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1307
1308 /* Set list of signals the target may pass to the inferior. This
1309 directly maps to the "handle SIGNAL pass/nopass" setting.
1310
1311 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1312 number (enum gdb_signal). For every signal whose entry in this
1313 array is non-zero, the target is allowed to pass the signal to the
1314 inferior. Signals not present in the array shall be silently
1315 discarded. This does not influence whether to pass signals to the
1316 inferior as a result of a target_resume call. This is useful in
1317 scenarios where the target needs to decide whether to pass or not a
1318 signal to the inferior without GDB core involvement, such as for
1319 example, when detaching (as threads may have been suspended with
1320 pending signals not reported to GDB). */
1321
1322 extern void target_program_signals (int nsig, unsigned char *program_signals);
1323
1324 /* Check to see if a thread is still alive. */
1325
1326 extern int target_thread_alive (ptid_t ptid);
1327
1328 /* Query for new threads and add them to the thread list. */
1329
1330 extern void target_find_new_threads (void);
1331
1332 /* Make target stop in a continuable fashion. (For instance, under
1333 Unix, this should act like SIGSTOP). This function is normally
1334 used by GUIs to implement a stop button. */
1335
1336 extern void target_stop (ptid_t ptid);
1337
1338 /* Send the specified COMMAND to the target's monitor
1339 (shell,interpreter) for execution. The result of the query is
1340 placed in OUTBUF. */
1341
1342 #define target_rcmd(command, outbuf) \
1343 (*current_target.to_rcmd) (command, outbuf)
1344
1345
1346 /* Does the target include all of memory, or only part of it? This
1347 determines whether we look up the target chain for other parts of
1348 memory if this target can't satisfy a request. */
1349
1350 extern int target_has_all_memory_1 (void);
1351 #define target_has_all_memory target_has_all_memory_1 ()
1352
1353 /* Does the target include memory? (Dummy targets don't.) */
1354
1355 extern int target_has_memory_1 (void);
1356 #define target_has_memory target_has_memory_1 ()
1357
1358 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1359 we start a process.) */
1360
1361 extern int target_has_stack_1 (void);
1362 #define target_has_stack target_has_stack_1 ()
1363
1364 /* Does the target have registers? (Exec files don't.) */
1365
1366 extern int target_has_registers_1 (void);
1367 #define target_has_registers target_has_registers_1 ()
1368
1369 /* Does the target have execution? Can we make it jump (through
1370 hoops), or pop its stack a few times? This means that the current
1371 target is currently executing; for some targets, that's the same as
1372 whether or not the target is capable of execution, but there are
1373 also targets which can be current while not executing. In that
1374 case this will become true after target_create_inferior or
1375 target_attach. */
1376
1377 extern int target_has_execution_1 (ptid_t);
1378
1379 /* Like target_has_execution_1, but always passes inferior_ptid. */
1380
1381 extern int target_has_execution_current (void);
1382
1383 #define target_has_execution target_has_execution_current ()
1384
1385 /* Default implementations for process_stratum targets. Return true
1386 if there's a selected inferior, false otherwise. */
1387
1388 extern int default_child_has_all_memory (struct target_ops *ops);
1389 extern int default_child_has_memory (struct target_ops *ops);
1390 extern int default_child_has_stack (struct target_ops *ops);
1391 extern int default_child_has_registers (struct target_ops *ops);
1392 extern int default_child_has_execution (struct target_ops *ops,
1393 ptid_t the_ptid);
1394
1395 /* Can the target support the debugger control of thread execution?
1396 Can it lock the thread scheduler? */
1397
1398 #define target_can_lock_scheduler \
1399 (current_target.to_has_thread_control & tc_schedlock)
1400
1401 /* Should the target enable async mode if it is supported? Temporary
1402 cludge until async mode is a strict superset of sync mode. */
1403 extern int target_async_permitted;
1404
1405 /* Can the target support asynchronous execution? */
1406 #define target_can_async_p() (current_target.to_can_async_p ())
1407
1408 /* Is the target in asynchronous execution mode? */
1409 #define target_is_async_p() (current_target.to_is_async_p ())
1410
1411 int target_supports_non_stop (void);
1412
1413 /* Put the target in async mode with the specified callback function. */
1414 #define target_async(CALLBACK,CONTEXT) \
1415 (current_target.to_async ((CALLBACK), (CONTEXT)))
1416
1417 #define target_execution_direction() \
1418 (current_target.to_execution_direction ())
1419
1420 /* Converts a process id to a string. Usually, the string just contains
1421 `process xyz', but on some systems it may contain
1422 `process xyz thread abc'. */
1423
1424 extern char *target_pid_to_str (ptid_t ptid);
1425
1426 extern char *normal_pid_to_str (ptid_t ptid);
1427
1428 /* Return a short string describing extra information about PID,
1429 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1430 is okay. */
1431
1432 #define target_extra_thread_info(TP) \
1433 (current_target.to_extra_thread_info (TP))
1434
1435 /* Return the thread's name. A NULL result means that the target
1436 could not determine this thread's name. */
1437
1438 extern char *target_thread_name (struct thread_info *);
1439
1440 /* Attempts to find the pathname of the executable file
1441 that was run to create a specified process.
1442
1443 The process PID must be stopped when this operation is used.
1444
1445 If the executable file cannot be determined, NULL is returned.
1446
1447 Else, a pointer to a character string containing the pathname
1448 is returned. This string should be copied into a buffer by
1449 the client if the string will not be immediately used, or if
1450 it must persist. */
1451
1452 #define target_pid_to_exec_file(pid) \
1453 (current_target.to_pid_to_exec_file) (pid)
1454
1455 /* See the to_thread_architecture description in struct target_ops. */
1456
1457 #define target_thread_architecture(ptid) \
1458 (current_target.to_thread_architecture (&current_target, ptid))
1459
1460 /*
1461 * Iterator function for target memory regions.
1462 * Calls a callback function once for each memory region 'mapped'
1463 * in the child process. Defined as a simple macro rather than
1464 * as a function macro so that it can be tested for nullity.
1465 */
1466
1467 #define target_find_memory_regions(FUNC, DATA) \
1468 (current_target.to_find_memory_regions) (FUNC, DATA)
1469
1470 /*
1471 * Compose corefile .note section.
1472 */
1473
1474 #define target_make_corefile_notes(BFD, SIZE_P) \
1475 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1476
1477 /* Bookmark interfaces. */
1478 #define target_get_bookmark(ARGS, FROM_TTY) \
1479 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1480
1481 #define target_goto_bookmark(ARG, FROM_TTY) \
1482 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1483
1484 /* Hardware watchpoint interfaces. */
1485
1486 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1487 write). Only the INFERIOR_PTID task is being queried. */
1488
1489 #define target_stopped_by_watchpoint \
1490 (*current_target.to_stopped_by_watchpoint)
1491
1492 /* Non-zero if we have steppable watchpoints */
1493
1494 #define target_have_steppable_watchpoint \
1495 (current_target.to_have_steppable_watchpoint)
1496
1497 /* Non-zero if we have continuable watchpoints */
1498
1499 #define target_have_continuable_watchpoint \
1500 (current_target.to_have_continuable_watchpoint)
1501
1502 /* Provide defaults for hardware watchpoint functions. */
1503
1504 /* If the *_hw_beakpoint functions have not been defined
1505 elsewhere use the definitions in the target vector. */
1506
1507 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1508 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1509 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1510 (including this one?). OTHERTYPE is who knows what... */
1511
1512 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1513 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1514
1515 /* Returns the number of debug registers needed to watch the given
1516 memory region, or zero if not supported. */
1517
1518 #define target_region_ok_for_hw_watchpoint(addr, len) \
1519 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1520
1521
1522 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1523 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1524 COND is the expression for its condition, or NULL if there's none.
1525 Returns 0 for success, 1 if the watchpoint type is not supported,
1526 -1 for failure. */
1527
1528 #define target_insert_watchpoint(addr, len, type, cond) \
1529 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1530
1531 #define target_remove_watchpoint(addr, len, type, cond) \
1532 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1533
1534 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1535 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1536 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1537 masked watchpoints are not supported, -1 for failure. */
1538
1539 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1540
1541 /* Remove a masked watchpoint at ADDR with the mask MASK.
1542 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1543 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1544 for failure. */
1545
1546 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1547
1548 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1549 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1550
1551 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1552 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1553
1554 /* Return number of debug registers needed for a ranged breakpoint,
1555 or -1 if ranged breakpoints are not supported. */
1556
1557 extern int target_ranged_break_num_registers (void);
1558
1559 /* Return non-zero if target knows the data address which triggered this
1560 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1561 INFERIOR_PTID task is being queried. */
1562 #define target_stopped_data_address(target, addr_p) \
1563 (*target.to_stopped_data_address) (target, addr_p)
1564
1565 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1566 LENGTH bytes beginning at START. */
1567 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1568 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1569
1570 /* Return non-zero if the target is capable of using hardware to evaluate
1571 the condition expression. In this case, if the condition is false when
1572 the watched memory location changes, execution may continue without the
1573 debugger being notified.
1574
1575 Due to limitations in the hardware implementation, it may be capable of
1576 avoiding triggering the watchpoint in some cases where the condition
1577 expression is false, but may report some false positives as well.
1578 For this reason, GDB will still evaluate the condition expression when
1579 the watchpoint triggers. */
1580 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1581 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1582
1583 /* Return number of debug registers needed for a masked watchpoint,
1584 -1 if masked watchpoints are not supported or -2 if the given address
1585 and mask combination cannot be used. */
1586
1587 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1588
1589 /* Target can execute in reverse? */
1590 #define target_can_execute_reverse \
1591 (current_target.to_can_execute_reverse ? \
1592 current_target.to_can_execute_reverse () : 0)
1593
1594 extern const struct target_desc *target_read_description (struct target_ops *);
1595
1596 #define target_get_ada_task_ptid(lwp, tid) \
1597 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1598
1599 /* Utility implementation of searching memory. */
1600 extern int simple_search_memory (struct target_ops* ops,
1601 CORE_ADDR start_addr,
1602 ULONGEST search_space_len,
1603 const gdb_byte *pattern,
1604 ULONGEST pattern_len,
1605 CORE_ADDR *found_addrp);
1606
1607 /* Main entry point for searching memory. */
1608 extern int target_search_memory (CORE_ADDR start_addr,
1609 ULONGEST search_space_len,
1610 const gdb_byte *pattern,
1611 ULONGEST pattern_len,
1612 CORE_ADDR *found_addrp);
1613
1614 /* Target file operations. */
1615
1616 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1617 target file descriptor, or -1 if an error occurs (and set
1618 *TARGET_ERRNO). */
1619 extern int target_fileio_open (const char *filename, int flags, int mode,
1620 int *target_errno);
1621
1622 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1623 Return the number of bytes written, or -1 if an error occurs
1624 (and set *TARGET_ERRNO). */
1625 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1626 ULONGEST offset, int *target_errno);
1627
1628 /* Read up to LEN bytes FD on the target into READ_BUF.
1629 Return the number of bytes read, or -1 if an error occurs
1630 (and set *TARGET_ERRNO). */
1631 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1632 ULONGEST offset, int *target_errno);
1633
1634 /* Close FD on the target. Return 0, or -1 if an error occurs
1635 (and set *TARGET_ERRNO). */
1636 extern int target_fileio_close (int fd, int *target_errno);
1637
1638 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1639 occurs (and set *TARGET_ERRNO). */
1640 extern int target_fileio_unlink (const char *filename, int *target_errno);
1641
1642 /* Read value of symbolic link FILENAME on the target. Return a
1643 null-terminated string allocated via xmalloc, or NULL if an error
1644 occurs (and set *TARGET_ERRNO). */
1645 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1646
1647 /* Read target file FILENAME. The return value will be -1 if the transfer
1648 fails or is not supported; 0 if the object is empty; or the length
1649 of the object otherwise. If a positive value is returned, a
1650 sufficiently large buffer will be allocated using xmalloc and
1651 returned in *BUF_P containing the contents of the object.
1652
1653 This method should be used for objects sufficiently small to store
1654 in a single xmalloc'd buffer, when no fixed bound on the object's
1655 size is known in advance. */
1656 extern LONGEST target_fileio_read_alloc (const char *filename,
1657 gdb_byte **buf_p);
1658
1659 /* Read target file FILENAME. The result is NUL-terminated and
1660 returned as a string, allocated using xmalloc. If an error occurs
1661 or the transfer is unsupported, NULL is returned. Empty objects
1662 are returned as allocated but empty strings. A warning is issued
1663 if the result contains any embedded NUL bytes. */
1664 extern char *target_fileio_read_stralloc (const char *filename);
1665
1666
1667 /* Tracepoint-related operations. */
1668
1669 #define target_trace_init() \
1670 (*current_target.to_trace_init) ()
1671
1672 #define target_download_tracepoint(t) \
1673 (*current_target.to_download_tracepoint) (t)
1674
1675 #define target_can_download_tracepoint() \
1676 (*current_target.to_can_download_tracepoint) ()
1677
1678 #define target_download_trace_state_variable(tsv) \
1679 (*current_target.to_download_trace_state_variable) (tsv)
1680
1681 #define target_enable_tracepoint(loc) \
1682 (*current_target.to_enable_tracepoint) (loc)
1683
1684 #define target_disable_tracepoint(loc) \
1685 (*current_target.to_disable_tracepoint) (loc)
1686
1687 #define target_trace_start() \
1688 (*current_target.to_trace_start) ()
1689
1690 #define target_trace_set_readonly_regions() \
1691 (*current_target.to_trace_set_readonly_regions) ()
1692
1693 #define target_get_trace_status(ts) \
1694 (*current_target.to_get_trace_status) (ts)
1695
1696 #define target_get_tracepoint_status(tp,utp) \
1697 (*current_target.to_get_tracepoint_status) (tp, utp)
1698
1699 #define target_trace_stop() \
1700 (*current_target.to_trace_stop) ()
1701
1702 #define target_trace_find(type,num,addr1,addr2,tpp) \
1703 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1704
1705 #define target_get_trace_state_variable_value(tsv,val) \
1706 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1707
1708 #define target_save_trace_data(filename) \
1709 (*current_target.to_save_trace_data) (filename)
1710
1711 #define target_upload_tracepoints(utpp) \
1712 (*current_target.to_upload_tracepoints) (utpp)
1713
1714 #define target_upload_trace_state_variables(utsvp) \
1715 (*current_target.to_upload_trace_state_variables) (utsvp)
1716
1717 #define target_get_raw_trace_data(buf,offset,len) \
1718 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1719
1720 #define target_get_min_fast_tracepoint_insn_len() \
1721 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1722
1723 #define target_set_disconnected_tracing(val) \
1724 (*current_target.to_set_disconnected_tracing) (val)
1725
1726 #define target_set_circular_trace_buffer(val) \
1727 (*current_target.to_set_circular_trace_buffer) (val)
1728
1729 #define target_set_trace_buffer_size(val) \
1730 (*current_target.to_set_trace_buffer_size) (val)
1731
1732 #define target_set_trace_notes(user,notes,stopnotes) \
1733 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1734
1735 #define target_get_tib_address(ptid, addr) \
1736 (*current_target.to_get_tib_address) ((ptid), (addr))
1737
1738 #define target_set_permissions() \
1739 (*current_target.to_set_permissions) ()
1740
1741 #define target_static_tracepoint_marker_at(addr, marker) \
1742 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1743
1744 #define target_static_tracepoint_markers_by_strid(marker_id) \
1745 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1746
1747 #define target_traceframe_info() \
1748 (*current_target.to_traceframe_info) ()
1749
1750 #define target_use_agent(use) \
1751 (*current_target.to_use_agent) (use)
1752
1753 #define target_can_use_agent() \
1754 (*current_target.to_can_use_agent) ()
1755
1756 #define target_augmented_libraries_svr4_read() \
1757 (*current_target.to_augmented_libraries_svr4_read) ()
1758
1759 /* Command logging facility. */
1760
1761 #define target_log_command(p) \
1762 do \
1763 if (current_target.to_log_command) \
1764 (*current_target.to_log_command) (p); \
1765 while (0)
1766
1767
1768 extern int target_core_of_thread (ptid_t ptid);
1769
1770 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1771 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1772 if there's a mismatch, and -1 if an error is encountered while
1773 reading memory. Throws an error if the functionality is found not
1774 to be supported by the current target. */
1775 int target_verify_memory (const gdb_byte *data,
1776 CORE_ADDR memaddr, ULONGEST size);
1777
1778 /* Routines for maintenance of the target structures...
1779
1780 complete_target_initialization: Finalize a target_ops by filling in
1781 any fields needed by the target implementation.
1782
1783 add_target: Add a target to the list of all possible targets.
1784
1785 push_target: Make this target the top of the stack of currently used
1786 targets, within its particular stratum of the stack. Result
1787 is 0 if now atop the stack, nonzero if not on top (maybe
1788 should warn user).
1789
1790 unpush_target: Remove this from the stack of currently used targets,
1791 no matter where it is on the list. Returns 0 if no
1792 change, 1 if removed from stack. */
1793
1794 extern void add_target (struct target_ops *);
1795
1796 extern void add_target_with_completer (struct target_ops *t,
1797 completer_ftype *completer);
1798
1799 extern void complete_target_initialization (struct target_ops *t);
1800
1801 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1802 for maintaining backwards compatibility when renaming targets. */
1803
1804 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1805
1806 extern void push_target (struct target_ops *);
1807
1808 extern int unpush_target (struct target_ops *);
1809
1810 extern void target_pre_inferior (int);
1811
1812 extern void target_preopen (int);
1813
1814 /* Does whatever cleanup is required to get rid of all pushed targets. */
1815 extern void pop_all_targets (void);
1816
1817 /* Like pop_all_targets, but pops only targets whose stratum is
1818 strictly above ABOVE_STRATUM. */
1819 extern void pop_all_targets_above (enum strata above_stratum);
1820
1821 extern int target_is_pushed (struct target_ops *t);
1822
1823 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1824 CORE_ADDR offset);
1825
1826 /* Struct target_section maps address ranges to file sections. It is
1827 mostly used with BFD files, but can be used without (e.g. for handling
1828 raw disks, or files not in formats handled by BFD). */
1829
1830 struct target_section
1831 {
1832 CORE_ADDR addr; /* Lowest address in section */
1833 CORE_ADDR endaddr; /* 1+highest address in section */
1834
1835 struct bfd_section *the_bfd_section;
1836
1837 /* The "owner" of the section.
1838 It can be any unique value. It is set by add_target_sections
1839 and used by remove_target_sections.
1840 For example, for executables it is a pointer to exec_bfd and
1841 for shlibs it is the so_list pointer. */
1842 void *owner;
1843 };
1844
1845 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1846
1847 struct target_section_table
1848 {
1849 struct target_section *sections;
1850 struct target_section *sections_end;
1851 };
1852
1853 /* Return the "section" containing the specified address. */
1854 struct target_section *target_section_by_addr (struct target_ops *target,
1855 CORE_ADDR addr);
1856
1857 /* Return the target section table this target (or the targets
1858 beneath) currently manipulate. */
1859
1860 extern struct target_section_table *target_get_section_table
1861 (struct target_ops *target);
1862
1863 /* From mem-break.c */
1864
1865 extern int memory_remove_breakpoint (struct gdbarch *,
1866 struct bp_target_info *);
1867
1868 extern int memory_insert_breakpoint (struct gdbarch *,
1869 struct bp_target_info *);
1870
1871 extern int default_memory_remove_breakpoint (struct gdbarch *,
1872 struct bp_target_info *);
1873
1874 extern int default_memory_insert_breakpoint (struct gdbarch *,
1875 struct bp_target_info *);
1876
1877
1878 /* From target.c */
1879
1880 extern void initialize_targets (void);
1881
1882 extern void noprocess (void) ATTRIBUTE_NORETURN;
1883
1884 extern void target_require_runnable (void);
1885
1886 extern void find_default_attach (struct target_ops *, char *, int);
1887
1888 extern void find_default_create_inferior (struct target_ops *,
1889 char *, char *, char **, int);
1890
1891 extern struct target_ops *find_target_beneath (struct target_ops *);
1892
1893 /* Read OS data object of type TYPE from the target, and return it in
1894 XML format. The result is NUL-terminated and returned as a string,
1895 allocated using xmalloc. If an error occurs or the transfer is
1896 unsupported, NULL is returned. Empty objects are returned as
1897 allocated but empty strings. */
1898
1899 extern char *target_get_osdata (const char *type);
1900
1901 \f
1902 /* Stuff that should be shared among the various remote targets. */
1903
1904 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1905 information (higher values, more information). */
1906 extern int remote_debug;
1907
1908 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1909 extern int baud_rate;
1910 /* Timeout limit for response from target. */
1911 extern int remote_timeout;
1912
1913 \f
1914
1915 /* Set the show memory breakpoints mode to show, and installs a cleanup
1916 to restore it back to the current value. */
1917 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1918
1919 extern int may_write_registers;
1920 extern int may_write_memory;
1921 extern int may_insert_breakpoints;
1922 extern int may_insert_tracepoints;
1923 extern int may_insert_fast_tracepoints;
1924 extern int may_stop;
1925
1926 extern void update_target_permissions (void);
1927
1928 \f
1929 /* Imported from machine dependent code. */
1930
1931 /* Blank target vector entries are initialized to target_ignore. */
1932 void target_ignore (void);
1933
1934 /* See to_supports_btrace in struct target_ops. */
1935 extern int target_supports_btrace (void);
1936
1937 /* See to_enable_btrace in struct target_ops. */
1938 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1939
1940 /* See to_disable_btrace in struct target_ops. */
1941 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1942
1943 /* See to_teardown_btrace in struct target_ops. */
1944 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1945
1946 /* See to_read_btrace in struct target_ops. */
1947 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
1948 enum btrace_read_type);
1949
1950 /* See to_stop_recording in struct target_ops. */
1951 extern void target_stop_recording (void);
1952
1953 /* See to_info_record in struct target_ops. */
1954 extern void target_info_record (void);
1955
1956 /* See to_save_record in struct target_ops. */
1957 extern void target_save_record (const char *filename);
1958
1959 /* Query if the target supports deleting the execution log. */
1960 extern int target_supports_delete_record (void);
1961
1962 /* See to_delete_record in struct target_ops. */
1963 extern void target_delete_record (void);
1964
1965 /* See to_record_is_replaying in struct target_ops. */
1966 extern int target_record_is_replaying (void);
1967
1968 /* See to_goto_record_begin in struct target_ops. */
1969 extern void target_goto_record_begin (void);
1970
1971 /* See to_goto_record_end in struct target_ops. */
1972 extern void target_goto_record_end (void);
1973
1974 /* See to_goto_record in struct target_ops. */
1975 extern void target_goto_record (ULONGEST insn);
1976
1977 /* See to_insn_history. */
1978 extern void target_insn_history (int size, int flags);
1979
1980 /* See to_insn_history_from. */
1981 extern void target_insn_history_from (ULONGEST from, int size, int flags);
1982
1983 /* See to_insn_history_range. */
1984 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
1985
1986 /* See to_call_history. */
1987 extern void target_call_history (int size, int flags);
1988
1989 /* See to_call_history_from. */
1990 extern void target_call_history_from (ULONGEST begin, int size, int flags);
1991
1992 /* See to_call_history_range. */
1993 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
1994
1995 #endif /* !defined (TARGET_H) */
This page took 0.072259 seconds and 5 git commands to generate.