convert to_terminal_save_ours
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int);
514 void (*to_kill) (struct target_ops *);
515 void (*to_load) (struct target_ops *, char *, int);
516 void (*to_create_inferior) (struct target_ops *,
517 char *, char *, char **, int);
518 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
519 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
520 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
521 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
522 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
523 int (*to_follow_fork) (struct target_ops *, int, int);
524 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
525 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
526 int (*to_set_syscall_catchpoint) (struct target_ops *,
527 int, int, int, int, int *);
528 int (*to_has_exited) (struct target_ops *, int, int, int *);
529 void (*to_mourn_inferior) (struct target_ops *);
530 int (*to_can_run) (struct target_ops *);
531
532 /* Documentation of this routine is provided with the corresponding
533 target_* macro. */
534 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
535
536 /* Documentation of this routine is provided with the
537 corresponding target_* function. */
538 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
539
540 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
541 void (*to_find_new_threads) (struct target_ops *);
542 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
543 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
544 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
545 void (*to_stop) (struct target_ops *, ptid_t);
546 void (*to_rcmd) (struct target_ops *,
547 char *command, struct ui_file *output)
548 TARGET_DEFAULT_FUNC (default_rcmd);
549 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
550 void (*to_log_command) (struct target_ops *, const char *);
551 struct target_section_table *(*to_get_section_table) (struct target_ops *);
552 enum strata to_stratum;
553 int (*to_has_all_memory) (struct target_ops *);
554 int (*to_has_memory) (struct target_ops *);
555 int (*to_has_stack) (struct target_ops *);
556 int (*to_has_registers) (struct target_ops *);
557 int (*to_has_execution) (struct target_ops *, ptid_t);
558 int to_has_thread_control; /* control thread execution */
559 int to_attach_no_wait;
560 /* ASYNC target controls */
561 int (*to_can_async_p) (struct target_ops *)
562 TARGET_DEFAULT_FUNC (find_default_can_async_p);
563 int (*to_is_async_p) (struct target_ops *)
564 TARGET_DEFAULT_FUNC (find_default_is_async_p);
565 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
566 TARGET_DEFAULT_NORETURN (tcomplain ());
567 int (*to_supports_non_stop) (struct target_ops *);
568 /* find_memory_regions support method for gcore */
569 int (*to_find_memory_regions) (struct target_ops *,
570 find_memory_region_ftype func, void *data);
571 /* make_corefile_notes support method for gcore */
572 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
573 /* get_bookmark support method for bookmarks */
574 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
575 /* goto_bookmark support method for bookmarks */
576 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
577 /* Return the thread-local address at OFFSET in the
578 thread-local storage for the thread PTID and the shared library
579 or executable file given by OBJFILE. If that block of
580 thread-local storage hasn't been allocated yet, this function
581 may return an error. */
582 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
583 ptid_t ptid,
584 CORE_ADDR load_module_addr,
585 CORE_ADDR offset);
586
587 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
588 OBJECT. The OFFSET, for a seekable object, specifies the
589 starting point. The ANNEX can be used to provide additional
590 data-specific information to the target.
591
592 Return the transferred status, error or OK (an
593 'enum target_xfer_status' value). Save the number of bytes
594 actually transferred in *XFERED_LEN if transfer is successful
595 (TARGET_XFER_OK) or the number unavailable bytes if the requested
596 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
597 smaller than LEN does not indicate the end of the object, only
598 the end of the transfer; higher level code should continue
599 transferring if desired. This is handled in target.c.
600
601 The interface does not support a "retry" mechanism. Instead it
602 assumes that at least one byte will be transfered on each
603 successful call.
604
605 NOTE: cagney/2003-10-17: The current interface can lead to
606 fragmented transfers. Lower target levels should not implement
607 hacks, such as enlarging the transfer, in an attempt to
608 compensate for this. Instead, the target stack should be
609 extended so that it implements supply/collect methods and a
610 look-aside object cache. With that available, the lowest
611 target can safely and freely "push" data up the stack.
612
613 See target_read and target_write for more information. One,
614 and only one, of readbuf or writebuf must be non-NULL. */
615
616 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
617 enum target_object object,
618 const char *annex,
619 gdb_byte *readbuf,
620 const gdb_byte *writebuf,
621 ULONGEST offset, ULONGEST len,
622 ULONGEST *xfered_len)
623 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
624
625 /* Returns the memory map for the target. A return value of NULL
626 means that no memory map is available. If a memory address
627 does not fall within any returned regions, it's assumed to be
628 RAM. The returned memory regions should not overlap.
629
630 The order of regions does not matter; target_memory_map will
631 sort regions by starting address. For that reason, this
632 function should not be called directly except via
633 target_memory_map.
634
635 This method should not cache data; if the memory map could
636 change unexpectedly, it should be invalidated, and higher
637 layers will re-fetch it. */
638 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
639
640 /* Erases the region of flash memory starting at ADDRESS, of
641 length LENGTH.
642
643 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
644 on flash block boundaries, as reported by 'to_memory_map'. */
645 void (*to_flash_erase) (struct target_ops *,
646 ULONGEST address, LONGEST length);
647
648 /* Finishes a flash memory write sequence. After this operation
649 all flash memory should be available for writing and the result
650 of reading from areas written by 'to_flash_write' should be
651 equal to what was written. */
652 void (*to_flash_done) (struct target_ops *);
653
654 /* Describe the architecture-specific features of this target.
655 Returns the description found, or NULL if no description
656 was available. */
657 const struct target_desc *(*to_read_description) (struct target_ops *ops);
658
659 /* Build the PTID of the thread on which a given task is running,
660 based on LWP and THREAD. These values are extracted from the
661 task Private_Data section of the Ada Task Control Block, and
662 their interpretation depends on the target. */
663 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
664 long lwp, long thread);
665
666 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
667 Return 0 if *READPTR is already at the end of the buffer.
668 Return -1 if there is insufficient buffer for a whole entry.
669 Return 1 if an entry was read into *TYPEP and *VALP. */
670 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
671 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
672
673 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
674 sequence of bytes in PATTERN with length PATTERN_LEN.
675
676 The result is 1 if found, 0 if not found, and -1 if there was an error
677 requiring halting of the search (e.g. memory read error).
678 If the pattern is found the address is recorded in FOUND_ADDRP. */
679 int (*to_search_memory) (struct target_ops *ops,
680 CORE_ADDR start_addr, ULONGEST search_space_len,
681 const gdb_byte *pattern, ULONGEST pattern_len,
682 CORE_ADDR *found_addrp);
683
684 /* Can target execute in reverse? */
685 int (*to_can_execute_reverse) (struct target_ops *);
686
687 /* The direction the target is currently executing. Must be
688 implemented on targets that support reverse execution and async
689 mode. The default simply returns forward execution. */
690 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
691
692 /* Does this target support debugging multiple processes
693 simultaneously? */
694 int (*to_supports_multi_process) (struct target_ops *);
695
696 /* Does this target support enabling and disabling tracepoints while a trace
697 experiment is running? */
698 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
699
700 /* Does this target support disabling address space randomization? */
701 int (*to_supports_disable_randomization) (struct target_ops *);
702
703 /* Does this target support the tracenz bytecode for string collection? */
704 int (*to_supports_string_tracing) (struct target_ops *);
705
706 /* Does this target support evaluation of breakpoint conditions on its
707 end? */
708 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
709
710 /* Does this target support evaluation of breakpoint commands on its
711 end? */
712 int (*to_can_run_breakpoint_commands) (struct target_ops *);
713
714 /* Determine current architecture of thread PTID.
715
716 The target is supposed to determine the architecture of the code where
717 the target is currently stopped at (on Cell, if a target is in spu_run,
718 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
719 This is architecture used to perform decr_pc_after_break adjustment,
720 and also determines the frame architecture of the innermost frame.
721 ptrace operations need to operate according to target_gdbarch ().
722
723 The default implementation always returns target_gdbarch (). */
724 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
725
726 /* Determine current address space of thread PTID.
727
728 The default implementation always returns the inferior's
729 address space. */
730 struct address_space *(*to_thread_address_space) (struct target_ops *,
731 ptid_t);
732
733 /* Target file operations. */
734
735 /* Open FILENAME on the target, using FLAGS and MODE. Return a
736 target file descriptor, or -1 if an error occurs (and set
737 *TARGET_ERRNO). */
738 int (*to_fileio_open) (struct target_ops *,
739 const char *filename, int flags, int mode,
740 int *target_errno);
741
742 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
743 Return the number of bytes written, or -1 if an error occurs
744 (and set *TARGET_ERRNO). */
745 int (*to_fileio_pwrite) (struct target_ops *,
746 int fd, const gdb_byte *write_buf, int len,
747 ULONGEST offset, int *target_errno);
748
749 /* Read up to LEN bytes FD on the target into READ_BUF.
750 Return the number of bytes read, or -1 if an error occurs
751 (and set *TARGET_ERRNO). */
752 int (*to_fileio_pread) (struct target_ops *,
753 int fd, gdb_byte *read_buf, int len,
754 ULONGEST offset, int *target_errno);
755
756 /* Close FD on the target. Return 0, or -1 if an error occurs
757 (and set *TARGET_ERRNO). */
758 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
759
760 /* Unlink FILENAME on the target. Return 0, or -1 if an error
761 occurs (and set *TARGET_ERRNO). */
762 int (*to_fileio_unlink) (struct target_ops *,
763 const char *filename, int *target_errno);
764
765 /* Read value of symbolic link FILENAME on the target. Return a
766 null-terminated string allocated via xmalloc, or NULL if an error
767 occurs (and set *TARGET_ERRNO). */
768 char *(*to_fileio_readlink) (struct target_ops *,
769 const char *filename, int *target_errno);
770
771
772 /* Implement the "info proc" command. */
773 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
774
775 /* Tracepoint-related operations. */
776
777 /* Prepare the target for a tracing run. */
778 void (*to_trace_init) (struct target_ops *);
779
780 /* Send full details of a tracepoint location to the target. */
781 void (*to_download_tracepoint) (struct target_ops *,
782 struct bp_location *location);
783
784 /* Is the target able to download tracepoint locations in current
785 state? */
786 int (*to_can_download_tracepoint) (struct target_ops *);
787
788 /* Send full details of a trace state variable to the target. */
789 void (*to_download_trace_state_variable) (struct target_ops *,
790 struct trace_state_variable *tsv);
791
792 /* Enable a tracepoint on the target. */
793 void (*to_enable_tracepoint) (struct target_ops *,
794 struct bp_location *location);
795
796 /* Disable a tracepoint on the target. */
797 void (*to_disable_tracepoint) (struct target_ops *,
798 struct bp_location *location);
799
800 /* Inform the target info of memory regions that are readonly
801 (such as text sections), and so it should return data from
802 those rather than look in the trace buffer. */
803 void (*to_trace_set_readonly_regions) (struct target_ops *);
804
805 /* Start a trace run. */
806 void (*to_trace_start) (struct target_ops *);
807
808 /* Get the current status of a tracing run. */
809 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
810
811 void (*to_get_tracepoint_status) (struct target_ops *,
812 struct breakpoint *tp,
813 struct uploaded_tp *utp);
814
815 /* Stop a trace run. */
816 void (*to_trace_stop) (struct target_ops *);
817
818 /* Ask the target to find a trace frame of the given type TYPE,
819 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
820 number of the trace frame, and also the tracepoint number at
821 TPP. If no trace frame matches, return -1. May throw if the
822 operation fails. */
823 int (*to_trace_find) (struct target_ops *,
824 enum trace_find_type type, int num,
825 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
826
827 /* Get the value of the trace state variable number TSV, returning
828 1 if the value is known and writing the value itself into the
829 location pointed to by VAL, else returning 0. */
830 int (*to_get_trace_state_variable_value) (struct target_ops *,
831 int tsv, LONGEST *val);
832
833 int (*to_save_trace_data) (struct target_ops *, const char *filename);
834
835 int (*to_upload_tracepoints) (struct target_ops *,
836 struct uploaded_tp **utpp);
837
838 int (*to_upload_trace_state_variables) (struct target_ops *,
839 struct uploaded_tsv **utsvp);
840
841 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
842 ULONGEST offset, LONGEST len);
843
844 /* Get the minimum length of instruction on which a fast tracepoint
845 may be set on the target. If this operation is unsupported,
846 return -1. If for some reason the minimum length cannot be
847 determined, return 0. */
848 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
849
850 /* Set the target's tracing behavior in response to unexpected
851 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
852 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
853 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
854 /* Set the size of trace buffer in the target. */
855 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
856
857 /* Add/change textual notes about the trace run, returning 1 if
858 successful, 0 otherwise. */
859 int (*to_set_trace_notes) (struct target_ops *,
860 const char *user, const char *notes,
861 const char *stopnotes);
862
863 /* Return the processor core that thread PTID was last seen on.
864 This information is updated only when:
865 - update_thread_list is called
866 - thread stops
867 If the core cannot be determined -- either for the specified
868 thread, or right now, or in this debug session, or for this
869 target -- return -1. */
870 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
871
872 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
873 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
874 a match, 0 if there's a mismatch, and -1 if an error is
875 encountered while reading memory. */
876 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
877 CORE_ADDR memaddr, ULONGEST size);
878
879 /* Return the address of the start of the Thread Information Block
880 a Windows OS specific feature. */
881 int (*to_get_tib_address) (struct target_ops *,
882 ptid_t ptid, CORE_ADDR *addr);
883
884 /* Send the new settings of write permission variables. */
885 void (*to_set_permissions) (struct target_ops *);
886
887 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
888 with its details. Return 1 on success, 0 on failure. */
889 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
890 struct static_tracepoint_marker *marker);
891
892 /* Return a vector of all tracepoints markers string id ID, or all
893 markers if ID is NULL. */
894 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
895 (struct target_ops *, const char *id);
896
897 /* Return a traceframe info object describing the current
898 traceframe's contents. If the target doesn't support
899 traceframe info, return NULL. If the current traceframe is not
900 selected (the current traceframe number is -1), the target can
901 choose to return either NULL or an empty traceframe info. If
902 NULL is returned, for example in remote target, GDB will read
903 from the live inferior. If an empty traceframe info is
904 returned, for example in tfile target, which means the
905 traceframe info is available, but the requested memory is not
906 available in it. GDB will try to see if the requested memory
907 is available in the read-only sections. This method should not
908 cache data; higher layers take care of caching, invalidating,
909 and re-fetching when necessary. */
910 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
911
912 /* Ask the target to use or not to use agent according to USE. Return 1
913 successful, 0 otherwise. */
914 int (*to_use_agent) (struct target_ops *, int use);
915
916 /* Is the target able to use agent in current state? */
917 int (*to_can_use_agent) (struct target_ops *);
918
919 /* Check whether the target supports branch tracing. */
920 int (*to_supports_btrace) (struct target_ops *)
921 TARGET_DEFAULT_RETURN (0);
922
923 /* Enable branch tracing for PTID and allocate a branch trace target
924 information struct for reading and for disabling branch trace. */
925 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
926 ptid_t ptid);
927
928 /* Disable branch tracing and deallocate TINFO. */
929 void (*to_disable_btrace) (struct target_ops *,
930 struct btrace_target_info *tinfo);
931
932 /* Disable branch tracing and deallocate TINFO. This function is similar
933 to to_disable_btrace, except that it is called during teardown and is
934 only allowed to perform actions that are safe. A counter-example would
935 be attempting to talk to a remote target. */
936 void (*to_teardown_btrace) (struct target_ops *,
937 struct btrace_target_info *tinfo);
938
939 /* Read branch trace data for the thread indicated by BTINFO into DATA.
940 DATA is cleared before new trace is added.
941 The branch trace will start with the most recent block and continue
942 towards older blocks. */
943 enum btrace_error (*to_read_btrace) (struct target_ops *self,
944 VEC (btrace_block_s) **data,
945 struct btrace_target_info *btinfo,
946 enum btrace_read_type type);
947
948 /* Stop trace recording. */
949 void (*to_stop_recording) (struct target_ops *);
950
951 /* Print information about the recording. */
952 void (*to_info_record) (struct target_ops *);
953
954 /* Save the recorded execution trace into a file. */
955 void (*to_save_record) (struct target_ops *, const char *filename);
956
957 /* Delete the recorded execution trace from the current position onwards. */
958 void (*to_delete_record) (struct target_ops *);
959
960 /* Query if the record target is currently replaying. */
961 int (*to_record_is_replaying) (struct target_ops *);
962
963 /* Go to the begin of the execution trace. */
964 void (*to_goto_record_begin) (struct target_ops *);
965
966 /* Go to the end of the execution trace. */
967 void (*to_goto_record_end) (struct target_ops *);
968
969 /* Go to a specific location in the recorded execution trace. */
970 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
971
972 /* Disassemble SIZE instructions in the recorded execution trace from
973 the current position.
974 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
975 disassemble SIZE succeeding instructions. */
976 void (*to_insn_history) (struct target_ops *, int size, int flags);
977
978 /* Disassemble SIZE instructions in the recorded execution trace around
979 FROM.
980 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
981 disassemble SIZE instructions after FROM. */
982 void (*to_insn_history_from) (struct target_ops *,
983 ULONGEST from, int size, int flags);
984
985 /* Disassemble a section of the recorded execution trace from instruction
986 BEGIN (inclusive) to instruction END (inclusive). */
987 void (*to_insn_history_range) (struct target_ops *,
988 ULONGEST begin, ULONGEST end, int flags);
989
990 /* Print a function trace of the recorded execution trace.
991 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
992 succeeding functions. */
993 void (*to_call_history) (struct target_ops *, int size, int flags);
994
995 /* Print a function trace of the recorded execution trace starting
996 at function FROM.
997 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
998 SIZE functions after FROM. */
999 void (*to_call_history_from) (struct target_ops *,
1000 ULONGEST begin, int size, int flags);
1001
1002 /* Print a function trace of an execution trace section from function BEGIN
1003 (inclusive) to function END (inclusive). */
1004 void (*to_call_history_range) (struct target_ops *,
1005 ULONGEST begin, ULONGEST end, int flags);
1006
1007 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1008 non-empty annex. */
1009 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1010
1011 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1012 it is not used. */
1013 const struct frame_unwind *to_get_unwinder;
1014 const struct frame_unwind *to_get_tailcall_unwinder;
1015
1016 /* Return the number of bytes by which the PC needs to be decremented
1017 after executing a breakpoint instruction.
1018 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1019 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1020 struct gdbarch *gdbarch);
1021
1022 int to_magic;
1023 /* Need sub-structure for target machine related rather than comm related?
1024 */
1025 };
1026
1027 /* Magic number for checking ops size. If a struct doesn't end with this
1028 number, somebody changed the declaration but didn't change all the
1029 places that initialize one. */
1030
1031 #define OPS_MAGIC 3840
1032
1033 /* The ops structure for our "current" target process. This should
1034 never be NULL. If there is no target, it points to the dummy_target. */
1035
1036 extern struct target_ops current_target;
1037
1038 /* Define easy words for doing these operations on our current target. */
1039
1040 #define target_shortname (current_target.to_shortname)
1041 #define target_longname (current_target.to_longname)
1042
1043 /* Does whatever cleanup is required for a target that we are no
1044 longer going to be calling. This routine is automatically always
1045 called after popping the target off the target stack - the target's
1046 own methods are no longer available through the target vector.
1047 Closing file descriptors and freeing all memory allocated memory are
1048 typical things it should do. */
1049
1050 void target_close (struct target_ops *targ);
1051
1052 /* Attaches to a process on the target side. Arguments are as passed
1053 to the `attach' command by the user. This routine can be called
1054 when the target is not on the target-stack, if the target_can_run
1055 routine returns 1; in that case, it must push itself onto the stack.
1056 Upon exit, the target should be ready for normal operations, and
1057 should be ready to deliver the status of the process immediately
1058 (without waiting) to an upcoming target_wait call. */
1059
1060 void target_attach (char *, int);
1061
1062 /* Some targets don't generate traps when attaching to the inferior,
1063 or their target_attach implementation takes care of the waiting.
1064 These targets must set to_attach_no_wait. */
1065
1066 #define target_attach_no_wait \
1067 (current_target.to_attach_no_wait)
1068
1069 /* The target_attach operation places a process under debugger control,
1070 and stops the process.
1071
1072 This operation provides a target-specific hook that allows the
1073 necessary bookkeeping to be performed after an attach completes. */
1074 #define target_post_attach(pid) \
1075 (*current_target.to_post_attach) (&current_target, pid)
1076
1077 /* Takes a program previously attached to and detaches it.
1078 The program may resume execution (some targets do, some don't) and will
1079 no longer stop on signals, etc. We better not have left any breakpoints
1080 in the program or it'll die when it hits one. ARGS is arguments
1081 typed by the user (e.g. a signal to send the process). FROM_TTY
1082 says whether to be verbose or not. */
1083
1084 extern void target_detach (const char *, int);
1085
1086 /* Disconnect from the current target without resuming it (leaving it
1087 waiting for a debugger). */
1088
1089 extern void target_disconnect (char *, int);
1090
1091 /* Resume execution of the target process PTID (or a group of
1092 threads). STEP says whether to single-step or to run free; SIGGNAL
1093 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1094 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1095 PTID means `step/resume only this process id'. A wildcard PTID
1096 (all threads, or all threads of process) means `step/resume
1097 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1098 matches) resume with their 'thread->suspend.stop_signal' signal
1099 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1100 if in "no pass" state. */
1101
1102 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1103
1104 /* Wait for process pid to do something. PTID = -1 to wait for any
1105 pid to do something. Return pid of child, or -1 in case of error;
1106 store status through argument pointer STATUS. Note that it is
1107 _NOT_ OK to throw_exception() out of target_wait() without popping
1108 the debugging target from the stack; GDB isn't prepared to get back
1109 to the prompt with a debugging target but without the frame cache,
1110 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1111 options. */
1112
1113 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1114 int options);
1115
1116 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1117
1118 extern void target_fetch_registers (struct regcache *regcache, int regno);
1119
1120 /* Store at least register REGNO, or all regs if REGNO == -1.
1121 It can store as many registers as it wants to, so target_prepare_to_store
1122 must have been previously called. Calls error() if there are problems. */
1123
1124 extern void target_store_registers (struct regcache *regcache, int regs);
1125
1126 /* Get ready to modify the registers array. On machines which store
1127 individual registers, this doesn't need to do anything. On machines
1128 which store all the registers in one fell swoop, this makes sure
1129 that REGISTERS contains all the registers from the program being
1130 debugged. */
1131
1132 #define target_prepare_to_store(regcache) \
1133 (*current_target.to_prepare_to_store) (&current_target, regcache)
1134
1135 /* Determine current address space of thread PTID. */
1136
1137 struct address_space *target_thread_address_space (ptid_t);
1138
1139 /* Implement the "info proc" command. This returns one if the request
1140 was handled, and zero otherwise. It can also throw an exception if
1141 an error was encountered while attempting to handle the
1142 request. */
1143
1144 int target_info_proc (char *, enum info_proc_what);
1145
1146 /* Returns true if this target can debug multiple processes
1147 simultaneously. */
1148
1149 #define target_supports_multi_process() \
1150 (*current_target.to_supports_multi_process) (&current_target)
1151
1152 /* Returns true if this target can disable address space randomization. */
1153
1154 int target_supports_disable_randomization (void);
1155
1156 /* Returns true if this target can enable and disable tracepoints
1157 while a trace experiment is running. */
1158
1159 #define target_supports_enable_disable_tracepoint() \
1160 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1161
1162 #define target_supports_string_tracing() \
1163 (*current_target.to_supports_string_tracing) (&current_target)
1164
1165 /* Returns true if this target can handle breakpoint conditions
1166 on its end. */
1167
1168 #define target_supports_evaluation_of_breakpoint_conditions() \
1169 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1170
1171 /* Returns true if this target can handle breakpoint commands
1172 on its end. */
1173
1174 #define target_can_run_breakpoint_commands() \
1175 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1176
1177 extern int target_read_string (CORE_ADDR, char **, int, int *);
1178
1179 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1180 ssize_t len);
1181
1182 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1183 ssize_t len);
1184
1185 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1186
1187 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1188
1189 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1190 ssize_t len);
1191
1192 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1193 ssize_t len);
1194
1195 /* Fetches the target's memory map. If one is found it is sorted
1196 and returned, after some consistency checking. Otherwise, NULL
1197 is returned. */
1198 VEC(mem_region_s) *target_memory_map (void);
1199
1200 /* Erase the specified flash region. */
1201 void target_flash_erase (ULONGEST address, LONGEST length);
1202
1203 /* Finish a sequence of flash operations. */
1204 void target_flash_done (void);
1205
1206 /* Describes a request for a memory write operation. */
1207 struct memory_write_request
1208 {
1209 /* Begining address that must be written. */
1210 ULONGEST begin;
1211 /* Past-the-end address. */
1212 ULONGEST end;
1213 /* The data to write. */
1214 gdb_byte *data;
1215 /* A callback baton for progress reporting for this request. */
1216 void *baton;
1217 };
1218 typedef struct memory_write_request memory_write_request_s;
1219 DEF_VEC_O(memory_write_request_s);
1220
1221 /* Enumeration specifying different flash preservation behaviour. */
1222 enum flash_preserve_mode
1223 {
1224 flash_preserve,
1225 flash_discard
1226 };
1227
1228 /* Write several memory blocks at once. This version can be more
1229 efficient than making several calls to target_write_memory, in
1230 particular because it can optimize accesses to flash memory.
1231
1232 Moreover, this is currently the only memory access function in gdb
1233 that supports writing to flash memory, and it should be used for
1234 all cases where access to flash memory is desirable.
1235
1236 REQUESTS is the vector (see vec.h) of memory_write_request.
1237 PRESERVE_FLASH_P indicates what to do with blocks which must be
1238 erased, but not completely rewritten.
1239 PROGRESS_CB is a function that will be periodically called to provide
1240 feedback to user. It will be called with the baton corresponding
1241 to the request currently being written. It may also be called
1242 with a NULL baton, when preserved flash sectors are being rewritten.
1243
1244 The function returns 0 on success, and error otherwise. */
1245 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1246 enum flash_preserve_mode preserve_flash_p,
1247 void (*progress_cb) (ULONGEST, void *));
1248
1249 /* Print a line about the current target. */
1250
1251 #define target_files_info() \
1252 (*current_target.to_files_info) (&current_target)
1253
1254 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1255 the target machine. Returns 0 for success, and returns non-zero or
1256 throws an error (with a detailed failure reason error code and
1257 message) otherwise. */
1258
1259 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1260 struct bp_target_info *bp_tgt);
1261
1262 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1263 machine. Result is 0 for success, non-zero for error. */
1264
1265 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1266 struct bp_target_info *bp_tgt);
1267
1268 /* Initialize the terminal settings we record for the inferior,
1269 before we actually run the inferior. */
1270
1271 #define target_terminal_init() \
1272 (*current_target.to_terminal_init) (&current_target)
1273
1274 /* Put the inferior's terminal settings into effect.
1275 This is preparation for starting or resuming the inferior. */
1276
1277 extern void target_terminal_inferior (void);
1278
1279 /* Put some of our terminal settings into effect,
1280 enough to get proper results from our output,
1281 but do not change into or out of RAW mode
1282 so that no input is discarded.
1283
1284 After doing this, either terminal_ours or terminal_inferior
1285 should be called to get back to a normal state of affairs. */
1286
1287 #define target_terminal_ours_for_output() \
1288 (*current_target.to_terminal_ours_for_output) (&current_target)
1289
1290 /* Put our terminal settings into effect.
1291 First record the inferior's terminal settings
1292 so they can be restored properly later. */
1293
1294 #define target_terminal_ours() \
1295 (*current_target.to_terminal_ours) (&current_target)
1296
1297 /* Save our terminal settings.
1298 This is called from TUI after entering or leaving the curses
1299 mode. Since curses modifies our terminal this call is here
1300 to take this change into account. */
1301
1302 #define target_terminal_save_ours() \
1303 (*current_target.to_terminal_save_ours) (&current_target)
1304
1305 /* Print useful information about our terminal status, if such a thing
1306 exists. */
1307
1308 #define target_terminal_info(arg, from_tty) \
1309 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1310
1311 /* Kill the inferior process. Make it go away. */
1312
1313 extern void target_kill (void);
1314
1315 /* Load an executable file into the target process. This is expected
1316 to not only bring new code into the target process, but also to
1317 update GDB's symbol tables to match.
1318
1319 ARG contains command-line arguments, to be broken down with
1320 buildargv (). The first non-switch argument is the filename to
1321 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1322 0)), which is an offset to apply to the load addresses of FILE's
1323 sections. The target may define switches, or other non-switch
1324 arguments, as it pleases. */
1325
1326 extern void target_load (char *arg, int from_tty);
1327
1328 /* Start an inferior process and set inferior_ptid to its pid.
1329 EXEC_FILE is the file to run.
1330 ALLARGS is a string containing the arguments to the program.
1331 ENV is the environment vector to pass. Errors reported with error().
1332 On VxWorks and various standalone systems, we ignore exec_file. */
1333
1334 void target_create_inferior (char *exec_file, char *args,
1335 char **env, int from_tty);
1336
1337 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1338 notification of inferior events such as fork and vork immediately
1339 after the inferior is created. (This because of how gdb gets an
1340 inferior created via invoking a shell to do it. In such a scenario,
1341 if the shell init file has commands in it, the shell will fork and
1342 exec for each of those commands, and we will see each such fork
1343 event. Very bad.)
1344
1345 Such targets will supply an appropriate definition for this function. */
1346
1347 #define target_post_startup_inferior(ptid) \
1348 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1349
1350 /* On some targets, we can catch an inferior fork or vfork event when
1351 it occurs. These functions insert/remove an already-created
1352 catchpoint for such events. They return 0 for success, 1 if the
1353 catchpoint type is not supported and -1 for failure. */
1354
1355 #define target_insert_fork_catchpoint(pid) \
1356 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1357
1358 #define target_remove_fork_catchpoint(pid) \
1359 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1360
1361 #define target_insert_vfork_catchpoint(pid) \
1362 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1363
1364 #define target_remove_vfork_catchpoint(pid) \
1365 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1366
1367 /* If the inferior forks or vforks, this function will be called at
1368 the next resume in order to perform any bookkeeping and fiddling
1369 necessary to continue debugging either the parent or child, as
1370 requested, and releasing the other. Information about the fork
1371 or vfork event is available via get_last_target_status ().
1372 This function returns 1 if the inferior should not be resumed
1373 (i.e. there is another event pending). */
1374
1375 int target_follow_fork (int follow_child, int detach_fork);
1376
1377 /* On some targets, we can catch an inferior exec event when it
1378 occurs. These functions insert/remove an already-created
1379 catchpoint for such events. They return 0 for success, 1 if the
1380 catchpoint type is not supported and -1 for failure. */
1381
1382 #define target_insert_exec_catchpoint(pid) \
1383 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1384
1385 #define target_remove_exec_catchpoint(pid) \
1386 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1387
1388 /* Syscall catch.
1389
1390 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1391 If NEEDED is zero, it means the target can disable the mechanism to
1392 catch system calls because there are no more catchpoints of this type.
1393
1394 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1395 being requested. In this case, both TABLE_SIZE and TABLE should
1396 be ignored.
1397
1398 TABLE_SIZE is the number of elements in TABLE. It only matters if
1399 ANY_COUNT is zero.
1400
1401 TABLE is an array of ints, indexed by syscall number. An element in
1402 this array is nonzero if that syscall should be caught. This argument
1403 only matters if ANY_COUNT is zero.
1404
1405 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1406 for failure. */
1407
1408 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1409 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1410 pid, needed, any_count, \
1411 table_size, table)
1412
1413 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1414 exit code of PID, if any. */
1415
1416 #define target_has_exited(pid,wait_status,exit_status) \
1417 (*current_target.to_has_exited) (&current_target, \
1418 pid,wait_status,exit_status)
1419
1420 /* The debugger has completed a blocking wait() call. There is now
1421 some process event that must be processed. This function should
1422 be defined by those targets that require the debugger to perform
1423 cleanup or internal state changes in response to the process event. */
1424
1425 /* The inferior process has died. Do what is right. */
1426
1427 void target_mourn_inferior (void);
1428
1429 /* Does target have enough data to do a run or attach command? */
1430
1431 #define target_can_run(t) \
1432 ((t)->to_can_run) (t)
1433
1434 /* Set list of signals to be handled in the target.
1435
1436 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1437 (enum gdb_signal). For every signal whose entry in this array is
1438 non-zero, the target is allowed -but not required- to skip reporting
1439 arrival of the signal to the GDB core by returning from target_wait,
1440 and to pass the signal directly to the inferior instead.
1441
1442 However, if the target is hardware single-stepping a thread that is
1443 about to receive a signal, it needs to be reported in any case, even
1444 if mentioned in a previous target_pass_signals call. */
1445
1446 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1447
1448 /* Set list of signals the target may pass to the inferior. This
1449 directly maps to the "handle SIGNAL pass/nopass" setting.
1450
1451 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1452 number (enum gdb_signal). For every signal whose entry in this
1453 array is non-zero, the target is allowed to pass the signal to the
1454 inferior. Signals not present in the array shall be silently
1455 discarded. This does not influence whether to pass signals to the
1456 inferior as a result of a target_resume call. This is useful in
1457 scenarios where the target needs to decide whether to pass or not a
1458 signal to the inferior without GDB core involvement, such as for
1459 example, when detaching (as threads may have been suspended with
1460 pending signals not reported to GDB). */
1461
1462 extern void target_program_signals (int nsig, unsigned char *program_signals);
1463
1464 /* Check to see if a thread is still alive. */
1465
1466 extern int target_thread_alive (ptid_t ptid);
1467
1468 /* Query for new threads and add them to the thread list. */
1469
1470 extern void target_find_new_threads (void);
1471
1472 /* Make target stop in a continuable fashion. (For instance, under
1473 Unix, this should act like SIGSTOP). This function is normally
1474 used by GUIs to implement a stop button. */
1475
1476 extern void target_stop (ptid_t ptid);
1477
1478 /* Send the specified COMMAND to the target's monitor
1479 (shell,interpreter) for execution. The result of the query is
1480 placed in OUTBUF. */
1481
1482 #define target_rcmd(command, outbuf) \
1483 (*current_target.to_rcmd) (&current_target, command, outbuf)
1484
1485
1486 /* Does the target include all of memory, or only part of it? This
1487 determines whether we look up the target chain for other parts of
1488 memory if this target can't satisfy a request. */
1489
1490 extern int target_has_all_memory_1 (void);
1491 #define target_has_all_memory target_has_all_memory_1 ()
1492
1493 /* Does the target include memory? (Dummy targets don't.) */
1494
1495 extern int target_has_memory_1 (void);
1496 #define target_has_memory target_has_memory_1 ()
1497
1498 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1499 we start a process.) */
1500
1501 extern int target_has_stack_1 (void);
1502 #define target_has_stack target_has_stack_1 ()
1503
1504 /* Does the target have registers? (Exec files don't.) */
1505
1506 extern int target_has_registers_1 (void);
1507 #define target_has_registers target_has_registers_1 ()
1508
1509 /* Does the target have execution? Can we make it jump (through
1510 hoops), or pop its stack a few times? This means that the current
1511 target is currently executing; for some targets, that's the same as
1512 whether or not the target is capable of execution, but there are
1513 also targets which can be current while not executing. In that
1514 case this will become true after target_create_inferior or
1515 target_attach. */
1516
1517 extern int target_has_execution_1 (ptid_t);
1518
1519 /* Like target_has_execution_1, but always passes inferior_ptid. */
1520
1521 extern int target_has_execution_current (void);
1522
1523 #define target_has_execution target_has_execution_current ()
1524
1525 /* Default implementations for process_stratum targets. Return true
1526 if there's a selected inferior, false otherwise. */
1527
1528 extern int default_child_has_all_memory (struct target_ops *ops);
1529 extern int default_child_has_memory (struct target_ops *ops);
1530 extern int default_child_has_stack (struct target_ops *ops);
1531 extern int default_child_has_registers (struct target_ops *ops);
1532 extern int default_child_has_execution (struct target_ops *ops,
1533 ptid_t the_ptid);
1534
1535 /* Can the target support the debugger control of thread execution?
1536 Can it lock the thread scheduler? */
1537
1538 #define target_can_lock_scheduler \
1539 (current_target.to_has_thread_control & tc_schedlock)
1540
1541 /* Should the target enable async mode if it is supported? Temporary
1542 cludge until async mode is a strict superset of sync mode. */
1543 extern int target_async_permitted;
1544
1545 /* Can the target support asynchronous execution? */
1546 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1547
1548 /* Is the target in asynchronous execution mode? */
1549 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1550
1551 int target_supports_non_stop (void);
1552
1553 /* Put the target in async mode with the specified callback function. */
1554 #define target_async(CALLBACK,CONTEXT) \
1555 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1556
1557 #define target_execution_direction() \
1558 (current_target.to_execution_direction (&current_target))
1559
1560 /* Converts a process id to a string. Usually, the string just contains
1561 `process xyz', but on some systems it may contain
1562 `process xyz thread abc'. */
1563
1564 extern char *target_pid_to_str (ptid_t ptid);
1565
1566 extern char *normal_pid_to_str (ptid_t ptid);
1567
1568 /* Return a short string describing extra information about PID,
1569 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1570 is okay. */
1571
1572 #define target_extra_thread_info(TP) \
1573 (current_target.to_extra_thread_info (&current_target, TP))
1574
1575 /* Return the thread's name. A NULL result means that the target
1576 could not determine this thread's name. */
1577
1578 extern char *target_thread_name (struct thread_info *);
1579
1580 /* Attempts to find the pathname of the executable file
1581 that was run to create a specified process.
1582
1583 The process PID must be stopped when this operation is used.
1584
1585 If the executable file cannot be determined, NULL is returned.
1586
1587 Else, a pointer to a character string containing the pathname
1588 is returned. This string should be copied into a buffer by
1589 the client if the string will not be immediately used, or if
1590 it must persist. */
1591
1592 #define target_pid_to_exec_file(pid) \
1593 (current_target.to_pid_to_exec_file) (&current_target, pid)
1594
1595 /* See the to_thread_architecture description in struct target_ops. */
1596
1597 #define target_thread_architecture(ptid) \
1598 (current_target.to_thread_architecture (&current_target, ptid))
1599
1600 /*
1601 * Iterator function for target memory regions.
1602 * Calls a callback function once for each memory region 'mapped'
1603 * in the child process. Defined as a simple macro rather than
1604 * as a function macro so that it can be tested for nullity.
1605 */
1606
1607 #define target_find_memory_regions(FUNC, DATA) \
1608 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1609
1610 /*
1611 * Compose corefile .note section.
1612 */
1613
1614 #define target_make_corefile_notes(BFD, SIZE_P) \
1615 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1616
1617 /* Bookmark interfaces. */
1618 #define target_get_bookmark(ARGS, FROM_TTY) \
1619 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1620
1621 #define target_goto_bookmark(ARG, FROM_TTY) \
1622 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1623
1624 /* Hardware watchpoint interfaces. */
1625
1626 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1627 write). Only the INFERIOR_PTID task is being queried. */
1628
1629 #define target_stopped_by_watchpoint() \
1630 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1631
1632 /* Non-zero if we have steppable watchpoints */
1633
1634 #define target_have_steppable_watchpoint \
1635 (current_target.to_have_steppable_watchpoint)
1636
1637 /* Non-zero if we have continuable watchpoints */
1638
1639 #define target_have_continuable_watchpoint \
1640 (current_target.to_have_continuable_watchpoint)
1641
1642 /* Provide defaults for hardware watchpoint functions. */
1643
1644 /* If the *_hw_beakpoint functions have not been defined
1645 elsewhere use the definitions in the target vector. */
1646
1647 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1648 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1649 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1650 (including this one?). OTHERTYPE is who knows what... */
1651
1652 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1653 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1654 TYPE, CNT, OTHERTYPE);
1655
1656 /* Returns the number of debug registers needed to watch the given
1657 memory region, or zero if not supported. */
1658
1659 #define target_region_ok_for_hw_watchpoint(addr, len) \
1660 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1661 addr, len)
1662
1663
1664 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1665 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1666 COND is the expression for its condition, or NULL if there's none.
1667 Returns 0 for success, 1 if the watchpoint type is not supported,
1668 -1 for failure. */
1669
1670 #define target_insert_watchpoint(addr, len, type, cond) \
1671 (*current_target.to_insert_watchpoint) (&current_target, \
1672 addr, len, type, cond)
1673
1674 #define target_remove_watchpoint(addr, len, type, cond) \
1675 (*current_target.to_remove_watchpoint) (&current_target, \
1676 addr, len, type, cond)
1677
1678 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1679 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1680 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1681 masked watchpoints are not supported, -1 for failure. */
1682
1683 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1684
1685 /* Remove a masked watchpoint at ADDR with the mask MASK.
1686 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1687 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1688 for failure. */
1689
1690 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1691
1692 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1693 the target machine. Returns 0 for success, and returns non-zero or
1694 throws an error (with a detailed failure reason error code and
1695 message) otherwise. */
1696
1697 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1698 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1699 gdbarch, bp_tgt)
1700
1701 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1702 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1703 gdbarch, bp_tgt)
1704
1705 /* Return number of debug registers needed for a ranged breakpoint,
1706 or -1 if ranged breakpoints are not supported. */
1707
1708 extern int target_ranged_break_num_registers (void);
1709
1710 /* Return non-zero if target knows the data address which triggered this
1711 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1712 INFERIOR_PTID task is being queried. */
1713 #define target_stopped_data_address(target, addr_p) \
1714 (*target.to_stopped_data_address) (target, addr_p)
1715
1716 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1717 LENGTH bytes beginning at START. */
1718 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1719 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1720
1721 /* Return non-zero if the target is capable of using hardware to evaluate
1722 the condition expression. In this case, if the condition is false when
1723 the watched memory location changes, execution may continue without the
1724 debugger being notified.
1725
1726 Due to limitations in the hardware implementation, it may be capable of
1727 avoiding triggering the watchpoint in some cases where the condition
1728 expression is false, but may report some false positives as well.
1729 For this reason, GDB will still evaluate the condition expression when
1730 the watchpoint triggers. */
1731 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1732 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1733 addr, len, type, cond)
1734
1735 /* Return number of debug registers needed for a masked watchpoint,
1736 -1 if masked watchpoints are not supported or -2 if the given address
1737 and mask combination cannot be used. */
1738
1739 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1740
1741 /* Target can execute in reverse? */
1742 #define target_can_execute_reverse \
1743 (current_target.to_can_execute_reverse ? \
1744 current_target.to_can_execute_reverse (&current_target) : 0)
1745
1746 extern const struct target_desc *target_read_description (struct target_ops *);
1747
1748 #define target_get_ada_task_ptid(lwp, tid) \
1749 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1750
1751 /* Utility implementation of searching memory. */
1752 extern int simple_search_memory (struct target_ops* ops,
1753 CORE_ADDR start_addr,
1754 ULONGEST search_space_len,
1755 const gdb_byte *pattern,
1756 ULONGEST pattern_len,
1757 CORE_ADDR *found_addrp);
1758
1759 /* Main entry point for searching memory. */
1760 extern int target_search_memory (CORE_ADDR start_addr,
1761 ULONGEST search_space_len,
1762 const gdb_byte *pattern,
1763 ULONGEST pattern_len,
1764 CORE_ADDR *found_addrp);
1765
1766 /* Target file operations. */
1767
1768 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1769 target file descriptor, or -1 if an error occurs (and set
1770 *TARGET_ERRNO). */
1771 extern int target_fileio_open (const char *filename, int flags, int mode,
1772 int *target_errno);
1773
1774 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1775 Return the number of bytes written, or -1 if an error occurs
1776 (and set *TARGET_ERRNO). */
1777 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1778 ULONGEST offset, int *target_errno);
1779
1780 /* Read up to LEN bytes FD on the target into READ_BUF.
1781 Return the number of bytes read, or -1 if an error occurs
1782 (and set *TARGET_ERRNO). */
1783 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1784 ULONGEST offset, int *target_errno);
1785
1786 /* Close FD on the target. Return 0, or -1 if an error occurs
1787 (and set *TARGET_ERRNO). */
1788 extern int target_fileio_close (int fd, int *target_errno);
1789
1790 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1791 occurs (and set *TARGET_ERRNO). */
1792 extern int target_fileio_unlink (const char *filename, int *target_errno);
1793
1794 /* Read value of symbolic link FILENAME on the target. Return a
1795 null-terminated string allocated via xmalloc, or NULL if an error
1796 occurs (and set *TARGET_ERRNO). */
1797 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1798
1799 /* Read target file FILENAME. The return value will be -1 if the transfer
1800 fails or is not supported; 0 if the object is empty; or the length
1801 of the object otherwise. If a positive value is returned, a
1802 sufficiently large buffer will be allocated using xmalloc and
1803 returned in *BUF_P containing the contents of the object.
1804
1805 This method should be used for objects sufficiently small to store
1806 in a single xmalloc'd buffer, when no fixed bound on the object's
1807 size is known in advance. */
1808 extern LONGEST target_fileio_read_alloc (const char *filename,
1809 gdb_byte **buf_p);
1810
1811 /* Read target file FILENAME. The result is NUL-terminated and
1812 returned as a string, allocated using xmalloc. If an error occurs
1813 or the transfer is unsupported, NULL is returned. Empty objects
1814 are returned as allocated but empty strings. A warning is issued
1815 if the result contains any embedded NUL bytes. */
1816 extern char *target_fileio_read_stralloc (const char *filename);
1817
1818
1819 /* Tracepoint-related operations. */
1820
1821 #define target_trace_init() \
1822 (*current_target.to_trace_init) (&current_target)
1823
1824 #define target_download_tracepoint(t) \
1825 (*current_target.to_download_tracepoint) (&current_target, t)
1826
1827 #define target_can_download_tracepoint() \
1828 (*current_target.to_can_download_tracepoint) (&current_target)
1829
1830 #define target_download_trace_state_variable(tsv) \
1831 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1832
1833 #define target_enable_tracepoint(loc) \
1834 (*current_target.to_enable_tracepoint) (&current_target, loc)
1835
1836 #define target_disable_tracepoint(loc) \
1837 (*current_target.to_disable_tracepoint) (&current_target, loc)
1838
1839 #define target_trace_start() \
1840 (*current_target.to_trace_start) (&current_target)
1841
1842 #define target_trace_set_readonly_regions() \
1843 (*current_target.to_trace_set_readonly_regions) (&current_target)
1844
1845 #define target_get_trace_status(ts) \
1846 (*current_target.to_get_trace_status) (&current_target, ts)
1847
1848 #define target_get_tracepoint_status(tp,utp) \
1849 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1850
1851 #define target_trace_stop() \
1852 (*current_target.to_trace_stop) (&current_target)
1853
1854 #define target_trace_find(type,num,addr1,addr2,tpp) \
1855 (*current_target.to_trace_find) (&current_target, \
1856 (type), (num), (addr1), (addr2), (tpp))
1857
1858 #define target_get_trace_state_variable_value(tsv,val) \
1859 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1860 (tsv), (val))
1861
1862 #define target_save_trace_data(filename) \
1863 (*current_target.to_save_trace_data) (&current_target, filename)
1864
1865 #define target_upload_tracepoints(utpp) \
1866 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1867
1868 #define target_upload_trace_state_variables(utsvp) \
1869 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1870
1871 #define target_get_raw_trace_data(buf,offset,len) \
1872 (*current_target.to_get_raw_trace_data) (&current_target, \
1873 (buf), (offset), (len))
1874
1875 #define target_get_min_fast_tracepoint_insn_len() \
1876 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1877
1878 #define target_set_disconnected_tracing(val) \
1879 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1880
1881 #define target_set_circular_trace_buffer(val) \
1882 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1883
1884 #define target_set_trace_buffer_size(val) \
1885 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1886
1887 #define target_set_trace_notes(user,notes,stopnotes) \
1888 (*current_target.to_set_trace_notes) (&current_target, \
1889 (user), (notes), (stopnotes))
1890
1891 #define target_get_tib_address(ptid, addr) \
1892 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1893
1894 #define target_set_permissions() \
1895 (*current_target.to_set_permissions) (&current_target)
1896
1897 #define target_static_tracepoint_marker_at(addr, marker) \
1898 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1899 addr, marker)
1900
1901 #define target_static_tracepoint_markers_by_strid(marker_id) \
1902 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1903 marker_id)
1904
1905 #define target_traceframe_info() \
1906 (*current_target.to_traceframe_info) (&current_target)
1907
1908 #define target_use_agent(use) \
1909 (*current_target.to_use_agent) (&current_target, use)
1910
1911 #define target_can_use_agent() \
1912 (*current_target.to_can_use_agent) (&current_target)
1913
1914 #define target_augmented_libraries_svr4_read() \
1915 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1916
1917 /* Command logging facility. */
1918
1919 #define target_log_command(p) \
1920 do \
1921 if (current_target.to_log_command) \
1922 (*current_target.to_log_command) (&current_target, \
1923 p); \
1924 while (0)
1925
1926
1927 extern int target_core_of_thread (ptid_t ptid);
1928
1929 /* See to_get_unwinder in struct target_ops. */
1930 extern const struct frame_unwind *target_get_unwinder (void);
1931
1932 /* See to_get_tailcall_unwinder in struct target_ops. */
1933 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1934
1935 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1936 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1937 if there's a mismatch, and -1 if an error is encountered while
1938 reading memory. Throws an error if the functionality is found not
1939 to be supported by the current target. */
1940 int target_verify_memory (const gdb_byte *data,
1941 CORE_ADDR memaddr, ULONGEST size);
1942
1943 /* Routines for maintenance of the target structures...
1944
1945 complete_target_initialization: Finalize a target_ops by filling in
1946 any fields needed by the target implementation.
1947
1948 add_target: Add a target to the list of all possible targets.
1949
1950 push_target: Make this target the top of the stack of currently used
1951 targets, within its particular stratum of the stack. Result
1952 is 0 if now atop the stack, nonzero if not on top (maybe
1953 should warn user).
1954
1955 unpush_target: Remove this from the stack of currently used targets,
1956 no matter where it is on the list. Returns 0 if no
1957 change, 1 if removed from stack. */
1958
1959 extern void add_target (struct target_ops *);
1960
1961 extern void add_target_with_completer (struct target_ops *t,
1962 completer_ftype *completer);
1963
1964 extern void complete_target_initialization (struct target_ops *t);
1965
1966 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1967 for maintaining backwards compatibility when renaming targets. */
1968
1969 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1970
1971 extern void push_target (struct target_ops *);
1972
1973 extern int unpush_target (struct target_ops *);
1974
1975 extern void target_pre_inferior (int);
1976
1977 extern void target_preopen (int);
1978
1979 /* Does whatever cleanup is required to get rid of all pushed targets. */
1980 extern void pop_all_targets (void);
1981
1982 /* Like pop_all_targets, but pops only targets whose stratum is
1983 strictly above ABOVE_STRATUM. */
1984 extern void pop_all_targets_above (enum strata above_stratum);
1985
1986 extern int target_is_pushed (struct target_ops *t);
1987
1988 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1989 CORE_ADDR offset);
1990
1991 /* Struct target_section maps address ranges to file sections. It is
1992 mostly used with BFD files, but can be used without (e.g. for handling
1993 raw disks, or files not in formats handled by BFD). */
1994
1995 struct target_section
1996 {
1997 CORE_ADDR addr; /* Lowest address in section */
1998 CORE_ADDR endaddr; /* 1+highest address in section */
1999
2000 struct bfd_section *the_bfd_section;
2001
2002 /* The "owner" of the section.
2003 It can be any unique value. It is set by add_target_sections
2004 and used by remove_target_sections.
2005 For example, for executables it is a pointer to exec_bfd and
2006 for shlibs it is the so_list pointer. */
2007 void *owner;
2008 };
2009
2010 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2011
2012 struct target_section_table
2013 {
2014 struct target_section *sections;
2015 struct target_section *sections_end;
2016 };
2017
2018 /* Return the "section" containing the specified address. */
2019 struct target_section *target_section_by_addr (struct target_ops *target,
2020 CORE_ADDR addr);
2021
2022 /* Return the target section table this target (or the targets
2023 beneath) currently manipulate. */
2024
2025 extern struct target_section_table *target_get_section_table
2026 (struct target_ops *target);
2027
2028 /* From mem-break.c */
2029
2030 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2031 struct bp_target_info *);
2032
2033 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2034 struct bp_target_info *);
2035
2036 extern int default_memory_remove_breakpoint (struct gdbarch *,
2037 struct bp_target_info *);
2038
2039 extern int default_memory_insert_breakpoint (struct gdbarch *,
2040 struct bp_target_info *);
2041
2042
2043 /* From target.c */
2044
2045 extern void initialize_targets (void);
2046
2047 extern void noprocess (void) ATTRIBUTE_NORETURN;
2048
2049 extern void target_require_runnable (void);
2050
2051 extern void find_default_attach (struct target_ops *, char *, int);
2052
2053 extern void find_default_create_inferior (struct target_ops *,
2054 char *, char *, char **, int);
2055
2056 extern struct target_ops *find_target_beneath (struct target_ops *);
2057
2058 /* Find the target at STRATUM. If no target is at that stratum,
2059 return NULL. */
2060
2061 struct target_ops *find_target_at (enum strata stratum);
2062
2063 /* Read OS data object of type TYPE from the target, and return it in
2064 XML format. The result is NUL-terminated and returned as a string,
2065 allocated using xmalloc. If an error occurs or the transfer is
2066 unsupported, NULL is returned. Empty objects are returned as
2067 allocated but empty strings. */
2068
2069 extern char *target_get_osdata (const char *type);
2070
2071 \f
2072 /* Stuff that should be shared among the various remote targets. */
2073
2074 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2075 information (higher values, more information). */
2076 extern int remote_debug;
2077
2078 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2079 extern int baud_rate;
2080 /* Timeout limit for response from target. */
2081 extern int remote_timeout;
2082
2083 \f
2084
2085 /* Set the show memory breakpoints mode to show, and installs a cleanup
2086 to restore it back to the current value. */
2087 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2088
2089 extern int may_write_registers;
2090 extern int may_write_memory;
2091 extern int may_insert_breakpoints;
2092 extern int may_insert_tracepoints;
2093 extern int may_insert_fast_tracepoints;
2094 extern int may_stop;
2095
2096 extern void update_target_permissions (void);
2097
2098 \f
2099 /* Imported from machine dependent code. */
2100
2101 /* Blank target vector entries are initialized to target_ignore. */
2102 void target_ignore (void);
2103
2104 /* See to_supports_btrace in struct target_ops. */
2105 #define target_supports_btrace() \
2106 (current_target.to_supports_btrace (&current_target))
2107
2108 /* See to_enable_btrace in struct target_ops. */
2109 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2110
2111 /* See to_disable_btrace in struct target_ops. */
2112 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2113
2114 /* See to_teardown_btrace in struct target_ops. */
2115 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2116
2117 /* See to_read_btrace in struct target_ops. */
2118 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2119 struct btrace_target_info *,
2120 enum btrace_read_type);
2121
2122 /* See to_stop_recording in struct target_ops. */
2123 extern void target_stop_recording (void);
2124
2125 /* See to_info_record in struct target_ops. */
2126 extern void target_info_record (void);
2127
2128 /* See to_save_record in struct target_ops. */
2129 extern void target_save_record (const char *filename);
2130
2131 /* Query if the target supports deleting the execution log. */
2132 extern int target_supports_delete_record (void);
2133
2134 /* See to_delete_record in struct target_ops. */
2135 extern void target_delete_record (void);
2136
2137 /* See to_record_is_replaying in struct target_ops. */
2138 extern int target_record_is_replaying (void);
2139
2140 /* See to_goto_record_begin in struct target_ops. */
2141 extern void target_goto_record_begin (void);
2142
2143 /* See to_goto_record_end in struct target_ops. */
2144 extern void target_goto_record_end (void);
2145
2146 /* See to_goto_record in struct target_ops. */
2147 extern void target_goto_record (ULONGEST insn);
2148
2149 /* See to_insn_history. */
2150 extern void target_insn_history (int size, int flags);
2151
2152 /* See to_insn_history_from. */
2153 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2154
2155 /* See to_insn_history_range. */
2156 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2157
2158 /* See to_call_history. */
2159 extern void target_call_history (int size, int flags);
2160
2161 /* See to_call_history_from. */
2162 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2163
2164 /* See to_call_history_range. */
2165 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2166
2167 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2168 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2169 struct gdbarch *gdbarch);
2170
2171 /* See to_decr_pc_after_break. */
2172 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2173
2174 #endif /* !defined (TARGET_H) */
This page took 0.09047 seconds and 5 git commands to generate.