convert to_terminal_ours_for_output
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *);
510 void (*to_terminal_save_ours) (struct target_ops *);
511 void (*to_terminal_info) (struct target_ops *, const char *, int);
512 void (*to_kill) (struct target_ops *);
513 void (*to_load) (struct target_ops *, char *, int);
514 void (*to_create_inferior) (struct target_ops *,
515 char *, char *, char **, int);
516 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
517 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
518 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
519 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
520 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
521 int (*to_follow_fork) (struct target_ops *, int, int);
522 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
523 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
524 int (*to_set_syscall_catchpoint) (struct target_ops *,
525 int, int, int, int, int *);
526 int (*to_has_exited) (struct target_ops *, int, int, int *);
527 void (*to_mourn_inferior) (struct target_ops *);
528 int (*to_can_run) (struct target_ops *);
529
530 /* Documentation of this routine is provided with the corresponding
531 target_* macro. */
532 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
533
534 /* Documentation of this routine is provided with the
535 corresponding target_* function. */
536 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
537
538 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
539 void (*to_find_new_threads) (struct target_ops *);
540 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
541 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
542 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
543 void (*to_stop) (struct target_ops *, ptid_t);
544 void (*to_rcmd) (struct target_ops *,
545 char *command, struct ui_file *output)
546 TARGET_DEFAULT_FUNC (default_rcmd);
547 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
548 void (*to_log_command) (struct target_ops *, const char *);
549 struct target_section_table *(*to_get_section_table) (struct target_ops *);
550 enum strata to_stratum;
551 int (*to_has_all_memory) (struct target_ops *);
552 int (*to_has_memory) (struct target_ops *);
553 int (*to_has_stack) (struct target_ops *);
554 int (*to_has_registers) (struct target_ops *);
555 int (*to_has_execution) (struct target_ops *, ptid_t);
556 int to_has_thread_control; /* control thread execution */
557 int to_attach_no_wait;
558 /* ASYNC target controls */
559 int (*to_can_async_p) (struct target_ops *)
560 TARGET_DEFAULT_FUNC (find_default_can_async_p);
561 int (*to_is_async_p) (struct target_ops *)
562 TARGET_DEFAULT_FUNC (find_default_is_async_p);
563 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
564 TARGET_DEFAULT_NORETURN (tcomplain ());
565 int (*to_supports_non_stop) (struct target_ops *);
566 /* find_memory_regions support method for gcore */
567 int (*to_find_memory_regions) (struct target_ops *,
568 find_memory_region_ftype func, void *data);
569 /* make_corefile_notes support method for gcore */
570 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
571 /* get_bookmark support method for bookmarks */
572 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
573 /* goto_bookmark support method for bookmarks */
574 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
575 /* Return the thread-local address at OFFSET in the
576 thread-local storage for the thread PTID and the shared library
577 or executable file given by OBJFILE. If that block of
578 thread-local storage hasn't been allocated yet, this function
579 may return an error. */
580 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
581 ptid_t ptid,
582 CORE_ADDR load_module_addr,
583 CORE_ADDR offset);
584
585 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
586 OBJECT. The OFFSET, for a seekable object, specifies the
587 starting point. The ANNEX can be used to provide additional
588 data-specific information to the target.
589
590 Return the transferred status, error or OK (an
591 'enum target_xfer_status' value). Save the number of bytes
592 actually transferred in *XFERED_LEN if transfer is successful
593 (TARGET_XFER_OK) or the number unavailable bytes if the requested
594 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
595 smaller than LEN does not indicate the end of the object, only
596 the end of the transfer; higher level code should continue
597 transferring if desired. This is handled in target.c.
598
599 The interface does not support a "retry" mechanism. Instead it
600 assumes that at least one byte will be transfered on each
601 successful call.
602
603 NOTE: cagney/2003-10-17: The current interface can lead to
604 fragmented transfers. Lower target levels should not implement
605 hacks, such as enlarging the transfer, in an attempt to
606 compensate for this. Instead, the target stack should be
607 extended so that it implements supply/collect methods and a
608 look-aside object cache. With that available, the lowest
609 target can safely and freely "push" data up the stack.
610
611 See target_read and target_write for more information. One,
612 and only one, of readbuf or writebuf must be non-NULL. */
613
614 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
615 enum target_object object,
616 const char *annex,
617 gdb_byte *readbuf,
618 const gdb_byte *writebuf,
619 ULONGEST offset, ULONGEST len,
620 ULONGEST *xfered_len)
621 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
622
623 /* Returns the memory map for the target. A return value of NULL
624 means that no memory map is available. If a memory address
625 does not fall within any returned regions, it's assumed to be
626 RAM. The returned memory regions should not overlap.
627
628 The order of regions does not matter; target_memory_map will
629 sort regions by starting address. For that reason, this
630 function should not be called directly except via
631 target_memory_map.
632
633 This method should not cache data; if the memory map could
634 change unexpectedly, it should be invalidated, and higher
635 layers will re-fetch it. */
636 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
637
638 /* Erases the region of flash memory starting at ADDRESS, of
639 length LENGTH.
640
641 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
642 on flash block boundaries, as reported by 'to_memory_map'. */
643 void (*to_flash_erase) (struct target_ops *,
644 ULONGEST address, LONGEST length);
645
646 /* Finishes a flash memory write sequence. After this operation
647 all flash memory should be available for writing and the result
648 of reading from areas written by 'to_flash_write' should be
649 equal to what was written. */
650 void (*to_flash_done) (struct target_ops *);
651
652 /* Describe the architecture-specific features of this target.
653 Returns the description found, or NULL if no description
654 was available. */
655 const struct target_desc *(*to_read_description) (struct target_ops *ops);
656
657 /* Build the PTID of the thread on which a given task is running,
658 based on LWP and THREAD. These values are extracted from the
659 task Private_Data section of the Ada Task Control Block, and
660 their interpretation depends on the target. */
661 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
662 long lwp, long thread);
663
664 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
665 Return 0 if *READPTR is already at the end of the buffer.
666 Return -1 if there is insufficient buffer for a whole entry.
667 Return 1 if an entry was read into *TYPEP and *VALP. */
668 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
669 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
670
671 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
672 sequence of bytes in PATTERN with length PATTERN_LEN.
673
674 The result is 1 if found, 0 if not found, and -1 if there was an error
675 requiring halting of the search (e.g. memory read error).
676 If the pattern is found the address is recorded in FOUND_ADDRP. */
677 int (*to_search_memory) (struct target_ops *ops,
678 CORE_ADDR start_addr, ULONGEST search_space_len,
679 const gdb_byte *pattern, ULONGEST pattern_len,
680 CORE_ADDR *found_addrp);
681
682 /* Can target execute in reverse? */
683 int (*to_can_execute_reverse) (struct target_ops *);
684
685 /* The direction the target is currently executing. Must be
686 implemented on targets that support reverse execution and async
687 mode. The default simply returns forward execution. */
688 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
689
690 /* Does this target support debugging multiple processes
691 simultaneously? */
692 int (*to_supports_multi_process) (struct target_ops *);
693
694 /* Does this target support enabling and disabling tracepoints while a trace
695 experiment is running? */
696 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
697
698 /* Does this target support disabling address space randomization? */
699 int (*to_supports_disable_randomization) (struct target_ops *);
700
701 /* Does this target support the tracenz bytecode for string collection? */
702 int (*to_supports_string_tracing) (struct target_ops *);
703
704 /* Does this target support evaluation of breakpoint conditions on its
705 end? */
706 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
707
708 /* Does this target support evaluation of breakpoint commands on its
709 end? */
710 int (*to_can_run_breakpoint_commands) (struct target_ops *);
711
712 /* Determine current architecture of thread PTID.
713
714 The target is supposed to determine the architecture of the code where
715 the target is currently stopped at (on Cell, if a target is in spu_run,
716 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
717 This is architecture used to perform decr_pc_after_break adjustment,
718 and also determines the frame architecture of the innermost frame.
719 ptrace operations need to operate according to target_gdbarch ().
720
721 The default implementation always returns target_gdbarch (). */
722 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
723
724 /* Determine current address space of thread PTID.
725
726 The default implementation always returns the inferior's
727 address space. */
728 struct address_space *(*to_thread_address_space) (struct target_ops *,
729 ptid_t);
730
731 /* Target file operations. */
732
733 /* Open FILENAME on the target, using FLAGS and MODE. Return a
734 target file descriptor, or -1 if an error occurs (and set
735 *TARGET_ERRNO). */
736 int (*to_fileio_open) (struct target_ops *,
737 const char *filename, int flags, int mode,
738 int *target_errno);
739
740 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
741 Return the number of bytes written, or -1 if an error occurs
742 (and set *TARGET_ERRNO). */
743 int (*to_fileio_pwrite) (struct target_ops *,
744 int fd, const gdb_byte *write_buf, int len,
745 ULONGEST offset, int *target_errno);
746
747 /* Read up to LEN bytes FD on the target into READ_BUF.
748 Return the number of bytes read, or -1 if an error occurs
749 (and set *TARGET_ERRNO). */
750 int (*to_fileio_pread) (struct target_ops *,
751 int fd, gdb_byte *read_buf, int len,
752 ULONGEST offset, int *target_errno);
753
754 /* Close FD on the target. Return 0, or -1 if an error occurs
755 (and set *TARGET_ERRNO). */
756 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
757
758 /* Unlink FILENAME on the target. Return 0, or -1 if an error
759 occurs (and set *TARGET_ERRNO). */
760 int (*to_fileio_unlink) (struct target_ops *,
761 const char *filename, int *target_errno);
762
763 /* Read value of symbolic link FILENAME on the target. Return a
764 null-terminated string allocated via xmalloc, or NULL if an error
765 occurs (and set *TARGET_ERRNO). */
766 char *(*to_fileio_readlink) (struct target_ops *,
767 const char *filename, int *target_errno);
768
769
770 /* Implement the "info proc" command. */
771 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
772
773 /* Tracepoint-related operations. */
774
775 /* Prepare the target for a tracing run. */
776 void (*to_trace_init) (struct target_ops *);
777
778 /* Send full details of a tracepoint location to the target. */
779 void (*to_download_tracepoint) (struct target_ops *,
780 struct bp_location *location);
781
782 /* Is the target able to download tracepoint locations in current
783 state? */
784 int (*to_can_download_tracepoint) (struct target_ops *);
785
786 /* Send full details of a trace state variable to the target. */
787 void (*to_download_trace_state_variable) (struct target_ops *,
788 struct trace_state_variable *tsv);
789
790 /* Enable a tracepoint on the target. */
791 void (*to_enable_tracepoint) (struct target_ops *,
792 struct bp_location *location);
793
794 /* Disable a tracepoint on the target. */
795 void (*to_disable_tracepoint) (struct target_ops *,
796 struct bp_location *location);
797
798 /* Inform the target info of memory regions that are readonly
799 (such as text sections), and so it should return data from
800 those rather than look in the trace buffer. */
801 void (*to_trace_set_readonly_regions) (struct target_ops *);
802
803 /* Start a trace run. */
804 void (*to_trace_start) (struct target_ops *);
805
806 /* Get the current status of a tracing run. */
807 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
808
809 void (*to_get_tracepoint_status) (struct target_ops *,
810 struct breakpoint *tp,
811 struct uploaded_tp *utp);
812
813 /* Stop a trace run. */
814 void (*to_trace_stop) (struct target_ops *);
815
816 /* Ask the target to find a trace frame of the given type TYPE,
817 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
818 number of the trace frame, and also the tracepoint number at
819 TPP. If no trace frame matches, return -1. May throw if the
820 operation fails. */
821 int (*to_trace_find) (struct target_ops *,
822 enum trace_find_type type, int num,
823 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
824
825 /* Get the value of the trace state variable number TSV, returning
826 1 if the value is known and writing the value itself into the
827 location pointed to by VAL, else returning 0. */
828 int (*to_get_trace_state_variable_value) (struct target_ops *,
829 int tsv, LONGEST *val);
830
831 int (*to_save_trace_data) (struct target_ops *, const char *filename);
832
833 int (*to_upload_tracepoints) (struct target_ops *,
834 struct uploaded_tp **utpp);
835
836 int (*to_upload_trace_state_variables) (struct target_ops *,
837 struct uploaded_tsv **utsvp);
838
839 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
840 ULONGEST offset, LONGEST len);
841
842 /* Get the minimum length of instruction on which a fast tracepoint
843 may be set on the target. If this operation is unsupported,
844 return -1. If for some reason the minimum length cannot be
845 determined, return 0. */
846 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
847
848 /* Set the target's tracing behavior in response to unexpected
849 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
850 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
851 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
852 /* Set the size of trace buffer in the target. */
853 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
854
855 /* Add/change textual notes about the trace run, returning 1 if
856 successful, 0 otherwise. */
857 int (*to_set_trace_notes) (struct target_ops *,
858 const char *user, const char *notes,
859 const char *stopnotes);
860
861 /* Return the processor core that thread PTID was last seen on.
862 This information is updated only when:
863 - update_thread_list is called
864 - thread stops
865 If the core cannot be determined -- either for the specified
866 thread, or right now, or in this debug session, or for this
867 target -- return -1. */
868 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
869
870 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
871 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
872 a match, 0 if there's a mismatch, and -1 if an error is
873 encountered while reading memory. */
874 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
875 CORE_ADDR memaddr, ULONGEST size);
876
877 /* Return the address of the start of the Thread Information Block
878 a Windows OS specific feature. */
879 int (*to_get_tib_address) (struct target_ops *,
880 ptid_t ptid, CORE_ADDR *addr);
881
882 /* Send the new settings of write permission variables. */
883 void (*to_set_permissions) (struct target_ops *);
884
885 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
886 with its details. Return 1 on success, 0 on failure. */
887 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
888 struct static_tracepoint_marker *marker);
889
890 /* Return a vector of all tracepoints markers string id ID, or all
891 markers if ID is NULL. */
892 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
893 (struct target_ops *, const char *id);
894
895 /* Return a traceframe info object describing the current
896 traceframe's contents. If the target doesn't support
897 traceframe info, return NULL. If the current traceframe is not
898 selected (the current traceframe number is -1), the target can
899 choose to return either NULL or an empty traceframe info. If
900 NULL is returned, for example in remote target, GDB will read
901 from the live inferior. If an empty traceframe info is
902 returned, for example in tfile target, which means the
903 traceframe info is available, but the requested memory is not
904 available in it. GDB will try to see if the requested memory
905 is available in the read-only sections. This method should not
906 cache data; higher layers take care of caching, invalidating,
907 and re-fetching when necessary. */
908 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
909
910 /* Ask the target to use or not to use agent according to USE. Return 1
911 successful, 0 otherwise. */
912 int (*to_use_agent) (struct target_ops *, int use);
913
914 /* Is the target able to use agent in current state? */
915 int (*to_can_use_agent) (struct target_ops *);
916
917 /* Check whether the target supports branch tracing. */
918 int (*to_supports_btrace) (struct target_ops *)
919 TARGET_DEFAULT_RETURN (0);
920
921 /* Enable branch tracing for PTID and allocate a branch trace target
922 information struct for reading and for disabling branch trace. */
923 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
924 ptid_t ptid);
925
926 /* Disable branch tracing and deallocate TINFO. */
927 void (*to_disable_btrace) (struct target_ops *,
928 struct btrace_target_info *tinfo);
929
930 /* Disable branch tracing and deallocate TINFO. This function is similar
931 to to_disable_btrace, except that it is called during teardown and is
932 only allowed to perform actions that are safe. A counter-example would
933 be attempting to talk to a remote target. */
934 void (*to_teardown_btrace) (struct target_ops *,
935 struct btrace_target_info *tinfo);
936
937 /* Read branch trace data for the thread indicated by BTINFO into DATA.
938 DATA is cleared before new trace is added.
939 The branch trace will start with the most recent block and continue
940 towards older blocks. */
941 enum btrace_error (*to_read_btrace) (struct target_ops *self,
942 VEC (btrace_block_s) **data,
943 struct btrace_target_info *btinfo,
944 enum btrace_read_type type);
945
946 /* Stop trace recording. */
947 void (*to_stop_recording) (struct target_ops *);
948
949 /* Print information about the recording. */
950 void (*to_info_record) (struct target_ops *);
951
952 /* Save the recorded execution trace into a file. */
953 void (*to_save_record) (struct target_ops *, const char *filename);
954
955 /* Delete the recorded execution trace from the current position onwards. */
956 void (*to_delete_record) (struct target_ops *);
957
958 /* Query if the record target is currently replaying. */
959 int (*to_record_is_replaying) (struct target_ops *);
960
961 /* Go to the begin of the execution trace. */
962 void (*to_goto_record_begin) (struct target_ops *);
963
964 /* Go to the end of the execution trace. */
965 void (*to_goto_record_end) (struct target_ops *);
966
967 /* Go to a specific location in the recorded execution trace. */
968 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
969
970 /* Disassemble SIZE instructions in the recorded execution trace from
971 the current position.
972 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
973 disassemble SIZE succeeding instructions. */
974 void (*to_insn_history) (struct target_ops *, int size, int flags);
975
976 /* Disassemble SIZE instructions in the recorded execution trace around
977 FROM.
978 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
979 disassemble SIZE instructions after FROM. */
980 void (*to_insn_history_from) (struct target_ops *,
981 ULONGEST from, int size, int flags);
982
983 /* Disassemble a section of the recorded execution trace from instruction
984 BEGIN (inclusive) to instruction END (inclusive). */
985 void (*to_insn_history_range) (struct target_ops *,
986 ULONGEST begin, ULONGEST end, int flags);
987
988 /* Print a function trace of the recorded execution trace.
989 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
990 succeeding functions. */
991 void (*to_call_history) (struct target_ops *, int size, int flags);
992
993 /* Print a function trace of the recorded execution trace starting
994 at function FROM.
995 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
996 SIZE functions after FROM. */
997 void (*to_call_history_from) (struct target_ops *,
998 ULONGEST begin, int size, int flags);
999
1000 /* Print a function trace of an execution trace section from function BEGIN
1001 (inclusive) to function END (inclusive). */
1002 void (*to_call_history_range) (struct target_ops *,
1003 ULONGEST begin, ULONGEST end, int flags);
1004
1005 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1006 non-empty annex. */
1007 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1008
1009 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1010 it is not used. */
1011 const struct frame_unwind *to_get_unwinder;
1012 const struct frame_unwind *to_get_tailcall_unwinder;
1013
1014 /* Return the number of bytes by which the PC needs to be decremented
1015 after executing a breakpoint instruction.
1016 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1017 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1018 struct gdbarch *gdbarch);
1019
1020 int to_magic;
1021 /* Need sub-structure for target machine related rather than comm related?
1022 */
1023 };
1024
1025 /* Magic number for checking ops size. If a struct doesn't end with this
1026 number, somebody changed the declaration but didn't change all the
1027 places that initialize one. */
1028
1029 #define OPS_MAGIC 3840
1030
1031 /* The ops structure for our "current" target process. This should
1032 never be NULL. If there is no target, it points to the dummy_target. */
1033
1034 extern struct target_ops current_target;
1035
1036 /* Define easy words for doing these operations on our current target. */
1037
1038 #define target_shortname (current_target.to_shortname)
1039 #define target_longname (current_target.to_longname)
1040
1041 /* Does whatever cleanup is required for a target that we are no
1042 longer going to be calling. This routine is automatically always
1043 called after popping the target off the target stack - the target's
1044 own methods are no longer available through the target vector.
1045 Closing file descriptors and freeing all memory allocated memory are
1046 typical things it should do. */
1047
1048 void target_close (struct target_ops *targ);
1049
1050 /* Attaches to a process on the target side. Arguments are as passed
1051 to the `attach' command by the user. This routine can be called
1052 when the target is not on the target-stack, if the target_can_run
1053 routine returns 1; in that case, it must push itself onto the stack.
1054 Upon exit, the target should be ready for normal operations, and
1055 should be ready to deliver the status of the process immediately
1056 (without waiting) to an upcoming target_wait call. */
1057
1058 void target_attach (char *, int);
1059
1060 /* Some targets don't generate traps when attaching to the inferior,
1061 or their target_attach implementation takes care of the waiting.
1062 These targets must set to_attach_no_wait. */
1063
1064 #define target_attach_no_wait \
1065 (current_target.to_attach_no_wait)
1066
1067 /* The target_attach operation places a process under debugger control,
1068 and stops the process.
1069
1070 This operation provides a target-specific hook that allows the
1071 necessary bookkeeping to be performed after an attach completes. */
1072 #define target_post_attach(pid) \
1073 (*current_target.to_post_attach) (&current_target, pid)
1074
1075 /* Takes a program previously attached to and detaches it.
1076 The program may resume execution (some targets do, some don't) and will
1077 no longer stop on signals, etc. We better not have left any breakpoints
1078 in the program or it'll die when it hits one. ARGS is arguments
1079 typed by the user (e.g. a signal to send the process). FROM_TTY
1080 says whether to be verbose or not. */
1081
1082 extern void target_detach (const char *, int);
1083
1084 /* Disconnect from the current target without resuming it (leaving it
1085 waiting for a debugger). */
1086
1087 extern void target_disconnect (char *, int);
1088
1089 /* Resume execution of the target process PTID (or a group of
1090 threads). STEP says whether to single-step or to run free; SIGGNAL
1091 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1092 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1093 PTID means `step/resume only this process id'. A wildcard PTID
1094 (all threads, or all threads of process) means `step/resume
1095 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1096 matches) resume with their 'thread->suspend.stop_signal' signal
1097 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1098 if in "no pass" state. */
1099
1100 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1101
1102 /* Wait for process pid to do something. PTID = -1 to wait for any
1103 pid to do something. Return pid of child, or -1 in case of error;
1104 store status through argument pointer STATUS. Note that it is
1105 _NOT_ OK to throw_exception() out of target_wait() without popping
1106 the debugging target from the stack; GDB isn't prepared to get back
1107 to the prompt with a debugging target but without the frame cache,
1108 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1109 options. */
1110
1111 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1112 int options);
1113
1114 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1115
1116 extern void target_fetch_registers (struct regcache *regcache, int regno);
1117
1118 /* Store at least register REGNO, or all regs if REGNO == -1.
1119 It can store as many registers as it wants to, so target_prepare_to_store
1120 must have been previously called. Calls error() if there are problems. */
1121
1122 extern void target_store_registers (struct regcache *regcache, int regs);
1123
1124 /* Get ready to modify the registers array. On machines which store
1125 individual registers, this doesn't need to do anything. On machines
1126 which store all the registers in one fell swoop, this makes sure
1127 that REGISTERS contains all the registers from the program being
1128 debugged. */
1129
1130 #define target_prepare_to_store(regcache) \
1131 (*current_target.to_prepare_to_store) (&current_target, regcache)
1132
1133 /* Determine current address space of thread PTID. */
1134
1135 struct address_space *target_thread_address_space (ptid_t);
1136
1137 /* Implement the "info proc" command. This returns one if the request
1138 was handled, and zero otherwise. It can also throw an exception if
1139 an error was encountered while attempting to handle the
1140 request. */
1141
1142 int target_info_proc (char *, enum info_proc_what);
1143
1144 /* Returns true if this target can debug multiple processes
1145 simultaneously. */
1146
1147 #define target_supports_multi_process() \
1148 (*current_target.to_supports_multi_process) (&current_target)
1149
1150 /* Returns true if this target can disable address space randomization. */
1151
1152 int target_supports_disable_randomization (void);
1153
1154 /* Returns true if this target can enable and disable tracepoints
1155 while a trace experiment is running. */
1156
1157 #define target_supports_enable_disable_tracepoint() \
1158 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1159
1160 #define target_supports_string_tracing() \
1161 (*current_target.to_supports_string_tracing) (&current_target)
1162
1163 /* Returns true if this target can handle breakpoint conditions
1164 on its end. */
1165
1166 #define target_supports_evaluation_of_breakpoint_conditions() \
1167 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1168
1169 /* Returns true if this target can handle breakpoint commands
1170 on its end. */
1171
1172 #define target_can_run_breakpoint_commands() \
1173 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1174
1175 extern int target_read_string (CORE_ADDR, char **, int, int *);
1176
1177 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1178 ssize_t len);
1179
1180 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1181 ssize_t len);
1182
1183 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1184
1185 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1186
1187 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1188 ssize_t len);
1189
1190 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1191 ssize_t len);
1192
1193 /* Fetches the target's memory map. If one is found it is sorted
1194 and returned, after some consistency checking. Otherwise, NULL
1195 is returned. */
1196 VEC(mem_region_s) *target_memory_map (void);
1197
1198 /* Erase the specified flash region. */
1199 void target_flash_erase (ULONGEST address, LONGEST length);
1200
1201 /* Finish a sequence of flash operations. */
1202 void target_flash_done (void);
1203
1204 /* Describes a request for a memory write operation. */
1205 struct memory_write_request
1206 {
1207 /* Begining address that must be written. */
1208 ULONGEST begin;
1209 /* Past-the-end address. */
1210 ULONGEST end;
1211 /* The data to write. */
1212 gdb_byte *data;
1213 /* A callback baton for progress reporting for this request. */
1214 void *baton;
1215 };
1216 typedef struct memory_write_request memory_write_request_s;
1217 DEF_VEC_O(memory_write_request_s);
1218
1219 /* Enumeration specifying different flash preservation behaviour. */
1220 enum flash_preserve_mode
1221 {
1222 flash_preserve,
1223 flash_discard
1224 };
1225
1226 /* Write several memory blocks at once. This version can be more
1227 efficient than making several calls to target_write_memory, in
1228 particular because it can optimize accesses to flash memory.
1229
1230 Moreover, this is currently the only memory access function in gdb
1231 that supports writing to flash memory, and it should be used for
1232 all cases where access to flash memory is desirable.
1233
1234 REQUESTS is the vector (see vec.h) of memory_write_request.
1235 PRESERVE_FLASH_P indicates what to do with blocks which must be
1236 erased, but not completely rewritten.
1237 PROGRESS_CB is a function that will be periodically called to provide
1238 feedback to user. It will be called with the baton corresponding
1239 to the request currently being written. It may also be called
1240 with a NULL baton, when preserved flash sectors are being rewritten.
1241
1242 The function returns 0 on success, and error otherwise. */
1243 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1244 enum flash_preserve_mode preserve_flash_p,
1245 void (*progress_cb) (ULONGEST, void *));
1246
1247 /* Print a line about the current target. */
1248
1249 #define target_files_info() \
1250 (*current_target.to_files_info) (&current_target)
1251
1252 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1253 the target machine. Returns 0 for success, and returns non-zero or
1254 throws an error (with a detailed failure reason error code and
1255 message) otherwise. */
1256
1257 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1258 struct bp_target_info *bp_tgt);
1259
1260 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1261 machine. Result is 0 for success, non-zero for error. */
1262
1263 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1264 struct bp_target_info *bp_tgt);
1265
1266 /* Initialize the terminal settings we record for the inferior,
1267 before we actually run the inferior. */
1268
1269 #define target_terminal_init() \
1270 (*current_target.to_terminal_init) (&current_target)
1271
1272 /* Put the inferior's terminal settings into effect.
1273 This is preparation for starting or resuming the inferior. */
1274
1275 extern void target_terminal_inferior (void);
1276
1277 /* Put some of our terminal settings into effect,
1278 enough to get proper results from our output,
1279 but do not change into or out of RAW mode
1280 so that no input is discarded.
1281
1282 After doing this, either terminal_ours or terminal_inferior
1283 should be called to get back to a normal state of affairs. */
1284
1285 #define target_terminal_ours_for_output() \
1286 (*current_target.to_terminal_ours_for_output) (&current_target)
1287
1288 /* Put our terminal settings into effect.
1289 First record the inferior's terminal settings
1290 so they can be restored properly later. */
1291
1292 #define target_terminal_ours() \
1293 (*current_target.to_terminal_ours) (&current_target)
1294
1295 /* Save our terminal settings.
1296 This is called from TUI after entering or leaving the curses
1297 mode. Since curses modifies our terminal this call is here
1298 to take this change into account. */
1299
1300 #define target_terminal_save_ours() \
1301 (*current_target.to_terminal_save_ours) (&current_target)
1302
1303 /* Print useful information about our terminal status, if such a thing
1304 exists. */
1305
1306 #define target_terminal_info(arg, from_tty) \
1307 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1308
1309 /* Kill the inferior process. Make it go away. */
1310
1311 extern void target_kill (void);
1312
1313 /* Load an executable file into the target process. This is expected
1314 to not only bring new code into the target process, but also to
1315 update GDB's symbol tables to match.
1316
1317 ARG contains command-line arguments, to be broken down with
1318 buildargv (). The first non-switch argument is the filename to
1319 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1320 0)), which is an offset to apply to the load addresses of FILE's
1321 sections. The target may define switches, or other non-switch
1322 arguments, as it pleases. */
1323
1324 extern void target_load (char *arg, int from_tty);
1325
1326 /* Start an inferior process and set inferior_ptid to its pid.
1327 EXEC_FILE is the file to run.
1328 ALLARGS is a string containing the arguments to the program.
1329 ENV is the environment vector to pass. Errors reported with error().
1330 On VxWorks and various standalone systems, we ignore exec_file. */
1331
1332 void target_create_inferior (char *exec_file, char *args,
1333 char **env, int from_tty);
1334
1335 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1336 notification of inferior events such as fork and vork immediately
1337 after the inferior is created. (This because of how gdb gets an
1338 inferior created via invoking a shell to do it. In such a scenario,
1339 if the shell init file has commands in it, the shell will fork and
1340 exec for each of those commands, and we will see each such fork
1341 event. Very bad.)
1342
1343 Such targets will supply an appropriate definition for this function. */
1344
1345 #define target_post_startup_inferior(ptid) \
1346 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1347
1348 /* On some targets, we can catch an inferior fork or vfork event when
1349 it occurs. These functions insert/remove an already-created
1350 catchpoint for such events. They return 0 for success, 1 if the
1351 catchpoint type is not supported and -1 for failure. */
1352
1353 #define target_insert_fork_catchpoint(pid) \
1354 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1355
1356 #define target_remove_fork_catchpoint(pid) \
1357 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1358
1359 #define target_insert_vfork_catchpoint(pid) \
1360 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1361
1362 #define target_remove_vfork_catchpoint(pid) \
1363 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1364
1365 /* If the inferior forks or vforks, this function will be called at
1366 the next resume in order to perform any bookkeeping and fiddling
1367 necessary to continue debugging either the parent or child, as
1368 requested, and releasing the other. Information about the fork
1369 or vfork event is available via get_last_target_status ().
1370 This function returns 1 if the inferior should not be resumed
1371 (i.e. there is another event pending). */
1372
1373 int target_follow_fork (int follow_child, int detach_fork);
1374
1375 /* On some targets, we can catch an inferior exec event when it
1376 occurs. These functions insert/remove an already-created
1377 catchpoint for such events. They return 0 for success, 1 if the
1378 catchpoint type is not supported and -1 for failure. */
1379
1380 #define target_insert_exec_catchpoint(pid) \
1381 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1382
1383 #define target_remove_exec_catchpoint(pid) \
1384 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1385
1386 /* Syscall catch.
1387
1388 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1389 If NEEDED is zero, it means the target can disable the mechanism to
1390 catch system calls because there are no more catchpoints of this type.
1391
1392 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1393 being requested. In this case, both TABLE_SIZE and TABLE should
1394 be ignored.
1395
1396 TABLE_SIZE is the number of elements in TABLE. It only matters if
1397 ANY_COUNT is zero.
1398
1399 TABLE is an array of ints, indexed by syscall number. An element in
1400 this array is nonzero if that syscall should be caught. This argument
1401 only matters if ANY_COUNT is zero.
1402
1403 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1404 for failure. */
1405
1406 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1407 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1408 pid, needed, any_count, \
1409 table_size, table)
1410
1411 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1412 exit code of PID, if any. */
1413
1414 #define target_has_exited(pid,wait_status,exit_status) \
1415 (*current_target.to_has_exited) (&current_target, \
1416 pid,wait_status,exit_status)
1417
1418 /* The debugger has completed a blocking wait() call. There is now
1419 some process event that must be processed. This function should
1420 be defined by those targets that require the debugger to perform
1421 cleanup or internal state changes in response to the process event. */
1422
1423 /* The inferior process has died. Do what is right. */
1424
1425 void target_mourn_inferior (void);
1426
1427 /* Does target have enough data to do a run or attach command? */
1428
1429 #define target_can_run(t) \
1430 ((t)->to_can_run) (t)
1431
1432 /* Set list of signals to be handled in the target.
1433
1434 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1435 (enum gdb_signal). For every signal whose entry in this array is
1436 non-zero, the target is allowed -but not required- to skip reporting
1437 arrival of the signal to the GDB core by returning from target_wait,
1438 and to pass the signal directly to the inferior instead.
1439
1440 However, if the target is hardware single-stepping a thread that is
1441 about to receive a signal, it needs to be reported in any case, even
1442 if mentioned in a previous target_pass_signals call. */
1443
1444 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1445
1446 /* Set list of signals the target may pass to the inferior. This
1447 directly maps to the "handle SIGNAL pass/nopass" setting.
1448
1449 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1450 number (enum gdb_signal). For every signal whose entry in this
1451 array is non-zero, the target is allowed to pass the signal to the
1452 inferior. Signals not present in the array shall be silently
1453 discarded. This does not influence whether to pass signals to the
1454 inferior as a result of a target_resume call. This is useful in
1455 scenarios where the target needs to decide whether to pass or not a
1456 signal to the inferior without GDB core involvement, such as for
1457 example, when detaching (as threads may have been suspended with
1458 pending signals not reported to GDB). */
1459
1460 extern void target_program_signals (int nsig, unsigned char *program_signals);
1461
1462 /* Check to see if a thread is still alive. */
1463
1464 extern int target_thread_alive (ptid_t ptid);
1465
1466 /* Query for new threads and add them to the thread list. */
1467
1468 extern void target_find_new_threads (void);
1469
1470 /* Make target stop in a continuable fashion. (For instance, under
1471 Unix, this should act like SIGSTOP). This function is normally
1472 used by GUIs to implement a stop button. */
1473
1474 extern void target_stop (ptid_t ptid);
1475
1476 /* Send the specified COMMAND to the target's monitor
1477 (shell,interpreter) for execution. The result of the query is
1478 placed in OUTBUF. */
1479
1480 #define target_rcmd(command, outbuf) \
1481 (*current_target.to_rcmd) (&current_target, command, outbuf)
1482
1483
1484 /* Does the target include all of memory, or only part of it? This
1485 determines whether we look up the target chain for other parts of
1486 memory if this target can't satisfy a request. */
1487
1488 extern int target_has_all_memory_1 (void);
1489 #define target_has_all_memory target_has_all_memory_1 ()
1490
1491 /* Does the target include memory? (Dummy targets don't.) */
1492
1493 extern int target_has_memory_1 (void);
1494 #define target_has_memory target_has_memory_1 ()
1495
1496 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1497 we start a process.) */
1498
1499 extern int target_has_stack_1 (void);
1500 #define target_has_stack target_has_stack_1 ()
1501
1502 /* Does the target have registers? (Exec files don't.) */
1503
1504 extern int target_has_registers_1 (void);
1505 #define target_has_registers target_has_registers_1 ()
1506
1507 /* Does the target have execution? Can we make it jump (through
1508 hoops), or pop its stack a few times? This means that the current
1509 target is currently executing; for some targets, that's the same as
1510 whether or not the target is capable of execution, but there are
1511 also targets which can be current while not executing. In that
1512 case this will become true after target_create_inferior or
1513 target_attach. */
1514
1515 extern int target_has_execution_1 (ptid_t);
1516
1517 /* Like target_has_execution_1, but always passes inferior_ptid. */
1518
1519 extern int target_has_execution_current (void);
1520
1521 #define target_has_execution target_has_execution_current ()
1522
1523 /* Default implementations for process_stratum targets. Return true
1524 if there's a selected inferior, false otherwise. */
1525
1526 extern int default_child_has_all_memory (struct target_ops *ops);
1527 extern int default_child_has_memory (struct target_ops *ops);
1528 extern int default_child_has_stack (struct target_ops *ops);
1529 extern int default_child_has_registers (struct target_ops *ops);
1530 extern int default_child_has_execution (struct target_ops *ops,
1531 ptid_t the_ptid);
1532
1533 /* Can the target support the debugger control of thread execution?
1534 Can it lock the thread scheduler? */
1535
1536 #define target_can_lock_scheduler \
1537 (current_target.to_has_thread_control & tc_schedlock)
1538
1539 /* Should the target enable async mode if it is supported? Temporary
1540 cludge until async mode is a strict superset of sync mode. */
1541 extern int target_async_permitted;
1542
1543 /* Can the target support asynchronous execution? */
1544 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1545
1546 /* Is the target in asynchronous execution mode? */
1547 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1548
1549 int target_supports_non_stop (void);
1550
1551 /* Put the target in async mode with the specified callback function. */
1552 #define target_async(CALLBACK,CONTEXT) \
1553 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1554
1555 #define target_execution_direction() \
1556 (current_target.to_execution_direction (&current_target))
1557
1558 /* Converts a process id to a string. Usually, the string just contains
1559 `process xyz', but on some systems it may contain
1560 `process xyz thread abc'. */
1561
1562 extern char *target_pid_to_str (ptid_t ptid);
1563
1564 extern char *normal_pid_to_str (ptid_t ptid);
1565
1566 /* Return a short string describing extra information about PID,
1567 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1568 is okay. */
1569
1570 #define target_extra_thread_info(TP) \
1571 (current_target.to_extra_thread_info (&current_target, TP))
1572
1573 /* Return the thread's name. A NULL result means that the target
1574 could not determine this thread's name. */
1575
1576 extern char *target_thread_name (struct thread_info *);
1577
1578 /* Attempts to find the pathname of the executable file
1579 that was run to create a specified process.
1580
1581 The process PID must be stopped when this operation is used.
1582
1583 If the executable file cannot be determined, NULL is returned.
1584
1585 Else, a pointer to a character string containing the pathname
1586 is returned. This string should be copied into a buffer by
1587 the client if the string will not be immediately used, or if
1588 it must persist. */
1589
1590 #define target_pid_to_exec_file(pid) \
1591 (current_target.to_pid_to_exec_file) (&current_target, pid)
1592
1593 /* See the to_thread_architecture description in struct target_ops. */
1594
1595 #define target_thread_architecture(ptid) \
1596 (current_target.to_thread_architecture (&current_target, ptid))
1597
1598 /*
1599 * Iterator function for target memory regions.
1600 * Calls a callback function once for each memory region 'mapped'
1601 * in the child process. Defined as a simple macro rather than
1602 * as a function macro so that it can be tested for nullity.
1603 */
1604
1605 #define target_find_memory_regions(FUNC, DATA) \
1606 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1607
1608 /*
1609 * Compose corefile .note section.
1610 */
1611
1612 #define target_make_corefile_notes(BFD, SIZE_P) \
1613 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1614
1615 /* Bookmark interfaces. */
1616 #define target_get_bookmark(ARGS, FROM_TTY) \
1617 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1618
1619 #define target_goto_bookmark(ARG, FROM_TTY) \
1620 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1621
1622 /* Hardware watchpoint interfaces. */
1623
1624 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1625 write). Only the INFERIOR_PTID task is being queried. */
1626
1627 #define target_stopped_by_watchpoint() \
1628 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1629
1630 /* Non-zero if we have steppable watchpoints */
1631
1632 #define target_have_steppable_watchpoint \
1633 (current_target.to_have_steppable_watchpoint)
1634
1635 /* Non-zero if we have continuable watchpoints */
1636
1637 #define target_have_continuable_watchpoint \
1638 (current_target.to_have_continuable_watchpoint)
1639
1640 /* Provide defaults for hardware watchpoint functions. */
1641
1642 /* If the *_hw_beakpoint functions have not been defined
1643 elsewhere use the definitions in the target vector. */
1644
1645 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1646 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1647 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1648 (including this one?). OTHERTYPE is who knows what... */
1649
1650 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1651 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1652 TYPE, CNT, OTHERTYPE);
1653
1654 /* Returns the number of debug registers needed to watch the given
1655 memory region, or zero if not supported. */
1656
1657 #define target_region_ok_for_hw_watchpoint(addr, len) \
1658 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1659 addr, len)
1660
1661
1662 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1663 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1664 COND is the expression for its condition, or NULL if there's none.
1665 Returns 0 for success, 1 if the watchpoint type is not supported,
1666 -1 for failure. */
1667
1668 #define target_insert_watchpoint(addr, len, type, cond) \
1669 (*current_target.to_insert_watchpoint) (&current_target, \
1670 addr, len, type, cond)
1671
1672 #define target_remove_watchpoint(addr, len, type, cond) \
1673 (*current_target.to_remove_watchpoint) (&current_target, \
1674 addr, len, type, cond)
1675
1676 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1677 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1678 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1679 masked watchpoints are not supported, -1 for failure. */
1680
1681 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1682
1683 /* Remove a masked watchpoint at ADDR with the mask MASK.
1684 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1685 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1686 for failure. */
1687
1688 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1689
1690 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1691 the target machine. Returns 0 for success, and returns non-zero or
1692 throws an error (with a detailed failure reason error code and
1693 message) otherwise. */
1694
1695 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1696 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1697 gdbarch, bp_tgt)
1698
1699 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1700 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1701 gdbarch, bp_tgt)
1702
1703 /* Return number of debug registers needed for a ranged breakpoint,
1704 or -1 if ranged breakpoints are not supported. */
1705
1706 extern int target_ranged_break_num_registers (void);
1707
1708 /* Return non-zero if target knows the data address which triggered this
1709 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1710 INFERIOR_PTID task is being queried. */
1711 #define target_stopped_data_address(target, addr_p) \
1712 (*target.to_stopped_data_address) (target, addr_p)
1713
1714 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1715 LENGTH bytes beginning at START. */
1716 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1717 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1718
1719 /* Return non-zero if the target is capable of using hardware to evaluate
1720 the condition expression. In this case, if the condition is false when
1721 the watched memory location changes, execution may continue without the
1722 debugger being notified.
1723
1724 Due to limitations in the hardware implementation, it may be capable of
1725 avoiding triggering the watchpoint in some cases where the condition
1726 expression is false, but may report some false positives as well.
1727 For this reason, GDB will still evaluate the condition expression when
1728 the watchpoint triggers. */
1729 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1730 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1731 addr, len, type, cond)
1732
1733 /* Return number of debug registers needed for a masked watchpoint,
1734 -1 if masked watchpoints are not supported or -2 if the given address
1735 and mask combination cannot be used. */
1736
1737 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1738
1739 /* Target can execute in reverse? */
1740 #define target_can_execute_reverse \
1741 (current_target.to_can_execute_reverse ? \
1742 current_target.to_can_execute_reverse (&current_target) : 0)
1743
1744 extern const struct target_desc *target_read_description (struct target_ops *);
1745
1746 #define target_get_ada_task_ptid(lwp, tid) \
1747 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1748
1749 /* Utility implementation of searching memory. */
1750 extern int simple_search_memory (struct target_ops* ops,
1751 CORE_ADDR start_addr,
1752 ULONGEST search_space_len,
1753 const gdb_byte *pattern,
1754 ULONGEST pattern_len,
1755 CORE_ADDR *found_addrp);
1756
1757 /* Main entry point for searching memory. */
1758 extern int target_search_memory (CORE_ADDR start_addr,
1759 ULONGEST search_space_len,
1760 const gdb_byte *pattern,
1761 ULONGEST pattern_len,
1762 CORE_ADDR *found_addrp);
1763
1764 /* Target file operations. */
1765
1766 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1767 target file descriptor, or -1 if an error occurs (and set
1768 *TARGET_ERRNO). */
1769 extern int target_fileio_open (const char *filename, int flags, int mode,
1770 int *target_errno);
1771
1772 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1773 Return the number of bytes written, or -1 if an error occurs
1774 (and set *TARGET_ERRNO). */
1775 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1776 ULONGEST offset, int *target_errno);
1777
1778 /* Read up to LEN bytes FD on the target into READ_BUF.
1779 Return the number of bytes read, or -1 if an error occurs
1780 (and set *TARGET_ERRNO). */
1781 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1782 ULONGEST offset, int *target_errno);
1783
1784 /* Close FD on the target. Return 0, or -1 if an error occurs
1785 (and set *TARGET_ERRNO). */
1786 extern int target_fileio_close (int fd, int *target_errno);
1787
1788 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1789 occurs (and set *TARGET_ERRNO). */
1790 extern int target_fileio_unlink (const char *filename, int *target_errno);
1791
1792 /* Read value of symbolic link FILENAME on the target. Return a
1793 null-terminated string allocated via xmalloc, or NULL if an error
1794 occurs (and set *TARGET_ERRNO). */
1795 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1796
1797 /* Read target file FILENAME. The return value will be -1 if the transfer
1798 fails or is not supported; 0 if the object is empty; or the length
1799 of the object otherwise. If a positive value is returned, a
1800 sufficiently large buffer will be allocated using xmalloc and
1801 returned in *BUF_P containing the contents of the object.
1802
1803 This method should be used for objects sufficiently small to store
1804 in a single xmalloc'd buffer, when no fixed bound on the object's
1805 size is known in advance. */
1806 extern LONGEST target_fileio_read_alloc (const char *filename,
1807 gdb_byte **buf_p);
1808
1809 /* Read target file FILENAME. The result is NUL-terminated and
1810 returned as a string, allocated using xmalloc. If an error occurs
1811 or the transfer is unsupported, NULL is returned. Empty objects
1812 are returned as allocated but empty strings. A warning is issued
1813 if the result contains any embedded NUL bytes. */
1814 extern char *target_fileio_read_stralloc (const char *filename);
1815
1816
1817 /* Tracepoint-related operations. */
1818
1819 #define target_trace_init() \
1820 (*current_target.to_trace_init) (&current_target)
1821
1822 #define target_download_tracepoint(t) \
1823 (*current_target.to_download_tracepoint) (&current_target, t)
1824
1825 #define target_can_download_tracepoint() \
1826 (*current_target.to_can_download_tracepoint) (&current_target)
1827
1828 #define target_download_trace_state_variable(tsv) \
1829 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1830
1831 #define target_enable_tracepoint(loc) \
1832 (*current_target.to_enable_tracepoint) (&current_target, loc)
1833
1834 #define target_disable_tracepoint(loc) \
1835 (*current_target.to_disable_tracepoint) (&current_target, loc)
1836
1837 #define target_trace_start() \
1838 (*current_target.to_trace_start) (&current_target)
1839
1840 #define target_trace_set_readonly_regions() \
1841 (*current_target.to_trace_set_readonly_regions) (&current_target)
1842
1843 #define target_get_trace_status(ts) \
1844 (*current_target.to_get_trace_status) (&current_target, ts)
1845
1846 #define target_get_tracepoint_status(tp,utp) \
1847 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1848
1849 #define target_trace_stop() \
1850 (*current_target.to_trace_stop) (&current_target)
1851
1852 #define target_trace_find(type,num,addr1,addr2,tpp) \
1853 (*current_target.to_trace_find) (&current_target, \
1854 (type), (num), (addr1), (addr2), (tpp))
1855
1856 #define target_get_trace_state_variable_value(tsv,val) \
1857 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1858 (tsv), (val))
1859
1860 #define target_save_trace_data(filename) \
1861 (*current_target.to_save_trace_data) (&current_target, filename)
1862
1863 #define target_upload_tracepoints(utpp) \
1864 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1865
1866 #define target_upload_trace_state_variables(utsvp) \
1867 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1868
1869 #define target_get_raw_trace_data(buf,offset,len) \
1870 (*current_target.to_get_raw_trace_data) (&current_target, \
1871 (buf), (offset), (len))
1872
1873 #define target_get_min_fast_tracepoint_insn_len() \
1874 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1875
1876 #define target_set_disconnected_tracing(val) \
1877 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1878
1879 #define target_set_circular_trace_buffer(val) \
1880 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1881
1882 #define target_set_trace_buffer_size(val) \
1883 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1884
1885 #define target_set_trace_notes(user,notes,stopnotes) \
1886 (*current_target.to_set_trace_notes) (&current_target, \
1887 (user), (notes), (stopnotes))
1888
1889 #define target_get_tib_address(ptid, addr) \
1890 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1891
1892 #define target_set_permissions() \
1893 (*current_target.to_set_permissions) (&current_target)
1894
1895 #define target_static_tracepoint_marker_at(addr, marker) \
1896 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1897 addr, marker)
1898
1899 #define target_static_tracepoint_markers_by_strid(marker_id) \
1900 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1901 marker_id)
1902
1903 #define target_traceframe_info() \
1904 (*current_target.to_traceframe_info) (&current_target)
1905
1906 #define target_use_agent(use) \
1907 (*current_target.to_use_agent) (&current_target, use)
1908
1909 #define target_can_use_agent() \
1910 (*current_target.to_can_use_agent) (&current_target)
1911
1912 #define target_augmented_libraries_svr4_read() \
1913 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1914
1915 /* Command logging facility. */
1916
1917 #define target_log_command(p) \
1918 do \
1919 if (current_target.to_log_command) \
1920 (*current_target.to_log_command) (&current_target, \
1921 p); \
1922 while (0)
1923
1924
1925 extern int target_core_of_thread (ptid_t ptid);
1926
1927 /* See to_get_unwinder in struct target_ops. */
1928 extern const struct frame_unwind *target_get_unwinder (void);
1929
1930 /* See to_get_tailcall_unwinder in struct target_ops. */
1931 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1932
1933 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1934 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1935 if there's a mismatch, and -1 if an error is encountered while
1936 reading memory. Throws an error if the functionality is found not
1937 to be supported by the current target. */
1938 int target_verify_memory (const gdb_byte *data,
1939 CORE_ADDR memaddr, ULONGEST size);
1940
1941 /* Routines for maintenance of the target structures...
1942
1943 complete_target_initialization: Finalize a target_ops by filling in
1944 any fields needed by the target implementation.
1945
1946 add_target: Add a target to the list of all possible targets.
1947
1948 push_target: Make this target the top of the stack of currently used
1949 targets, within its particular stratum of the stack. Result
1950 is 0 if now atop the stack, nonzero if not on top (maybe
1951 should warn user).
1952
1953 unpush_target: Remove this from the stack of currently used targets,
1954 no matter where it is on the list. Returns 0 if no
1955 change, 1 if removed from stack. */
1956
1957 extern void add_target (struct target_ops *);
1958
1959 extern void add_target_with_completer (struct target_ops *t,
1960 completer_ftype *completer);
1961
1962 extern void complete_target_initialization (struct target_ops *t);
1963
1964 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1965 for maintaining backwards compatibility when renaming targets. */
1966
1967 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1968
1969 extern void push_target (struct target_ops *);
1970
1971 extern int unpush_target (struct target_ops *);
1972
1973 extern void target_pre_inferior (int);
1974
1975 extern void target_preopen (int);
1976
1977 /* Does whatever cleanup is required to get rid of all pushed targets. */
1978 extern void pop_all_targets (void);
1979
1980 /* Like pop_all_targets, but pops only targets whose stratum is
1981 strictly above ABOVE_STRATUM. */
1982 extern void pop_all_targets_above (enum strata above_stratum);
1983
1984 extern int target_is_pushed (struct target_ops *t);
1985
1986 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1987 CORE_ADDR offset);
1988
1989 /* Struct target_section maps address ranges to file sections. It is
1990 mostly used with BFD files, but can be used without (e.g. for handling
1991 raw disks, or files not in formats handled by BFD). */
1992
1993 struct target_section
1994 {
1995 CORE_ADDR addr; /* Lowest address in section */
1996 CORE_ADDR endaddr; /* 1+highest address in section */
1997
1998 struct bfd_section *the_bfd_section;
1999
2000 /* The "owner" of the section.
2001 It can be any unique value. It is set by add_target_sections
2002 and used by remove_target_sections.
2003 For example, for executables it is a pointer to exec_bfd and
2004 for shlibs it is the so_list pointer. */
2005 void *owner;
2006 };
2007
2008 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2009
2010 struct target_section_table
2011 {
2012 struct target_section *sections;
2013 struct target_section *sections_end;
2014 };
2015
2016 /* Return the "section" containing the specified address. */
2017 struct target_section *target_section_by_addr (struct target_ops *target,
2018 CORE_ADDR addr);
2019
2020 /* Return the target section table this target (or the targets
2021 beneath) currently manipulate. */
2022
2023 extern struct target_section_table *target_get_section_table
2024 (struct target_ops *target);
2025
2026 /* From mem-break.c */
2027
2028 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2029 struct bp_target_info *);
2030
2031 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2032 struct bp_target_info *);
2033
2034 extern int default_memory_remove_breakpoint (struct gdbarch *,
2035 struct bp_target_info *);
2036
2037 extern int default_memory_insert_breakpoint (struct gdbarch *,
2038 struct bp_target_info *);
2039
2040
2041 /* From target.c */
2042
2043 extern void initialize_targets (void);
2044
2045 extern void noprocess (void) ATTRIBUTE_NORETURN;
2046
2047 extern void target_require_runnable (void);
2048
2049 extern void find_default_attach (struct target_ops *, char *, int);
2050
2051 extern void find_default_create_inferior (struct target_ops *,
2052 char *, char *, char **, int);
2053
2054 extern struct target_ops *find_target_beneath (struct target_ops *);
2055
2056 /* Find the target at STRATUM. If no target is at that stratum,
2057 return NULL. */
2058
2059 struct target_ops *find_target_at (enum strata stratum);
2060
2061 /* Read OS data object of type TYPE from the target, and return it in
2062 XML format. The result is NUL-terminated and returned as a string,
2063 allocated using xmalloc. If an error occurs or the transfer is
2064 unsupported, NULL is returned. Empty objects are returned as
2065 allocated but empty strings. */
2066
2067 extern char *target_get_osdata (const char *type);
2068
2069 \f
2070 /* Stuff that should be shared among the various remote targets. */
2071
2072 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2073 information (higher values, more information). */
2074 extern int remote_debug;
2075
2076 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2077 extern int baud_rate;
2078 /* Timeout limit for response from target. */
2079 extern int remote_timeout;
2080
2081 \f
2082
2083 /* Set the show memory breakpoints mode to show, and installs a cleanup
2084 to restore it back to the current value. */
2085 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2086
2087 extern int may_write_registers;
2088 extern int may_write_memory;
2089 extern int may_insert_breakpoints;
2090 extern int may_insert_tracepoints;
2091 extern int may_insert_fast_tracepoints;
2092 extern int may_stop;
2093
2094 extern void update_target_permissions (void);
2095
2096 \f
2097 /* Imported from machine dependent code. */
2098
2099 /* Blank target vector entries are initialized to target_ignore. */
2100 void target_ignore (void);
2101
2102 /* See to_supports_btrace in struct target_ops. */
2103 #define target_supports_btrace() \
2104 (current_target.to_supports_btrace (&current_target))
2105
2106 /* See to_enable_btrace in struct target_ops. */
2107 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2108
2109 /* See to_disable_btrace in struct target_ops. */
2110 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2111
2112 /* See to_teardown_btrace in struct target_ops. */
2113 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2114
2115 /* See to_read_btrace in struct target_ops. */
2116 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2117 struct btrace_target_info *,
2118 enum btrace_read_type);
2119
2120 /* See to_stop_recording in struct target_ops. */
2121 extern void target_stop_recording (void);
2122
2123 /* See to_info_record in struct target_ops. */
2124 extern void target_info_record (void);
2125
2126 /* See to_save_record in struct target_ops. */
2127 extern void target_save_record (const char *filename);
2128
2129 /* Query if the target supports deleting the execution log. */
2130 extern int target_supports_delete_record (void);
2131
2132 /* See to_delete_record in struct target_ops. */
2133 extern void target_delete_record (void);
2134
2135 /* See to_record_is_replaying in struct target_ops. */
2136 extern int target_record_is_replaying (void);
2137
2138 /* See to_goto_record_begin in struct target_ops. */
2139 extern void target_goto_record_begin (void);
2140
2141 /* See to_goto_record_end in struct target_ops. */
2142 extern void target_goto_record_end (void);
2143
2144 /* See to_goto_record in struct target_ops. */
2145 extern void target_goto_record (ULONGEST insn);
2146
2147 /* See to_insn_history. */
2148 extern void target_insn_history (int size, int flags);
2149
2150 /* See to_insn_history_from. */
2151 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2152
2153 /* See to_insn_history_range. */
2154 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2155
2156 /* See to_call_history. */
2157 extern void target_call_history (int size, int flags);
2158
2159 /* See to_call_history_from. */
2160 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2161
2162 /* See to_call_history_range. */
2163 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2164
2165 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2166 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2167 struct gdbarch *gdbarch);
2168
2169 /* See to_decr_pc_after_break. */
2170 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2171
2172 #endif /* !defined (TARGET_H) */
This page took 0.07767 seconds and 5 git commands to generate.