Introduce target-section.h
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "gdbsupport/scoped_restore.h"
46 #include "gdbsupport/refcounted-object.h"
47 #include "target-section.h"
48
49 /* This include file defines the interface between the main part
50 of the debugger, and the part which is target-specific, or
51 specific to the communications interface between us and the
52 target.
53
54 A TARGET is an interface between the debugger and a particular
55 kind of file or process. Targets can be STACKED in STRATA,
56 so that more than one target can potentially respond to a request.
57 In particular, memory accesses will walk down the stack of targets
58 until they find a target that is interested in handling that particular
59 address. STRATA are artificial boundaries on the stack, within
60 which particular kinds of targets live. Strata exist so that
61 people don't get confused by pushing e.g. a process target and then
62 a file target, and wondering why they can't see the current values
63 of variables any more (the file target is handling them and they
64 never get to the process target). So when you push a file target,
65 it goes into the file stratum, which is always below the process
66 stratum.
67
68 Note that rather than allow an empty stack, we always have the
69 dummy target at the bottom stratum, so we can call the target
70 methods without checking them. */
71
72 #include "target/target.h"
73 #include "target/resume.h"
74 #include "target/wait.h"
75 #include "target/waitstatus.h"
76 #include "bfd.h"
77 #include "symtab.h"
78 #include "memattr.h"
79 #include "gdbsupport/gdb_signals.h"
80 #include "btrace.h"
81 #include "record.h"
82 #include "command.h"
83 #include "disasm.h"
84 #include "tracepoint.h"
85
86 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
87
88 enum strata
89 {
90 dummy_stratum, /* The lowest of the low */
91 file_stratum, /* Executable files, etc */
92 process_stratum, /* Executing processes or core dump files */
93 thread_stratum, /* Executing threads */
94 record_stratum, /* Support record debugging */
95 arch_stratum, /* Architecture overrides */
96 debug_stratum /* Target debug. Must be last. */
97 };
98
99 enum thread_control_capabilities
100 {
101 tc_none = 0, /* Default: can't control thread execution. */
102 tc_schedlock = 1, /* Can lock the thread scheduler. */
103 };
104
105 /* The structure below stores information about a system call.
106 It is basically used in the "catch syscall" command, and in
107 every function that gives information about a system call.
108
109 It's also good to mention that its fields represent everything
110 that we currently know about a syscall in GDB. */
111 struct syscall
112 {
113 /* The syscall number. */
114 int number;
115
116 /* The syscall name. */
117 const char *name;
118 };
119
120 /* Return a pretty printed form of TARGET_OPTIONS. */
121 extern std::string target_options_to_string (target_wait_flags target_options);
122
123 /* Possible types of events that the inferior handler will have to
124 deal with. */
125 enum inferior_event_type
126 {
127 /* Process a normal inferior event which will result in target_wait
128 being called. */
129 INF_REG_EVENT,
130 /* We are called to do stuff after the inferior stops. */
131 INF_EXEC_COMPLETE,
132 };
133 \f
134 /* Target objects which can be transfered using target_read,
135 target_write, et cetera. */
136
137 enum target_object
138 {
139 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
140 TARGET_OBJECT_AVR,
141 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
142 TARGET_OBJECT_MEMORY,
143 /* Memory, avoiding GDB's data cache and trusting the executable.
144 Target implementations of to_xfer_partial never need to handle
145 this object, and most callers should not use it. */
146 TARGET_OBJECT_RAW_MEMORY,
147 /* Memory known to be part of the target's stack. This is cached even
148 if it is not in a region marked as such, since it is known to be
149 "normal" RAM. */
150 TARGET_OBJECT_STACK_MEMORY,
151 /* Memory known to be part of the target code. This is cached even
152 if it is not in a region marked as such. */
153 TARGET_OBJECT_CODE_MEMORY,
154 /* Kernel Unwind Table. See "ia64-tdep.c". */
155 TARGET_OBJECT_UNWIND_TABLE,
156 /* Transfer auxilliary vector. */
157 TARGET_OBJECT_AUXV,
158 /* StackGhost cookie. See "sparc-tdep.c". */
159 TARGET_OBJECT_WCOOKIE,
160 /* Target memory map in XML format. */
161 TARGET_OBJECT_MEMORY_MAP,
162 /* Flash memory. This object can be used to write contents to
163 a previously erased flash memory. Using it without erasing
164 flash can have unexpected results. Addresses are physical
165 address on target, and not relative to flash start. */
166 TARGET_OBJECT_FLASH,
167 /* Available target-specific features, e.g. registers and coprocessors.
168 See "target-descriptions.c". ANNEX should never be empty. */
169 TARGET_OBJECT_AVAILABLE_FEATURES,
170 /* Currently loaded libraries, in XML format. */
171 TARGET_OBJECT_LIBRARIES,
172 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_SVR4,
174 /* Currently loaded libraries specific to AIX systems, in XML format. */
175 TARGET_OBJECT_LIBRARIES_AIX,
176 /* Get OS specific data. The ANNEX specifies the type (running
177 processes, etc.). The data being transfered is expected to follow
178 the DTD specified in features/osdata.dtd. */
179 TARGET_OBJECT_OSDATA,
180 /* Extra signal info. Usually the contents of `siginfo_t' on unix
181 platforms. */
182 TARGET_OBJECT_SIGNAL_INFO,
183 /* The list of threads that are being debugged. */
184 TARGET_OBJECT_THREADS,
185 /* Collected static trace data. */
186 TARGET_OBJECT_STATIC_TRACE_DATA,
187 /* Traceframe info, in XML format. */
188 TARGET_OBJECT_TRACEFRAME_INFO,
189 /* Load maps for FDPIC systems. */
190 TARGET_OBJECT_FDPIC,
191 /* Darwin dynamic linker info data. */
192 TARGET_OBJECT_DARWIN_DYLD_INFO,
193 /* OpenVMS Unwind Information Block. */
194 TARGET_OBJECT_OPENVMS_UIB,
195 /* Branch trace data, in XML format. */
196 TARGET_OBJECT_BTRACE,
197 /* Branch trace configuration, in XML format. */
198 TARGET_OBJECT_BTRACE_CONF,
199 /* The pathname of the executable file that was run to create
200 a specified process. ANNEX should be a string representation
201 of the process ID of the process in question, in hexadecimal
202 format. */
203 TARGET_OBJECT_EXEC_FILE,
204 /* FreeBSD virtual memory mappings. */
205 TARGET_OBJECT_FREEBSD_VMMAP,
206 /* FreeBSD process strings. */
207 TARGET_OBJECT_FREEBSD_PS_STRINGS,
208 /* Possible future objects: TARGET_OBJECT_FILE, ... */
209 };
210
211 /* Possible values returned by target_xfer_partial, etc. */
212
213 enum target_xfer_status
214 {
215 /* Some bytes are transferred. */
216 TARGET_XFER_OK = 1,
217
218 /* No further transfer is possible. */
219 TARGET_XFER_EOF = 0,
220
221 /* The piece of the object requested is unavailable. */
222 TARGET_XFER_UNAVAILABLE = 2,
223
224 /* Generic I/O error. Note that it's important that this is '-1',
225 as we still have target_xfer-related code returning hardcoded
226 '-1' on error. */
227 TARGET_XFER_E_IO = -1,
228
229 /* Keep list in sync with target_xfer_status_to_string. */
230 };
231
232 /* Return the string form of STATUS. */
233
234 extern const char *
235 target_xfer_status_to_string (enum target_xfer_status status);
236
237 typedef enum target_xfer_status
238 target_xfer_partial_ftype (struct target_ops *ops,
239 enum target_object object,
240 const char *annex,
241 gdb_byte *readbuf,
242 const gdb_byte *writebuf,
243 ULONGEST offset,
244 ULONGEST len,
245 ULONGEST *xfered_len);
246
247 enum target_xfer_status
248 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
249 const gdb_byte *writebuf, ULONGEST memaddr,
250 LONGEST len, ULONGEST *xfered_len);
251
252 /* Request that OPS transfer up to LEN addressable units of the target's
253 OBJECT. When reading from a memory object, the size of an addressable unit
254 is architecture dependent and can be found using
255 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
256 byte long. BUF should point to a buffer large enough to hold the read data,
257 taking into account the addressable unit size. The OFFSET, for a seekable
258 object, specifies the starting point. The ANNEX can be used to provide
259 additional data-specific information to the target.
260
261 Return the number of addressable units actually transferred, or a negative
262 error code (an 'enum target_xfer_error' value) if the transfer is not
263 supported or otherwise fails. Return of a positive value less than
264 LEN indicates that no further transfer is possible. Unlike the raw
265 to_xfer_partial interface, callers of these functions do not need
266 to retry partial transfers. */
267
268 extern LONGEST target_read (struct target_ops *ops,
269 enum target_object object,
270 const char *annex, gdb_byte *buf,
271 ULONGEST offset, LONGEST len);
272
273 struct memory_read_result
274 {
275 memory_read_result (ULONGEST begin_, ULONGEST end_,
276 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
277 : begin (begin_),
278 end (end_),
279 data (std::move (data_))
280 {
281 }
282
283 ~memory_read_result () = default;
284
285 memory_read_result (memory_read_result &&other) = default;
286
287 DISABLE_COPY_AND_ASSIGN (memory_read_result);
288
289 /* First address that was read. */
290 ULONGEST begin;
291 /* Past-the-end address. */
292 ULONGEST end;
293 /* The data. */
294 gdb::unique_xmalloc_ptr<gdb_byte> data;
295 };
296
297 extern std::vector<memory_read_result> read_memory_robust
298 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
299
300 /* Request that OPS transfer up to LEN addressable units from BUF to the
301 target's OBJECT. When writing to a memory object, the addressable unit
302 size is architecture dependent and can be found using
303 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
304 byte long. The OFFSET, for a seekable object, specifies the starting point.
305 The ANNEX can be used to provide additional data-specific information to
306 the target.
307
308 Return the number of addressable units actually transferred, or a negative
309 error code (an 'enum target_xfer_status' value) if the transfer is not
310 supported or otherwise fails. Return of a positive value less than
311 LEN indicates that no further transfer is possible. Unlike the raw
312 to_xfer_partial interface, callers of these functions do not need to
313 retry partial transfers. */
314
315 extern LONGEST target_write (struct target_ops *ops,
316 enum target_object object,
317 const char *annex, const gdb_byte *buf,
318 ULONGEST offset, LONGEST len);
319
320 /* Similar to target_write, except that it also calls PROGRESS with
321 the number of bytes written and the opaque BATON after every
322 successful partial write (and before the first write). This is
323 useful for progress reporting and user interaction while writing
324 data. To abort the transfer, the progress callback can throw an
325 exception. */
326
327 LONGEST target_write_with_progress (struct target_ops *ops,
328 enum target_object object,
329 const char *annex, const gdb_byte *buf,
330 ULONGEST offset, LONGEST len,
331 void (*progress) (ULONGEST, void *),
332 void *baton);
333
334 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
335 using OPS. The return value will be uninstantiated if the transfer fails or
336 is not supported.
337
338 This method should be used for objects sufficiently small to store
339 in a single xmalloc'd buffer, when no fixed bound on the object's
340 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
341 through this function. */
342
343 extern gdb::optional<gdb::byte_vector> target_read_alloc
344 (struct target_ops *ops, enum target_object object, const char *annex);
345
346 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
347 (therefore usable as a NUL-terminated string). If an error occurs or the
348 transfer is unsupported, the return value will be uninstantiated. Empty
349 objects are returned as allocated but empty strings. Therefore, on success,
350 the returned vector is guaranteed to have at least one element. A warning is
351 issued if the result contains any embedded NUL bytes. */
352
353 extern gdb::optional<gdb::char_vector> target_read_stralloc
354 (struct target_ops *ops, enum target_object object, const char *annex);
355
356 /* See target_ops->to_xfer_partial. */
357 extern target_xfer_partial_ftype target_xfer_partial;
358
359 /* Wrappers to target read/write that perform memory transfers. They
360 throw an error if the memory transfer fails.
361
362 NOTE: cagney/2003-10-23: The naming schema is lifted from
363 "frame.h". The parameter order is lifted from get_frame_memory,
364 which in turn lifted it from read_memory. */
365
366 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
367 gdb_byte *buf, LONGEST len);
368 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
369 CORE_ADDR addr, int len,
370 enum bfd_endian byte_order);
371 \f
372 struct thread_info; /* fwd decl for parameter list below: */
373
374 /* The type of the callback to the to_async method. */
375
376 typedef void async_callback_ftype (enum inferior_event_type event_type,
377 void *context);
378
379 /* Normally target debug printing is purely type-based. However,
380 sometimes it is necessary to override the debug printing on a
381 per-argument basis. This macro can be used, attribute-style, to
382 name the target debug printing function for a particular method
383 argument. FUNC is the name of the function. The macro's
384 definition is empty because it is only used by the
385 make-target-delegates script. */
386
387 #define TARGET_DEBUG_PRINTER(FUNC)
388
389 /* These defines are used to mark target_ops methods. The script
390 make-target-delegates scans these and auto-generates the base
391 method implementations. There are four macros that can be used:
392
393 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
394 does nothing. This is only valid if the method return type is
395 'void'.
396
397 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
398 'tcomplain ()'. The base method simply makes this call, which is
399 assumed not to return.
400
401 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
402 base method returns this expression's value.
403
404 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
405 make-target-delegates does not generate a base method in this case,
406 but instead uses the argument function as the base method. */
407
408 #define TARGET_DEFAULT_IGNORE()
409 #define TARGET_DEFAULT_NORETURN(ARG)
410 #define TARGET_DEFAULT_RETURN(ARG)
411 #define TARGET_DEFAULT_FUNC(ARG)
412
413 /* Each target that can be activated with "target TARGET_NAME" passes
414 the address of one of these objects to add_target, which uses the
415 object's address as unique identifier, and registers the "target
416 TARGET_NAME" command using SHORTNAME as target name. */
417
418 struct target_info
419 {
420 /* Name of this target. */
421 const char *shortname;
422
423 /* Name for printing. */
424 const char *longname;
425
426 /* Documentation. Does not include trailing newline, and starts
427 with a one-line description (probably similar to longname). */
428 const char *doc;
429 };
430
431 struct target_ops
432 : public refcounted_object
433 {
434 /* Return this target's stratum. */
435 virtual strata stratum () const = 0;
436
437 /* To the target under this one. */
438 target_ops *beneath () const;
439
440 /* Free resources associated with the target. Note that singleton
441 targets, like e.g., native targets, are global objects, not
442 heap allocated, and are thus only deleted on GDB exit. The
443 main teardown entry point is the "close" method, below. */
444 virtual ~target_ops () {}
445
446 /* Return a reference to this target's unique target_info
447 object. */
448 virtual const target_info &info () const = 0;
449
450 /* Name this target type. */
451 const char *shortname () const
452 { return info ().shortname; }
453
454 const char *longname () const
455 { return info ().longname; }
456
457 /* Close the target. This is where the target can handle
458 teardown. Heap-allocated targets should delete themselves
459 before returning. */
460 virtual void close ();
461
462 /* Attaches to a process on the target side. Arguments are as
463 passed to the `attach' command by the user. This routine can
464 be called when the target is not on the target-stack, if the
465 target_ops::can_run method returns 1; in that case, it must push
466 itself onto the stack. Upon exit, the target should be ready
467 for normal operations, and should be ready to deliver the
468 status of the process immediately (without waiting) to an
469 upcoming target_wait call. */
470 virtual bool can_attach ();
471 virtual void attach (const char *, int);
472 virtual void post_attach (int)
473 TARGET_DEFAULT_IGNORE ();
474 virtual void detach (inferior *, int)
475 TARGET_DEFAULT_IGNORE ();
476 virtual void disconnect (const char *, int)
477 TARGET_DEFAULT_NORETURN (tcomplain ());
478 virtual void resume (ptid_t,
479 int TARGET_DEBUG_PRINTER (target_debug_print_step),
480 enum gdb_signal)
481 TARGET_DEFAULT_NORETURN (noprocess ());
482 virtual void commit_resume ()
483 TARGET_DEFAULT_IGNORE ();
484 /* See target_wait's description. Note that implementations of
485 this method must not assume that inferior_ptid on entry is
486 pointing at the thread or inferior that ends up reporting an
487 event. The reported event could be for some other thread in
488 the current inferior or even for a different process of the
489 current target. inferior_ptid may also be null_ptid on
490 entry. */
491 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
492 target_wait_flags options)
493 TARGET_DEFAULT_FUNC (default_target_wait);
494 virtual void fetch_registers (struct regcache *, int)
495 TARGET_DEFAULT_IGNORE ();
496 virtual void store_registers (struct regcache *, int)
497 TARGET_DEFAULT_NORETURN (noprocess ());
498 virtual void prepare_to_store (struct regcache *)
499 TARGET_DEFAULT_NORETURN (noprocess ());
500
501 virtual void files_info ()
502 TARGET_DEFAULT_IGNORE ();
503 virtual int insert_breakpoint (struct gdbarch *,
504 struct bp_target_info *)
505 TARGET_DEFAULT_NORETURN (noprocess ());
506 virtual int remove_breakpoint (struct gdbarch *,
507 struct bp_target_info *,
508 enum remove_bp_reason)
509 TARGET_DEFAULT_NORETURN (noprocess ());
510
511 /* Returns true if the target stopped because it executed a
512 software breakpoint. This is necessary for correct background
513 execution / non-stop mode operation, and for correct PC
514 adjustment on targets where the PC needs to be adjusted when a
515 software breakpoint triggers. In these modes, by the time GDB
516 processes a breakpoint event, the breakpoint may already be
517 done from the target, so GDB needs to be able to tell whether
518 it should ignore the event and whether it should adjust the PC.
519 See adjust_pc_after_break. */
520 virtual bool stopped_by_sw_breakpoint ()
521 TARGET_DEFAULT_RETURN (false);
522 /* Returns true if the above method is supported. */
523 virtual bool supports_stopped_by_sw_breakpoint ()
524 TARGET_DEFAULT_RETURN (false);
525
526 /* Returns true if the target stopped for a hardware breakpoint.
527 Likewise, if the target supports hardware breakpoints, this
528 method is necessary for correct background execution / non-stop
529 mode operation. Even though hardware breakpoints do not
530 require PC adjustment, GDB needs to be able to tell whether the
531 hardware breakpoint event is a delayed event for a breakpoint
532 that is already gone and should thus be ignored. */
533 virtual bool stopped_by_hw_breakpoint ()
534 TARGET_DEFAULT_RETURN (false);
535 /* Returns true if the above method is supported. */
536 virtual bool supports_stopped_by_hw_breakpoint ()
537 TARGET_DEFAULT_RETURN (false);
538
539 virtual int can_use_hw_breakpoint (enum bptype, int, int)
540 TARGET_DEFAULT_RETURN (0);
541 virtual int ranged_break_num_registers ()
542 TARGET_DEFAULT_RETURN (-1);
543 virtual int insert_hw_breakpoint (struct gdbarch *,
544 struct bp_target_info *)
545 TARGET_DEFAULT_RETURN (-1);
546 virtual int remove_hw_breakpoint (struct gdbarch *,
547 struct bp_target_info *)
548 TARGET_DEFAULT_RETURN (-1);
549
550 /* Documentation of what the two routines below are expected to do is
551 provided with the corresponding target_* macros. */
552 virtual int remove_watchpoint (CORE_ADDR, int,
553 enum target_hw_bp_type, struct expression *)
554 TARGET_DEFAULT_RETURN (-1);
555 virtual int insert_watchpoint (CORE_ADDR, int,
556 enum target_hw_bp_type, struct expression *)
557 TARGET_DEFAULT_RETURN (-1);
558
559 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
560 enum target_hw_bp_type)
561 TARGET_DEFAULT_RETURN (1);
562 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
563 enum target_hw_bp_type)
564 TARGET_DEFAULT_RETURN (1);
565 virtual bool stopped_by_watchpoint ()
566 TARGET_DEFAULT_RETURN (false);
567 virtual bool have_steppable_watchpoint ()
568 TARGET_DEFAULT_RETURN (false);
569 virtual bool stopped_data_address (CORE_ADDR *)
570 TARGET_DEFAULT_RETURN (false);
571 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
572 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
573
574 /* Documentation of this routine is provided with the corresponding
575 target_* macro. */
576 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
577 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
578
579 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
580 struct expression *)
581 TARGET_DEFAULT_RETURN (false);
582 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
583 TARGET_DEFAULT_RETURN (-1);
584
585 /* Return 1 for sure target can do single step. Return -1 for
586 unknown. Return 0 for target can't do. */
587 virtual int can_do_single_step ()
588 TARGET_DEFAULT_RETURN (-1);
589
590 virtual bool supports_terminal_ours ()
591 TARGET_DEFAULT_RETURN (false);
592 virtual void terminal_init ()
593 TARGET_DEFAULT_IGNORE ();
594 virtual void terminal_inferior ()
595 TARGET_DEFAULT_IGNORE ();
596 virtual void terminal_save_inferior ()
597 TARGET_DEFAULT_IGNORE ();
598 virtual void terminal_ours_for_output ()
599 TARGET_DEFAULT_IGNORE ();
600 virtual void terminal_ours ()
601 TARGET_DEFAULT_IGNORE ();
602 virtual void terminal_info (const char *, int)
603 TARGET_DEFAULT_FUNC (default_terminal_info);
604 virtual void kill ()
605 TARGET_DEFAULT_NORETURN (noprocess ());
606 virtual void load (const char *, int)
607 TARGET_DEFAULT_NORETURN (tcomplain ());
608 /* Start an inferior process and set inferior_ptid to its pid.
609 EXEC_FILE is the file to run.
610 ALLARGS is a string containing the arguments to the program.
611 ENV is the environment vector to pass. Errors reported with error().
612 On VxWorks and various standalone systems, we ignore exec_file. */
613 virtual bool can_create_inferior ();
614 virtual void create_inferior (const char *, const std::string &,
615 char **, int);
616 virtual void post_startup_inferior (ptid_t)
617 TARGET_DEFAULT_IGNORE ();
618 virtual int insert_fork_catchpoint (int)
619 TARGET_DEFAULT_RETURN (1);
620 virtual int remove_fork_catchpoint (int)
621 TARGET_DEFAULT_RETURN (1);
622 virtual int insert_vfork_catchpoint (int)
623 TARGET_DEFAULT_RETURN (1);
624 virtual int remove_vfork_catchpoint (int)
625 TARGET_DEFAULT_RETURN (1);
626 virtual bool follow_fork (bool, bool)
627 TARGET_DEFAULT_FUNC (default_follow_fork);
628 virtual int insert_exec_catchpoint (int)
629 TARGET_DEFAULT_RETURN (1);
630 virtual int remove_exec_catchpoint (int)
631 TARGET_DEFAULT_RETURN (1);
632 virtual void follow_exec (struct inferior *, const char *)
633 TARGET_DEFAULT_IGNORE ();
634 virtual int set_syscall_catchpoint (int, bool, int,
635 gdb::array_view<const int>)
636 TARGET_DEFAULT_RETURN (1);
637 virtual void mourn_inferior ()
638 TARGET_DEFAULT_FUNC (default_mourn_inferior);
639
640 /* Note that can_run is special and can be invoked on an unpushed
641 target. Targets defining this method must also define
642 to_can_async_p and to_supports_non_stop. */
643 virtual bool can_run ();
644
645 /* Documentation of this routine is provided with the corresponding
646 target_* macro. */
647 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
648 TARGET_DEFAULT_IGNORE ();
649
650 /* Documentation of this routine is provided with the
651 corresponding target_* function. */
652 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
653 TARGET_DEFAULT_IGNORE ();
654
655 virtual bool thread_alive (ptid_t ptid)
656 TARGET_DEFAULT_RETURN (false);
657 virtual void update_thread_list ()
658 TARGET_DEFAULT_IGNORE ();
659 virtual std::string pid_to_str (ptid_t)
660 TARGET_DEFAULT_FUNC (default_pid_to_str);
661 virtual const char *extra_thread_info (thread_info *)
662 TARGET_DEFAULT_RETURN (NULL);
663 virtual const char *thread_name (thread_info *)
664 TARGET_DEFAULT_RETURN (NULL);
665 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
666 int,
667 inferior *inf)
668 TARGET_DEFAULT_RETURN (NULL);
669 /* See target_thread_info_to_thread_handle. */
670 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
671 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
672 virtual void stop (ptid_t)
673 TARGET_DEFAULT_IGNORE ();
674 virtual void interrupt ()
675 TARGET_DEFAULT_IGNORE ();
676 virtual void pass_ctrlc ()
677 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
678 virtual void rcmd (const char *command, struct ui_file *output)
679 TARGET_DEFAULT_FUNC (default_rcmd);
680 virtual char *pid_to_exec_file (int pid)
681 TARGET_DEFAULT_RETURN (NULL);
682 virtual void log_command (const char *)
683 TARGET_DEFAULT_IGNORE ();
684 virtual struct target_section_table *get_section_table ()
685 TARGET_DEFAULT_RETURN (NULL);
686
687 /* Provide default values for all "must have" methods. */
688 virtual bool has_all_memory () { return false; }
689 virtual bool has_memory () { return false; }
690 virtual bool has_stack () { return false; }
691 virtual bool has_registers () { return false; }
692 virtual bool has_execution (inferior *inf) { return false; }
693
694 /* Control thread execution. */
695 virtual thread_control_capabilities get_thread_control_capabilities ()
696 TARGET_DEFAULT_RETURN (tc_none);
697 virtual bool attach_no_wait ()
698 TARGET_DEFAULT_RETURN (0);
699 /* This method must be implemented in some situations. See the
700 comment on 'can_run'. */
701 virtual bool can_async_p ()
702 TARGET_DEFAULT_RETURN (false);
703 virtual bool is_async_p ()
704 TARGET_DEFAULT_RETURN (false);
705 virtual void async (int)
706 TARGET_DEFAULT_NORETURN (tcomplain ());
707 virtual int async_wait_fd ()
708 TARGET_DEFAULT_NORETURN (noprocess ());
709 virtual void thread_events (int)
710 TARGET_DEFAULT_IGNORE ();
711 /* This method must be implemented in some situations. See the
712 comment on 'can_run'. */
713 virtual bool supports_non_stop ()
714 TARGET_DEFAULT_RETURN (false);
715 /* Return true if the target operates in non-stop mode even with
716 "set non-stop off". */
717 virtual bool always_non_stop_p ()
718 TARGET_DEFAULT_RETURN (false);
719 /* find_memory_regions support method for gcore */
720 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
721 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
722 /* make_corefile_notes support method for gcore */
723 virtual char *make_corefile_notes (bfd *, int *)
724 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
725 /* get_bookmark support method for bookmarks */
726 virtual gdb_byte *get_bookmark (const char *, int)
727 TARGET_DEFAULT_NORETURN (tcomplain ());
728 /* goto_bookmark support method for bookmarks */
729 virtual void goto_bookmark (const gdb_byte *, int)
730 TARGET_DEFAULT_NORETURN (tcomplain ());
731 /* Return the thread-local address at OFFSET in the
732 thread-local storage for the thread PTID and the shared library
733 or executable file given by LOAD_MODULE_ADDR. If that block of
734 thread-local storage hasn't been allocated yet, this function
735 may throw an error. LOAD_MODULE_ADDR may be zero for statically
736 linked multithreaded inferiors. */
737 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
738 CORE_ADDR load_module_addr,
739 CORE_ADDR offset)
740 TARGET_DEFAULT_NORETURN (generic_tls_error ());
741
742 /* Request that OPS transfer up to LEN addressable units of the target's
743 OBJECT. When reading from a memory object, the size of an addressable
744 unit is architecture dependent and can be found using
745 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
746 1 byte long. The OFFSET, for a seekable object, specifies the
747 starting point. The ANNEX can be used to provide additional
748 data-specific information to the target.
749
750 Return the transferred status, error or OK (an
751 'enum target_xfer_status' value). Save the number of addressable units
752 actually transferred in *XFERED_LEN if transfer is successful
753 (TARGET_XFER_OK) or the number unavailable units if the requested
754 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
755 smaller than LEN does not indicate the end of the object, only
756 the end of the transfer; higher level code should continue
757 transferring if desired. This is handled in target.c.
758
759 The interface does not support a "retry" mechanism. Instead it
760 assumes that at least one addressable unit will be transfered on each
761 successful call.
762
763 NOTE: cagney/2003-10-17: The current interface can lead to
764 fragmented transfers. Lower target levels should not implement
765 hacks, such as enlarging the transfer, in an attempt to
766 compensate for this. Instead, the target stack should be
767 extended so that it implements supply/collect methods and a
768 look-aside object cache. With that available, the lowest
769 target can safely and freely "push" data up the stack.
770
771 See target_read and target_write for more information. One,
772 and only one, of readbuf or writebuf must be non-NULL. */
773
774 virtual enum target_xfer_status xfer_partial (enum target_object object,
775 const char *annex,
776 gdb_byte *readbuf,
777 const gdb_byte *writebuf,
778 ULONGEST offset, ULONGEST len,
779 ULONGEST *xfered_len)
780 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
781
782 /* Return the limit on the size of any single memory transfer
783 for the target. */
784
785 virtual ULONGEST get_memory_xfer_limit ()
786 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
787
788 /* Returns the memory map for the target. A return value of NULL
789 means that no memory map is available. If a memory address
790 does not fall within any returned regions, it's assumed to be
791 RAM. The returned memory regions should not overlap.
792
793 The order of regions does not matter; target_memory_map will
794 sort regions by starting address. For that reason, this
795 function should not be called directly except via
796 target_memory_map.
797
798 This method should not cache data; if the memory map could
799 change unexpectedly, it should be invalidated, and higher
800 layers will re-fetch it. */
801 virtual std::vector<mem_region> memory_map ()
802 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
803
804 /* Erases the region of flash memory starting at ADDRESS, of
805 length LENGTH.
806
807 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
808 on flash block boundaries, as reported by 'to_memory_map'. */
809 virtual void flash_erase (ULONGEST address, LONGEST length)
810 TARGET_DEFAULT_NORETURN (tcomplain ());
811
812 /* Finishes a flash memory write sequence. After this operation
813 all flash memory should be available for writing and the result
814 of reading from areas written by 'to_flash_write' should be
815 equal to what was written. */
816 virtual void flash_done ()
817 TARGET_DEFAULT_NORETURN (tcomplain ());
818
819 /* Describe the architecture-specific features of this target. If
820 OPS doesn't have a description, this should delegate to the
821 "beneath" target. Returns the description found, or NULL if no
822 description was available. */
823 virtual const struct target_desc *read_description ()
824 TARGET_DEFAULT_RETURN (NULL);
825
826 /* Build the PTID of the thread on which a given task is running,
827 based on LWP and THREAD. These values are extracted from the
828 task Private_Data section of the Ada Task Control Block, and
829 their interpretation depends on the target. */
830 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
831 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
832
833 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
834 Return 0 if *READPTR is already at the end of the buffer.
835 Return -1 if there is insufficient buffer for a whole entry.
836 Return 1 if an entry was read into *TYPEP and *VALP. */
837 virtual int auxv_parse (gdb_byte **readptr,
838 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
839 TARGET_DEFAULT_FUNC (default_auxv_parse);
840
841 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
842 sequence of bytes in PATTERN with length PATTERN_LEN.
843
844 The result is 1 if found, 0 if not found, and -1 if there was an error
845 requiring halting of the search (e.g. memory read error).
846 If the pattern is found the address is recorded in FOUND_ADDRP. */
847 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
848 const gdb_byte *pattern, ULONGEST pattern_len,
849 CORE_ADDR *found_addrp)
850 TARGET_DEFAULT_FUNC (default_search_memory);
851
852 /* Can target execute in reverse? */
853 virtual bool can_execute_reverse ()
854 TARGET_DEFAULT_RETURN (false);
855
856 /* The direction the target is currently executing. Must be
857 implemented on targets that support reverse execution and async
858 mode. The default simply returns forward execution. */
859 virtual enum exec_direction_kind execution_direction ()
860 TARGET_DEFAULT_FUNC (default_execution_direction);
861
862 /* Does this target support debugging multiple processes
863 simultaneously? */
864 virtual bool supports_multi_process ()
865 TARGET_DEFAULT_RETURN (false);
866
867 /* Does this target support enabling and disabling tracepoints while a trace
868 experiment is running? */
869 virtual bool supports_enable_disable_tracepoint ()
870 TARGET_DEFAULT_RETURN (false);
871
872 /* Does this target support disabling address space randomization? */
873 virtual bool supports_disable_randomization ()
874 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
875
876 /* Does this target support the tracenz bytecode for string collection? */
877 virtual bool supports_string_tracing ()
878 TARGET_DEFAULT_RETURN (false);
879
880 /* Does this target support evaluation of breakpoint conditions on its
881 end? */
882 virtual bool supports_evaluation_of_breakpoint_conditions ()
883 TARGET_DEFAULT_RETURN (false);
884
885 /* Does this target support native dumpcore API? */
886 virtual bool supports_dumpcore ()
887 TARGET_DEFAULT_RETURN (false);
888
889 /* Generate the core file with native target API. */
890 virtual void dumpcore (const char *filename)
891 TARGET_DEFAULT_IGNORE ();
892
893 /* Does this target support evaluation of breakpoint commands on its
894 end? */
895 virtual bool can_run_breakpoint_commands ()
896 TARGET_DEFAULT_RETURN (false);
897
898 /* Determine current architecture of thread PTID.
899
900 The target is supposed to determine the architecture of the code where
901 the target is currently stopped at. The architecture information is
902 used to perform decr_pc_after_break adjustment, and also to determine
903 the frame architecture of the innermost frame. ptrace operations need to
904 operate according to target_gdbarch (). */
905 virtual struct gdbarch *thread_architecture (ptid_t)
906 TARGET_DEFAULT_RETURN (NULL);
907
908 /* Determine current address space of thread PTID. */
909 virtual struct address_space *thread_address_space (ptid_t)
910 TARGET_DEFAULT_RETURN (NULL);
911
912 /* Target file operations. */
913
914 /* Return nonzero if the filesystem seen by the current inferior
915 is the local filesystem, zero otherwise. */
916 virtual bool filesystem_is_local ()
917 TARGET_DEFAULT_RETURN (true);
918
919 /* Open FILENAME on the target, in the filesystem as seen by INF,
920 using FLAGS and MODE. If INF is NULL, use the filesystem seen
921 by the debugger (GDB or, for remote targets, the remote stub).
922 If WARN_IF_SLOW is nonzero, print a warning message if the file
923 is being accessed over a link that may be slow. Return a
924 target file descriptor, or -1 if an error occurs (and set
925 *TARGET_ERRNO). */
926 virtual int fileio_open (struct inferior *inf, const char *filename,
927 int flags, int mode, int warn_if_slow,
928 int *target_errno);
929
930 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
931 Return the number of bytes written, or -1 if an error occurs
932 (and set *TARGET_ERRNO). */
933 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
934 ULONGEST offset, int *target_errno);
935
936 /* Read up to LEN bytes FD on the target into READ_BUF.
937 Return the number of bytes read, or -1 if an error occurs
938 (and set *TARGET_ERRNO). */
939 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
940 ULONGEST offset, int *target_errno);
941
942 /* Get information about the file opened as FD and put it in
943 SB. Return 0 on success, or -1 if an error occurs (and set
944 *TARGET_ERRNO). */
945 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
946
947 /* Close FD on the target. Return 0, or -1 if an error occurs
948 (and set *TARGET_ERRNO). */
949 virtual int fileio_close (int fd, int *target_errno);
950
951 /* Unlink FILENAME on the target, in the filesystem as seen by
952 INF. If INF is NULL, use the filesystem seen by the debugger
953 (GDB or, for remote targets, the remote stub). Return 0, or
954 -1 if an error occurs (and set *TARGET_ERRNO). */
955 virtual int fileio_unlink (struct inferior *inf,
956 const char *filename,
957 int *target_errno);
958
959 /* Read value of symbolic link FILENAME on the target, in the
960 filesystem as seen by INF. If INF is NULL, use the filesystem
961 seen by the debugger (GDB or, for remote targets, the remote
962 stub). Return a string, or an empty optional if an error
963 occurs (and set *TARGET_ERRNO). */
964 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
965 const char *filename,
966 int *target_errno);
967
968 /* Implement the "info proc" command. Returns true if the target
969 actually implemented the command, false otherwise. */
970 virtual bool info_proc (const char *, enum info_proc_what);
971
972 /* Tracepoint-related operations. */
973
974 /* Prepare the target for a tracing run. */
975 virtual void trace_init ()
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Send full details of a tracepoint location to the target. */
979 virtual void download_tracepoint (struct bp_location *location)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Is the target able to download tracepoint locations in current
983 state? */
984 virtual bool can_download_tracepoint ()
985 TARGET_DEFAULT_RETURN (false);
986
987 /* Send full details of a trace state variable to the target. */
988 virtual void download_trace_state_variable (const trace_state_variable &tsv)
989 TARGET_DEFAULT_NORETURN (tcomplain ());
990
991 /* Enable a tracepoint on the target. */
992 virtual void enable_tracepoint (struct bp_location *location)
993 TARGET_DEFAULT_NORETURN (tcomplain ());
994
995 /* Disable a tracepoint on the target. */
996 virtual void disable_tracepoint (struct bp_location *location)
997 TARGET_DEFAULT_NORETURN (tcomplain ());
998
999 /* Inform the target info of memory regions that are readonly
1000 (such as text sections), and so it should return data from
1001 those rather than look in the trace buffer. */
1002 virtual void trace_set_readonly_regions ()
1003 TARGET_DEFAULT_NORETURN (tcomplain ());
1004
1005 /* Start a trace run. */
1006 virtual void trace_start ()
1007 TARGET_DEFAULT_NORETURN (tcomplain ());
1008
1009 /* Get the current status of a tracing run. */
1010 virtual int get_trace_status (struct trace_status *ts)
1011 TARGET_DEFAULT_RETURN (-1);
1012
1013 virtual void get_tracepoint_status (struct breakpoint *tp,
1014 struct uploaded_tp *utp)
1015 TARGET_DEFAULT_NORETURN (tcomplain ());
1016
1017 /* Stop a trace run. */
1018 virtual void trace_stop ()
1019 TARGET_DEFAULT_NORETURN (tcomplain ());
1020
1021 /* Ask the target to find a trace frame of the given type TYPE,
1022 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1023 number of the trace frame, and also the tracepoint number at
1024 TPP. If no trace frame matches, return -1. May throw if the
1025 operation fails. */
1026 virtual int trace_find (enum trace_find_type type, int num,
1027 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1028 TARGET_DEFAULT_RETURN (-1);
1029
1030 /* Get the value of the trace state variable number TSV, returning
1031 1 if the value is known and writing the value itself into the
1032 location pointed to by VAL, else returning 0. */
1033 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1034 TARGET_DEFAULT_RETURN (false);
1035
1036 virtual int save_trace_data (const char *filename)
1037 TARGET_DEFAULT_NORETURN (tcomplain ());
1038
1039 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1040 TARGET_DEFAULT_RETURN (0);
1041
1042 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1043 TARGET_DEFAULT_RETURN (0);
1044
1045 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1046 ULONGEST offset, LONGEST len)
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Get the minimum length of instruction on which a fast tracepoint
1050 may be set on the target. If this operation is unsupported,
1051 return -1. If for some reason the minimum length cannot be
1052 determined, return 0. */
1053 virtual int get_min_fast_tracepoint_insn_len ()
1054 TARGET_DEFAULT_RETURN (-1);
1055
1056 /* Set the target's tracing behavior in response to unexpected
1057 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1058 virtual void set_disconnected_tracing (int val)
1059 TARGET_DEFAULT_IGNORE ();
1060 virtual void set_circular_trace_buffer (int val)
1061 TARGET_DEFAULT_IGNORE ();
1062 /* Set the size of trace buffer in the target. */
1063 virtual void set_trace_buffer_size (LONGEST val)
1064 TARGET_DEFAULT_IGNORE ();
1065
1066 /* Add/change textual notes about the trace run, returning 1 if
1067 successful, 0 otherwise. */
1068 virtual bool set_trace_notes (const char *user, const char *notes,
1069 const char *stopnotes)
1070 TARGET_DEFAULT_RETURN (false);
1071
1072 /* Return the processor core that thread PTID was last seen on.
1073 This information is updated only when:
1074 - update_thread_list is called
1075 - thread stops
1076 If the core cannot be determined -- either for the specified
1077 thread, or right now, or in this debug session, or for this
1078 target -- return -1. */
1079 virtual int core_of_thread (ptid_t ptid)
1080 TARGET_DEFAULT_RETURN (-1);
1081
1082 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1083 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1084 a match, 0 if there's a mismatch, and -1 if an error is
1085 encountered while reading memory. */
1086 virtual int verify_memory (const gdb_byte *data,
1087 CORE_ADDR memaddr, ULONGEST size)
1088 TARGET_DEFAULT_FUNC (default_verify_memory);
1089
1090 /* Return the address of the start of the Thread Information Block
1091 a Windows OS specific feature. */
1092 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1093 TARGET_DEFAULT_NORETURN (tcomplain ());
1094
1095 /* Send the new settings of write permission variables. */
1096 virtual void set_permissions ()
1097 TARGET_DEFAULT_IGNORE ();
1098
1099 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1100 with its details. Return true on success, false on failure. */
1101 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1102 static_tracepoint_marker *marker)
1103 TARGET_DEFAULT_RETURN (false);
1104
1105 /* Return a vector of all tracepoints markers string id ID, or all
1106 markers if ID is NULL. */
1107 virtual std::vector<static_tracepoint_marker>
1108 static_tracepoint_markers_by_strid (const char *id)
1109 TARGET_DEFAULT_NORETURN (tcomplain ());
1110
1111 /* Return a traceframe info object describing the current
1112 traceframe's contents. This method should not cache data;
1113 higher layers take care of caching, invalidating, and
1114 re-fetching when necessary. */
1115 virtual traceframe_info_up traceframe_info ()
1116 TARGET_DEFAULT_NORETURN (tcomplain ());
1117
1118 /* Ask the target to use or not to use agent according to USE.
1119 Return true if successful, false otherwise. */
1120 virtual bool use_agent (bool use)
1121 TARGET_DEFAULT_NORETURN (tcomplain ());
1122
1123 /* Is the target able to use agent in current state? */
1124 virtual bool can_use_agent ()
1125 TARGET_DEFAULT_RETURN (false);
1126
1127 /* Enable branch tracing for PTID using CONF configuration.
1128 Return a branch trace target information struct for reading and for
1129 disabling branch trace. */
1130 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1131 const struct btrace_config *conf)
1132 TARGET_DEFAULT_NORETURN (tcomplain ());
1133
1134 /* Disable branch tracing and deallocate TINFO. */
1135 virtual void disable_btrace (struct btrace_target_info *tinfo)
1136 TARGET_DEFAULT_NORETURN (tcomplain ());
1137
1138 /* Disable branch tracing and deallocate TINFO. This function is similar
1139 to to_disable_btrace, except that it is called during teardown and is
1140 only allowed to perform actions that are safe. A counter-example would
1141 be attempting to talk to a remote target. */
1142 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1143 TARGET_DEFAULT_NORETURN (tcomplain ());
1144
1145 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1146 DATA is cleared before new trace is added. */
1147 virtual enum btrace_error read_btrace (struct btrace_data *data,
1148 struct btrace_target_info *btinfo,
1149 enum btrace_read_type type)
1150 TARGET_DEFAULT_NORETURN (tcomplain ());
1151
1152 /* Get the branch trace configuration. */
1153 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1154 TARGET_DEFAULT_RETURN (NULL);
1155
1156 /* Current recording method. */
1157 virtual enum record_method record_method (ptid_t ptid)
1158 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1159
1160 /* Stop trace recording. */
1161 virtual void stop_recording ()
1162 TARGET_DEFAULT_IGNORE ();
1163
1164 /* Print information about the recording. */
1165 virtual void info_record ()
1166 TARGET_DEFAULT_IGNORE ();
1167
1168 /* Save the recorded execution trace into a file. */
1169 virtual void save_record (const char *filename)
1170 TARGET_DEFAULT_NORETURN (tcomplain ());
1171
1172 /* Delete the recorded execution trace from the current position
1173 onwards. */
1174 virtual bool supports_delete_record ()
1175 TARGET_DEFAULT_RETURN (false);
1176 virtual void delete_record ()
1177 TARGET_DEFAULT_NORETURN (tcomplain ());
1178
1179 /* Query if the record target is currently replaying PTID. */
1180 virtual bool record_is_replaying (ptid_t ptid)
1181 TARGET_DEFAULT_RETURN (false);
1182
1183 /* Query if the record target will replay PTID if it were resumed in
1184 execution direction DIR. */
1185 virtual bool record_will_replay (ptid_t ptid, int dir)
1186 TARGET_DEFAULT_RETURN (false);
1187
1188 /* Stop replaying. */
1189 virtual void record_stop_replaying ()
1190 TARGET_DEFAULT_IGNORE ();
1191
1192 /* Go to the begin of the execution trace. */
1193 virtual void goto_record_begin ()
1194 TARGET_DEFAULT_NORETURN (tcomplain ());
1195
1196 /* Go to the end of the execution trace. */
1197 virtual void goto_record_end ()
1198 TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200 /* Go to a specific location in the recorded execution trace. */
1201 virtual void goto_record (ULONGEST insn)
1202 TARGET_DEFAULT_NORETURN (tcomplain ());
1203
1204 /* Disassemble SIZE instructions in the recorded execution trace from
1205 the current position.
1206 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1207 disassemble SIZE succeeding instructions. */
1208 virtual void insn_history (int size, gdb_disassembly_flags flags)
1209 TARGET_DEFAULT_NORETURN (tcomplain ());
1210
1211 /* Disassemble SIZE instructions in the recorded execution trace around
1212 FROM.
1213 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1214 disassemble SIZE instructions after FROM. */
1215 virtual void insn_history_from (ULONGEST from, int size,
1216 gdb_disassembly_flags flags)
1217 TARGET_DEFAULT_NORETURN (tcomplain ());
1218
1219 /* Disassemble a section of the recorded execution trace from instruction
1220 BEGIN (inclusive) to instruction END (inclusive). */
1221 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1222 gdb_disassembly_flags flags)
1223 TARGET_DEFAULT_NORETURN (tcomplain ());
1224
1225 /* Print a function trace of the recorded execution trace.
1226 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1227 succeeding functions. */
1228 virtual void call_history (int size, record_print_flags flags)
1229 TARGET_DEFAULT_NORETURN (tcomplain ());
1230
1231 /* Print a function trace of the recorded execution trace starting
1232 at function FROM.
1233 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1234 SIZE functions after FROM. */
1235 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1236 TARGET_DEFAULT_NORETURN (tcomplain ());
1237
1238 /* Print a function trace of an execution trace section from function BEGIN
1239 (inclusive) to function END (inclusive). */
1240 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1241 TARGET_DEFAULT_NORETURN (tcomplain ());
1242
1243 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1244 non-empty annex. */
1245 virtual bool augmented_libraries_svr4_read ()
1246 TARGET_DEFAULT_RETURN (false);
1247
1248 /* Those unwinders are tried before any other arch unwinders. If
1249 SELF doesn't have unwinders, it should delegate to the
1250 "beneath" target. */
1251 virtual const struct frame_unwind *get_unwinder ()
1252 TARGET_DEFAULT_RETURN (NULL);
1253
1254 virtual const struct frame_unwind *get_tailcall_unwinder ()
1255 TARGET_DEFAULT_RETURN (NULL);
1256
1257 /* Prepare to generate a core file. */
1258 virtual void prepare_to_generate_core ()
1259 TARGET_DEFAULT_IGNORE ();
1260
1261 /* Cleanup after generating a core file. */
1262 virtual void done_generating_core ()
1263 TARGET_DEFAULT_IGNORE ();
1264 };
1265
1266 /* Deleter for std::unique_ptr. See comments in
1267 target_ops::~target_ops and target_ops::close about heap-allocated
1268 targets. */
1269 struct target_ops_deleter
1270 {
1271 void operator() (target_ops *target)
1272 {
1273 target->close ();
1274 }
1275 };
1276
1277 /* A unique pointer for target_ops. */
1278 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1279
1280 /* Decref a target and close if, if there are no references left. */
1281 extern void decref_target (target_ops *t);
1282
1283 /* A policy class to interface gdb::ref_ptr with target_ops. */
1284
1285 struct target_ops_ref_policy
1286 {
1287 static void incref (target_ops *t)
1288 {
1289 t->incref ();
1290 }
1291
1292 static void decref (target_ops *t)
1293 {
1294 decref_target (t);
1295 }
1296 };
1297
1298 /* A gdb::ref_ptr pointer to a target_ops. */
1299 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1300
1301 /* Native target backends call this once at initialization time to
1302 inform the core about which is the target that can respond to "run"
1303 or "attach". Note: native targets are always singletons. */
1304 extern void set_native_target (target_ops *target);
1305
1306 /* Get the registered native target, if there's one. Otherwise return
1307 NULL. */
1308 extern target_ops *get_native_target ();
1309
1310 /* Type that manages a target stack. See description of target stacks
1311 and strata at the top of the file. */
1312
1313 class target_stack
1314 {
1315 public:
1316 target_stack () = default;
1317 DISABLE_COPY_AND_ASSIGN (target_stack);
1318
1319 /* Push a new target into the stack of the existing target
1320 accessors, possibly superseding some existing accessor. */
1321 void push (target_ops *t);
1322
1323 /* Remove a target from the stack, wherever it may be. Return true
1324 if it was removed, false otherwise. */
1325 bool unpush (target_ops *t);
1326
1327 /* Returns true if T is pushed on the target stack. */
1328 bool is_pushed (target_ops *t) const
1329 { return at (t->stratum ()) == t; }
1330
1331 /* Return the target at STRATUM. */
1332 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1333
1334 /* Return the target at the top of the stack. */
1335 target_ops *top () const { return at (m_top); }
1336
1337 /* Find the next target down the stack from the specified target. */
1338 target_ops *find_beneath (const target_ops *t) const;
1339
1340 private:
1341 /* The stratum of the top target. */
1342 enum strata m_top {};
1343
1344 /* The stack, represented as an array, with one slot per stratum.
1345 If no target is pushed at some stratum, the corresponding slot is
1346 null. */
1347 target_ops *m_stack[(int) debug_stratum + 1] {};
1348 };
1349
1350 /* The ops structure for our "current" target process. This should
1351 never be NULL. If there is no target, it points to the dummy_target. */
1352
1353 extern target_ops *current_top_target ();
1354
1355 /* Return the dummy target. */
1356 extern target_ops *get_dummy_target ();
1357
1358 /* Define easy words for doing these operations on our current target. */
1359
1360 #define target_shortname (current_top_target ()->shortname ())
1361 #define target_longname (current_top_target ()->longname ())
1362
1363 /* Does whatever cleanup is required for a target that we are no
1364 longer going to be calling. This routine is automatically always
1365 called after popping the target off the target stack - the target's
1366 own methods are no longer available through the target vector.
1367 Closing file descriptors and freeing all memory allocated memory are
1368 typical things it should do. */
1369
1370 void target_close (struct target_ops *targ);
1371
1372 /* Find the correct target to use for "attach". If a target on the
1373 current stack supports attaching, then it is returned. Otherwise,
1374 the default run target is returned. */
1375
1376 extern struct target_ops *find_attach_target (void);
1377
1378 /* Find the correct target to use for "run". If a target on the
1379 current stack supports creating a new inferior, then it is
1380 returned. Otherwise, the default run target is returned. */
1381
1382 extern struct target_ops *find_run_target (void);
1383
1384 /* Some targets don't generate traps when attaching to the inferior,
1385 or their target_attach implementation takes care of the waiting.
1386 These targets must set to_attach_no_wait. */
1387
1388 #define target_attach_no_wait() \
1389 (current_top_target ()->attach_no_wait ())
1390
1391 /* The target_attach operation places a process under debugger control,
1392 and stops the process.
1393
1394 This operation provides a target-specific hook that allows the
1395 necessary bookkeeping to be performed after an attach completes. */
1396 #define target_post_attach(pid) \
1397 (current_top_target ()->post_attach) (pid)
1398
1399 /* Display a message indicating we're about to detach from the current
1400 inferior process. */
1401
1402 extern void target_announce_detach (int from_tty);
1403
1404 /* Takes a program previously attached to and detaches it.
1405 The program may resume execution (some targets do, some don't) and will
1406 no longer stop on signals, etc. We better not have left any breakpoints
1407 in the program or it'll die when it hits one. FROM_TTY says whether to be
1408 verbose or not. */
1409
1410 extern void target_detach (inferior *inf, int from_tty);
1411
1412 /* Disconnect from the current target without resuming it (leaving it
1413 waiting for a debugger). */
1414
1415 extern void target_disconnect (const char *, int);
1416
1417 /* Resume execution (or prepare for execution) of a target thread,
1418 process or all processes. STEP says whether to hardware
1419 single-step or to run free; SIGGNAL is the signal to be given to
1420 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1421 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1422 process id'. A wildcard PTID (all threads, or all threads of
1423 process) means `step/resume INFERIOR_PTID, and let other threads
1424 (for which the wildcard PTID matches) resume with their
1425 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1426 is in "pass" state, or with no signal if in "no pass" state.
1427
1428 In order to efficiently handle batches of resumption requests,
1429 targets may implement this method such that it records the
1430 resumption request, but defers the actual resumption to the
1431 target_commit_resume method implementation. See
1432 target_commit_resume below. */
1433 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1434
1435 /* Commit a series of resumption requests previously prepared with
1436 target_resume calls.
1437
1438 GDB always calls target_commit_resume after calling target_resume
1439 one or more times. A target may thus use this method in
1440 coordination with the target_resume method to batch target-side
1441 resumption requests. In that case, the target doesn't actually
1442 resume in its target_resume implementation. Instead, it prepares
1443 the resumption in target_resume, and defers the actual resumption
1444 to target_commit_resume. E.g., the remote target uses this to
1445 coalesce multiple resumption requests in a single vCont packet. */
1446 extern void target_commit_resume ();
1447
1448 /* Setup to defer target_commit_resume calls, and reactivate
1449 target_commit_resume on destruction, if it was previously
1450 active. */
1451 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1452
1453 /* For target_read_memory see target/target.h. */
1454
1455 /* The default target_ops::to_wait implementation. */
1456
1457 extern ptid_t default_target_wait (struct target_ops *ops,
1458 ptid_t ptid,
1459 struct target_waitstatus *status,
1460 target_wait_flags options);
1461
1462 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1463
1464 extern void target_fetch_registers (struct regcache *regcache, int regno);
1465
1466 /* Store at least register REGNO, or all regs if REGNO == -1.
1467 It can store as many registers as it wants to, so target_prepare_to_store
1468 must have been previously called. Calls error() if there are problems. */
1469
1470 extern void target_store_registers (struct regcache *regcache, int regs);
1471
1472 /* Get ready to modify the registers array. On machines which store
1473 individual registers, this doesn't need to do anything. On machines
1474 which store all the registers in one fell swoop, this makes sure
1475 that REGISTERS contains all the registers from the program being
1476 debugged. */
1477
1478 #define target_prepare_to_store(regcache) \
1479 (current_top_target ()->prepare_to_store) (regcache)
1480
1481 /* Determine current address space of thread PTID. */
1482
1483 struct address_space *target_thread_address_space (ptid_t);
1484
1485 /* Implement the "info proc" command. This returns one if the request
1486 was handled, and zero otherwise. It can also throw an exception if
1487 an error was encountered while attempting to handle the
1488 request. */
1489
1490 int target_info_proc (const char *, enum info_proc_what);
1491
1492 /* Returns true if this target can disable address space randomization. */
1493
1494 int target_supports_disable_randomization (void);
1495
1496 /* Returns true if this target can enable and disable tracepoints
1497 while a trace experiment is running. */
1498
1499 #define target_supports_enable_disable_tracepoint() \
1500 (current_top_target ()->supports_enable_disable_tracepoint) ()
1501
1502 #define target_supports_string_tracing() \
1503 (current_top_target ()->supports_string_tracing) ()
1504
1505 /* Returns true if this target can handle breakpoint conditions
1506 on its end. */
1507
1508 #define target_supports_evaluation_of_breakpoint_conditions() \
1509 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1510
1511 /* Does this target support dumpcore API? */
1512
1513 #define target_supports_dumpcore() \
1514 (current_top_target ()->supports_dumpcore) ()
1515
1516 /* Generate the core file with target API. */
1517
1518 #define target_dumpcore(x) \
1519 (current_top_target ()->dumpcore (x))
1520
1521 /* Returns true if this target can handle breakpoint commands
1522 on its end. */
1523
1524 #define target_can_run_breakpoint_commands() \
1525 (current_top_target ()->can_run_breakpoint_commands) ()
1526
1527 /* Read a string from target memory at address MEMADDR. The string
1528 will be at most LEN bytes long (note that excess bytes may be read
1529 in some cases -- but these will not be returned). Returns nullptr
1530 on error. */
1531
1532 extern gdb::unique_xmalloc_ptr<char> target_read_string
1533 (CORE_ADDR memaddr, int len, int *bytes_read = nullptr);
1534
1535 /* For target_read_memory see target/target.h. */
1536
1537 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1538 ssize_t len);
1539
1540 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1541
1542 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1543
1544 /* For target_write_memory see target/target.h. */
1545
1546 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1547 ssize_t len);
1548
1549 /* Fetches the target's memory map. If one is found it is sorted
1550 and returned, after some consistency checking. Otherwise, NULL
1551 is returned. */
1552 std::vector<mem_region> target_memory_map (void);
1553
1554 /* Erases all flash memory regions on the target. */
1555 void flash_erase_command (const char *cmd, int from_tty);
1556
1557 /* Erase the specified flash region. */
1558 void target_flash_erase (ULONGEST address, LONGEST length);
1559
1560 /* Finish a sequence of flash operations. */
1561 void target_flash_done (void);
1562
1563 /* Describes a request for a memory write operation. */
1564 struct memory_write_request
1565 {
1566 memory_write_request (ULONGEST begin_, ULONGEST end_,
1567 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1568 : begin (begin_), end (end_), data (data_), baton (baton_)
1569 {}
1570
1571 /* Begining address that must be written. */
1572 ULONGEST begin;
1573 /* Past-the-end address. */
1574 ULONGEST end;
1575 /* The data to write. */
1576 gdb_byte *data;
1577 /* A callback baton for progress reporting for this request. */
1578 void *baton;
1579 };
1580
1581 /* Enumeration specifying different flash preservation behaviour. */
1582 enum flash_preserve_mode
1583 {
1584 flash_preserve,
1585 flash_discard
1586 };
1587
1588 /* Write several memory blocks at once. This version can be more
1589 efficient than making several calls to target_write_memory, in
1590 particular because it can optimize accesses to flash memory.
1591
1592 Moreover, this is currently the only memory access function in gdb
1593 that supports writing to flash memory, and it should be used for
1594 all cases where access to flash memory is desirable.
1595
1596 REQUESTS is the vector of memory_write_request.
1597 PRESERVE_FLASH_P indicates what to do with blocks which must be
1598 erased, but not completely rewritten.
1599 PROGRESS_CB is a function that will be periodically called to provide
1600 feedback to user. It will be called with the baton corresponding
1601 to the request currently being written. It may also be called
1602 with a NULL baton, when preserved flash sectors are being rewritten.
1603
1604 The function returns 0 on success, and error otherwise. */
1605 int target_write_memory_blocks
1606 (const std::vector<memory_write_request> &requests,
1607 enum flash_preserve_mode preserve_flash_p,
1608 void (*progress_cb) (ULONGEST, void *));
1609
1610 /* Print a line about the current target. */
1611
1612 #define target_files_info() \
1613 (current_top_target ()->files_info) ()
1614
1615 /* Insert a breakpoint at address BP_TGT->placed_address in
1616 the target machine. Returns 0 for success, and returns non-zero or
1617 throws an error (with a detailed failure reason error code and
1618 message) otherwise. */
1619
1620 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1621 struct bp_target_info *bp_tgt);
1622
1623 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1624 machine. Result is 0 for success, non-zero for error. */
1625
1626 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1627 struct bp_target_info *bp_tgt,
1628 enum remove_bp_reason reason);
1629
1630 /* Return true if the target stack has a non-default
1631 "terminal_ours" method. */
1632
1633 extern bool target_supports_terminal_ours (void);
1634
1635 /* Kill the inferior process. Make it go away. */
1636
1637 extern void target_kill (void);
1638
1639 /* Load an executable file into the target process. This is expected
1640 to not only bring new code into the target process, but also to
1641 update GDB's symbol tables to match.
1642
1643 ARG contains command-line arguments, to be broken down with
1644 buildargv (). The first non-switch argument is the filename to
1645 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1646 0)), which is an offset to apply to the load addresses of FILE's
1647 sections. The target may define switches, or other non-switch
1648 arguments, as it pleases. */
1649
1650 extern void target_load (const char *arg, int from_tty);
1651
1652 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1653 notification of inferior events such as fork and vork immediately
1654 after the inferior is created. (This because of how gdb gets an
1655 inferior created via invoking a shell to do it. In such a scenario,
1656 if the shell init file has commands in it, the shell will fork and
1657 exec for each of those commands, and we will see each such fork
1658 event. Very bad.)
1659
1660 Such targets will supply an appropriate definition for this function. */
1661
1662 #define target_post_startup_inferior(ptid) \
1663 (current_top_target ()->post_startup_inferior) (ptid)
1664
1665 /* On some targets, we can catch an inferior fork or vfork event when
1666 it occurs. These functions insert/remove an already-created
1667 catchpoint for such events. They return 0 for success, 1 if the
1668 catchpoint type is not supported and -1 for failure. */
1669
1670 #define target_insert_fork_catchpoint(pid) \
1671 (current_top_target ()->insert_fork_catchpoint) (pid)
1672
1673 #define target_remove_fork_catchpoint(pid) \
1674 (current_top_target ()->remove_fork_catchpoint) (pid)
1675
1676 #define target_insert_vfork_catchpoint(pid) \
1677 (current_top_target ()->insert_vfork_catchpoint) (pid)
1678
1679 #define target_remove_vfork_catchpoint(pid) \
1680 (current_top_target ()->remove_vfork_catchpoint) (pid)
1681
1682 /* If the inferior forks or vforks, this function will be called at
1683 the next resume in order to perform any bookkeeping and fiddling
1684 necessary to continue debugging either the parent or child, as
1685 requested, and releasing the other. Information about the fork
1686 or vfork event is available via get_last_target_status ().
1687 This function returns true if the inferior should not be resumed
1688 (i.e. there is another event pending). */
1689
1690 bool target_follow_fork (bool follow_child, bool detach_fork);
1691
1692 /* Handle the target-specific bookkeeping required when the inferior
1693 makes an exec call. INF is the exec'd inferior. */
1694
1695 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1696
1697 /* On some targets, we can catch an inferior exec event when it
1698 occurs. These functions insert/remove an already-created
1699 catchpoint for such events. They return 0 for success, 1 if the
1700 catchpoint type is not supported and -1 for failure. */
1701
1702 #define target_insert_exec_catchpoint(pid) \
1703 (current_top_target ()->insert_exec_catchpoint) (pid)
1704
1705 #define target_remove_exec_catchpoint(pid) \
1706 (current_top_target ()->remove_exec_catchpoint) (pid)
1707
1708 /* Syscall catch.
1709
1710 NEEDED is true if any syscall catch (of any kind) is requested.
1711 If NEEDED is false, it means the target can disable the mechanism to
1712 catch system calls because there are no more catchpoints of this type.
1713
1714 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1715 being requested. In this case, SYSCALL_COUNTS should be ignored.
1716
1717 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1718 element in this array is nonzero if that syscall should be caught.
1719 This argument only matters if ANY_COUNT is zero.
1720
1721 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1722 for failure. */
1723
1724 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1725 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1726 syscall_counts)
1727
1728 /* The debugger has completed a blocking wait() call. There is now
1729 some process event that must be processed. This function should
1730 be defined by those targets that require the debugger to perform
1731 cleanup or internal state changes in response to the process event. */
1732
1733 /* For target_mourn_inferior see target/target.h. */
1734
1735 /* Does target have enough data to do a run or attach command? */
1736
1737 extern int target_can_run ();
1738
1739 /* Set list of signals to be handled in the target.
1740
1741 PASS_SIGNALS is an array indexed by target signal number
1742 (enum gdb_signal). For every signal whose entry in this array is
1743 non-zero, the target is allowed -but not required- to skip reporting
1744 arrival of the signal to the GDB core by returning from target_wait,
1745 and to pass the signal directly to the inferior instead.
1746
1747 However, if the target is hardware single-stepping a thread that is
1748 about to receive a signal, it needs to be reported in any case, even
1749 if mentioned in a previous target_pass_signals call. */
1750
1751 extern void target_pass_signals
1752 (gdb::array_view<const unsigned char> pass_signals);
1753
1754 /* Set list of signals the target may pass to the inferior. This
1755 directly maps to the "handle SIGNAL pass/nopass" setting.
1756
1757 PROGRAM_SIGNALS is an array indexed by target signal
1758 number (enum gdb_signal). For every signal whose entry in this
1759 array is non-zero, the target is allowed to pass the signal to the
1760 inferior. Signals not present in the array shall be silently
1761 discarded. This does not influence whether to pass signals to the
1762 inferior as a result of a target_resume call. This is useful in
1763 scenarios where the target needs to decide whether to pass or not a
1764 signal to the inferior without GDB core involvement, such as for
1765 example, when detaching (as threads may have been suspended with
1766 pending signals not reported to GDB). */
1767
1768 extern void target_program_signals
1769 (gdb::array_view<const unsigned char> program_signals);
1770
1771 /* Check to see if a thread is still alive. */
1772
1773 extern int target_thread_alive (ptid_t ptid);
1774
1775 /* Sync the target's threads with GDB's thread list. */
1776
1777 extern void target_update_thread_list (void);
1778
1779 /* Make target stop in a continuable fashion. (For instance, under
1780 Unix, this should act like SIGSTOP). Note that this function is
1781 asynchronous: it does not wait for the target to become stopped
1782 before returning. If this is the behavior you want please use
1783 target_stop_and_wait. */
1784
1785 extern void target_stop (ptid_t ptid);
1786
1787 /* Interrupt the target. Unlike target_stop, this does not specify
1788 which thread/process reports the stop. For most target this acts
1789 like raising a SIGINT, though that's not absolutely required. This
1790 function is asynchronous. */
1791
1792 extern void target_interrupt ();
1793
1794 /* Pass a ^C, as determined to have been pressed by checking the quit
1795 flag, to the target, as if the user had typed the ^C on the
1796 inferior's controlling terminal while the inferior was in the
1797 foreground. Remote targets may take the opportunity to detect the
1798 remote side is not responding and offer to disconnect. */
1799
1800 extern void target_pass_ctrlc (void);
1801
1802 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1803 target_interrupt. */
1804 extern void default_target_pass_ctrlc (struct target_ops *ops);
1805
1806 /* Send the specified COMMAND to the target's monitor
1807 (shell,interpreter) for execution. The result of the query is
1808 placed in OUTBUF. */
1809
1810 #define target_rcmd(command, outbuf) \
1811 (current_top_target ()->rcmd) (command, outbuf)
1812
1813
1814 /* Does the target include memory? (Dummy targets don't.) */
1815
1816 extern int target_has_memory ();
1817
1818 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1819 we start a process.) */
1820
1821 extern int target_has_stack ();
1822
1823 /* Does the target have registers? (Exec files don't.) */
1824
1825 extern int target_has_registers ();
1826
1827 /* Does the target have execution? Can we make it jump (through
1828 hoops), or pop its stack a few times? This means that the current
1829 target is currently executing; for some targets, that's the same as
1830 whether or not the target is capable of execution, but there are
1831 also targets which can be current while not executing. In that
1832 case this will become true after to_create_inferior or
1833 to_attach. INF is the inferior to use; nullptr means to use the
1834 current inferior. */
1835
1836 extern bool target_has_execution (inferior *inf = nullptr);
1837
1838 /* Can the target support the debugger control of thread execution?
1839 Can it lock the thread scheduler? */
1840
1841 static inline bool
1842 target_can_lock_scheduler ()
1843 {
1844 return (current_top_target ()->get_thread_control_capabilities ()
1845 & tc_schedlock) != 0;
1846 }
1847
1848 /* Controls whether async mode is permitted. */
1849 extern bool target_async_permitted;
1850
1851 /* Can the target support asynchronous execution? */
1852 #define target_can_async_p() (current_top_target ()->can_async_p ())
1853
1854 /* Is the target in asynchronous execution mode? */
1855 #define target_is_async_p() (current_top_target ()->is_async_p ())
1856
1857 /* Enables/disabled async target events. */
1858 extern void target_async (int enable);
1859
1860 /* Enables/disables thread create and exit events. */
1861 extern void target_thread_events (int enable);
1862
1863 /* Whether support for controlling the target backends always in
1864 non-stop mode is enabled. */
1865 extern enum auto_boolean target_non_stop_enabled;
1866
1867 /* Is the target in non-stop mode? Some targets control the inferior
1868 in non-stop mode even with "set non-stop off". Always true if "set
1869 non-stop" is on. */
1870 extern int target_is_non_stop_p (void);
1871
1872 /* Return true if at least one inferior has a non-stop target. */
1873 extern bool exists_non_stop_target ();
1874
1875 #define target_execution_direction() \
1876 (current_top_target ()->execution_direction ())
1877
1878 /* Converts a process id to a string. Usually, the string just contains
1879 `process xyz', but on some systems it may contain
1880 `process xyz thread abc'. */
1881
1882 extern std::string target_pid_to_str (ptid_t ptid);
1883
1884 extern std::string normal_pid_to_str (ptid_t ptid);
1885
1886 /* Return a short string describing extra information about PID,
1887 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1888 is okay. */
1889
1890 #define target_extra_thread_info(TP) \
1891 (current_top_target ()->extra_thread_info (TP))
1892
1893 /* Return the thread's name, or NULL if the target is unable to determine it.
1894 The returned value must not be freed by the caller. */
1895
1896 extern const char *target_thread_name (struct thread_info *);
1897
1898 /* Given a pointer to a thread library specific thread handle and
1899 its length, return a pointer to the corresponding thread_info struct. */
1900
1901 extern struct thread_info *target_thread_handle_to_thread_info
1902 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1903
1904 /* Given a thread, return the thread handle, a target-specific sequence of
1905 bytes which serves as a thread identifier within the program being
1906 debugged. */
1907 extern gdb::byte_vector target_thread_info_to_thread_handle
1908 (struct thread_info *);
1909
1910 /* Attempts to find the pathname of the executable file
1911 that was run to create a specified process.
1912
1913 The process PID must be stopped when this operation is used.
1914
1915 If the executable file cannot be determined, NULL is returned.
1916
1917 Else, a pointer to a character string containing the pathname
1918 is returned. This string should be copied into a buffer by
1919 the client if the string will not be immediately used, or if
1920 it must persist. */
1921
1922 #define target_pid_to_exec_file(pid) \
1923 (current_top_target ()->pid_to_exec_file) (pid)
1924
1925 /* See the to_thread_architecture description in struct target_ops. */
1926
1927 #define target_thread_architecture(ptid) \
1928 (current_top_target ()->thread_architecture (ptid))
1929
1930 /*
1931 * Iterator function for target memory regions.
1932 * Calls a callback function once for each memory region 'mapped'
1933 * in the child process. Defined as a simple macro rather than
1934 * as a function macro so that it can be tested for nullity.
1935 */
1936
1937 #define target_find_memory_regions(FUNC, DATA) \
1938 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1939
1940 /*
1941 * Compose corefile .note section.
1942 */
1943
1944 #define target_make_corefile_notes(BFD, SIZE_P) \
1945 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1946
1947 /* Bookmark interfaces. */
1948 #define target_get_bookmark(ARGS, FROM_TTY) \
1949 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1950
1951 #define target_goto_bookmark(ARG, FROM_TTY) \
1952 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1953
1954 /* Hardware watchpoint interfaces. */
1955
1956 /* GDB's current model is that there are three "kinds" of watchpoints,
1957 with respect to when they trigger and how you can move past them.
1958
1959 Those are: continuable, steppable, and non-steppable.
1960
1961 Continuable watchpoints are like x86's -- those trigger after the
1962 memory access's side effects are fully committed to memory. I.e.,
1963 they trap with the PC pointing at the next instruction already.
1964 Continuing past such a watchpoint is doable by just normally
1965 continuing, hence the name.
1966
1967 Both steppable and non-steppable watchpoints trap before the memory
1968 access. I.e, the PC points at the instruction that is accessing
1969 the memory. So GDB needs to single-step once past the current
1970 instruction in order to make the access effective and check whether
1971 the instruction's side effects change the watched expression.
1972
1973 Now, in order to step past that instruction, depending on
1974 architecture and target, you can have two situations:
1975
1976 - steppable watchpoints: you can single-step with the watchpoint
1977 still armed, and the watchpoint won't trigger again.
1978
1979 - non-steppable watchpoints: if you try to single-step with the
1980 watchpoint still armed, you'd trap the watchpoint again and the
1981 thread wouldn't make any progress. So GDB needs to temporarily
1982 remove the watchpoint in order to step past it.
1983
1984 If your target/architecture does not signal that it has either
1985 steppable or non-steppable watchpoints via either
1986 target_have_steppable_watchpoint or
1987 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1988 watchpoints. */
1989
1990 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1991 write). Only the INFERIOR_PTID task is being queried. */
1992
1993 #define target_stopped_by_watchpoint() \
1994 ((current_top_target ()->stopped_by_watchpoint) ())
1995
1996 /* Returns non-zero if the target stopped because it executed a
1997 software breakpoint instruction. */
1998
1999 #define target_stopped_by_sw_breakpoint() \
2000 ((current_top_target ()->stopped_by_sw_breakpoint) ())
2001
2002 #define target_supports_stopped_by_sw_breakpoint() \
2003 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
2004
2005 #define target_stopped_by_hw_breakpoint() \
2006 ((current_top_target ()->stopped_by_hw_breakpoint) ())
2007
2008 #define target_supports_stopped_by_hw_breakpoint() \
2009 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
2010
2011 /* Non-zero if we have steppable watchpoints */
2012
2013 static inline bool
2014 target_have_steppable_watchpoint ()
2015 {
2016 return current_top_target ()->have_steppable_watchpoint ();
2017 }
2018
2019 /* Provide defaults for hardware watchpoint functions. */
2020
2021 /* If the *_hw_beakpoint functions have not been defined
2022 elsewhere use the definitions in the target vector. */
2023
2024 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2025 Returns negative if the target doesn't have enough hardware debug
2026 registers available. Return zero if hardware watchpoint of type
2027 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2028 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2029 CNT is the number of such watchpoints used so far, including this
2030 one. OTHERTYPE is the number of watchpoints of other types than
2031 this one used so far. */
2032
2033 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
2034 (current_top_target ()->can_use_hw_breakpoint) ( \
2035 TYPE, CNT, OTHERTYPE)
2036
2037 /* Returns the number of debug registers needed to watch the given
2038 memory region, or zero if not supported. */
2039
2040 #define target_region_ok_for_hw_watchpoint(addr, len) \
2041 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
2042
2043
2044 #define target_can_do_single_step() \
2045 (current_top_target ()->can_do_single_step) ()
2046
2047 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2048 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2049 COND is the expression for its condition, or NULL if there's none.
2050 Returns 0 for success, 1 if the watchpoint type is not supported,
2051 -1 for failure. */
2052
2053 #define target_insert_watchpoint(addr, len, type, cond) \
2054 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2055
2056 #define target_remove_watchpoint(addr, len, type, cond) \
2057 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2058
2059 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2060 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2061 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2062 masked watchpoints are not supported, -1 for failure. */
2063
2064 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2065 enum target_hw_bp_type);
2066
2067 /* Remove a masked watchpoint at ADDR with the mask MASK.
2068 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2069 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2070 for failure. */
2071
2072 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2073 enum target_hw_bp_type);
2074
2075 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2076 the target machine. Returns 0 for success, and returns non-zero or
2077 throws an error (with a detailed failure reason error code and
2078 message) otherwise. */
2079
2080 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2081 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2082
2083 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2084 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2085
2086 /* Return number of debug registers needed for a ranged breakpoint,
2087 or -1 if ranged breakpoints are not supported. */
2088
2089 extern int target_ranged_break_num_registers (void);
2090
2091 /* Return non-zero if target knows the data address which triggered this
2092 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2093 INFERIOR_PTID task is being queried. */
2094 #define target_stopped_data_address(target, addr_p) \
2095 (target)->stopped_data_address (addr_p)
2096
2097 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2098 LENGTH bytes beginning at START. */
2099 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2100 (target)->watchpoint_addr_within_range (addr, start, length)
2101
2102 /* Return non-zero if the target is capable of using hardware to evaluate
2103 the condition expression. In this case, if the condition is false when
2104 the watched memory location changes, execution may continue without the
2105 debugger being notified.
2106
2107 Due to limitations in the hardware implementation, it may be capable of
2108 avoiding triggering the watchpoint in some cases where the condition
2109 expression is false, but may report some false positives as well.
2110 For this reason, GDB will still evaluate the condition expression when
2111 the watchpoint triggers. */
2112 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2113 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2114
2115 /* Return number of debug registers needed for a masked watchpoint,
2116 -1 if masked watchpoints are not supported or -2 if the given address
2117 and mask combination cannot be used. */
2118
2119 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2120
2121 /* Target can execute in reverse? */
2122 static inline bool
2123 target_can_execute_reverse ()
2124 {
2125 return current_top_target ()->can_execute_reverse ();
2126 }
2127
2128 extern const struct target_desc *target_read_description (struct target_ops *);
2129
2130 #define target_get_ada_task_ptid(lwp, tid) \
2131 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2132
2133 /* Main entry point for searching memory. */
2134 extern int target_search_memory (CORE_ADDR start_addr,
2135 ULONGEST search_space_len,
2136 const gdb_byte *pattern,
2137 ULONGEST pattern_len,
2138 CORE_ADDR *found_addrp);
2139
2140 /* Target file operations. */
2141
2142 /* Return nonzero if the filesystem seen by the current inferior
2143 is the local filesystem, zero otherwise. */
2144 #define target_filesystem_is_local() \
2145 current_top_target ()->filesystem_is_local ()
2146
2147 /* Open FILENAME on the target, in the filesystem as seen by INF,
2148 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2149 the debugger (GDB or, for remote targets, the remote stub). Return
2150 a target file descriptor, or -1 if an error occurs (and set
2151 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2152 if the file is being accessed over a link that may be slow. */
2153 extern int target_fileio_open (struct inferior *inf,
2154 const char *filename, int flags,
2155 int mode, bool warn_if_slow,
2156 int *target_errno);
2157
2158 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2159 Return the number of bytes written, or -1 if an error occurs
2160 (and set *TARGET_ERRNO). */
2161 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2162 ULONGEST offset, int *target_errno);
2163
2164 /* Read up to LEN bytes FD on the target into READ_BUF.
2165 Return the number of bytes read, or -1 if an error occurs
2166 (and set *TARGET_ERRNO). */
2167 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2168 ULONGEST offset, int *target_errno);
2169
2170 /* Get information about the file opened as FD on the target
2171 and put it in SB. Return 0 on success, or -1 if an error
2172 occurs (and set *TARGET_ERRNO). */
2173 extern int target_fileio_fstat (int fd, struct stat *sb,
2174 int *target_errno);
2175
2176 /* Close FD on the target. Return 0, or -1 if an error occurs
2177 (and set *TARGET_ERRNO). */
2178 extern int target_fileio_close (int fd, int *target_errno);
2179
2180 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2181 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2182 for remote targets, the remote stub). Return 0, or -1 if an error
2183 occurs (and set *TARGET_ERRNO). */
2184 extern int target_fileio_unlink (struct inferior *inf,
2185 const char *filename,
2186 int *target_errno);
2187
2188 /* Read value of symbolic link FILENAME on the target, in the
2189 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2190 by the debugger (GDB or, for remote targets, the remote stub).
2191 Return a null-terminated string allocated via xmalloc, or NULL if
2192 an error occurs (and set *TARGET_ERRNO). */
2193 extern gdb::optional<std::string> target_fileio_readlink
2194 (struct inferior *inf, const char *filename, int *target_errno);
2195
2196 /* Read target file FILENAME, in the filesystem as seen by INF. If
2197 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2198 remote targets, the remote stub). The return value will be -1 if
2199 the transfer fails or is not supported; 0 if the object is empty;
2200 or the length of the object otherwise. If a positive value is
2201 returned, a sufficiently large buffer will be allocated using
2202 xmalloc and returned in *BUF_P containing the contents of the
2203 object.
2204
2205 This method should be used for objects sufficiently small to store
2206 in a single xmalloc'd buffer, when no fixed bound on the object's
2207 size is known in advance. */
2208 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2209 const char *filename,
2210 gdb_byte **buf_p);
2211
2212 /* Read target file FILENAME, in the filesystem as seen by INF. If
2213 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2214 remote targets, the remote stub). The result is NUL-terminated and
2215 returned as a string, allocated using xmalloc. If an error occurs
2216 or the transfer is unsupported, NULL is returned. Empty objects
2217 are returned as allocated but empty strings. A warning is issued
2218 if the result contains any embedded NUL bytes. */
2219 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2220 (struct inferior *inf, const char *filename);
2221
2222
2223 /* Tracepoint-related operations. */
2224
2225 #define target_trace_init() \
2226 (current_top_target ()->trace_init) ()
2227
2228 #define target_download_tracepoint(t) \
2229 (current_top_target ()->download_tracepoint) (t)
2230
2231 #define target_can_download_tracepoint() \
2232 (current_top_target ()->can_download_tracepoint) ()
2233
2234 #define target_download_trace_state_variable(tsv) \
2235 (current_top_target ()->download_trace_state_variable) (tsv)
2236
2237 #define target_enable_tracepoint(loc) \
2238 (current_top_target ()->enable_tracepoint) (loc)
2239
2240 #define target_disable_tracepoint(loc) \
2241 (current_top_target ()->disable_tracepoint) (loc)
2242
2243 #define target_trace_start() \
2244 (current_top_target ()->trace_start) ()
2245
2246 #define target_trace_set_readonly_regions() \
2247 (current_top_target ()->trace_set_readonly_regions) ()
2248
2249 #define target_get_trace_status(ts) \
2250 (current_top_target ()->get_trace_status) (ts)
2251
2252 #define target_get_tracepoint_status(tp,utp) \
2253 (current_top_target ()->get_tracepoint_status) (tp, utp)
2254
2255 #define target_trace_stop() \
2256 (current_top_target ()->trace_stop) ()
2257
2258 #define target_trace_find(type,num,addr1,addr2,tpp) \
2259 (current_top_target ()->trace_find) (\
2260 (type), (num), (addr1), (addr2), (tpp))
2261
2262 #define target_get_trace_state_variable_value(tsv,val) \
2263 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2264
2265 #define target_save_trace_data(filename) \
2266 (current_top_target ()->save_trace_data) (filename)
2267
2268 #define target_upload_tracepoints(utpp) \
2269 (current_top_target ()->upload_tracepoints) (utpp)
2270
2271 #define target_upload_trace_state_variables(utsvp) \
2272 (current_top_target ()->upload_trace_state_variables) (utsvp)
2273
2274 #define target_get_raw_trace_data(buf,offset,len) \
2275 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2276
2277 #define target_get_min_fast_tracepoint_insn_len() \
2278 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2279
2280 #define target_set_disconnected_tracing(val) \
2281 (current_top_target ()->set_disconnected_tracing) (val)
2282
2283 #define target_set_circular_trace_buffer(val) \
2284 (current_top_target ()->set_circular_trace_buffer) (val)
2285
2286 #define target_set_trace_buffer_size(val) \
2287 (current_top_target ()->set_trace_buffer_size) (val)
2288
2289 #define target_set_trace_notes(user,notes,stopnotes) \
2290 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2291
2292 #define target_get_tib_address(ptid, addr) \
2293 (current_top_target ()->get_tib_address) ((ptid), (addr))
2294
2295 #define target_set_permissions() \
2296 (current_top_target ()->set_permissions) ()
2297
2298 #define target_static_tracepoint_marker_at(addr, marker) \
2299 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2300
2301 #define target_static_tracepoint_markers_by_strid(marker_id) \
2302 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2303
2304 #define target_traceframe_info() \
2305 (current_top_target ()->traceframe_info) ()
2306
2307 #define target_use_agent(use) \
2308 (current_top_target ()->use_agent) (use)
2309
2310 #define target_can_use_agent() \
2311 (current_top_target ()->can_use_agent) ()
2312
2313 #define target_augmented_libraries_svr4_read() \
2314 (current_top_target ()->augmented_libraries_svr4_read) ()
2315
2316 /* Command logging facility. */
2317
2318 #define target_log_command(p) \
2319 (current_top_target ()->log_command) (p)
2320
2321
2322 extern int target_core_of_thread (ptid_t ptid);
2323
2324 /* See to_get_unwinder in struct target_ops. */
2325 extern const struct frame_unwind *target_get_unwinder (void);
2326
2327 /* See to_get_tailcall_unwinder in struct target_ops. */
2328 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2329
2330 /* This implements basic memory verification, reading target memory
2331 and performing the comparison here (as opposed to accelerated
2332 verification making use of the qCRC packet, for example). */
2333
2334 extern int simple_verify_memory (struct target_ops* ops,
2335 const gdb_byte *data,
2336 CORE_ADDR memaddr, ULONGEST size);
2337
2338 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2339 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2340 if there's a mismatch, and -1 if an error is encountered while
2341 reading memory. Throws an error if the functionality is found not
2342 to be supported by the current target. */
2343 int target_verify_memory (const gdb_byte *data,
2344 CORE_ADDR memaddr, ULONGEST size);
2345
2346 /* Routines for maintenance of the target structures...
2347
2348 add_target: Add a target to the list of all possible targets.
2349 This only makes sense for targets that should be activated using
2350 the "target TARGET_NAME ..." command.
2351
2352 push_target: Make this target the top of the stack of currently used
2353 targets, within its particular stratum of the stack. Result
2354 is 0 if now atop the stack, nonzero if not on top (maybe
2355 should warn user).
2356
2357 unpush_target: Remove this from the stack of currently used targets,
2358 no matter where it is on the list. Returns 0 if no
2359 change, 1 if removed from stack. */
2360
2361 /* Type of callback called when the user activates a target with
2362 "target TARGET_NAME". The callback routine takes the rest of the
2363 parameters from the command, and (if successful) pushes a new
2364 target onto the stack. */
2365 typedef void target_open_ftype (const char *args, int from_tty);
2366
2367 /* Add the target described by INFO to the list of possible targets
2368 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2369 as the command's completer if not NULL. */
2370
2371 extern void add_target (const target_info &info,
2372 target_open_ftype *func,
2373 completer_ftype *completer = NULL);
2374
2375 /* Adds a command ALIAS for the target described by INFO and marks it
2376 deprecated. This is useful for maintaining backwards compatibility
2377 when renaming targets. */
2378
2379 extern void add_deprecated_target_alias (const target_info &info,
2380 const char *alias);
2381
2382 extern void push_target (struct target_ops *);
2383
2384 /* An overload that deletes the target on failure. */
2385 extern void push_target (target_ops_up &&);
2386
2387 extern int unpush_target (struct target_ops *);
2388
2389 extern void target_pre_inferior (int);
2390
2391 extern void target_preopen (int);
2392
2393 /* Does whatever cleanup is required to get rid of all pushed targets. */
2394 extern void pop_all_targets (void);
2395
2396 /* Like pop_all_targets, but pops only targets whose stratum is at or
2397 above STRATUM. */
2398 extern void pop_all_targets_at_and_above (enum strata stratum);
2399
2400 /* Like pop_all_targets, but pops only targets whose stratum is
2401 strictly above ABOVE_STRATUM. */
2402 extern void pop_all_targets_above (enum strata above_stratum);
2403
2404 extern bool target_is_pushed (target_ops *t);
2405
2406 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2407 CORE_ADDR offset);
2408
2409 /* Return the "section" containing the specified address. */
2410 struct target_section *target_section_by_addr (struct target_ops *target,
2411 CORE_ADDR addr);
2412
2413 /* Return the target section table this target (or the targets
2414 beneath) currently manipulate. */
2415
2416 extern struct target_section_table *target_get_section_table
2417 (struct target_ops *target);
2418
2419 /* From mem-break.c */
2420
2421 extern int memory_remove_breakpoint (struct target_ops *,
2422 struct gdbarch *, struct bp_target_info *,
2423 enum remove_bp_reason);
2424
2425 extern int memory_insert_breakpoint (struct target_ops *,
2426 struct gdbarch *, struct bp_target_info *);
2427
2428 /* Convenience template use to add memory breakpoints support to a
2429 target. */
2430
2431 template <typename BaseTarget>
2432 struct memory_breakpoint_target : public BaseTarget
2433 {
2434 int insert_breakpoint (struct gdbarch *gdbarch,
2435 struct bp_target_info *bp_tgt) override
2436 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2437
2438 int remove_breakpoint (struct gdbarch *gdbarch,
2439 struct bp_target_info *bp_tgt,
2440 enum remove_bp_reason reason) override
2441 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2442 };
2443
2444 /* Check whether the memory at the breakpoint's placed address still
2445 contains the expected breakpoint instruction. */
2446
2447 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2448 struct bp_target_info *bp_tgt);
2449
2450 extern int default_memory_remove_breakpoint (struct gdbarch *,
2451 struct bp_target_info *);
2452
2453 extern int default_memory_insert_breakpoint (struct gdbarch *,
2454 struct bp_target_info *);
2455
2456
2457 /* From target.c */
2458
2459 extern void initialize_targets (void);
2460
2461 extern void noprocess (void) ATTRIBUTE_NORETURN;
2462
2463 extern void target_require_runnable (void);
2464
2465 /* Find the target at STRATUM. If no target is at that stratum,
2466 return NULL. */
2467
2468 struct target_ops *find_target_at (enum strata stratum);
2469
2470 /* Read OS data object of type TYPE from the target, and return it in XML
2471 format. The return value follows the same rules as target_read_stralloc. */
2472
2473 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2474
2475 /* Stuff that should be shared among the various remote targets. */
2476
2477 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2478 information (higher values, more information). */
2479 extern int remote_debug;
2480
2481 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2482 extern int baud_rate;
2483
2484 /* Parity for serial port */
2485 extern int serial_parity;
2486
2487 /* Timeout limit for response from target. */
2488 extern int remote_timeout;
2489
2490 \f
2491
2492 /* Set the show memory breakpoints mode to show, and return a
2493 scoped_restore to restore it back to the current value. */
2494 extern scoped_restore_tmpl<int>
2495 make_scoped_restore_show_memory_breakpoints (int show);
2496
2497 extern bool may_write_registers;
2498 extern bool may_write_memory;
2499 extern bool may_insert_breakpoints;
2500 extern bool may_insert_tracepoints;
2501 extern bool may_insert_fast_tracepoints;
2502 extern bool may_stop;
2503
2504 extern void update_target_permissions (void);
2505
2506 \f
2507 /* Imported from machine dependent code. */
2508
2509 /* See to_enable_btrace in struct target_ops. */
2510 extern struct btrace_target_info *
2511 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2512
2513 /* See to_disable_btrace in struct target_ops. */
2514 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2515
2516 /* See to_teardown_btrace in struct target_ops. */
2517 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2518
2519 /* See to_read_btrace in struct target_ops. */
2520 extern enum btrace_error target_read_btrace (struct btrace_data *,
2521 struct btrace_target_info *,
2522 enum btrace_read_type);
2523
2524 /* See to_btrace_conf in struct target_ops. */
2525 extern const struct btrace_config *
2526 target_btrace_conf (const struct btrace_target_info *);
2527
2528 /* See to_stop_recording in struct target_ops. */
2529 extern void target_stop_recording (void);
2530
2531 /* See to_save_record in struct target_ops. */
2532 extern void target_save_record (const char *filename);
2533
2534 /* Query if the target supports deleting the execution log. */
2535 extern int target_supports_delete_record (void);
2536
2537 /* See to_delete_record in struct target_ops. */
2538 extern void target_delete_record (void);
2539
2540 /* See to_record_method. */
2541 extern enum record_method target_record_method (ptid_t ptid);
2542
2543 /* See to_record_is_replaying in struct target_ops. */
2544 extern int target_record_is_replaying (ptid_t ptid);
2545
2546 /* See to_record_will_replay in struct target_ops. */
2547 extern int target_record_will_replay (ptid_t ptid, int dir);
2548
2549 /* See to_record_stop_replaying in struct target_ops. */
2550 extern void target_record_stop_replaying (void);
2551
2552 /* See to_goto_record_begin in struct target_ops. */
2553 extern void target_goto_record_begin (void);
2554
2555 /* See to_goto_record_end in struct target_ops. */
2556 extern void target_goto_record_end (void);
2557
2558 /* See to_goto_record in struct target_ops. */
2559 extern void target_goto_record (ULONGEST insn);
2560
2561 /* See to_insn_history. */
2562 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2563
2564 /* See to_insn_history_from. */
2565 extern void target_insn_history_from (ULONGEST from, int size,
2566 gdb_disassembly_flags flags);
2567
2568 /* See to_insn_history_range. */
2569 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2570 gdb_disassembly_flags flags);
2571
2572 /* See to_call_history. */
2573 extern void target_call_history (int size, record_print_flags flags);
2574
2575 /* See to_call_history_from. */
2576 extern void target_call_history_from (ULONGEST begin, int size,
2577 record_print_flags flags);
2578
2579 /* See to_call_history_range. */
2580 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2581 record_print_flags flags);
2582
2583 /* See to_prepare_to_generate_core. */
2584 extern void target_prepare_to_generate_core (void);
2585
2586 /* See to_done_generating_core. */
2587 extern void target_done_generating_core (void);
2588
2589 #endif /* !defined (TARGET_H) */
This page took 0.079593 seconds and 5 git commands to generate.