import gdb-19990504 snapshot
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #if !defined (TARGET_H)
22 #define TARGET_H
23
24 /* This include file defines the interface between the main part
25 of the debugger, and the part which is target-specific, or
26 specific to the communications interface between us and the
27 target.
28
29 A TARGET is an interface between the debugger and a particular
30 kind of file or process. Targets can be STACKED in STRATA,
31 so that more than one target can potentially respond to a request.
32 In particular, memory accesses will walk down the stack of targets
33 until they find a target that is interested in handling that particular
34 address. STRATA are artificial boundaries on the stack, within
35 which particular kinds of targets live. Strata exist so that
36 people don't get confused by pushing e.g. a process target and then
37 a file target, and wondering why they can't see the current values
38 of variables any more (the file target is handling them and they
39 never get to the process target). So when you push a file target,
40 it goes into the file stratum, which is always below the process
41 stratum. */
42
43 #include "bfd.h"
44 #include "symtab.h"
45
46 enum strata {
47 dummy_stratum, /* The lowest of the low */
48 file_stratum, /* Executable files, etc */
49 core_stratum, /* Core dump files */
50 download_stratum, /* Downloading of remote targets */
51 process_stratum /* Executing processes */
52 };
53
54 enum thread_control_capabilities {
55 tc_none = 0, /* Default: can't control thread execution. */
56 tc_schedlock = 1, /* Can lock the thread scheduler. */
57 tc_switch = 2 /* Can switch the running thread on demand. */
58 };
59
60 /* Stuff for target_wait. */
61
62 /* Generally, what has the program done? */
63 enum target_waitkind {
64 /* The program has exited. The exit status is in value.integer. */
65 TARGET_WAITKIND_EXITED,
66
67 /* The program has stopped with a signal. Which signal is in value.sig. */
68 TARGET_WAITKIND_STOPPED,
69
70 /* The program has terminated with a signal. Which signal is in
71 value.sig. */
72 TARGET_WAITKIND_SIGNALLED,
73
74 /* The program is letting us know that it dynamically loaded something
75 (e.g. it called load(2) on AIX). */
76 TARGET_WAITKIND_LOADED,
77
78 /* The program has forked. A "related" process' ID is in value.related_pid.
79 I.e., if the child forks, value.related_pid is the parent's ID.
80 */
81 TARGET_WAITKIND_FORKED,
82
83 /* The program has vforked. A "related" process's ID is in value.related_pid.
84 */
85 TARGET_WAITKIND_VFORKED,
86
87 /* The program has exec'ed a new executable file. The new file's pathname
88 is pointed to by value.execd_pathname.
89 */
90 TARGET_WAITKIND_EXECD,
91
92 /* The program has entered or returned from a system call. On HP-UX, this
93 is used in the hardware watchpoint implementation. The syscall's unique
94 integer ID number is in value.syscall_id;
95 */
96 TARGET_WAITKIND_SYSCALL_ENTRY,
97 TARGET_WAITKIND_SYSCALL_RETURN,
98
99 /* Nothing happened, but we stopped anyway. This perhaps should be handled
100 within target_wait, but I'm not sure target_wait should be resuming the
101 inferior. */
102 TARGET_WAITKIND_SPURIOUS
103 };
104
105 /* The numbering of these signals is chosen to match traditional unix
106 signals (insofar as various unices use the same numbers, anyway).
107 It is also the numbering of the GDB remote protocol. Other remote
108 protocols, if they use a different numbering, should make sure to
109 translate appropriately. */
110
111 /* This is based strongly on Unix/POSIX signals for several reasons:
112 (1) This set of signals represents a widely-accepted attempt to
113 represent events of this sort in a portable fashion, (2) we want a
114 signal to make it from wait to child_wait to the user intact, (3) many
115 remote protocols use a similar encoding. However, it is
116 recognized that this set of signals has limitations (such as not
117 distinguishing between various kinds of SIGSEGV, or not
118 distinguishing hitting a breakpoint from finishing a single step).
119 So in the future we may get around this either by adding additional
120 signals for breakpoint, single-step, etc., or by adding signal
121 codes; the latter seems more in the spirit of what BSD, System V,
122 etc. are doing to address these issues. */
123
124 /* For an explanation of what each signal means, see
125 target_signal_to_string. */
126
127 enum target_signal {
128 /* Used some places (e.g. stop_signal) to record the concept that
129 there is no signal. */
130 TARGET_SIGNAL_0 = 0,
131 TARGET_SIGNAL_FIRST = 0,
132 TARGET_SIGNAL_HUP = 1,
133 TARGET_SIGNAL_INT = 2,
134 TARGET_SIGNAL_QUIT = 3,
135 TARGET_SIGNAL_ILL = 4,
136 TARGET_SIGNAL_TRAP = 5,
137 TARGET_SIGNAL_ABRT = 6,
138 TARGET_SIGNAL_EMT = 7,
139 TARGET_SIGNAL_FPE = 8,
140 TARGET_SIGNAL_KILL = 9,
141 TARGET_SIGNAL_BUS = 10,
142 TARGET_SIGNAL_SEGV = 11,
143 TARGET_SIGNAL_SYS = 12,
144 TARGET_SIGNAL_PIPE = 13,
145 TARGET_SIGNAL_ALRM = 14,
146 TARGET_SIGNAL_TERM = 15,
147 TARGET_SIGNAL_URG = 16,
148 TARGET_SIGNAL_STOP = 17,
149 TARGET_SIGNAL_TSTP = 18,
150 TARGET_SIGNAL_CONT = 19,
151 TARGET_SIGNAL_CHLD = 20,
152 TARGET_SIGNAL_TTIN = 21,
153 TARGET_SIGNAL_TTOU = 22,
154 TARGET_SIGNAL_IO = 23,
155 TARGET_SIGNAL_XCPU = 24,
156 TARGET_SIGNAL_XFSZ = 25,
157 TARGET_SIGNAL_VTALRM = 26,
158 TARGET_SIGNAL_PROF = 27,
159 TARGET_SIGNAL_WINCH = 28,
160 TARGET_SIGNAL_LOST = 29,
161 TARGET_SIGNAL_USR1 = 30,
162 TARGET_SIGNAL_USR2 = 31,
163 TARGET_SIGNAL_PWR = 32,
164 /* Similar to SIGIO. Perhaps they should have the same number. */
165 TARGET_SIGNAL_POLL = 33,
166 TARGET_SIGNAL_WIND = 34,
167 TARGET_SIGNAL_PHONE = 35,
168 TARGET_SIGNAL_WAITING = 36,
169 TARGET_SIGNAL_LWP = 37,
170 TARGET_SIGNAL_DANGER = 38,
171 TARGET_SIGNAL_GRANT = 39,
172 TARGET_SIGNAL_RETRACT = 40,
173 TARGET_SIGNAL_MSG = 41,
174 TARGET_SIGNAL_SOUND = 42,
175 TARGET_SIGNAL_SAK = 43,
176 TARGET_SIGNAL_PRIO = 44,
177 TARGET_SIGNAL_REALTIME_33 = 45,
178 TARGET_SIGNAL_REALTIME_34 = 46,
179 TARGET_SIGNAL_REALTIME_35 = 47,
180 TARGET_SIGNAL_REALTIME_36 = 48,
181 TARGET_SIGNAL_REALTIME_37 = 49,
182 TARGET_SIGNAL_REALTIME_38 = 50,
183 TARGET_SIGNAL_REALTIME_39 = 51,
184 TARGET_SIGNAL_REALTIME_40 = 52,
185 TARGET_SIGNAL_REALTIME_41 = 53,
186 TARGET_SIGNAL_REALTIME_42 = 54,
187 TARGET_SIGNAL_REALTIME_43 = 55,
188 TARGET_SIGNAL_REALTIME_44 = 56,
189 TARGET_SIGNAL_REALTIME_45 = 57,
190 TARGET_SIGNAL_REALTIME_46 = 58,
191 TARGET_SIGNAL_REALTIME_47 = 59,
192 TARGET_SIGNAL_REALTIME_48 = 60,
193 TARGET_SIGNAL_REALTIME_49 = 61,
194 TARGET_SIGNAL_REALTIME_50 = 62,
195 TARGET_SIGNAL_REALTIME_51 = 63,
196 TARGET_SIGNAL_REALTIME_52 = 64,
197 TARGET_SIGNAL_REALTIME_53 = 65,
198 TARGET_SIGNAL_REALTIME_54 = 66,
199 TARGET_SIGNAL_REALTIME_55 = 67,
200 TARGET_SIGNAL_REALTIME_56 = 68,
201 TARGET_SIGNAL_REALTIME_57 = 69,
202 TARGET_SIGNAL_REALTIME_58 = 70,
203 TARGET_SIGNAL_REALTIME_59 = 71,
204 TARGET_SIGNAL_REALTIME_60 = 72,
205 TARGET_SIGNAL_REALTIME_61 = 73,
206 TARGET_SIGNAL_REALTIME_62 = 74,
207 TARGET_SIGNAL_REALTIME_63 = 75,
208 #if defined(MACH) || defined(__MACH__)
209 /* Mach exceptions */
210 TARGET_EXC_BAD_ACCESS,
211 TARGET_EXC_BAD_INSTRUCTION,
212 TARGET_EXC_ARITHMETIC,
213 TARGET_EXC_EMULATION,
214 TARGET_EXC_SOFTWARE,
215 TARGET_EXC_BREAKPOINT,
216 #endif
217 TARGET_SIGNAL_INFO,
218
219 /* Some signal we don't know about. */
220 TARGET_SIGNAL_UNKNOWN,
221
222 /* Use whatever signal we use when one is not specifically specified
223 (for passing to proceed and so on). */
224 TARGET_SIGNAL_DEFAULT,
225
226 /* Last and unused enum value, for sizing arrays, etc. */
227 TARGET_SIGNAL_LAST
228 };
229
230 struct target_waitstatus {
231 enum target_waitkind kind;
232
233 /* Forked child pid, execd pathname, exit status or signal number. */
234 union {
235 int integer;
236 enum target_signal sig;
237 int related_pid;
238 char * execd_pathname;
239 int syscall_id;
240 } value;
241 };
242
243 /* Return the string for a signal. */
244 extern char *target_signal_to_string PARAMS ((enum target_signal));
245
246 /* Return the name (SIGHUP, etc.) for a signal. */
247 extern char *target_signal_to_name PARAMS ((enum target_signal));
248
249 /* Given a name (SIGHUP, etc.), return its signal. */
250 enum target_signal target_signal_from_name PARAMS ((char *));
251
252 \f
253 /* If certain kinds of activity happen, target_wait should perform
254 callbacks. */
255 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
256 on TARGET_ACTIVITY_FD. */
257 extern int target_activity_fd;
258 /* Returns zero to leave the inferior alone, one to interrupt it. */
259 extern int (*target_activity_function) PARAMS ((void));
260 \f
261 struct target_ops
262 {
263 char *to_shortname; /* Name this target type */
264 char *to_longname; /* Name for printing */
265 char *to_doc; /* Documentation. Does not include trailing
266 newline, and starts with a one-line descrip-
267 tion (probably similar to to_longname). */
268 void (*to_open) PARAMS ((char *, int));
269 void (*to_close) PARAMS ((int));
270 void (*to_attach) PARAMS ((char *, int));
271 void (*to_post_attach) PARAMS ((int));
272 void (*to_require_attach) PARAMS ((char *, int));
273 void (*to_detach) PARAMS ((char *, int));
274 void (*to_require_detach) PARAMS ((int, char *, int));
275 void (*to_resume) PARAMS ((int, int, enum target_signal));
276 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
277 void (*to_post_wait) PARAMS ((int, int));
278 void (*to_fetch_registers) PARAMS ((int));
279 void (*to_store_registers) PARAMS ((int));
280 void (*to_prepare_to_store) PARAMS ((void));
281
282 /* Transfer LEN bytes of memory between GDB address MYADDR and
283 target address MEMADDR. If WRITE, transfer them to the target, else
284 transfer them from the target. TARGET is the target from which we
285 get this function.
286
287 Return value, N, is one of the following:
288
289 0 means that we can't handle this. If errno has been set, it is the
290 error which prevented us from doing it (FIXME: What about bfd_error?).
291
292 positive (call it N) means that we have transferred N bytes
293 starting at MEMADDR. We might be able to handle more bytes
294 beyond this length, but no promises.
295
296 negative (call its absolute value N) means that we cannot
297 transfer right at MEMADDR, but we could transfer at least
298 something at MEMADDR + N. */
299
300 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
301 int len, int write,
302 struct target_ops * target));
303
304 #if 0
305 /* Enable this after 4.12. */
306
307 /* Search target memory. Start at STARTADDR and take LEN bytes of
308 target memory, and them with MASK, and compare to DATA. If they
309 match, set *ADDR_FOUND to the address we found it at, store the data
310 we found at LEN bytes starting at DATA_FOUND, and return. If
311 not, add INCREMENT to the search address and keep trying until
312 the search address is outside of the range [LORANGE,HIRANGE).
313
314 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
315 void (*to_search) PARAMS ((int len, char *data, char *mask,
316 CORE_ADDR startaddr, int increment,
317 CORE_ADDR lorange, CORE_ADDR hirange,
318 CORE_ADDR *addr_found, char *data_found));
319
320 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
321 (*current_target.to_search) (len, data, mask, startaddr, increment, \
322 lorange, hirange, addr_found, data_found)
323 #endif /* 0 */
324
325 void (*to_files_info) PARAMS ((struct target_ops *));
326 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
327 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
328 void (*to_terminal_init) PARAMS ((void));
329 void (*to_terminal_inferior) PARAMS ((void));
330 void (*to_terminal_ours_for_output) PARAMS ((void));
331 void (*to_terminal_ours) PARAMS ((void));
332 void (*to_terminal_info) PARAMS ((char *, int));
333 void (*to_kill) PARAMS ((void));
334 void (*to_load) PARAMS ((char *, int));
335 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
336 void (*to_create_inferior) PARAMS ((char *, char *, char **));
337 void (*to_post_startup_inferior) PARAMS ((int));
338 void (*to_acknowledge_created_inferior) PARAMS ((int));
339 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
340 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
341 int (*to_insert_fork_catchpoint) PARAMS ((int));
342 int (*to_remove_fork_catchpoint) PARAMS ((int));
343 int (*to_insert_vfork_catchpoint) PARAMS ((int));
344 int (*to_remove_vfork_catchpoint) PARAMS ((int));
345 int (*to_has_forked) PARAMS ((int, int *));
346 int (*to_has_vforked) PARAMS ((int, int *));
347 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
348 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
349 int (*to_insert_exec_catchpoint) PARAMS ((int));
350 int (*to_remove_exec_catchpoint) PARAMS ((int));
351 int (*to_has_execd) PARAMS ((int, char **));
352 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
353 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
354 int (*to_has_exited) PARAMS ((int, int, int *));
355 void (*to_mourn_inferior) PARAMS ((void));
356 int (*to_can_run) PARAMS ((void));
357 void (*to_notice_signals) PARAMS ((int pid));
358 int (*to_thread_alive) PARAMS ((int pid));
359 void (*to_find_new_threads) PARAMS ((void));
360 void (*to_stop) PARAMS ((void));
361 int (*to_query) PARAMS ((int/*char*/, char *, char *, int *));
362 struct symtab_and_line * (*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
363 struct exception_event_record * (*to_get_current_exception_event) PARAMS ((void));
364 char * (*to_pid_to_exec_file) PARAMS ((int pid));
365 char * (*to_core_file_to_sym_file) PARAMS ((char *));
366 enum strata to_stratum;
367 struct target_ops
368 *DONT_USE; /* formerly to_next */
369 int to_has_all_memory;
370 int to_has_memory;
371 int to_has_stack;
372 int to_has_registers;
373 int to_has_execution;
374 int to_has_thread_control; /* control thread execution */
375 struct section_table
376 *to_sections;
377 struct section_table
378 *to_sections_end;
379 int to_magic;
380 /* Need sub-structure for target machine related rather than comm related? */
381 };
382
383 /* Magic number for checking ops size. If a struct doesn't end with this
384 number, somebody changed the declaration but didn't change all the
385 places that initialize one. */
386
387 #define OPS_MAGIC 3840
388
389 /* The ops structure for our "current" target process. This should
390 never be NULL. If there is no target, it points to the dummy_target. */
391
392 extern struct target_ops current_target;
393
394 /* An item on the target stack. */
395
396 struct target_stack_item
397 {
398 struct target_stack_item *next;
399 struct target_ops *target_ops;
400 };
401
402 /* The target stack. */
403
404 extern struct target_stack_item *target_stack;
405
406 /* Define easy words for doing these operations on our current target. */
407
408 #define target_shortname (current_target.to_shortname)
409 #define target_longname (current_target.to_longname)
410
411 /* The open routine takes the rest of the parameters from the command,
412 and (if successful) pushes a new target onto the stack.
413 Targets should supply this routine, if only to provide an error message. */
414 #define target_open(name, from_tty) \
415 (*current_target.to_open) (name, from_tty)
416
417 /* Does whatever cleanup is required for a target that we are no longer
418 going to be calling. Argument says whether we are quitting gdb and
419 should not get hung in case of errors, or whether we want a clean
420 termination even if it takes a while. This routine is automatically
421 always called just before a routine is popped off the target stack.
422 Closing file descriptors and freeing memory are typical things it should
423 do. */
424
425 #define target_close(quitting) \
426 (*current_target.to_close) (quitting)
427
428 /* Attaches to a process on the target side. Arguments are as passed
429 to the `attach' command by the user. This routine can be called
430 when the target is not on the target-stack, if the target_can_run
431 routine returns 1; in that case, it must push itself onto the stack.
432 Upon exit, the target should be ready for normal operations, and
433 should be ready to deliver the status of the process immediately
434 (without waiting) to an upcoming target_wait call. */
435
436 #define target_attach(args, from_tty) \
437 (*current_target.to_attach) (args, from_tty)
438
439 /* The target_attach operation places a process under debugger control,
440 and stops the process.
441
442 This operation provides a target-specific hook that allows the
443 necessary bookkeeping to be performed after an attach completes.
444 */
445 #define target_post_attach(pid) \
446 (*current_target.to_post_attach) (pid)
447
448 /* Attaches to a process on the target side, if not already attached.
449 (If already attached, takes no action.)
450
451 This operation can be used to follow the child process of a fork.
452 On some targets, such child processes of an original inferior process
453 are automatically under debugger control, and thus do not require an
454 actual attach operation. */
455
456 #define target_require_attach(args, from_tty) \
457 (*current_target.to_require_attach) (args, from_tty)
458
459 /* Takes a program previously attached to and detaches it.
460 The program may resume execution (some targets do, some don't) and will
461 no longer stop on signals, etc. We better not have left any breakpoints
462 in the program or it'll die when it hits one. ARGS is arguments
463 typed by the user (e.g. a signal to send the process). FROM_TTY
464 says whether to be verbose or not. */
465
466 extern void
467 target_detach PARAMS ((char *, int));
468
469 /* Detaches from a process on the target side, if not already dettached.
470 (If already detached, takes no action.)
471
472 This operation can be used to follow the parent process of a fork.
473 On some targets, such child processes of an original inferior process
474 are automatically under debugger control, and thus do require an actual
475 detach operation.
476
477 PID is the process id of the child to detach from.
478 ARGS is arguments typed by the user (e.g. a signal to send the process).
479 FROM_TTY says whether to be verbose or not. */
480
481 #define target_require_detach(pid, args, from_tty) \
482 (*current_target.to_require_detach) (pid, args, from_tty)
483
484 /* Resume execution of the target process PID. STEP says whether to
485 single-step or to run free; SIGGNAL is the signal to be given to
486 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
487 pass TARGET_SIGNAL_DEFAULT. */
488
489 #define target_resume(pid, step, siggnal) \
490 (*current_target.to_resume) (pid, step, siggnal)
491
492 /* Wait for process pid to do something. Pid = -1 to wait for any pid
493 to do something. Return pid of child, or -1 in case of error;
494 store status through argument pointer STATUS. Note that it is
495 *not* OK to return_to_top_level out of target_wait without popping
496 the debugging target from the stack; GDB isn't prepared to get back
497 to the prompt with a debugging target but without the frame cache,
498 stop_pc, etc., set up. */
499
500 #define target_wait(pid, status) \
501 (*current_target.to_wait) (pid, status)
502
503 /* The target_wait operation waits for a process event to occur, and
504 thereby stop the process.
505
506 On some targets, certain events may happen in sequences. gdb's
507 correct response to any single event of such a sequence may require
508 knowledge of what earlier events in the sequence have been seen.
509
510 This operation provides a target-specific hook that allows the
511 necessary bookkeeping to be performed to track such sequences.
512 */
513
514 #define target_post_wait(pid, status) \
515 (*current_target.to_post_wait) (pid, status)
516
517 /* Fetch register REGNO, or all regs if regno == -1. No result. */
518
519 #define target_fetch_registers(regno) \
520 (*current_target.to_fetch_registers) (regno)
521
522 /* Store at least register REGNO, or all regs if REGNO == -1.
523 It can store as many registers as it wants to, so target_prepare_to_store
524 must have been previously called. Calls error() if there are problems. */
525
526 #define target_store_registers(regs) \
527 (*current_target.to_store_registers) (regs)
528
529 /* Get ready to modify the registers array. On machines which store
530 individual registers, this doesn't need to do anything. On machines
531 which store all the registers in one fell swoop, this makes sure
532 that REGISTERS contains all the registers from the program being
533 debugged. */
534
535 #define target_prepare_to_store() \
536 (*current_target.to_prepare_to_store) ()
537
538 extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
539
540 extern int
541 target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
542
543 extern int
544 target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
545 asection *bfd_section));
546
547 extern int
548 target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
549
550 extern int
551 target_write_memory PARAMS ((CORE_ADDR, char *, int));
552
553 extern int
554 xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
555
556 extern int
557 child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
558
559 extern char *
560 child_pid_to_exec_file PARAMS ((int));
561
562 extern char *
563 child_core_file_to_sym_file PARAMS ((char *));
564
565 #if defined(CHILD_POST_ATTACH)
566 extern void
567 child_post_attach PARAMS ((int));
568 #endif
569
570 extern void
571 child_post_wait PARAMS ((int, int));
572
573 extern void
574 child_post_startup_inferior PARAMS ((int));
575
576 extern void
577 child_acknowledge_created_inferior PARAMS ((int));
578
579 extern void
580 child_clone_and_follow_inferior PARAMS ((int, int *));
581
582 extern void
583 child_post_follow_inferior_by_clone PARAMS ((void));
584
585 extern int
586 child_insert_fork_catchpoint PARAMS ((int));
587
588 extern int
589 child_remove_fork_catchpoint PARAMS ((int));
590
591 extern int
592 child_insert_vfork_catchpoint PARAMS ((int));
593
594 extern int
595 child_remove_vfork_catchpoint PARAMS ((int));
596
597 extern int
598 child_has_forked PARAMS ((int, int *));
599
600 extern int
601 child_has_vforked PARAMS ((int, int *));
602
603 extern void
604 child_acknowledge_created_inferior PARAMS ((int));
605
606 extern int
607 child_can_follow_vfork_prior_to_exec PARAMS ((void));
608
609 extern void
610 child_post_follow_vfork PARAMS ((int, int, int, int));
611
612 extern int
613 child_insert_exec_catchpoint PARAMS ((int));
614
615 extern int
616 child_remove_exec_catchpoint PARAMS ((int));
617
618 extern int
619 child_has_execd PARAMS ((int, char **));
620
621 extern int
622 child_reported_exec_events_per_exec_call PARAMS ((void));
623
624 extern int
625 child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
626
627 extern int
628 child_has_exited PARAMS ((int, int, int *));
629
630 extern int
631 child_thread_alive PARAMS ((int));
632
633 /* From exec.c */
634
635 extern void
636 print_section_info PARAMS ((struct target_ops *, bfd *));
637
638 /* Print a line about the current target. */
639
640 #define target_files_info() \
641 (*current_target.to_files_info) (&current_target)
642
643 /* Insert a breakpoint at address ADDR in the target machine.
644 SAVE is a pointer to memory allocated for saving the
645 target contents. It is guaranteed by the caller to be long enough
646 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
647 an errno value. */
648
649 #define target_insert_breakpoint(addr, save) \
650 (*current_target.to_insert_breakpoint) (addr, save)
651
652 /* Remove a breakpoint at address ADDR in the target machine.
653 SAVE is a pointer to the same save area
654 that was previously passed to target_insert_breakpoint.
655 Result is 0 for success, or an errno value. */
656
657 #define target_remove_breakpoint(addr, save) \
658 (*current_target.to_remove_breakpoint) (addr, save)
659
660 /* Initialize the terminal settings we record for the inferior,
661 before we actually run the inferior. */
662
663 #define target_terminal_init() \
664 (*current_target.to_terminal_init) ()
665
666 /* Put the inferior's terminal settings into effect.
667 This is preparation for starting or resuming the inferior. */
668
669 #define target_terminal_inferior() \
670 (*current_target.to_terminal_inferior) ()
671
672 /* Put some of our terminal settings into effect,
673 enough to get proper results from our output,
674 but do not change into or out of RAW mode
675 so that no input is discarded.
676
677 After doing this, either terminal_ours or terminal_inferior
678 should be called to get back to a normal state of affairs. */
679
680 #define target_terminal_ours_for_output() \
681 (*current_target.to_terminal_ours_for_output) ()
682
683 /* Put our terminal settings into effect.
684 First record the inferior's terminal settings
685 so they can be restored properly later. */
686
687 #define target_terminal_ours() \
688 (*current_target.to_terminal_ours) ()
689
690 /* Print useful information about our terminal status, if such a thing
691 exists. */
692
693 #define target_terminal_info(arg, from_tty) \
694 (*current_target.to_terminal_info) (arg, from_tty)
695
696 /* Kill the inferior process. Make it go away. */
697
698 #define target_kill() \
699 (*current_target.to_kill) ()
700
701 /* Load an executable file into the target process. This is expected to
702 not only bring new code into the target process, but also to update
703 GDB's symbol tables to match. */
704
705 #define target_load(arg, from_tty) \
706 (*current_target.to_load) (arg, from_tty)
707
708 /* Look up a symbol in the target's symbol table. NAME is the symbol
709 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
710 should be returned. The result is 0 if successful, nonzero if the
711 symbol does not exist in the target environment. This function should
712 not call error() if communication with the target is interrupted, since
713 it is called from symbol reading, but should return nonzero, possibly
714 doing a complain(). */
715
716 #define target_lookup_symbol(name, addrp) \
717 (*current_target.to_lookup_symbol) (name, addrp)
718
719 /* Start an inferior process and set inferior_pid to its pid.
720 EXEC_FILE is the file to run.
721 ALLARGS is a string containing the arguments to the program.
722 ENV is the environment vector to pass. Errors reported with error().
723 On VxWorks and various standalone systems, we ignore exec_file. */
724
725 #define target_create_inferior(exec_file, args, env) \
726 (*current_target.to_create_inferior) (exec_file, args, env)
727
728
729 /* Some targets (such as ttrace-based HPUX) don't allow us to request
730 notification of inferior events such as fork and vork immediately
731 after the inferior is created. (This because of how gdb gets an
732 inferior created via invoking a shell to do it. In such a scenario,
733 if the shell init file has commands in it, the shell will fork and
734 exec for each of those commands, and we will see each such fork
735 event. Very bad.)
736
737 Such targets will supply an appropriate definition for this function.
738 */
739 #define target_post_startup_inferior(pid) \
740 (*current_target.to_post_startup_inferior) (pid)
741
742 /* On some targets, the sequence of starting up an inferior requires
743 some synchronization between gdb and the new inferior process, PID.
744 */
745 #define target_acknowledge_created_inferior(pid) \
746 (*current_target.to_acknowledge_created_inferior) (pid)
747
748 /* An inferior process has been created via a fork() or similar
749 system call. This function will clone the debugger, then ensure
750 that CHILD_PID is attached to by that debugger.
751
752 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
753 and FALSE otherwise. (The original and clone debuggers can use this
754 to determine which they are, if need be.)
755
756 (This is not a terribly useful feature without a GUI to prevent
757 the two debuggers from competing for shell input.)
758 */
759 #define target_clone_and_follow_inferior(child_pid,followed_child) \
760 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
761
762 /* This operation is intended to be used as the last in a sequence of
763 steps taken when following both parent and child of a fork. This
764 is used by a clone of the debugger, which will follow the child.
765
766 The original debugger has detached from this process, and the
767 clone has attached to it.
768
769 On some targets, this requires a bit of cleanup to make it work
770 correctly.
771 */
772 #define target_post_follow_inferior_by_clone() \
773 (*current_target.to_post_follow_inferior_by_clone) ()
774
775 /* On some targets, we can catch an inferior fork or vfork event when it
776 occurs. These functions insert/remove an already-created catchpoint for
777 such events.
778 */
779 #define target_insert_fork_catchpoint(pid) \
780 (*current_target.to_insert_fork_catchpoint) (pid)
781
782 #define target_remove_fork_catchpoint(pid) \
783 (*current_target.to_remove_fork_catchpoint) (pid)
784
785 #define target_insert_vfork_catchpoint(pid) \
786 (*current_target.to_insert_vfork_catchpoint) (pid)
787
788 #define target_remove_vfork_catchpoint(pid) \
789 (*current_target.to_remove_vfork_catchpoint) (pid)
790
791 /* Returns TRUE if PID has invoked the fork() system call. And,
792 also sets CHILD_PID to the process id of the other ("child")
793 inferior process that was created by that call.
794 */
795 #define target_has_forked(pid,child_pid) \
796 (*current_target.to_has_forked) (pid,child_pid)
797
798 /* Returns TRUE if PID has invoked the vfork() system call. And,
799 also sets CHILD_PID to the process id of the other ("child")
800 inferior process that was created by that call.
801 */
802 #define target_has_vforked(pid,child_pid) \
803 (*current_target.to_has_vforked) (pid,child_pid)
804
805 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
806 anything to a vforked child before it subsequently calls exec().
807 On such platforms, we say that the debugger cannot "follow" the
808 child until it has vforked.
809
810 This function should be defined to return 1 by those targets
811 which can allow the debugger to immediately follow a vforked
812 child, and 0 if they cannot.
813 */
814 #define target_can_follow_vfork_prior_to_exec() \
815 (*current_target.to_can_follow_vfork_prior_to_exec) ()
816
817 /* An inferior process has been created via a vfork() system call.
818 The debugger has followed the parent, the child, or both. The
819 process of setting up for that follow may have required some
820 target-specific trickery to track the sequence of reported events.
821 If so, this function should be defined by those targets that
822 require the debugger to perform cleanup or initialization after
823 the vfork follow.
824 */
825 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
826 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
827
828 /* On some targets, we can catch an inferior exec event when it
829 occurs. These functions insert/remove an already-created catchpoint
830 for such events.
831 */
832 #define target_insert_exec_catchpoint(pid) \
833 (*current_target.to_insert_exec_catchpoint) (pid)
834
835 #define target_remove_exec_catchpoint(pid) \
836 (*current_target.to_remove_exec_catchpoint) (pid)
837
838 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
839 And, also sets EXECD_PATHNAME to the pathname of the executable file
840 that was passed to exec(), and is now being executed.
841 */
842 #define target_has_execd(pid,execd_pathname) \
843 (*current_target.to_has_execd) (pid,execd_pathname)
844
845 /* Returns the number of exec events that are reported when a process
846 invokes a flavor of the exec() system call on this target, if exec
847 events are being reported.
848 */
849 #define target_reported_exec_events_per_exec_call() \
850 (*current_target.to_reported_exec_events_per_exec_call) ()
851
852 /* Returns TRUE if PID has reported a syscall event. And, also sets
853 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
854 the unique integer ID of the syscall.
855 */
856 #define target_has_syscall_event(pid,kind,syscall_id) \
857 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
858
859 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
860 exit code of PID, if any.
861 */
862 #define target_has_exited(pid,wait_status,exit_status) \
863 (*current_target.to_has_exited) (pid,wait_status,exit_status)
864
865 /* The debugger has completed a blocking wait() call. There is now
866 some process event that must be processed. This function should
867 be defined by those targets that require the debugger to perform
868 cleanup or internal state changes in response to the process event.
869 */
870
871 /* The inferior process has died. Do what is right. */
872
873 #define target_mourn_inferior() \
874 (*current_target.to_mourn_inferior) ()
875
876 /* Does target have enough data to do a run or attach command? */
877
878 #define target_can_run(t) \
879 ((t)->to_can_run) ()
880
881 /* post process changes to signal handling in the inferior. */
882
883 #define target_notice_signals(pid) \
884 (*current_target.to_notice_signals) (pid)
885
886 /* Check to see if a thread is still alive. */
887
888 #define target_thread_alive(pid) \
889 (*current_target.to_thread_alive) (pid)
890
891 /* Query for new threads and add them to the thread list. */
892
893 #define target_find_new_threads() \
894 do { \
895 if (current_target.to_find_new_threads) \
896 (*current_target.to_find_new_threads) (); \
897 } while (0);
898
899 /* Make target stop in a continuable fashion. (For instance, under Unix, this
900 should act like SIGSTOP). This function is normally used by GUIs to
901 implement a stop button. */
902
903 #define target_stop current_target.to_stop
904
905 /* Queries the target side for some information. The first argument is a
906 letter specifying the type of the query, which is used to determine who
907 should process it. The second argument is a string that specifies which
908 information is desired and the third is a buffer that carries back the
909 response from the target side. The fourth parameter is the size of the
910 output buffer supplied. */
911
912 #define target_query(query_type, query, resp_buffer, bufffer_size) \
913 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
914
915 /* Get the symbol information for a breakpointable routine called when
916 an exception event occurs.
917 Intended mainly for C++, and for those
918 platforms/implementations where such a callback mechanism is available,
919 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
920 different mechanisms for debugging exceptions. */
921
922 #define target_enable_exception_callback(kind, enable) \
923 (*current_target.to_enable_exception_callback) (kind, enable)
924
925 /* Get the current exception event kind -- throw or catch, etc. */
926
927 #define target_get_current_exception_event() \
928 (*current_target.to_get_current_exception_event) ()
929
930 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
931
932 #define target_next \
933 (current_target.to_next)
934
935 /* Does the target include all of memory, or only part of it? This
936 determines whether we look up the target chain for other parts of
937 memory if this target can't satisfy a request. */
938
939 #define target_has_all_memory \
940 (current_target.to_has_all_memory)
941
942 /* Does the target include memory? (Dummy targets don't.) */
943
944 #define target_has_memory \
945 (current_target.to_has_memory)
946
947 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
948 we start a process.) */
949
950 #define target_has_stack \
951 (current_target.to_has_stack)
952
953 /* Does the target have registers? (Exec files don't.) */
954
955 #define target_has_registers \
956 (current_target.to_has_registers)
957
958 /* Does the target have execution? Can we make it jump (through
959 hoops), or pop its stack a few times? FIXME: If this is to work that
960 way, it needs to check whether an inferior actually exists.
961 remote-udi.c and probably other targets can be the current target
962 when the inferior doesn't actually exist at the moment. Right now
963 this just tells us whether this target is *capable* of execution. */
964
965 #define target_has_execution \
966 (current_target.to_has_execution)
967
968 /* Can the target support the debugger control of thread execution?
969 a) Can it lock the thread scheduler?
970 b) Can it switch the currently running thread? */
971
972 #define target_can_lock_scheduler \
973 (current_target.to_has_thread_control & tc_schedlock)
974
975 #define target_can_switch_threads \
976 (current_target.to_has_thread_control & tc_switch)
977
978 extern void target_link PARAMS ((char *, CORE_ADDR *));
979
980 /* Converts a process id to a string. Usually, the string just contains
981 `process xyz', but on some systems it may contain
982 `process xyz thread abc'. */
983
984 #ifndef target_pid_to_str
985 #define target_pid_to_str(PID) \
986 normal_pid_to_str (PID)
987 extern char *normal_pid_to_str PARAMS ((int pid));
988 #endif
989
990 #ifndef target_tid_to_str
991 #define target_tid_to_str(PID) \
992 normal_pid_to_str (PID)
993 extern char *normal_pid_to_str PARAMS ((int pid));
994 #endif
995
996
997 #ifndef target_new_objfile
998 #define target_new_objfile(OBJFILE)
999 #endif
1000
1001 #ifndef target_pid_or_tid_to_str
1002 #define target_pid_or_tid_to_str(ID) \
1003 normal_pid_to_str (ID)
1004 #endif
1005
1006 /* Attempts to find the pathname of the executable file
1007 that was run to create a specified process.
1008
1009 The process PID must be stopped when this operation is used.
1010
1011 If the executable file cannot be determined, NULL is returned.
1012
1013 Else, a pointer to a character string containing the pathname
1014 is returned. This string should be copied into a buffer by
1015 the client if the string will not be immediately used, or if
1016 it must persist.
1017 */
1018
1019 #define target_pid_to_exec_file(pid) \
1020 (current_target.to_pid_to_exec_file) (pid)
1021
1022 /* Hook to call target-dependant code after reading in a new symbol table. */
1023
1024 #ifndef TARGET_SYMFILE_POSTREAD
1025 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
1026 #endif
1027
1028 /* Hook to call target dependant code just after inferior target process has
1029 started. */
1030
1031 #ifndef TARGET_CREATE_INFERIOR_HOOK
1032 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1033 #endif
1034
1035 /* Hardware watchpoint interfaces. */
1036
1037 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1038 write). */
1039
1040 #ifndef STOPPED_BY_WATCHPOINT
1041 #define STOPPED_BY_WATCHPOINT(w) 0
1042 #endif
1043
1044 /* HP-UX supplies these operations, which respectively disable and enable
1045 the memory page-protections that are used to implement hardware watchpoints
1046 on that platform. See wait_for_inferior's use of these.
1047 */
1048 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1049 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1050 #endif
1051
1052 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1053 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1054 #endif
1055
1056 /* Provide defaults for systems that don't support hardware watchpoints. */
1057
1058 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1059
1060 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1061 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1062 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1063 (including this one?). OTHERTYPE is who knows what... */
1064
1065 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1066
1067 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1068 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1069 (LONGEST)(byte_count) <= REGISTER_SIZE
1070 #endif
1071
1072 /* However, some addresses may not be profitable to use hardware to watch,
1073 or may be difficult to understand when the addressed object is out of
1074 scope, and hence should be unwatched. On some targets, this may have
1075 severe performance penalties, such that we might as well use regular
1076 watchpoints, and save (possibly precious) hardware watchpoints for other
1077 locations.
1078 */
1079 #if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1080 #define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1081 #endif
1082
1083
1084 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1085 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1086 success, non-zero for failure. */
1087
1088 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1089 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1090
1091 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1092
1093 #ifndef target_insert_hw_breakpoint
1094 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1095 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1096 #endif
1097
1098 #ifndef target_stopped_data_address
1099 #define target_stopped_data_address() 0
1100 #endif
1101
1102 /* If defined, then we need to decr pc by this much after a hardware break-
1103 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1104
1105 #ifndef DECR_PC_AFTER_HW_BREAK
1106 #define DECR_PC_AFTER_HW_BREAK 0
1107 #endif
1108
1109 /* Sometimes gdb may pick up what appears to be a valid target address
1110 from a minimal symbol, but the value really means, essentially,
1111 "This is an index into a table which is populated when the inferior
1112 is run. Therefore, do not attempt to use this as a PC."
1113 */
1114 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1115 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1116 #endif
1117
1118 /* This will only be defined by a target that supports catching vfork events,
1119 such as HP-UX.
1120
1121 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1122 child process after it has exec'd, causes the parent process to resume as
1123 well. To prevent the parent from running spontaneously, such targets should
1124 define this to a function that prevents that from happening.
1125 */
1126 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1127 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1128 #endif
1129
1130 /* This will only be defined by a target that supports catching vfork events,
1131 such as HP-UX.
1132
1133 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1134 process must be resumed when it delivers its exec event, before the parent
1135 vfork event will be delivered to us.
1136 */
1137 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1138 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1139 #endif
1140
1141 /* Routines for maintenance of the target structures...
1142
1143 add_target: Add a target to the list of all possible targets.
1144
1145 push_target: Make this target the top of the stack of currently used
1146 targets, within its particular stratum of the stack. Result
1147 is 0 if now atop the stack, nonzero if not on top (maybe
1148 should warn user).
1149
1150 unpush_target: Remove this from the stack of currently used targets,
1151 no matter where it is on the list. Returns 0 if no
1152 change, 1 if removed from stack.
1153
1154 pop_target: Remove the top thing on the stack of current targets. */
1155
1156 extern void
1157 add_target PARAMS ((struct target_ops *));
1158
1159 extern int
1160 push_target PARAMS ((struct target_ops *));
1161
1162 extern int
1163 unpush_target PARAMS ((struct target_ops *));
1164
1165 extern void
1166 target_preopen PARAMS ((int));
1167
1168 extern void
1169 pop_target PARAMS ((void));
1170
1171 /* Struct section_table maps address ranges to file sections. It is
1172 mostly used with BFD files, but can be used without (e.g. for handling
1173 raw disks, or files not in formats handled by BFD). */
1174
1175 struct section_table {
1176 CORE_ADDR addr; /* Lowest address in section */
1177 CORE_ADDR endaddr; /* 1+highest address in section */
1178
1179 sec_ptr the_bfd_section;
1180
1181 bfd *bfd; /* BFD file pointer */
1182 };
1183
1184 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1185 Returns 0 if OK, 1 on error. */
1186
1187 extern int
1188 build_section_table PARAMS ((bfd *, struct section_table **,
1189 struct section_table **));
1190
1191 /* From mem-break.c */
1192
1193 extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1194
1195 extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1196
1197 extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1198 #ifndef BREAKPOINT_FROM_PC
1199 #define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1200 #endif
1201
1202
1203 /* From target.c */
1204
1205 extern void
1206 initialize_targets PARAMS ((void));
1207
1208 extern void
1209 noprocess PARAMS ((void));
1210
1211 extern void
1212 find_default_attach PARAMS ((char *, int));
1213
1214 void
1215 find_default_require_attach PARAMS ((char *, int));
1216
1217 void
1218 find_default_require_detach PARAMS ((int, char *, int));
1219
1220 extern void
1221 find_default_create_inferior PARAMS ((char *, char *, char **));
1222
1223 void
1224 find_default_clone_and_follow_inferior PARAMS ((int, int *));
1225
1226 extern struct target_ops *find_run_target PARAMS ((void));
1227
1228 extern struct target_ops *
1229 find_core_target PARAMS ((void));
1230 \f
1231 /* Stuff that should be shared among the various remote targets. */
1232
1233 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1234 information (higher values, more information). */
1235 extern int remote_debug;
1236
1237 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1238 extern int baud_rate;
1239 /* Timeout limit for response from target. */
1240 extern int remote_timeout;
1241
1242 extern asection *target_memory_bfd_section;
1243 \f
1244 /* Functions for helping to write a native target. */
1245
1246 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1247 extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1248
1249 /* Convert between host signal numbers and enum target_signal's. */
1250 extern enum target_signal target_signal_from_host PARAMS ((int));
1251 extern int target_signal_to_host PARAMS ((enum target_signal));
1252
1253 /* Convert from a number used in a GDB command to an enum target_signal. */
1254 extern enum target_signal target_signal_from_command PARAMS ((int));
1255
1256 /* Any target can call this to switch to remote protocol (in remote.c). */
1257 extern void push_remote_target PARAMS ((char *name, int from_tty));
1258 \f
1259 /* Imported from machine dependent code */
1260
1261 #ifndef SOFTWARE_SINGLE_STEP_P
1262 #define SOFTWARE_SINGLE_STEP_P 0
1263 #define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1264 #endif /* SOFTWARE_SINGLE_STEP_P */
1265
1266 /* Blank target vector entries are initialized to target_ignore. */
1267 void target_ignore PARAMS ((void));
1268
1269 /* Macro for getting target's idea of a frame pointer.
1270 FIXME: GDB's whole scheme for dealing with "frames" and
1271 "frame pointers" needs a serious shakedown. */
1272 #ifndef TARGET_VIRTUAL_FRAME_POINTER
1273 #define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1274 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1275 #endif /* TARGET_VIRTUAL_FRAME_POINTER */
1276
1277 #endif /* !defined (TARGET_H) */
This page took 0.055969 seconds and 5 git commands to generate.