convert to_get_unwinder and to_get_tailcall_unwinder to methods
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int)
413 TARGET_DEFAULT_NORETURN (tcomplain ());
414 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
415 TARGET_DEFAULT_NORETURN (noprocess ());
416 ptid_t (*to_wait) (struct target_ops *,
417 ptid_t, struct target_waitstatus *, int)
418 TARGET_DEFAULT_NORETURN (noprocess ());
419 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_IGNORE ();
421 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
424 TARGET_DEFAULT_NORETURN (noprocess ());
425
426 /* Transfer LEN bytes of memory between GDB address MYADDR and
427 target address MEMADDR. If WRITE, transfer them to the target, else
428 transfer them from the target. TARGET is the target from which we
429 get this function.
430
431 Return value, N, is one of the following:
432
433 0 means that we can't handle this. If errno has been set, it is the
434 error which prevented us from doing it (FIXME: What about bfd_error?).
435
436 positive (call it N) means that we have transferred N bytes
437 starting at MEMADDR. We might be able to handle more bytes
438 beyond this length, but no promises.
439
440 negative (call its absolute value N) means that we cannot
441 transfer right at MEMADDR, but we could transfer at least
442 something at MEMADDR + N.
443
444 NOTE: cagney/2004-10-01: This has been entirely superseeded by
445 to_xfer_partial and inferior inheritance. */
446
447 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
448 int len, int write,
449 struct mem_attrib *attrib,
450 struct target_ops *target);
451
452 void (*to_files_info) (struct target_ops *)
453 TARGET_DEFAULT_IGNORE ();
454 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
455 struct bp_target_info *)
456 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
457 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
458 struct bp_target_info *)
459 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
460 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
461 TARGET_DEFAULT_RETURN (0);
462 int (*to_ranged_break_num_registers) (struct target_ops *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_insert_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467 int (*to_remove_hw_breakpoint) (struct target_ops *,
468 struct gdbarch *, struct bp_target_info *)
469 TARGET_DEFAULT_RETURN (-1);
470
471 /* Documentation of what the two routines below are expected to do is
472 provided with the corresponding target_* macros. */
473 int (*to_remove_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476 int (*to_insert_watchpoint) (struct target_ops *,
477 CORE_ADDR, int, int, struct expression *)
478 TARGET_DEFAULT_RETURN (-1);
479
480 int (*to_insert_mask_watchpoint) (struct target_ops *,
481 CORE_ADDR, CORE_ADDR, int)
482 TARGET_DEFAULT_RETURN (1);
483 int (*to_remove_mask_watchpoint) (struct target_ops *,
484 CORE_ADDR, CORE_ADDR, int)
485 TARGET_DEFAULT_RETURN (1);
486 int (*to_stopped_by_watchpoint) (struct target_ops *)
487 TARGET_DEFAULT_RETURN (0);
488 int to_have_steppable_watchpoint;
489 int to_have_continuable_watchpoint;
490 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
491 TARGET_DEFAULT_RETURN (0);
492 int (*to_watchpoint_addr_within_range) (struct target_ops *,
493 CORE_ADDR, CORE_ADDR, int)
494 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
495
496 /* Documentation of this routine is provided with the corresponding
497 target_* macro. */
498 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
499 CORE_ADDR, int)
500 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
501
502 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
503 CORE_ADDR, int, int,
504 struct expression *)
505 TARGET_DEFAULT_RETURN (0);
506 int (*to_masked_watch_num_registers) (struct target_ops *,
507 CORE_ADDR, CORE_ADDR)
508 TARGET_DEFAULT_RETURN (-1);
509 void (*to_terminal_init) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_inferior) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_ours_for_output) (struct target_ops *)
514 TARGET_DEFAULT_IGNORE ();
515 void (*to_terminal_ours) (struct target_ops *)
516 TARGET_DEFAULT_IGNORE ();
517 void (*to_terminal_save_ours) (struct target_ops *)
518 TARGET_DEFAULT_IGNORE ();
519 void (*to_terminal_info) (struct target_ops *, const char *, int)
520 TARGET_DEFAULT_FUNC (default_terminal_info);
521 void (*to_kill) (struct target_ops *)
522 TARGET_DEFAULT_NORETURN (noprocess ());
523 void (*to_load) (struct target_ops *, char *, int)
524 TARGET_DEFAULT_NORETURN (tcomplain ());
525 void (*to_create_inferior) (struct target_ops *,
526 char *, char *, char **, int);
527 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
528 TARGET_DEFAULT_IGNORE ();
529 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
530 TARGET_DEFAULT_RETURN (1);
531 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
536 TARGET_DEFAULT_RETURN (1);
537 int (*to_follow_fork) (struct target_ops *, int, int)
538 TARGET_DEFAULT_FUNC (default_follow_fork);
539 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
542 TARGET_DEFAULT_RETURN (1);
543 int (*to_set_syscall_catchpoint) (struct target_ops *,
544 int, int, int, int, int *)
545 TARGET_DEFAULT_RETURN (1);
546 int (*to_has_exited) (struct target_ops *, int, int, int *)
547 TARGET_DEFAULT_RETURN (0);
548 void (*to_mourn_inferior) (struct target_ops *)
549 TARGET_DEFAULT_FUNC (default_mourn_inferior);
550 int (*to_can_run) (struct target_ops *)
551 TARGET_DEFAULT_RETURN (0);
552
553 /* Documentation of this routine is provided with the corresponding
554 target_* macro. */
555 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
556 TARGET_DEFAULT_IGNORE ();
557
558 /* Documentation of this routine is provided with the
559 corresponding target_* function. */
560 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
561 TARGET_DEFAULT_IGNORE ();
562
563 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
564 TARGET_DEFAULT_RETURN (0);
565 void (*to_find_new_threads) (struct target_ops *)
566 TARGET_DEFAULT_IGNORE ();
567 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
568 TARGET_DEFAULT_FUNC (default_pid_to_str);
569 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
570 TARGET_DEFAULT_RETURN (NULL);
571 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
572 TARGET_DEFAULT_RETURN (NULL);
573 void (*to_stop) (struct target_ops *, ptid_t)
574 TARGET_DEFAULT_IGNORE ();
575 void (*to_rcmd) (struct target_ops *,
576 char *command, struct ui_file *output)
577 TARGET_DEFAULT_FUNC (default_rcmd);
578 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
579 TARGET_DEFAULT_RETURN (NULL);
580 void (*to_log_command) (struct target_ops *, const char *)
581 TARGET_DEFAULT_IGNORE ();
582 struct target_section_table *(*to_get_section_table) (struct target_ops *)
583 TARGET_DEFAULT_RETURN (NULL);
584 enum strata to_stratum;
585 int (*to_has_all_memory) (struct target_ops *);
586 int (*to_has_memory) (struct target_ops *);
587 int (*to_has_stack) (struct target_ops *);
588 int (*to_has_registers) (struct target_ops *);
589 int (*to_has_execution) (struct target_ops *, ptid_t);
590 int to_has_thread_control; /* control thread execution */
591 int to_attach_no_wait;
592 /* ASYNC target controls */
593 int (*to_can_async_p) (struct target_ops *)
594 TARGET_DEFAULT_FUNC (find_default_can_async_p);
595 int (*to_is_async_p) (struct target_ops *)
596 TARGET_DEFAULT_FUNC (find_default_is_async_p);
597 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
598 TARGET_DEFAULT_NORETURN (tcomplain ());
599 int (*to_supports_non_stop) (struct target_ops *);
600 /* find_memory_regions support method for gcore */
601 int (*to_find_memory_regions) (struct target_ops *,
602 find_memory_region_ftype func, void *data)
603 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
604 /* make_corefile_notes support method for gcore */
605 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
606 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
607 /* get_bookmark support method for bookmarks */
608 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
609 TARGET_DEFAULT_NORETURN (tcomplain ());
610 /* goto_bookmark support method for bookmarks */
611 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
612 TARGET_DEFAULT_NORETURN (tcomplain ());
613 /* Return the thread-local address at OFFSET in the
614 thread-local storage for the thread PTID and the shared library
615 or executable file given by OBJFILE. If that block of
616 thread-local storage hasn't been allocated yet, this function
617 may return an error. */
618 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
619 ptid_t ptid,
620 CORE_ADDR load_module_addr,
621 CORE_ADDR offset);
622
623 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
624 OBJECT. The OFFSET, for a seekable object, specifies the
625 starting point. The ANNEX can be used to provide additional
626 data-specific information to the target.
627
628 Return the transferred status, error or OK (an
629 'enum target_xfer_status' value). Save the number of bytes
630 actually transferred in *XFERED_LEN if transfer is successful
631 (TARGET_XFER_OK) or the number unavailable bytes if the requested
632 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
633 smaller than LEN does not indicate the end of the object, only
634 the end of the transfer; higher level code should continue
635 transferring if desired. This is handled in target.c.
636
637 The interface does not support a "retry" mechanism. Instead it
638 assumes that at least one byte will be transfered on each
639 successful call.
640
641 NOTE: cagney/2003-10-17: The current interface can lead to
642 fragmented transfers. Lower target levels should not implement
643 hacks, such as enlarging the transfer, in an attempt to
644 compensate for this. Instead, the target stack should be
645 extended so that it implements supply/collect methods and a
646 look-aside object cache. With that available, the lowest
647 target can safely and freely "push" data up the stack.
648
649 See target_read and target_write for more information. One,
650 and only one, of readbuf or writebuf must be non-NULL. */
651
652 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
653 enum target_object object,
654 const char *annex,
655 gdb_byte *readbuf,
656 const gdb_byte *writebuf,
657 ULONGEST offset, ULONGEST len,
658 ULONGEST *xfered_len)
659 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
660
661 /* Returns the memory map for the target. A return value of NULL
662 means that no memory map is available. If a memory address
663 does not fall within any returned regions, it's assumed to be
664 RAM. The returned memory regions should not overlap.
665
666 The order of regions does not matter; target_memory_map will
667 sort regions by starting address. For that reason, this
668 function should not be called directly except via
669 target_memory_map.
670
671 This method should not cache data; if the memory map could
672 change unexpectedly, it should be invalidated, and higher
673 layers will re-fetch it. */
674 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
675 TARGET_DEFAULT_RETURN (NULL);
676
677 /* Erases the region of flash memory starting at ADDRESS, of
678 length LENGTH.
679
680 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
681 on flash block boundaries, as reported by 'to_memory_map'. */
682 void (*to_flash_erase) (struct target_ops *,
683 ULONGEST address, LONGEST length)
684 TARGET_DEFAULT_NORETURN (tcomplain ());
685
686 /* Finishes a flash memory write sequence. After this operation
687 all flash memory should be available for writing and the result
688 of reading from areas written by 'to_flash_write' should be
689 equal to what was written. */
690 void (*to_flash_done) (struct target_ops *)
691 TARGET_DEFAULT_NORETURN (tcomplain ());
692
693 /* Describe the architecture-specific features of this target. If
694 OPS doesn't have a description, this should delegate to the
695 "beneath" target. Returns the description found, or NULL if no
696 description was available. */
697 const struct target_desc *(*to_read_description) (struct target_ops *ops)
698 TARGET_DEFAULT_RETURN (NULL);
699
700 /* Build the PTID of the thread on which a given task is running,
701 based on LWP and THREAD. These values are extracted from the
702 task Private_Data section of the Ada Task Control Block, and
703 their interpretation depends on the target. */
704 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
705 long lwp, long thread)
706 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
707
708 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
709 Return 0 if *READPTR is already at the end of the buffer.
710 Return -1 if there is insufficient buffer for a whole entry.
711 Return 1 if an entry was read into *TYPEP and *VALP. */
712 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
713 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
714 TARGET_DEFAULT_FUNC (default_auxv_parse);
715
716 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
717 sequence of bytes in PATTERN with length PATTERN_LEN.
718
719 The result is 1 if found, 0 if not found, and -1 if there was an error
720 requiring halting of the search (e.g. memory read error).
721 If the pattern is found the address is recorded in FOUND_ADDRP. */
722 int (*to_search_memory) (struct target_ops *ops,
723 CORE_ADDR start_addr, ULONGEST search_space_len,
724 const gdb_byte *pattern, ULONGEST pattern_len,
725 CORE_ADDR *found_addrp)
726 TARGET_DEFAULT_FUNC (default_search_memory);
727
728 /* Can target execute in reverse? */
729 int (*to_can_execute_reverse) (struct target_ops *)
730 TARGET_DEFAULT_RETURN (0);
731
732 /* The direction the target is currently executing. Must be
733 implemented on targets that support reverse execution and async
734 mode. The default simply returns forward execution. */
735 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
736 TARGET_DEFAULT_FUNC (default_execution_direction);
737
738 /* Does this target support debugging multiple processes
739 simultaneously? */
740 int (*to_supports_multi_process) (struct target_ops *)
741 TARGET_DEFAULT_RETURN (0);
742
743 /* Does this target support enabling and disabling tracepoints while a trace
744 experiment is running? */
745 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
746 TARGET_DEFAULT_RETURN (0);
747
748 /* Does this target support disabling address space randomization? */
749 int (*to_supports_disable_randomization) (struct target_ops *);
750
751 /* Does this target support the tracenz bytecode for string collection? */
752 int (*to_supports_string_tracing) (struct target_ops *)
753 TARGET_DEFAULT_RETURN (0);
754
755 /* Does this target support evaluation of breakpoint conditions on its
756 end? */
757 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
758 TARGET_DEFAULT_RETURN (0);
759
760 /* Does this target support evaluation of breakpoint commands on its
761 end? */
762 int (*to_can_run_breakpoint_commands) (struct target_ops *)
763 TARGET_DEFAULT_RETURN (0);
764
765 /* Determine current architecture of thread PTID.
766
767 The target is supposed to determine the architecture of the code where
768 the target is currently stopped at (on Cell, if a target is in spu_run,
769 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
770 This is architecture used to perform decr_pc_after_break adjustment,
771 and also determines the frame architecture of the innermost frame.
772 ptrace operations need to operate according to target_gdbarch ().
773
774 The default implementation always returns target_gdbarch (). */
775 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
776 TARGET_DEFAULT_FUNC (default_thread_architecture);
777
778 /* Determine current address space of thread PTID.
779
780 The default implementation always returns the inferior's
781 address space. */
782 struct address_space *(*to_thread_address_space) (struct target_ops *,
783 ptid_t);
784
785 /* Target file operations. */
786
787 /* Open FILENAME on the target, using FLAGS and MODE. Return a
788 target file descriptor, or -1 if an error occurs (and set
789 *TARGET_ERRNO). */
790 int (*to_fileio_open) (struct target_ops *,
791 const char *filename, int flags, int mode,
792 int *target_errno);
793
794 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
795 Return the number of bytes written, or -1 if an error occurs
796 (and set *TARGET_ERRNO). */
797 int (*to_fileio_pwrite) (struct target_ops *,
798 int fd, const gdb_byte *write_buf, int len,
799 ULONGEST offset, int *target_errno);
800
801 /* Read up to LEN bytes FD on the target into READ_BUF.
802 Return the number of bytes read, or -1 if an error occurs
803 (and set *TARGET_ERRNO). */
804 int (*to_fileio_pread) (struct target_ops *,
805 int fd, gdb_byte *read_buf, int len,
806 ULONGEST offset, int *target_errno);
807
808 /* Close FD on the target. Return 0, or -1 if an error occurs
809 (and set *TARGET_ERRNO). */
810 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
811
812 /* Unlink FILENAME on the target. Return 0, or -1 if an error
813 occurs (and set *TARGET_ERRNO). */
814 int (*to_fileio_unlink) (struct target_ops *,
815 const char *filename, int *target_errno);
816
817 /* Read value of symbolic link FILENAME on the target. Return a
818 null-terminated string allocated via xmalloc, or NULL if an error
819 occurs (and set *TARGET_ERRNO). */
820 char *(*to_fileio_readlink) (struct target_ops *,
821 const char *filename, int *target_errno);
822
823
824 /* Implement the "info proc" command. */
825 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
826
827 /* Tracepoint-related operations. */
828
829 /* Prepare the target for a tracing run. */
830 void (*to_trace_init) (struct target_ops *)
831 TARGET_DEFAULT_NORETURN (tcomplain ());
832
833 /* Send full details of a tracepoint location to the target. */
834 void (*to_download_tracepoint) (struct target_ops *,
835 struct bp_location *location)
836 TARGET_DEFAULT_NORETURN (tcomplain ());
837
838 /* Is the target able to download tracepoint locations in current
839 state? */
840 int (*to_can_download_tracepoint) (struct target_ops *)
841 TARGET_DEFAULT_RETURN (0);
842
843 /* Send full details of a trace state variable to the target. */
844 void (*to_download_trace_state_variable) (struct target_ops *,
845 struct trace_state_variable *tsv)
846 TARGET_DEFAULT_NORETURN (tcomplain ());
847
848 /* Enable a tracepoint on the target. */
849 void (*to_enable_tracepoint) (struct target_ops *,
850 struct bp_location *location)
851 TARGET_DEFAULT_NORETURN (tcomplain ());
852
853 /* Disable a tracepoint on the target. */
854 void (*to_disable_tracepoint) (struct target_ops *,
855 struct bp_location *location)
856 TARGET_DEFAULT_NORETURN (tcomplain ());
857
858 /* Inform the target info of memory regions that are readonly
859 (such as text sections), and so it should return data from
860 those rather than look in the trace buffer. */
861 void (*to_trace_set_readonly_regions) (struct target_ops *)
862 TARGET_DEFAULT_NORETURN (tcomplain ());
863
864 /* Start a trace run. */
865 void (*to_trace_start) (struct target_ops *)
866 TARGET_DEFAULT_NORETURN (tcomplain ());
867
868 /* Get the current status of a tracing run. */
869 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
870 TARGET_DEFAULT_RETURN (-1);
871
872 void (*to_get_tracepoint_status) (struct target_ops *,
873 struct breakpoint *tp,
874 struct uploaded_tp *utp)
875 TARGET_DEFAULT_NORETURN (tcomplain ());
876
877 /* Stop a trace run. */
878 void (*to_trace_stop) (struct target_ops *)
879 TARGET_DEFAULT_NORETURN (tcomplain ());
880
881 /* Ask the target to find a trace frame of the given type TYPE,
882 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
883 number of the trace frame, and also the tracepoint number at
884 TPP. If no trace frame matches, return -1. May throw if the
885 operation fails. */
886 int (*to_trace_find) (struct target_ops *,
887 enum trace_find_type type, int num,
888 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
889 TARGET_DEFAULT_RETURN (-1);
890
891 /* Get the value of the trace state variable number TSV, returning
892 1 if the value is known and writing the value itself into the
893 location pointed to by VAL, else returning 0. */
894 int (*to_get_trace_state_variable_value) (struct target_ops *,
895 int tsv, LONGEST *val)
896 TARGET_DEFAULT_RETURN (0);
897
898 int (*to_save_trace_data) (struct target_ops *, const char *filename)
899 TARGET_DEFAULT_NORETURN (tcomplain ());
900
901 int (*to_upload_tracepoints) (struct target_ops *,
902 struct uploaded_tp **utpp)
903 TARGET_DEFAULT_RETURN (0);
904
905 int (*to_upload_trace_state_variables) (struct target_ops *,
906 struct uploaded_tsv **utsvp)
907 TARGET_DEFAULT_RETURN (0);
908
909 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
910 ULONGEST offset, LONGEST len)
911 TARGET_DEFAULT_NORETURN (tcomplain ());
912
913 /* Get the minimum length of instruction on which a fast tracepoint
914 may be set on the target. If this operation is unsupported,
915 return -1. If for some reason the minimum length cannot be
916 determined, return 0. */
917 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
918 TARGET_DEFAULT_RETURN (-1);
919
920 /* Set the target's tracing behavior in response to unexpected
921 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
922 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
923 TARGET_DEFAULT_IGNORE ();
924 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
925 TARGET_DEFAULT_IGNORE ();
926 /* Set the size of trace buffer in the target. */
927 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
928 TARGET_DEFAULT_IGNORE ();
929
930 /* Add/change textual notes about the trace run, returning 1 if
931 successful, 0 otherwise. */
932 int (*to_set_trace_notes) (struct target_ops *,
933 const char *user, const char *notes,
934 const char *stopnotes)
935 TARGET_DEFAULT_RETURN (0);
936
937 /* Return the processor core that thread PTID was last seen on.
938 This information is updated only when:
939 - update_thread_list is called
940 - thread stops
941 If the core cannot be determined -- either for the specified
942 thread, or right now, or in this debug session, or for this
943 target -- return -1. */
944 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
945 TARGET_DEFAULT_RETURN (-1);
946
947 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
948 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
949 a match, 0 if there's a mismatch, and -1 if an error is
950 encountered while reading memory. */
951 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
952 CORE_ADDR memaddr, ULONGEST size)
953 TARGET_DEFAULT_NORETURN (tcomplain ());
954
955 /* Return the address of the start of the Thread Information Block
956 a Windows OS specific feature. */
957 int (*to_get_tib_address) (struct target_ops *,
958 ptid_t ptid, CORE_ADDR *addr)
959 TARGET_DEFAULT_NORETURN (tcomplain ());
960
961 /* Send the new settings of write permission variables. */
962 void (*to_set_permissions) (struct target_ops *)
963 TARGET_DEFAULT_IGNORE ();
964
965 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
966 with its details. Return 1 on success, 0 on failure. */
967 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
968 struct static_tracepoint_marker *marker)
969 TARGET_DEFAULT_RETURN (0);
970
971 /* Return a vector of all tracepoints markers string id ID, or all
972 markers if ID is NULL. */
973 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
974 TARGET_DEFAULT_NORETURN (tcomplain ());
975
976 /* Return a traceframe info object describing the current
977 traceframe's contents. If the target doesn't support
978 traceframe info, return NULL. If the current traceframe is not
979 selected (the current traceframe number is -1), the target can
980 choose to return either NULL or an empty traceframe info. If
981 NULL is returned, for example in remote target, GDB will read
982 from the live inferior. If an empty traceframe info is
983 returned, for example in tfile target, which means the
984 traceframe info is available, but the requested memory is not
985 available in it. GDB will try to see if the requested memory
986 is available in the read-only sections. This method should not
987 cache data; higher layers take care of caching, invalidating,
988 and re-fetching when necessary. */
989 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
990 TARGET_DEFAULT_RETURN (NULL);
991
992 /* Ask the target to use or not to use agent according to USE. Return 1
993 successful, 0 otherwise. */
994 int (*to_use_agent) (struct target_ops *, int use)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Is the target able to use agent in current state? */
998 int (*to_can_use_agent) (struct target_ops *)
999 TARGET_DEFAULT_RETURN (0);
1000
1001 /* Check whether the target supports branch tracing. */
1002 int (*to_supports_btrace) (struct target_ops *)
1003 TARGET_DEFAULT_RETURN (0);
1004
1005 /* Enable branch tracing for PTID and allocate a branch trace target
1006 information struct for reading and for disabling branch trace. */
1007 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1008 ptid_t ptid)
1009 TARGET_DEFAULT_NORETURN (tcomplain ());
1010
1011 /* Disable branch tracing and deallocate TINFO. */
1012 void (*to_disable_btrace) (struct target_ops *,
1013 struct btrace_target_info *tinfo)
1014 TARGET_DEFAULT_NORETURN (tcomplain ());
1015
1016 /* Disable branch tracing and deallocate TINFO. This function is similar
1017 to to_disable_btrace, except that it is called during teardown and is
1018 only allowed to perform actions that are safe. A counter-example would
1019 be attempting to talk to a remote target. */
1020 void (*to_teardown_btrace) (struct target_ops *,
1021 struct btrace_target_info *tinfo)
1022 TARGET_DEFAULT_NORETURN (tcomplain ());
1023
1024 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1025 DATA is cleared before new trace is added.
1026 The branch trace will start with the most recent block and continue
1027 towards older blocks. */
1028 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1029 VEC (btrace_block_s) **data,
1030 struct btrace_target_info *btinfo,
1031 enum btrace_read_type type)
1032 TARGET_DEFAULT_NORETURN (tcomplain ());
1033
1034 /* Stop trace recording. */
1035 void (*to_stop_recording) (struct target_ops *)
1036 TARGET_DEFAULT_IGNORE ();
1037
1038 /* Print information about the recording. */
1039 void (*to_info_record) (struct target_ops *);
1040
1041 /* Save the recorded execution trace into a file. */
1042 void (*to_save_record) (struct target_ops *, const char *filename)
1043 TARGET_DEFAULT_NORETURN (tcomplain ());
1044
1045 /* Delete the recorded execution trace from the current position onwards. */
1046 void (*to_delete_record) (struct target_ops *)
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Query if the record target is currently replaying. */
1050 int (*to_record_is_replaying) (struct target_ops *)
1051 TARGET_DEFAULT_RETURN (0);
1052
1053 /* Go to the begin of the execution trace. */
1054 void (*to_goto_record_begin) (struct target_ops *)
1055 TARGET_DEFAULT_NORETURN (tcomplain ());
1056
1057 /* Go to the end of the execution trace. */
1058 void (*to_goto_record_end) (struct target_ops *)
1059 TARGET_DEFAULT_NORETURN (tcomplain ());
1060
1061 /* Go to a specific location in the recorded execution trace. */
1062 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1063 TARGET_DEFAULT_NORETURN (tcomplain ());
1064
1065 /* Disassemble SIZE instructions in the recorded execution trace from
1066 the current position.
1067 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1068 disassemble SIZE succeeding instructions. */
1069 void (*to_insn_history) (struct target_ops *, int size, int flags)
1070 TARGET_DEFAULT_NORETURN (tcomplain ());
1071
1072 /* Disassemble SIZE instructions in the recorded execution trace around
1073 FROM.
1074 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1075 disassemble SIZE instructions after FROM. */
1076 void (*to_insn_history_from) (struct target_ops *,
1077 ULONGEST from, int size, int flags)
1078 TARGET_DEFAULT_NORETURN (tcomplain ());
1079
1080 /* Disassemble a section of the recorded execution trace from instruction
1081 BEGIN (inclusive) to instruction END (inclusive). */
1082 void (*to_insn_history_range) (struct target_ops *,
1083 ULONGEST begin, ULONGEST end, int flags)
1084 TARGET_DEFAULT_NORETURN (tcomplain ());
1085
1086 /* Print a function trace of the recorded execution trace.
1087 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1088 succeeding functions. */
1089 void (*to_call_history) (struct target_ops *, int size, int flags)
1090 TARGET_DEFAULT_NORETURN (tcomplain ());
1091
1092 /* Print a function trace of the recorded execution trace starting
1093 at function FROM.
1094 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1095 SIZE functions after FROM. */
1096 void (*to_call_history_from) (struct target_ops *,
1097 ULONGEST begin, int size, int flags)
1098 TARGET_DEFAULT_NORETURN (tcomplain ());
1099
1100 /* Print a function trace of an execution trace section from function BEGIN
1101 (inclusive) to function END (inclusive). */
1102 void (*to_call_history_range) (struct target_ops *,
1103 ULONGEST begin, ULONGEST end, int flags)
1104 TARGET_DEFAULT_NORETURN (tcomplain ());
1105
1106 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1107 non-empty annex. */
1108 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1109 TARGET_DEFAULT_RETURN (0);
1110
1111 /* Those unwinders are tried before any other arch unwinders. If
1112 SELF doesn't have unwinders, it should delegate to the
1113 "beneath" target. */
1114 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1115 TARGET_DEFAULT_RETURN (NULL);
1116
1117 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1118 TARGET_DEFAULT_RETURN (NULL);
1119
1120 /* Return the number of bytes by which the PC needs to be decremented
1121 after executing a breakpoint instruction.
1122 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1123 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1124 struct gdbarch *gdbarch)
1125 TARGET_DEFAULT_FUNC (default_target_decr_pc_after_break);
1126
1127 int to_magic;
1128 /* Need sub-structure for target machine related rather than comm related?
1129 */
1130 };
1131
1132 /* Magic number for checking ops size. If a struct doesn't end with this
1133 number, somebody changed the declaration but didn't change all the
1134 places that initialize one. */
1135
1136 #define OPS_MAGIC 3840
1137
1138 /* The ops structure for our "current" target process. This should
1139 never be NULL. If there is no target, it points to the dummy_target. */
1140
1141 extern struct target_ops current_target;
1142
1143 /* Define easy words for doing these operations on our current target. */
1144
1145 #define target_shortname (current_target.to_shortname)
1146 #define target_longname (current_target.to_longname)
1147
1148 /* Does whatever cleanup is required for a target that we are no
1149 longer going to be calling. This routine is automatically always
1150 called after popping the target off the target stack - the target's
1151 own methods are no longer available through the target vector.
1152 Closing file descriptors and freeing all memory allocated memory are
1153 typical things it should do. */
1154
1155 void target_close (struct target_ops *targ);
1156
1157 /* Attaches to a process on the target side. Arguments are as passed
1158 to the `attach' command by the user. This routine can be called
1159 when the target is not on the target-stack, if the target_can_run
1160 routine returns 1; in that case, it must push itself onto the stack.
1161 Upon exit, the target should be ready for normal operations, and
1162 should be ready to deliver the status of the process immediately
1163 (without waiting) to an upcoming target_wait call. */
1164
1165 void target_attach (char *, int);
1166
1167 /* Some targets don't generate traps when attaching to the inferior,
1168 or their target_attach implementation takes care of the waiting.
1169 These targets must set to_attach_no_wait. */
1170
1171 #define target_attach_no_wait \
1172 (current_target.to_attach_no_wait)
1173
1174 /* The target_attach operation places a process under debugger control,
1175 and stops the process.
1176
1177 This operation provides a target-specific hook that allows the
1178 necessary bookkeeping to be performed after an attach completes. */
1179 #define target_post_attach(pid) \
1180 (*current_target.to_post_attach) (&current_target, pid)
1181
1182 /* Takes a program previously attached to and detaches it.
1183 The program may resume execution (some targets do, some don't) and will
1184 no longer stop on signals, etc. We better not have left any breakpoints
1185 in the program or it'll die when it hits one. ARGS is arguments
1186 typed by the user (e.g. a signal to send the process). FROM_TTY
1187 says whether to be verbose or not. */
1188
1189 extern void target_detach (const char *, int);
1190
1191 /* Disconnect from the current target without resuming it (leaving it
1192 waiting for a debugger). */
1193
1194 extern void target_disconnect (char *, int);
1195
1196 /* Resume execution of the target process PTID (or a group of
1197 threads). STEP says whether to single-step or to run free; SIGGNAL
1198 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1199 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1200 PTID means `step/resume only this process id'. A wildcard PTID
1201 (all threads, or all threads of process) means `step/resume
1202 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1203 matches) resume with their 'thread->suspend.stop_signal' signal
1204 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1205 if in "no pass" state. */
1206
1207 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1208
1209 /* Wait for process pid to do something. PTID = -1 to wait for any
1210 pid to do something. Return pid of child, or -1 in case of error;
1211 store status through argument pointer STATUS. Note that it is
1212 _NOT_ OK to throw_exception() out of target_wait() without popping
1213 the debugging target from the stack; GDB isn't prepared to get back
1214 to the prompt with a debugging target but without the frame cache,
1215 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1216 options. */
1217
1218 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1219 int options);
1220
1221 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1222
1223 extern void target_fetch_registers (struct regcache *regcache, int regno);
1224
1225 /* Store at least register REGNO, or all regs if REGNO == -1.
1226 It can store as many registers as it wants to, so target_prepare_to_store
1227 must have been previously called. Calls error() if there are problems. */
1228
1229 extern void target_store_registers (struct regcache *regcache, int regs);
1230
1231 /* Get ready to modify the registers array. On machines which store
1232 individual registers, this doesn't need to do anything. On machines
1233 which store all the registers in one fell swoop, this makes sure
1234 that REGISTERS contains all the registers from the program being
1235 debugged. */
1236
1237 #define target_prepare_to_store(regcache) \
1238 (*current_target.to_prepare_to_store) (&current_target, regcache)
1239
1240 /* Determine current address space of thread PTID. */
1241
1242 struct address_space *target_thread_address_space (ptid_t);
1243
1244 /* Implement the "info proc" command. This returns one if the request
1245 was handled, and zero otherwise. It can also throw an exception if
1246 an error was encountered while attempting to handle the
1247 request. */
1248
1249 int target_info_proc (char *, enum info_proc_what);
1250
1251 /* Returns true if this target can debug multiple processes
1252 simultaneously. */
1253
1254 #define target_supports_multi_process() \
1255 (*current_target.to_supports_multi_process) (&current_target)
1256
1257 /* Returns true if this target can disable address space randomization. */
1258
1259 int target_supports_disable_randomization (void);
1260
1261 /* Returns true if this target can enable and disable tracepoints
1262 while a trace experiment is running. */
1263
1264 #define target_supports_enable_disable_tracepoint() \
1265 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1266
1267 #define target_supports_string_tracing() \
1268 (*current_target.to_supports_string_tracing) (&current_target)
1269
1270 /* Returns true if this target can handle breakpoint conditions
1271 on its end. */
1272
1273 #define target_supports_evaluation_of_breakpoint_conditions() \
1274 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1275
1276 /* Returns true if this target can handle breakpoint commands
1277 on its end. */
1278
1279 #define target_can_run_breakpoint_commands() \
1280 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1281
1282 extern int target_read_string (CORE_ADDR, char **, int, int *);
1283
1284 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1285 ssize_t len);
1286
1287 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1288 ssize_t len);
1289
1290 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1291
1292 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1293
1294 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1295 ssize_t len);
1296
1297 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1298 ssize_t len);
1299
1300 /* Fetches the target's memory map. If one is found it is sorted
1301 and returned, after some consistency checking. Otherwise, NULL
1302 is returned. */
1303 VEC(mem_region_s) *target_memory_map (void);
1304
1305 /* Erase the specified flash region. */
1306 void target_flash_erase (ULONGEST address, LONGEST length);
1307
1308 /* Finish a sequence of flash operations. */
1309 void target_flash_done (void);
1310
1311 /* Describes a request for a memory write operation. */
1312 struct memory_write_request
1313 {
1314 /* Begining address that must be written. */
1315 ULONGEST begin;
1316 /* Past-the-end address. */
1317 ULONGEST end;
1318 /* The data to write. */
1319 gdb_byte *data;
1320 /* A callback baton for progress reporting for this request. */
1321 void *baton;
1322 };
1323 typedef struct memory_write_request memory_write_request_s;
1324 DEF_VEC_O(memory_write_request_s);
1325
1326 /* Enumeration specifying different flash preservation behaviour. */
1327 enum flash_preserve_mode
1328 {
1329 flash_preserve,
1330 flash_discard
1331 };
1332
1333 /* Write several memory blocks at once. This version can be more
1334 efficient than making several calls to target_write_memory, in
1335 particular because it can optimize accesses to flash memory.
1336
1337 Moreover, this is currently the only memory access function in gdb
1338 that supports writing to flash memory, and it should be used for
1339 all cases where access to flash memory is desirable.
1340
1341 REQUESTS is the vector (see vec.h) of memory_write_request.
1342 PRESERVE_FLASH_P indicates what to do with blocks which must be
1343 erased, but not completely rewritten.
1344 PROGRESS_CB is a function that will be periodically called to provide
1345 feedback to user. It will be called with the baton corresponding
1346 to the request currently being written. It may also be called
1347 with a NULL baton, when preserved flash sectors are being rewritten.
1348
1349 The function returns 0 on success, and error otherwise. */
1350 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1351 enum flash_preserve_mode preserve_flash_p,
1352 void (*progress_cb) (ULONGEST, void *));
1353
1354 /* Print a line about the current target. */
1355
1356 #define target_files_info() \
1357 (*current_target.to_files_info) (&current_target)
1358
1359 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1360 the target machine. Returns 0 for success, and returns non-zero or
1361 throws an error (with a detailed failure reason error code and
1362 message) otherwise. */
1363
1364 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1365 struct bp_target_info *bp_tgt);
1366
1367 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1368 machine. Result is 0 for success, non-zero for error. */
1369
1370 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1371 struct bp_target_info *bp_tgt);
1372
1373 /* Initialize the terminal settings we record for the inferior,
1374 before we actually run the inferior. */
1375
1376 #define target_terminal_init() \
1377 (*current_target.to_terminal_init) (&current_target)
1378
1379 /* Put the inferior's terminal settings into effect.
1380 This is preparation for starting or resuming the inferior. */
1381
1382 extern void target_terminal_inferior (void);
1383
1384 /* Put some of our terminal settings into effect,
1385 enough to get proper results from our output,
1386 but do not change into or out of RAW mode
1387 so that no input is discarded.
1388
1389 After doing this, either terminal_ours or terminal_inferior
1390 should be called to get back to a normal state of affairs. */
1391
1392 #define target_terminal_ours_for_output() \
1393 (*current_target.to_terminal_ours_for_output) (&current_target)
1394
1395 /* Put our terminal settings into effect.
1396 First record the inferior's terminal settings
1397 so they can be restored properly later. */
1398
1399 #define target_terminal_ours() \
1400 (*current_target.to_terminal_ours) (&current_target)
1401
1402 /* Save our terminal settings.
1403 This is called from TUI after entering or leaving the curses
1404 mode. Since curses modifies our terminal this call is here
1405 to take this change into account. */
1406
1407 #define target_terminal_save_ours() \
1408 (*current_target.to_terminal_save_ours) (&current_target)
1409
1410 /* Print useful information about our terminal status, if such a thing
1411 exists. */
1412
1413 #define target_terminal_info(arg, from_tty) \
1414 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1415
1416 /* Kill the inferior process. Make it go away. */
1417
1418 extern void target_kill (void);
1419
1420 /* Load an executable file into the target process. This is expected
1421 to not only bring new code into the target process, but also to
1422 update GDB's symbol tables to match.
1423
1424 ARG contains command-line arguments, to be broken down with
1425 buildargv (). The first non-switch argument is the filename to
1426 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1427 0)), which is an offset to apply to the load addresses of FILE's
1428 sections. The target may define switches, or other non-switch
1429 arguments, as it pleases. */
1430
1431 extern void target_load (char *arg, int from_tty);
1432
1433 /* Start an inferior process and set inferior_ptid to its pid.
1434 EXEC_FILE is the file to run.
1435 ALLARGS is a string containing the arguments to the program.
1436 ENV is the environment vector to pass. Errors reported with error().
1437 On VxWorks and various standalone systems, we ignore exec_file. */
1438
1439 void target_create_inferior (char *exec_file, char *args,
1440 char **env, int from_tty);
1441
1442 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1443 notification of inferior events such as fork and vork immediately
1444 after the inferior is created. (This because of how gdb gets an
1445 inferior created via invoking a shell to do it. In such a scenario,
1446 if the shell init file has commands in it, the shell will fork and
1447 exec for each of those commands, and we will see each such fork
1448 event. Very bad.)
1449
1450 Such targets will supply an appropriate definition for this function. */
1451
1452 #define target_post_startup_inferior(ptid) \
1453 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1454
1455 /* On some targets, we can catch an inferior fork or vfork event when
1456 it occurs. These functions insert/remove an already-created
1457 catchpoint for such events. They return 0 for success, 1 if the
1458 catchpoint type is not supported and -1 for failure. */
1459
1460 #define target_insert_fork_catchpoint(pid) \
1461 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1462
1463 #define target_remove_fork_catchpoint(pid) \
1464 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1465
1466 #define target_insert_vfork_catchpoint(pid) \
1467 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1468
1469 #define target_remove_vfork_catchpoint(pid) \
1470 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1471
1472 /* If the inferior forks or vforks, this function will be called at
1473 the next resume in order to perform any bookkeeping and fiddling
1474 necessary to continue debugging either the parent or child, as
1475 requested, and releasing the other. Information about the fork
1476 or vfork event is available via get_last_target_status ().
1477 This function returns 1 if the inferior should not be resumed
1478 (i.e. there is another event pending). */
1479
1480 int target_follow_fork (int follow_child, int detach_fork);
1481
1482 /* On some targets, we can catch an inferior exec event when it
1483 occurs. These functions insert/remove an already-created
1484 catchpoint for such events. They return 0 for success, 1 if the
1485 catchpoint type is not supported and -1 for failure. */
1486
1487 #define target_insert_exec_catchpoint(pid) \
1488 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1489
1490 #define target_remove_exec_catchpoint(pid) \
1491 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1492
1493 /* Syscall catch.
1494
1495 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1496 If NEEDED is zero, it means the target can disable the mechanism to
1497 catch system calls because there are no more catchpoints of this type.
1498
1499 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1500 being requested. In this case, both TABLE_SIZE and TABLE should
1501 be ignored.
1502
1503 TABLE_SIZE is the number of elements in TABLE. It only matters if
1504 ANY_COUNT is zero.
1505
1506 TABLE is an array of ints, indexed by syscall number. An element in
1507 this array is nonzero if that syscall should be caught. This argument
1508 only matters if ANY_COUNT is zero.
1509
1510 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1511 for failure. */
1512
1513 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1514 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1515 pid, needed, any_count, \
1516 table_size, table)
1517
1518 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1519 exit code of PID, if any. */
1520
1521 #define target_has_exited(pid,wait_status,exit_status) \
1522 (*current_target.to_has_exited) (&current_target, \
1523 pid,wait_status,exit_status)
1524
1525 /* The debugger has completed a blocking wait() call. There is now
1526 some process event that must be processed. This function should
1527 be defined by those targets that require the debugger to perform
1528 cleanup or internal state changes in response to the process event. */
1529
1530 /* The inferior process has died. Do what is right. */
1531
1532 void target_mourn_inferior (void);
1533
1534 /* Does target have enough data to do a run or attach command? */
1535
1536 #define target_can_run(t) \
1537 ((t)->to_can_run) (t)
1538
1539 /* Set list of signals to be handled in the target.
1540
1541 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1542 (enum gdb_signal). For every signal whose entry in this array is
1543 non-zero, the target is allowed -but not required- to skip reporting
1544 arrival of the signal to the GDB core by returning from target_wait,
1545 and to pass the signal directly to the inferior instead.
1546
1547 However, if the target is hardware single-stepping a thread that is
1548 about to receive a signal, it needs to be reported in any case, even
1549 if mentioned in a previous target_pass_signals call. */
1550
1551 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1552
1553 /* Set list of signals the target may pass to the inferior. This
1554 directly maps to the "handle SIGNAL pass/nopass" setting.
1555
1556 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1557 number (enum gdb_signal). For every signal whose entry in this
1558 array is non-zero, the target is allowed to pass the signal to the
1559 inferior. Signals not present in the array shall be silently
1560 discarded. This does not influence whether to pass signals to the
1561 inferior as a result of a target_resume call. This is useful in
1562 scenarios where the target needs to decide whether to pass or not a
1563 signal to the inferior without GDB core involvement, such as for
1564 example, when detaching (as threads may have been suspended with
1565 pending signals not reported to GDB). */
1566
1567 extern void target_program_signals (int nsig, unsigned char *program_signals);
1568
1569 /* Check to see if a thread is still alive. */
1570
1571 extern int target_thread_alive (ptid_t ptid);
1572
1573 /* Query for new threads and add them to the thread list. */
1574
1575 extern void target_find_new_threads (void);
1576
1577 /* Make target stop in a continuable fashion. (For instance, under
1578 Unix, this should act like SIGSTOP). This function is normally
1579 used by GUIs to implement a stop button. */
1580
1581 extern void target_stop (ptid_t ptid);
1582
1583 /* Send the specified COMMAND to the target's monitor
1584 (shell,interpreter) for execution. The result of the query is
1585 placed in OUTBUF. */
1586
1587 #define target_rcmd(command, outbuf) \
1588 (*current_target.to_rcmd) (&current_target, command, outbuf)
1589
1590
1591 /* Does the target include all of memory, or only part of it? This
1592 determines whether we look up the target chain for other parts of
1593 memory if this target can't satisfy a request. */
1594
1595 extern int target_has_all_memory_1 (void);
1596 #define target_has_all_memory target_has_all_memory_1 ()
1597
1598 /* Does the target include memory? (Dummy targets don't.) */
1599
1600 extern int target_has_memory_1 (void);
1601 #define target_has_memory target_has_memory_1 ()
1602
1603 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1604 we start a process.) */
1605
1606 extern int target_has_stack_1 (void);
1607 #define target_has_stack target_has_stack_1 ()
1608
1609 /* Does the target have registers? (Exec files don't.) */
1610
1611 extern int target_has_registers_1 (void);
1612 #define target_has_registers target_has_registers_1 ()
1613
1614 /* Does the target have execution? Can we make it jump (through
1615 hoops), or pop its stack a few times? This means that the current
1616 target is currently executing; for some targets, that's the same as
1617 whether or not the target is capable of execution, but there are
1618 also targets which can be current while not executing. In that
1619 case this will become true after target_create_inferior or
1620 target_attach. */
1621
1622 extern int target_has_execution_1 (ptid_t);
1623
1624 /* Like target_has_execution_1, but always passes inferior_ptid. */
1625
1626 extern int target_has_execution_current (void);
1627
1628 #define target_has_execution target_has_execution_current ()
1629
1630 /* Default implementations for process_stratum targets. Return true
1631 if there's a selected inferior, false otherwise. */
1632
1633 extern int default_child_has_all_memory (struct target_ops *ops);
1634 extern int default_child_has_memory (struct target_ops *ops);
1635 extern int default_child_has_stack (struct target_ops *ops);
1636 extern int default_child_has_registers (struct target_ops *ops);
1637 extern int default_child_has_execution (struct target_ops *ops,
1638 ptid_t the_ptid);
1639
1640 /* Can the target support the debugger control of thread execution?
1641 Can it lock the thread scheduler? */
1642
1643 #define target_can_lock_scheduler \
1644 (current_target.to_has_thread_control & tc_schedlock)
1645
1646 /* Should the target enable async mode if it is supported? Temporary
1647 cludge until async mode is a strict superset of sync mode. */
1648 extern int target_async_permitted;
1649
1650 /* Can the target support asynchronous execution? */
1651 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1652
1653 /* Is the target in asynchronous execution mode? */
1654 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1655
1656 int target_supports_non_stop (void);
1657
1658 /* Put the target in async mode with the specified callback function. */
1659 #define target_async(CALLBACK,CONTEXT) \
1660 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1661
1662 #define target_execution_direction() \
1663 (current_target.to_execution_direction (&current_target))
1664
1665 /* Converts a process id to a string. Usually, the string just contains
1666 `process xyz', but on some systems it may contain
1667 `process xyz thread abc'. */
1668
1669 extern char *target_pid_to_str (ptid_t ptid);
1670
1671 extern char *normal_pid_to_str (ptid_t ptid);
1672
1673 /* Return a short string describing extra information about PID,
1674 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1675 is okay. */
1676
1677 #define target_extra_thread_info(TP) \
1678 (current_target.to_extra_thread_info (&current_target, TP))
1679
1680 /* Return the thread's name. A NULL result means that the target
1681 could not determine this thread's name. */
1682
1683 extern char *target_thread_name (struct thread_info *);
1684
1685 /* Attempts to find the pathname of the executable file
1686 that was run to create a specified process.
1687
1688 The process PID must be stopped when this operation is used.
1689
1690 If the executable file cannot be determined, NULL is returned.
1691
1692 Else, a pointer to a character string containing the pathname
1693 is returned. This string should be copied into a buffer by
1694 the client if the string will not be immediately used, or if
1695 it must persist. */
1696
1697 #define target_pid_to_exec_file(pid) \
1698 (current_target.to_pid_to_exec_file) (&current_target, pid)
1699
1700 /* See the to_thread_architecture description in struct target_ops. */
1701
1702 #define target_thread_architecture(ptid) \
1703 (current_target.to_thread_architecture (&current_target, ptid))
1704
1705 /*
1706 * Iterator function for target memory regions.
1707 * Calls a callback function once for each memory region 'mapped'
1708 * in the child process. Defined as a simple macro rather than
1709 * as a function macro so that it can be tested for nullity.
1710 */
1711
1712 #define target_find_memory_regions(FUNC, DATA) \
1713 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1714
1715 /*
1716 * Compose corefile .note section.
1717 */
1718
1719 #define target_make_corefile_notes(BFD, SIZE_P) \
1720 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1721
1722 /* Bookmark interfaces. */
1723 #define target_get_bookmark(ARGS, FROM_TTY) \
1724 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1725
1726 #define target_goto_bookmark(ARG, FROM_TTY) \
1727 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1728
1729 /* Hardware watchpoint interfaces. */
1730
1731 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1732 write). Only the INFERIOR_PTID task is being queried. */
1733
1734 #define target_stopped_by_watchpoint() \
1735 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1736
1737 /* Non-zero if we have steppable watchpoints */
1738
1739 #define target_have_steppable_watchpoint \
1740 (current_target.to_have_steppable_watchpoint)
1741
1742 /* Non-zero if we have continuable watchpoints */
1743
1744 #define target_have_continuable_watchpoint \
1745 (current_target.to_have_continuable_watchpoint)
1746
1747 /* Provide defaults for hardware watchpoint functions. */
1748
1749 /* If the *_hw_beakpoint functions have not been defined
1750 elsewhere use the definitions in the target vector. */
1751
1752 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1753 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1754 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1755 (including this one?). OTHERTYPE is who knows what... */
1756
1757 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1758 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1759 TYPE, CNT, OTHERTYPE);
1760
1761 /* Returns the number of debug registers needed to watch the given
1762 memory region, or zero if not supported. */
1763
1764 #define target_region_ok_for_hw_watchpoint(addr, len) \
1765 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1766 addr, len)
1767
1768
1769 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1770 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1771 COND is the expression for its condition, or NULL if there's none.
1772 Returns 0 for success, 1 if the watchpoint type is not supported,
1773 -1 for failure. */
1774
1775 #define target_insert_watchpoint(addr, len, type, cond) \
1776 (*current_target.to_insert_watchpoint) (&current_target, \
1777 addr, len, type, cond)
1778
1779 #define target_remove_watchpoint(addr, len, type, cond) \
1780 (*current_target.to_remove_watchpoint) (&current_target, \
1781 addr, len, type, cond)
1782
1783 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1784 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1785 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1786 masked watchpoints are not supported, -1 for failure. */
1787
1788 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1789
1790 /* Remove a masked watchpoint at ADDR with the mask MASK.
1791 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1792 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1793 for failure. */
1794
1795 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1796
1797 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1798 the target machine. Returns 0 for success, and returns non-zero or
1799 throws an error (with a detailed failure reason error code and
1800 message) otherwise. */
1801
1802 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1803 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1804 gdbarch, bp_tgt)
1805
1806 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1807 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1808 gdbarch, bp_tgt)
1809
1810 /* Return number of debug registers needed for a ranged breakpoint,
1811 or -1 if ranged breakpoints are not supported. */
1812
1813 extern int target_ranged_break_num_registers (void);
1814
1815 /* Return non-zero if target knows the data address which triggered this
1816 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1817 INFERIOR_PTID task is being queried. */
1818 #define target_stopped_data_address(target, addr_p) \
1819 (*target.to_stopped_data_address) (target, addr_p)
1820
1821 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1822 LENGTH bytes beginning at START. */
1823 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1824 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1825
1826 /* Return non-zero if the target is capable of using hardware to evaluate
1827 the condition expression. In this case, if the condition is false when
1828 the watched memory location changes, execution may continue without the
1829 debugger being notified.
1830
1831 Due to limitations in the hardware implementation, it may be capable of
1832 avoiding triggering the watchpoint in some cases where the condition
1833 expression is false, but may report some false positives as well.
1834 For this reason, GDB will still evaluate the condition expression when
1835 the watchpoint triggers. */
1836 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1837 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1838 addr, len, type, cond)
1839
1840 /* Return number of debug registers needed for a masked watchpoint,
1841 -1 if masked watchpoints are not supported or -2 if the given address
1842 and mask combination cannot be used. */
1843
1844 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1845
1846 /* Target can execute in reverse? */
1847 #define target_can_execute_reverse \
1848 current_target.to_can_execute_reverse (&current_target)
1849
1850 extern const struct target_desc *target_read_description (struct target_ops *);
1851
1852 #define target_get_ada_task_ptid(lwp, tid) \
1853 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1854
1855 /* Utility implementation of searching memory. */
1856 extern int simple_search_memory (struct target_ops* ops,
1857 CORE_ADDR start_addr,
1858 ULONGEST search_space_len,
1859 const gdb_byte *pattern,
1860 ULONGEST pattern_len,
1861 CORE_ADDR *found_addrp);
1862
1863 /* Main entry point for searching memory. */
1864 extern int target_search_memory (CORE_ADDR start_addr,
1865 ULONGEST search_space_len,
1866 const gdb_byte *pattern,
1867 ULONGEST pattern_len,
1868 CORE_ADDR *found_addrp);
1869
1870 /* Target file operations. */
1871
1872 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1873 target file descriptor, or -1 if an error occurs (and set
1874 *TARGET_ERRNO). */
1875 extern int target_fileio_open (const char *filename, int flags, int mode,
1876 int *target_errno);
1877
1878 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1879 Return the number of bytes written, or -1 if an error occurs
1880 (and set *TARGET_ERRNO). */
1881 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1882 ULONGEST offset, int *target_errno);
1883
1884 /* Read up to LEN bytes FD on the target into READ_BUF.
1885 Return the number of bytes read, or -1 if an error occurs
1886 (and set *TARGET_ERRNO). */
1887 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1888 ULONGEST offset, int *target_errno);
1889
1890 /* Close FD on the target. Return 0, or -1 if an error occurs
1891 (and set *TARGET_ERRNO). */
1892 extern int target_fileio_close (int fd, int *target_errno);
1893
1894 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1895 occurs (and set *TARGET_ERRNO). */
1896 extern int target_fileio_unlink (const char *filename, int *target_errno);
1897
1898 /* Read value of symbolic link FILENAME on the target. Return a
1899 null-terminated string allocated via xmalloc, or NULL if an error
1900 occurs (and set *TARGET_ERRNO). */
1901 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1902
1903 /* Read target file FILENAME. The return value will be -1 if the transfer
1904 fails or is not supported; 0 if the object is empty; or the length
1905 of the object otherwise. If a positive value is returned, a
1906 sufficiently large buffer will be allocated using xmalloc and
1907 returned in *BUF_P containing the contents of the object.
1908
1909 This method should be used for objects sufficiently small to store
1910 in a single xmalloc'd buffer, when no fixed bound on the object's
1911 size is known in advance. */
1912 extern LONGEST target_fileio_read_alloc (const char *filename,
1913 gdb_byte **buf_p);
1914
1915 /* Read target file FILENAME. The result is NUL-terminated and
1916 returned as a string, allocated using xmalloc. If an error occurs
1917 or the transfer is unsupported, NULL is returned. Empty objects
1918 are returned as allocated but empty strings. A warning is issued
1919 if the result contains any embedded NUL bytes. */
1920 extern char *target_fileio_read_stralloc (const char *filename);
1921
1922
1923 /* Tracepoint-related operations. */
1924
1925 #define target_trace_init() \
1926 (*current_target.to_trace_init) (&current_target)
1927
1928 #define target_download_tracepoint(t) \
1929 (*current_target.to_download_tracepoint) (&current_target, t)
1930
1931 #define target_can_download_tracepoint() \
1932 (*current_target.to_can_download_tracepoint) (&current_target)
1933
1934 #define target_download_trace_state_variable(tsv) \
1935 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1936
1937 #define target_enable_tracepoint(loc) \
1938 (*current_target.to_enable_tracepoint) (&current_target, loc)
1939
1940 #define target_disable_tracepoint(loc) \
1941 (*current_target.to_disable_tracepoint) (&current_target, loc)
1942
1943 #define target_trace_start() \
1944 (*current_target.to_trace_start) (&current_target)
1945
1946 #define target_trace_set_readonly_regions() \
1947 (*current_target.to_trace_set_readonly_regions) (&current_target)
1948
1949 #define target_get_trace_status(ts) \
1950 (*current_target.to_get_trace_status) (&current_target, ts)
1951
1952 #define target_get_tracepoint_status(tp,utp) \
1953 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1954
1955 #define target_trace_stop() \
1956 (*current_target.to_trace_stop) (&current_target)
1957
1958 #define target_trace_find(type,num,addr1,addr2,tpp) \
1959 (*current_target.to_trace_find) (&current_target, \
1960 (type), (num), (addr1), (addr2), (tpp))
1961
1962 #define target_get_trace_state_variable_value(tsv,val) \
1963 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1964 (tsv), (val))
1965
1966 #define target_save_trace_data(filename) \
1967 (*current_target.to_save_trace_data) (&current_target, filename)
1968
1969 #define target_upload_tracepoints(utpp) \
1970 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1971
1972 #define target_upload_trace_state_variables(utsvp) \
1973 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1974
1975 #define target_get_raw_trace_data(buf,offset,len) \
1976 (*current_target.to_get_raw_trace_data) (&current_target, \
1977 (buf), (offset), (len))
1978
1979 #define target_get_min_fast_tracepoint_insn_len() \
1980 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1981
1982 #define target_set_disconnected_tracing(val) \
1983 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1984
1985 #define target_set_circular_trace_buffer(val) \
1986 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1987
1988 #define target_set_trace_buffer_size(val) \
1989 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1990
1991 #define target_set_trace_notes(user,notes,stopnotes) \
1992 (*current_target.to_set_trace_notes) (&current_target, \
1993 (user), (notes), (stopnotes))
1994
1995 #define target_get_tib_address(ptid, addr) \
1996 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1997
1998 #define target_set_permissions() \
1999 (*current_target.to_set_permissions) (&current_target)
2000
2001 #define target_static_tracepoint_marker_at(addr, marker) \
2002 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2003 addr, marker)
2004
2005 #define target_static_tracepoint_markers_by_strid(marker_id) \
2006 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2007 marker_id)
2008
2009 #define target_traceframe_info() \
2010 (*current_target.to_traceframe_info) (&current_target)
2011
2012 #define target_use_agent(use) \
2013 (*current_target.to_use_agent) (&current_target, use)
2014
2015 #define target_can_use_agent() \
2016 (*current_target.to_can_use_agent) (&current_target)
2017
2018 #define target_augmented_libraries_svr4_read() \
2019 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2020
2021 /* Command logging facility. */
2022
2023 #define target_log_command(p) \
2024 (*current_target.to_log_command) (&current_target, p)
2025
2026
2027 extern int target_core_of_thread (ptid_t ptid);
2028
2029 /* See to_get_unwinder in struct target_ops. */
2030 extern const struct frame_unwind *target_get_unwinder (void);
2031
2032 /* See to_get_tailcall_unwinder in struct target_ops. */
2033 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2034
2035 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2036 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2037 if there's a mismatch, and -1 if an error is encountered while
2038 reading memory. Throws an error if the functionality is found not
2039 to be supported by the current target. */
2040 int target_verify_memory (const gdb_byte *data,
2041 CORE_ADDR memaddr, ULONGEST size);
2042
2043 /* Routines for maintenance of the target structures...
2044
2045 complete_target_initialization: Finalize a target_ops by filling in
2046 any fields needed by the target implementation.
2047
2048 add_target: Add a target to the list of all possible targets.
2049
2050 push_target: Make this target the top of the stack of currently used
2051 targets, within its particular stratum of the stack. Result
2052 is 0 if now atop the stack, nonzero if not on top (maybe
2053 should warn user).
2054
2055 unpush_target: Remove this from the stack of currently used targets,
2056 no matter where it is on the list. Returns 0 if no
2057 change, 1 if removed from stack. */
2058
2059 extern void add_target (struct target_ops *);
2060
2061 extern void add_target_with_completer (struct target_ops *t,
2062 completer_ftype *completer);
2063
2064 extern void complete_target_initialization (struct target_ops *t);
2065
2066 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2067 for maintaining backwards compatibility when renaming targets. */
2068
2069 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2070
2071 extern void push_target (struct target_ops *);
2072
2073 extern int unpush_target (struct target_ops *);
2074
2075 extern void target_pre_inferior (int);
2076
2077 extern void target_preopen (int);
2078
2079 /* Does whatever cleanup is required to get rid of all pushed targets. */
2080 extern void pop_all_targets (void);
2081
2082 /* Like pop_all_targets, but pops only targets whose stratum is
2083 strictly above ABOVE_STRATUM. */
2084 extern void pop_all_targets_above (enum strata above_stratum);
2085
2086 extern int target_is_pushed (struct target_ops *t);
2087
2088 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2089 CORE_ADDR offset);
2090
2091 /* Struct target_section maps address ranges to file sections. It is
2092 mostly used with BFD files, but can be used without (e.g. for handling
2093 raw disks, or files not in formats handled by BFD). */
2094
2095 struct target_section
2096 {
2097 CORE_ADDR addr; /* Lowest address in section */
2098 CORE_ADDR endaddr; /* 1+highest address in section */
2099
2100 struct bfd_section *the_bfd_section;
2101
2102 /* The "owner" of the section.
2103 It can be any unique value. It is set by add_target_sections
2104 and used by remove_target_sections.
2105 For example, for executables it is a pointer to exec_bfd and
2106 for shlibs it is the so_list pointer. */
2107 void *owner;
2108 };
2109
2110 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2111
2112 struct target_section_table
2113 {
2114 struct target_section *sections;
2115 struct target_section *sections_end;
2116 };
2117
2118 /* Return the "section" containing the specified address. */
2119 struct target_section *target_section_by_addr (struct target_ops *target,
2120 CORE_ADDR addr);
2121
2122 /* Return the target section table this target (or the targets
2123 beneath) currently manipulate. */
2124
2125 extern struct target_section_table *target_get_section_table
2126 (struct target_ops *target);
2127
2128 /* From mem-break.c */
2129
2130 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2131 struct bp_target_info *);
2132
2133 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2134 struct bp_target_info *);
2135
2136 extern int default_memory_remove_breakpoint (struct gdbarch *,
2137 struct bp_target_info *);
2138
2139 extern int default_memory_insert_breakpoint (struct gdbarch *,
2140 struct bp_target_info *);
2141
2142
2143 /* From target.c */
2144
2145 extern void initialize_targets (void);
2146
2147 extern void noprocess (void) ATTRIBUTE_NORETURN;
2148
2149 extern void target_require_runnable (void);
2150
2151 extern void find_default_attach (struct target_ops *, char *, int);
2152
2153 extern void find_default_create_inferior (struct target_ops *,
2154 char *, char *, char **, int);
2155
2156 extern struct target_ops *find_target_beneath (struct target_ops *);
2157
2158 /* Find the target at STRATUM. If no target is at that stratum,
2159 return NULL. */
2160
2161 struct target_ops *find_target_at (enum strata stratum);
2162
2163 /* Read OS data object of type TYPE from the target, and return it in
2164 XML format. The result is NUL-terminated and returned as a string,
2165 allocated using xmalloc. If an error occurs or the transfer is
2166 unsupported, NULL is returned. Empty objects are returned as
2167 allocated but empty strings. */
2168
2169 extern char *target_get_osdata (const char *type);
2170
2171 \f
2172 /* Stuff that should be shared among the various remote targets. */
2173
2174 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2175 information (higher values, more information). */
2176 extern int remote_debug;
2177
2178 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2179 extern int baud_rate;
2180 /* Timeout limit for response from target. */
2181 extern int remote_timeout;
2182
2183 \f
2184
2185 /* Set the show memory breakpoints mode to show, and installs a cleanup
2186 to restore it back to the current value. */
2187 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2188
2189 extern int may_write_registers;
2190 extern int may_write_memory;
2191 extern int may_insert_breakpoints;
2192 extern int may_insert_tracepoints;
2193 extern int may_insert_fast_tracepoints;
2194 extern int may_stop;
2195
2196 extern void update_target_permissions (void);
2197
2198 \f
2199 /* Imported from machine dependent code. */
2200
2201 /* Blank target vector entries are initialized to target_ignore. */
2202 void target_ignore (void);
2203
2204 /* See to_supports_btrace in struct target_ops. */
2205 #define target_supports_btrace() \
2206 (current_target.to_supports_btrace (&current_target))
2207
2208 /* See to_enable_btrace in struct target_ops. */
2209 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2210
2211 /* See to_disable_btrace in struct target_ops. */
2212 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2213
2214 /* See to_teardown_btrace in struct target_ops. */
2215 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2216
2217 /* See to_read_btrace in struct target_ops. */
2218 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2219 struct btrace_target_info *,
2220 enum btrace_read_type);
2221
2222 /* See to_stop_recording in struct target_ops. */
2223 extern void target_stop_recording (void);
2224
2225 /* See to_info_record in struct target_ops. */
2226 extern void target_info_record (void);
2227
2228 /* See to_save_record in struct target_ops. */
2229 extern void target_save_record (const char *filename);
2230
2231 /* Query if the target supports deleting the execution log. */
2232 extern int target_supports_delete_record (void);
2233
2234 /* See to_delete_record in struct target_ops. */
2235 extern void target_delete_record (void);
2236
2237 /* See to_record_is_replaying in struct target_ops. */
2238 extern int target_record_is_replaying (void);
2239
2240 /* See to_goto_record_begin in struct target_ops. */
2241 extern void target_goto_record_begin (void);
2242
2243 /* See to_goto_record_end in struct target_ops. */
2244 extern void target_goto_record_end (void);
2245
2246 /* See to_goto_record in struct target_ops. */
2247 extern void target_goto_record (ULONGEST insn);
2248
2249 /* See to_insn_history. */
2250 extern void target_insn_history (int size, int flags);
2251
2252 /* See to_insn_history_from. */
2253 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2254
2255 /* See to_insn_history_range. */
2256 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2257
2258 /* See to_call_history. */
2259 extern void target_call_history (int size, int flags);
2260
2261 /* See to_call_history_from. */
2262 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2263
2264 /* See to_call_history_range. */
2265 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2266
2267 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2268 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2269 struct gdbarch *gdbarch);
2270
2271 /* See to_decr_pc_after_break. */
2272 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2273
2274 #endif /* !defined (TARGET_H) */
This page took 0.109644 seconds and 5 git commands to generate.