Add comment for mi_run_cmd_full
[deliverable/binutils-gdb.git] / gdb / testsuite / lib / mi-support.exp
1 # Copyright 1999-2014 Free Software Foundation, Inc.
2
3 # This program is free software; you can redistribute it and/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation; either version 3 of the License, or
6 # (at your option) any later version.
7 #
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
12 #
13 # You should have received a copy of the GNU General Public License
14 # along with this program. If not, see <http://www.gnu.org/licenses/>.
15
16 # This file was based on a file written by Fred Fish. (fnf@cygnus.com)
17
18 # Test setup routines that work with the MI interpreter.
19
20 # The variable mi_gdb_prompt is a regexp which matches the gdb mi prompt.
21 # Set it if it is not already set.
22 global mi_gdb_prompt
23 if ![info exists mi_gdb_prompt] then {
24 set mi_gdb_prompt "\[(\]gdb\[)\] \r\n"
25 }
26
27 global mi_inferior_spawn_id
28 global mi_inferior_tty_name
29
30 set MIFLAGS "-i=mi"
31
32 set thread_selected_re "=thread-selected,id=\"\[0-9\]+\"\r\n"
33 set gdbindex_warning_re "&\"warning: Skipping \[^\r\n\]+ \.gdb_index section in \[^\r\n\]+\"\r\n(?:&\"\\\\n\"\r\n)?"
34 set library_loaded_re "=library-loaded\[^\n\]+\"\r\n(?:$gdbindex_warning_re)?"
35 set breakpoint_re "=(?:breakpoint-created|breakpoint-deleted)\[^\n\]+\"\r\n"
36
37 #
38 # mi_gdb_exit -- exit the GDB, killing the target program if necessary
39 #
40 proc mi_gdb_exit {} {
41 catch mi_uncatched_gdb_exit
42 }
43
44 proc mi_uncatched_gdb_exit {} {
45 global GDB
46 global INTERNAL_GDBFLAGS GDBFLAGS
47 global verbose
48 global gdb_spawn_id
49 global gdb_prompt
50 global mi_gdb_prompt
51 global MIFLAGS
52
53 gdb_stop_suppressing_tests
54
55 if { [info procs sid_exit] != "" } {
56 sid_exit
57 }
58
59 if ![info exists gdb_spawn_id] {
60 return
61 }
62
63 verbose "Quitting $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
64
65 if { [is_remote host] && [board_info host exists fileid] } {
66 send_gdb "999-gdb-exit\n"
67 gdb_expect 10 {
68 -re "y or n" {
69 send_gdb "y\n"
70 exp_continue
71 }
72 -re "Undefined command.*$gdb_prompt $" {
73 send_gdb "quit\n"
74 exp_continue
75 }
76 -re "DOSEXIT code" { }
77 default { }
78 }
79 }
80
81 if ![is_remote host] {
82 remote_close host
83 }
84 unset gdb_spawn_id
85 }
86
87 #
88 # default_mi_gdb_start [INFERIOR_PTY] -- start gdb running, default procedure
89 #
90 # INFERIOR_PTY should be set to separate-inferior-tty to have the inferior work
91 # with it's own PTY. If set to same-inferior-tty, the inferior shares GDB's PTY.
92 # The default value is same-inferior-tty.
93 #
94 # When running over NFS, particularly if running many simultaneous
95 # tests on different hosts all using the same server, things can
96 # get really slow. Give gdb at least 3 minutes to start up.
97 #
98 proc default_mi_gdb_start { args } {
99 global verbose use_gdb_stub
100 global GDB
101 global INTERNAL_GDBFLAGS GDBFLAGS
102 global gdb_prompt
103 global mi_gdb_prompt
104 global timeout
105 global gdb_spawn_id
106 global MIFLAGS
107
108 gdb_stop_suppressing_tests
109 set inferior_pty no-tty
110
111 # Set the default value, it may be overriden later by specific testfile.
112 set use_gdb_stub [target_info exists use_gdb_stub]
113
114 if { [llength $args] == 1} {
115 set inferior_pty [lindex $args 0]
116 }
117
118 set separate_inferior_pty [string match $inferior_pty separate-inferior-tty]
119
120 # Start SID.
121 if { [info procs sid_start] != "" } {
122 verbose "Spawning SID"
123 sid_start
124 }
125
126 verbose "Spawning $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
127
128 if [info exists gdb_spawn_id] {
129 return 0
130 }
131
132 if ![is_remote host] {
133 if { [which $GDB] == 0 } then {
134 perror "$GDB does not exist."
135 exit 1
136 }
137 }
138
139 # Create the new PTY for the inferior process.
140 if { $separate_inferior_pty } {
141 spawn -pty
142 global mi_inferior_spawn_id
143 global mi_inferior_tty_name
144 set mi_inferior_spawn_id $spawn_id
145 set mi_inferior_tty_name $spawn_out(slave,name)
146 }
147
148 set res [remote_spawn host "$GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS [host_info gdb_opts]"]
149 if { $res < 0 || $res == "" } {
150 perror "Spawning $GDB failed."
151 return 1
152 }
153 gdb_expect {
154 -re "~\"GNU.*\r\n~\".*$mi_gdb_prompt$" {
155 # We have a new format mi startup prompt. If we are
156 # running mi1, then this is an error as we should be
157 # using the old-style prompt.
158 if { $MIFLAGS == "-i=mi1" } {
159 perror "(mi startup) Got unexpected new mi prompt."
160 remote_close host
161 return -1
162 }
163 verbose "GDB initialized."
164 }
165 -re "\[^~\].*$mi_gdb_prompt$" {
166 # We have an old format mi startup prompt. If we are
167 # not running mi1, then this is an error as we should be
168 # using the new-style prompt.
169 if { $MIFLAGS != "-i=mi1" } {
170 perror "(mi startup) Got unexpected old mi prompt."
171 remote_close host
172 return -1
173 }
174 verbose "GDB initialized."
175 }
176 -re ".*unrecognized option.*for a complete list of options." {
177 untested "Skip mi tests (not compiled with mi support)."
178 remote_close host
179 return -1
180 }
181 -re ".*Interpreter `mi' unrecognized." {
182 untested "Skip mi tests (not compiled with mi support)."
183 remote_close host
184 return -1
185 }
186 timeout {
187 perror "(timeout) GDB never initialized after 10 seconds."
188 remote_close host
189 return -1
190 }
191 }
192 set gdb_spawn_id -1
193
194 # FIXME: mi output does not go through pagers, so these can be removed.
195 # force the height to "unlimited", so no pagers get used
196 send_gdb "100-gdb-set height 0\n"
197 gdb_expect 10 {
198 -re ".*100-gdb-set height 0\r\n100\\\^done\r\n$mi_gdb_prompt$" {
199 verbose "Setting height to 0." 2
200 }
201 timeout {
202 warning "Couldn't set the height to 0"
203 }
204 }
205 # force the width to "unlimited", so no wraparound occurs
206 send_gdb "101-gdb-set width 0\n"
207 gdb_expect 10 {
208 -re ".*101-gdb-set width 0\r\n101\\\^done\r\n$mi_gdb_prompt$" {
209 verbose "Setting width to 0." 2
210 }
211 timeout {
212 warning "Couldn't set the width to 0."
213 }
214 }
215 # If allowing the inferior to have its own PTY then assign the inferior
216 # its own terminal device here.
217 if { $separate_inferior_pty } {
218 send_gdb "102-inferior-tty-set $mi_inferior_tty_name\n"
219 gdb_expect 10 {
220 -re ".*102\\\^done\r\n$mi_gdb_prompt$" {
221 verbose "redirect inferior output to new terminal device."
222 }
223 timeout {
224 warning "Couldn't redirect inferior output." 2
225 }
226 }
227 }
228
229 mi_detect_async
230
231 return 0
232 }
233
234 #
235 # Overridable function. You can override this function in your
236 # baseboard file.
237 #
238 proc mi_gdb_start { args } {
239 return [default_mi_gdb_start $args]
240 }
241
242 # Many of the tests depend on setting breakpoints at various places and
243 # running until that breakpoint is reached. At times, we want to start
244 # with a clean-slate with respect to breakpoints, so this utility proc
245 # lets us do this without duplicating this code everywhere.
246 #
247
248 proc mi_delete_breakpoints {} {
249 global mi_gdb_prompt
250
251 # FIXME: The mi operation won't accept a prompt back and will use the 'all' arg
252 send_gdb "102-break-delete\n"
253 gdb_expect 30 {
254 -re "Delete all breakpoints.*y or n.*$" {
255 send_gdb "y\n"
256 exp_continue
257 }
258 -re "102-break-delete\r\n102\\\^done\r\n$mi_gdb_prompt$" {
259 # This happens if there were no breakpoints
260 }
261 timeout { perror "Delete all breakpoints in mi_delete_breakpoints (timeout)" ; return }
262 }
263
264 # The correct output is not "No breakpoints or watchpoints." but an
265 # empty BreakpointTable. Also, a query is not acceptable with mi.
266 send_gdb "103-break-list\n"
267 gdb_expect 30 {
268 -re "103-break-list\r\n103\\\^done,BreakpointTable=\{\}\r\n$mi_gdb_prompt$" {}
269 -re "103-break-list\r\n103\\\^done,BreakpointTable=\{nr_rows=\".\",nr_cols=\".\",hdr=\\\[\{width=\".*\",alignment=\".*\",col_name=\"number\",colhdr=\"Num\"\}.*colhdr=\"Type\".*colhdr=\"Disp\".*colhdr=\"Enb\".*colhdr=\"Address\".*colhdr=\"What\".*\\\],body=\\\[\\\]\}\r\n$mi_gdb_prompt$" {}
270 -re "103-break-list\r\n103\\\^doneNo breakpoints or watchpoints.\r\n\r\n$mi_gdb_prompt$" {warning "Unexpected console text received"}
271 -re "$mi_gdb_prompt$" { perror "Breakpoints not deleted" ; return }
272 -re "Delete all breakpoints.*or n.*$" {
273 warning "Unexpected prompt for breakpoints deletion"
274 send_gdb "y\n"
275 exp_continue
276 }
277 timeout { perror "-break-list (timeout)" ; return }
278 }
279 }
280
281 proc mi_gdb_reinitialize_dir { subdir } {
282 global mi_gdb_prompt
283 global MIFLAGS
284
285 global suppress_flag
286 if { $suppress_flag } {
287 return
288 }
289
290 if [is_remote host] {
291 return ""
292 }
293
294 if { $MIFLAGS == "-i=mi1" } {
295 send_gdb "104-environment-directory\n"
296 gdb_expect 60 {
297 -re ".*Reinitialize source path to empty.*y or n. " {
298 warning "Got confirmation prompt for dir reinitialization."
299 send_gdb "y\n"
300 gdb_expect 60 {
301 -re "$mi_gdb_prompt$" {}
302 timeout {error "Dir reinitialization failed (timeout)"}
303 }
304 }
305 -re "$mi_gdb_prompt$" {}
306 timeout {error "Dir reinitialization failed (timeout)"}
307 }
308 } else {
309 send_gdb "104-environment-directory -r\n"
310 gdb_expect 60 {
311 -re "104\\\^done,source-path=.*\r\n$mi_gdb_prompt$" {}
312 -re "$mi_gdb_prompt$" {}
313 timeout {error "Dir reinitialization failed (timeout)"}
314 }
315 }
316
317 send_gdb "105-environment-directory $subdir\n"
318 gdb_expect 60 {
319 -re "Source directories searched.*$mi_gdb_prompt$" {
320 verbose "Dir set to $subdir"
321 }
322 -re "105\\\^done.*\r\n$mi_gdb_prompt$" {
323 # FIXME: We return just the prompt for now.
324 verbose "Dir set to $subdir"
325 # perror "Dir \"$subdir\" failed."
326 }
327 }
328 }
329
330 # Send GDB the "target" command.
331 # FIXME: Some of these patterns are not appropriate for MI. Based on
332 # config/monitor.exp:gdb_target_command.
333 proc mi_gdb_target_cmd { targetname serialport } {
334 global mi_gdb_prompt
335
336 set serialport_re [string_to_regexp $serialport]
337 for {set i 1} {$i <= 3} {incr i} {
338 send_gdb "47-target-select $targetname $serialport\n"
339 gdb_expect 60 {
340 -re "47\\^connected.*$mi_gdb_prompt" {
341 verbose "Set target to $targetname"
342 return 0
343 }
344 -re "unknown host.*$mi_gdb_prompt" {
345 verbose "Couldn't look up $serialport"
346 }
347 -re "Couldn't establish connection to remote.*$mi_gdb_prompt$" {
348 verbose "Connection failed"
349 }
350 -re "Remote MIPS debugging.*$mi_gdb_prompt$" {
351 verbose "Set target to $targetname"
352 return 0
353 }
354 -re "Remote debugging using .*$serialport_re.*$mi_gdb_prompt$" {
355 verbose "Set target to $targetname"
356 return 0
357 }
358 -re "Remote target $targetname connected to.*$mi_gdb_prompt$" {
359 verbose "Set target to $targetname"
360 return 0
361 }
362 -re "Connected to.*$mi_gdb_prompt$" {
363 verbose "Set target to $targetname"
364 return 0
365 }
366 -re "Ending remote.*$mi_gdb_prompt$" { }
367 -re "Connection refused.*$mi_gdb_prompt$" {
368 verbose "Connection refused by remote target. Pausing, and trying again."
369 sleep 5
370 continue
371 }
372 -re "Non-stop mode requested, but remote does not support non-stop.*$mi_gdb_prompt" {
373 unsupported "Non-stop mode not supported"
374 return 1
375 }
376 -re "Timeout reading from remote system.*$mi_gdb_prompt$" {
377 verbose "Got timeout error from gdb."
378 }
379 timeout {
380 send_gdb "\ 3"
381 break
382 }
383 }
384 }
385 return 1
386 }
387
388 #
389 # load a file into the debugger (file command only).
390 # return a -1 if anything goes wrong.
391 #
392 proc mi_gdb_file_cmd { arg } {
393 global verbose
394 global loadpath
395 global loadfile
396 global GDB
397 global mi_gdb_prompt
398 global last_loaded_file
399 upvar timeout timeout
400
401 set last_loaded_file $arg
402
403 if [is_remote host] {
404 set arg [remote_download host $arg]
405 if { $arg == "" } {
406 error "download failed"
407 return -1
408 }
409 }
410
411 # FIXME: Several of these patterns are only acceptable for console
412 # output. Queries are an error for mi.
413 send_gdb "105-file-exec-and-symbols $arg\n"
414 gdb_expect 120 {
415 -re "Reading symbols from.*done.*$mi_gdb_prompt$" {
416 verbose "\t\tLoaded $arg into the $GDB"
417 return 0
418 }
419 -re "has no symbol-table.*$mi_gdb_prompt$" {
420 perror "$arg wasn't compiled with \"-g\""
421 return -1
422 }
423 -re "Load new symbol table from \".*\".*y or n. $" {
424 send_gdb "y\n"
425 gdb_expect 120 {
426 -re "Reading symbols from.*done.*$mi_gdb_prompt$" {
427 verbose "\t\tLoaded $arg with new symbol table into $GDB"
428 # All OK
429 }
430 timeout {
431 perror "(timeout) Couldn't load $arg, other program already loaded."
432 return -1
433 }
434 }
435 }
436 -re "No such file or directory.*$mi_gdb_prompt$" {
437 perror "($arg) No such file or directory\n"
438 return -1
439 }
440 -re "105-file-exec-and-symbols .*\r\n105\\\^done\r\n$mi_gdb_prompt$" {
441 # We (MI) are just giving the prompt back for now, instead of giving
442 # some acknowledgement.
443 return 0
444 }
445 timeout {
446 perror "couldn't load $arg into $GDB (timed out)."
447 return -1
448 }
449 eof {
450 # This is an attempt to detect a core dump, but seems not to
451 # work. Perhaps we need to match .* followed by eof, in which
452 # gdb_expect does not seem to have a way to do that.
453 perror "couldn't load $arg into $GDB (end of file)."
454 return -1
455 }
456 }
457 }
458
459 #
460 # connect to the target and download a file, if necessary.
461 # return a -1 if anything goes wrong.
462 #
463 proc mi_gdb_target_load { } {
464 global verbose
465 global loadpath
466 global loadfile
467 global GDB
468 global mi_gdb_prompt
469
470 if [target_info exists gdb_load_timeout] {
471 set loadtimeout [target_info gdb_load_timeout]
472 } else {
473 set loadtimeout 1600
474 }
475
476 if { [info procs gdbserver_gdb_load] != "" } {
477 mi_gdb_test "kill" ".*" ""
478 set res [gdbserver_gdb_load]
479 set protocol [lindex $res 0]
480 set gdbport [lindex $res 1]
481
482 if { [mi_gdb_target_cmd $protocol $gdbport] != 0 } {
483 return -1
484 }
485 } elseif { [info procs send_target_sid] != "" } {
486 # For SID, things get complex
487 send_gdb "kill\n"
488 gdb_expect 10 {
489 -re ".*$mi_gdb_prompt$"
490 }
491 send_target_sid
492 gdb_expect $loadtimeout {
493 -re "\\^done.*$mi_gdb_prompt$" {
494 }
495 timeout {
496 perror "Unable to connect to SID target (timeout)"
497 return -1
498 }
499 }
500 send_gdb "48-target-download\n"
501 gdb_expect $loadtimeout {
502 -re "48\\^done.*$mi_gdb_prompt$" {
503 }
504 timeout {
505 perror "Unable to download to SID target (timeout)"
506 return -1
507 }
508 }
509 } elseif { [target_info protocol] == "sim" } {
510 # For the simulator, just connect to it directly.
511 send_gdb "47-target-select sim\n"
512 gdb_expect $loadtimeout {
513 -re "47\\^connected.*$mi_gdb_prompt$" {
514 }
515 timeout {
516 perror "Unable to select sim target (timeout)"
517 return -1
518 }
519 }
520 send_gdb "48-target-download\n"
521 gdb_expect $loadtimeout {
522 -re "48\\^done.*$mi_gdb_prompt$" {
523 }
524 timeout {
525 perror "Unable to download to sim target (timeout)"
526 return -1
527 }
528 }
529 } elseif { [target_info gdb_protocol] == "remote" } {
530 # remote targets
531 if { [mi_gdb_target_cmd "remote" [target_info netport]] != 0 } {
532 perror "Unable to connect to remote target"
533 return -1
534 }
535 send_gdb "48-target-download\n"
536 gdb_expect $loadtimeout {
537 -re "48\\^done.*$mi_gdb_prompt$" {
538 }
539 timeout {
540 perror "Unable to download to remote target (timeout)"
541 return -1
542 }
543 }
544 }
545 return 0
546 }
547
548 #
549 # load a file into the debugger.
550 # return a -1 if anything goes wrong.
551 #
552 proc mi_gdb_load { arg } {
553 if { $arg != "" } {
554 return [mi_gdb_file_cmd $arg]
555 }
556 return 0
557 }
558
559 # mi_gdb_test COMMAND PATTERN MESSAGE [IPATTERN] -- send a command to gdb;
560 # test the result.
561 #
562 # COMMAND is the command to execute, send to GDB with send_gdb. If
563 # this is the null string no command is sent.
564 # PATTERN is the pattern to match for a PASS, and must NOT include
565 # the \r\n sequence immediately before the gdb prompt.
566 # MESSAGE is the message to be printed. (If this is the empty string,
567 # then sometimes we don't call pass or fail at all; I don't
568 # understand this at all.)
569 # IPATTERN is the pattern to match for the inferior's output. This parameter
570 # is optional. If present, it will produce a PASS if the match is
571 # successful, and a FAIL if unsuccessful.
572 #
573 # Returns:
574 # 1 if the test failed,
575 # 0 if the test passes,
576 # -1 if there was an internal error.
577 #
578 proc mi_gdb_test { args } {
579 global verbose
580 global mi_gdb_prompt
581 global GDB expect_out
582 global inferior_exited_re async
583 upvar timeout timeout
584
585 set command [lindex $args 0]
586 set pattern [lindex $args 1]
587 set message [lindex $args 2]
588
589 if [llength $args]==4 {
590 set ipattern [lindex $args 3]
591 }
592
593 if [llength $args]==5 {
594 set question_string [lindex $args 3]
595 set response_string [lindex $args 4]
596 } else {
597 set question_string "^FOOBAR$"
598 }
599
600 if $verbose>2 then {
601 send_user "Sending \"$command\" to gdb\n"
602 send_user "Looking to match \"$pattern\"\n"
603 send_user "Message is \"$message\"\n"
604 }
605
606 set result -1
607 set string "${command}\n"
608 set string_regex [string_to_regexp $command]
609
610 if { $command != "" } {
611 while { "$string" != "" } {
612 set foo [string first "\n" "$string"]
613 set len [string length "$string"]
614 if { $foo < [expr $len - 1] } {
615 set str [string range "$string" 0 $foo]
616 if { [send_gdb "$str"] != "" } {
617 global suppress_flag
618
619 if { ! $suppress_flag } {
620 perror "Couldn't send $command to GDB."
621 }
622 fail "$message"
623 return $result
624 }
625 gdb_expect 2 {
626 -re "\[\r\n\]" { }
627 timeout { }
628 }
629 set string [string range "$string" [expr $foo + 1] end]
630 } else {
631 break
632 }
633 }
634 if { "$string" != "" } {
635 if { [send_gdb "$string"] != "" } {
636 global suppress_flag
637
638 if { ! $suppress_flag } {
639 perror "Couldn't send $command to GDB."
640 }
641 fail "$message"
642 return $result
643 }
644 }
645 }
646
647 if [info exists timeout] {
648 set tmt $timeout
649 } else {
650 global timeout
651 if [info exists timeout] {
652 set tmt $timeout
653 } else {
654 set tmt 60
655 }
656 }
657 if {$async} {
658 # With $prompt_re "" there may come arbitrary asynchronous response
659 # from the previous command, before or after $string_regex.
660 set string_regex ".*"
661 }
662 verbose -log "Expecting: ^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)"
663 gdb_expect $tmt {
664 -re "\\*\\*\\* DOSEXIT code.*" {
665 if { $message != "" } {
666 fail "$message"
667 }
668 gdb_suppress_entire_file "GDB died"
669 return -1
670 }
671 -re "Ending remote debugging.*$mi_gdb_prompt\[ \]*$" {
672 if ![isnative] then {
673 warning "Can`t communicate to remote target."
674 }
675 gdb_exit
676 gdb_start
677 set result -1
678 }
679 -re "^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" {
680 # At this point, $expect_out(1,string) is the MI input command.
681 # and $expect_out(2,string) is the MI output command.
682 # If $expect_out(1,string) is "", then there was no MI input command here.
683
684 # NOTE, there is no trailing anchor because with GDB/MI,
685 # asynchronous responses can happen at any point, causing more
686 # data to be available. Normally an anchor is used to make
687 # sure the end of the output is matched, however, $mi_gdb_prompt
688 # is just as good of an anchor since mi_gdb_test is meant to
689 # match a single mi output command. If a second GDB/MI output
690 # response is sent, it will be in the buffer for the next
691 # time mi_gdb_test is called.
692 if ![string match "" $message] then {
693 pass "$message"
694 }
695 set result 0
696 }
697 -re "(${question_string})$" {
698 send_gdb "$response_string\n"
699 exp_continue
700 }
701 -re "Undefined.* command:.*$mi_gdb_prompt\[ \]*$" {
702 perror "Undefined command \"$command\"."
703 fail "$message"
704 set result 1
705 }
706 -re "Ambiguous command.*$mi_gdb_prompt\[ \]*$" {
707 perror "\"$command\" is not a unique command name."
708 fail "$message"
709 set result 1
710 }
711 -re "$inferior_exited_re with code \[0-9\]+.*$mi_gdb_prompt\[ \]*$" {
712 if ![string match "" $message] then {
713 set errmsg "$message (the program exited)"
714 } else {
715 set errmsg "$command (the program exited)"
716 }
717 fail "$errmsg"
718 return -1
719 }
720 -re "The program is not being run.*$mi_gdb_prompt\[ \]*$" {
721 if ![string match "" $message] then {
722 set errmsg "$message (the program is no longer running)"
723 } else {
724 set errmsg "$command (the program is no longer running)"
725 }
726 fail "$errmsg"
727 return -1
728 }
729 -re ".*$mi_gdb_prompt\[ \]*$" {
730 if ![string match "" $message] then {
731 fail "$message"
732 }
733 set result 1
734 }
735 "<return>" {
736 send_gdb "\n"
737 perror "Window too small."
738 fail "$message"
739 }
740 -re "\\(y or n\\) " {
741 send_gdb "n\n"
742 perror "Got interactive prompt."
743 fail "$message"
744 }
745 eof {
746 perror "Process no longer exists"
747 if { $message != "" } {
748 fail "$message"
749 }
750 return -1
751 }
752 full_buffer {
753 perror "internal buffer is full."
754 fail "$message"
755 }
756 timeout {
757 if ![string match "" $message] then {
758 fail "$message (timeout)"
759 }
760 set result 1
761 }
762 }
763
764 # If the GDB output matched, compare the inferior output.
765 if { $result == 0 } {
766 if [ info exists ipattern ] {
767 if { ![target_info exists gdb,noinferiorio] } {
768 if { [target_info gdb_protocol] == "remote"
769 || [target_info gdb_protocol] == "extended-remote"
770 || [target_info protocol] == "sim"} {
771
772 gdb_expect {
773 -re "$ipattern" {
774 pass "$message inferior output"
775 }
776 timeout {
777 fail "$message inferior output (timeout)"
778 set result 1
779 }
780 }
781 } else {
782 global mi_inferior_spawn_id
783 expect {
784 -i $mi_inferior_spawn_id -re "$ipattern" {
785 pass "$message inferior output"
786 }
787 timeout {
788 fail "$message inferior output (timeout)"
789 set result 1
790 }
791 }
792 }
793 } else {
794 unsupported "$message inferior output"
795 }
796 }
797 }
798
799 return $result
800 }
801
802 # Collect output sent to the console output stream until UNTIL is
803 # seen. UNTIL is a regular expression. MESSAGE is the message to be
804 # printed in case of timeout.
805
806 proc mi_gdb_expect_cli_output {until message} {
807
808 set output ""
809 gdb_expect {
810 -re "~\"(\[^\r\n\]+)\"\r\n" {
811 append output $expect_out(1,string)
812 exp_continue
813 }
814 -notransfer -re "$until" {
815 # Done
816 }
817 timeout {
818 fail "$message (timeout)"
819 return ""
820 }
821 }
822
823 return $output
824 }
825
826 #
827 # MI run command. (A modified version of gdb_run_cmd)
828 #
829
830 # In patterns, the newline sequence ``\r\n'' is matched explicitly as
831 # ``.*$'' could swallow up output that we attempt to match elsewhere.
832
833 # Send the command to run the test program.
834 #
835 # If USE_MI_COMMAND is true, the "-exec-run" command is used.
836 # Otherwise, the "run" (CLI) command is used. If the global USE_GDB_STUB is
837 # true, -exec-continue and continue are used instead of their run counterparts.
838 #
839 # ARGS is passed as argument to the command used to run the test program.
840 # Beware that arguments to "-exec-run" do not have the same semantics as
841 # arguments to the "run" command, so USE_MI_COMMAND influences the meaning
842 # of ARGS. If USE_MI_COMMAND is true, they are arguments to -exec-run.
843 # If USE_MI_COMMAND is false, they are effectively arguments passed
844 # to the test program. If the global USE_GDB_STUB is true, ARGS is not used.
845 proc mi_run_cmd_full {use_mi_command args} {
846 global suppress_flag
847 if { $suppress_flag } {
848 return -1
849 }
850 global mi_gdb_prompt use_gdb_stub
851 global thread_selected_re
852 global library_loaded_re
853
854 if {$use_mi_command} {
855 set run_prefix "220-exec-"
856 set run_match "220"
857 } else {
858 set run_prefix ""
859 set run_match ""
860 }
861
862 if [target_info exists gdb_init_command] {
863 send_gdb "[target_info gdb_init_command]\n"
864 gdb_expect 30 {
865 -re "$mi_gdb_prompt$" { }
866 default {
867 perror "gdb_init_command for target failed"
868 return -1
869 }
870 }
871 }
872
873 if { [mi_gdb_target_load] < 0 } {
874 return -1
875 }
876
877 if $use_gdb_stub {
878 if [target_info exists gdb,do_reload_on_run] {
879 send_gdb "${run_prefix}continue\n"
880 gdb_expect 60 {
881 -re "${run_match}\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\r\n$mi_gdb_prompt" {}
882 -re "${run_match}\\^error.*$mi_gdb_prompt" {return -1}
883 default {}
884 }
885 return 0
886 }
887
888 if [target_info exists gdb,start_symbol] {
889 set start [target_info gdb,start_symbol]
890 } else {
891 set start "start"
892 }
893
894 # HACK: Should either use 000-jump or fix the target code
895 # to better handle RUN.
896 send_gdb "jump *$start\n"
897 warning "Using CLI jump command, expect run-to-main FAIL"
898 return 0
899 }
900
901 send_gdb "${run_prefix}run $args\n"
902 gdb_expect {
903 -re "${run_match}\\^running\r\n(\\*running,thread-id=\"\[^\"\]+\"\r\n|=thread-created,id=\"1\",group-id=\"\[0-9\]+\"\r\n)*(${library_loaded_re})*(${thread_selected_re})?${mi_gdb_prompt}" {
904 }
905 -re "\\^error,msg=\"The target does not support running in non-stop mode.\"" {
906 unsupported "Non-stop mode not supported"
907 return -1
908 }
909 timeout {
910 perror "Unable to start target"
911 return -1
912 }
913 }
914 # NOTE: Shortly after this there will be a ``000*stopped,...(gdb)''
915
916 return 0
917 }
918
919 # A wrapper for mi_run_cmd_full which uses -exec-run and
920 # -exec-continue, as appropriate. ARGS are passed verbatim to
921 # mi_run_cmd_full.
922 proc mi_run_cmd {args} {
923 return [eval mi_run_cmd_full 1 $args]
924 }
925
926 # A wrapper for mi_run_cmd_full which uses the CLI commands 'run' and
927 # 'continue', as appropriate. ARGS are passed verbatim to
928 # mi_run_cmd_full.
929 proc mi_run_with_cli {args} {
930 return [eval mi_run_cmd_full 0 $args]
931 }
932
933 #
934 # Just like run-to-main but works with the MI interface
935 #
936
937 proc mi_run_to_main { } {
938 global suppress_flag
939 if { $suppress_flag } {
940 return -1
941 }
942
943 global srcdir
944 global subdir
945 global binfile
946 global srcfile
947
948 mi_delete_breakpoints
949 mi_gdb_reinitialize_dir $srcdir/$subdir
950 mi_gdb_load ${binfile}
951
952 mi_runto main
953 }
954
955
956 # Just like gdb's "runto" proc, it will run the target to a given
957 # function. The big difference here between mi_runto and mi_execute_to
958 # is that mi_execute_to must have the inferior running already. This
959 # proc will (like gdb's runto) (re)start the inferior, too.
960 #
961 # FUNC is the linespec of the place to stop (it inserts a breakpoint here).
962 # It returns:
963 # -1 if test suppressed, failed, timedout
964 # 0 if test passed
965
966 proc mi_runto_helper {func run_or_continue} {
967 global suppress_flag
968 if { $suppress_flag } {
969 return -1
970 }
971
972 global mi_gdb_prompt expect_out
973 global hex decimal fullname_syntax
974
975 set test "mi runto $func"
976 set bp [mi_make_breakpoint -type breakpoint -disp del \
977 -func $func\(\\\(.*\\\)\)?]
978 mi_gdb_test "200-break-insert -t $func" "200\\^done,$bp" \
979 "breakpoint at $func"
980
981 if {$run_or_continue == "run"} {
982 if { [mi_run_cmd] < 0 } {
983 return -1
984 }
985 } else {
986 mi_send_resuming_command "exec-continue" "$test"
987 }
988
989 mi_expect_stop "breakpoint-hit" $func ".*" ".*" "\[0-9\]+" { "" "disp=\"del\"" } $test
990 }
991
992 proc mi_runto {func} {
993 return [mi_runto_helper $func "run"]
994 }
995
996 # Next to the next statement
997 # For return values, see mi_execute_to_helper
998
999 proc mi_next { test } {
1000 return [mi_next_to {.*} {.*} {.*} {.*} $test]
1001 }
1002
1003
1004 # Step to the next statement
1005 # For return values, see mi_execute_to_helper
1006
1007 proc mi_step { test } {
1008 return [mi_step_to {.*} {.*} {.*} {.*} $test]
1009 }
1010
1011 set async "unknown"
1012
1013 proc mi_detect_async {} {
1014 global async
1015 global mi_gdb_prompt
1016
1017 send_gdb "show target-async\n"
1018
1019 gdb_expect {
1020 -re ".*Controlling the inferior in asynchronous mode is on...*$mi_gdb_prompt$" {
1021 set async 1
1022 }
1023 -re ".*$mi_gdb_prompt$" {
1024 set async 0
1025 }
1026 timeout {
1027 set async 0
1028 }
1029 }
1030 return $async
1031 }
1032
1033 # Wait for MI *stopped notification to appear.
1034 # The REASON, FUNC, ARGS, FILE and LINE are regular expressions
1035 # to match against whatever is output in *stopped. FILE may also match
1036 # filename of a file without debug info. ARGS should not include [] the
1037 # list of argument is enclosed in, and other regular expressions should
1038 # not include quotes.
1039 # If EXTRA is a list of one element, it's the regular expression
1040 # for output expected right after *stopped, and before GDB prompt.
1041 # If EXTRA is a list of two elements, the first element is for
1042 # output right after *stopped, and the second element is output
1043 # right after reason field. The regex after reason should not include
1044 # the comma separating it from the following fields.
1045 #
1046 # When we fail to match output at all, -1 is returned. If FILE does
1047 # match and the target system has no debug info for FILE return 0.
1048 # Otherwise, the line at which we stop is returned. This is useful when
1049 # exact line is not possible to specify for some reason -- one can pass
1050 # the .* or "\[0-9\]*" regexps for line, and then check the line
1051 # programmatically.
1052 #
1053 # Do not pass .* for any argument if you are expecting more than one stop.
1054 proc mi_expect_stop { reason func args file line extra test } {
1055
1056 global mi_gdb_prompt
1057 global hex
1058 global decimal
1059 global fullname_syntax
1060 global async
1061 global thread_selected_re
1062 global breakpoint_re
1063
1064 set any "\[^\n\]*"
1065
1066 set after_stopped ""
1067 set after_reason ""
1068 if { [llength $extra] == 2 } {
1069 set after_stopped [lindex $extra 0]
1070 set after_reason [lindex $extra 1]
1071 set after_reason "${after_reason},"
1072 } elseif { [llength $extra] == 1 } {
1073 set after_stopped [lindex $extra 0]
1074 }
1075
1076 if {$async} {
1077 set prompt_re ""
1078 } else {
1079 set prompt_re "$mi_gdb_prompt$"
1080 }
1081
1082 if { $reason == "really-no-reason" } {
1083 gdb_expect {
1084 -re "\\*stopped\r\n$prompt_re" {
1085 pass "$test"
1086 }
1087 timeout {
1088 fail "$test (timeout)"
1089 }
1090 }
1091 return
1092 }
1093
1094 if { $reason == "exited-normally" } {
1095
1096 gdb_expect {
1097 -re "\\*stopped,reason=\"exited-normally\"\r\n$prompt_re" {
1098 pass "$test"
1099 }
1100 -re ".*$mi_gdb_prompt$" {fail "continue to end (2)"}
1101 timeout {
1102 fail "$test (timeout)"
1103 }
1104 }
1105 return
1106 }
1107 if { $reason == "exited" } {
1108 gdb_expect {
1109 -re "\\*stopped,reason=\"exited\",exit-code=\"\[0-7\]+\"\r\n$prompt_re" {
1110 pass "$test"
1111 }
1112 -re ".*$mi_gdb_prompt$" {
1113 fail "$test (inferior not stopped)"
1114 }
1115 timeout {
1116 fail "$test (timeout)"
1117 }
1118 }
1119 return
1120 }
1121
1122 if { $reason == "solib-event" } {
1123 set pattern "\\*stopped,reason=\"solib-event\",thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
1124 verbose -log "mi_expect_stop: expecting: $pattern"
1125 gdb_expect {
1126 -re "$pattern" {
1127 pass "$test"
1128 }
1129 timeout {
1130 fail "$test (timeout)"
1131 }
1132 }
1133 return
1134 }
1135
1136 set args "\\\[$args\\\]"
1137
1138 set bn ""
1139 if { $reason == "breakpoint-hit" } {
1140 set bn {bkptno="[0-9]+",}
1141 } elseif { $reason == "solib-event" } {
1142 set bn ".*"
1143 }
1144
1145 set r ""
1146 if { $reason != "" } {
1147 set r "reason=\"$reason\","
1148 }
1149
1150
1151 set a $after_reason
1152
1153 verbose -log "mi_expect_stop: expecting: \\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"$line\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
1154 gdb_expect {
1155 -re "\\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"($line)\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
1156 pass "$test"
1157 if {[array names expect_out "2,string"] != ""} {
1158 return $expect_out(2,string)
1159 }
1160 # No debug info available but $file does match.
1161 return 0
1162 }
1163 -re "\\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$any\",args=\[\\\[\{\]$any\[\\\]\}\],file=\"$any\",fullname=\"${fullname_syntax}$any\",line=\"\[0-9\]*\"\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
1164 verbose -log "got $expect_out(buffer)"
1165 fail "$test (stopped at wrong place)"
1166 return -1
1167 }
1168 -re ".*\r\n$mi_gdb_prompt$" {
1169 verbose -log "got $expect_out(buffer)"
1170 fail "$test (unknown output after running)"
1171 return -1
1172 }
1173 timeout {
1174 fail "$test (timeout)"
1175 return -1
1176 }
1177 }
1178 }
1179
1180 # Wait for MI *stopped notification related to an interrupt request to
1181 # appear.
1182 proc mi_expect_interrupt { test } {
1183 global mi_gdb_prompt
1184 global decimal
1185 global async
1186
1187 if {$async} {
1188 set prompt_re ""
1189 } else {
1190 set prompt_re "$mi_gdb_prompt$"
1191 }
1192
1193 set r "reason=\"signal-received\",signal-name=\"0\",signal-meaning=\"Signal 0\""
1194
1195 set any "\[^\n\]*"
1196
1197 # A signal can land anywhere, just ignore the location
1198 verbose -log "mi_expect_interrupt: expecting: \\*stopped,${r}$any\r\n$prompt_re"
1199 gdb_expect {
1200 -re "\\*stopped,${r}$any\r\n$prompt_re" {
1201 pass "$test"
1202 return 0
1203 }
1204 -re ".*\r\n$mi_gdb_prompt$" {
1205 verbose -log "got $expect_out(buffer)"
1206 fail "$test (unknown output after running)"
1207 return -1
1208 }
1209 timeout {
1210 fail "$test (timeout)"
1211 return -1
1212 }
1213 }
1214 }
1215
1216 # cmd should not include the number or newline (i.e. "exec-step 3", not
1217 # "220-exec-step 3\n"
1218
1219 # Can not match -re ".*\r\n${mi_gdb_prompt}", because of false positives
1220 # after the first prompt is printed.
1221
1222 proc mi_execute_to { cmd reason func args file line extra test } {
1223 global suppress_flag
1224 if { $suppress_flag } {
1225 return -1
1226 }
1227
1228 mi_send_resuming_command "$cmd" "$test"
1229 set r [mi_expect_stop $reason $func $args $file $line $extra $test]
1230 return $r
1231 }
1232
1233 proc mi_next_to { func args file line test } {
1234 mi_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
1235 "$file" "$line" "" "$test"
1236 }
1237
1238 proc mi_step_to { func args file line test } {
1239 mi_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
1240 "$file" "$line" "" "$test"
1241 }
1242
1243 proc mi_finish_to { func args file line result ret test } {
1244 mi_execute_to "exec-finish" "function-finished" "$func" "$args" \
1245 "$file" "$line" \
1246 ",gdb-result-var=\"$result\",return-value=\"$ret\"" \
1247 "$test"
1248 }
1249
1250 proc mi_continue_to {func} {
1251 mi_runto_helper $func "continue"
1252 }
1253
1254 proc mi0_execute_to { cmd reason func args file line extra test } {
1255 mi_execute_to_helper "$cmd" "$reason" "$func" "\{$args\}" \
1256 "$file" "$line" "$extra" "$test"
1257 }
1258
1259 proc mi0_next_to { func args file line test } {
1260 mi0_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
1261 "$file" "$line" "" "$test"
1262 }
1263
1264 proc mi0_step_to { func args file line test } {
1265 mi0_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
1266 "$file" "$line" "" "$test"
1267 }
1268
1269 proc mi0_finish_to { func args file line result ret test } {
1270 mi0_execute_to "exec-finish" "function-finished" "$func" "$args" \
1271 "$file" "$line" \
1272 ",gdb-result-var=\"$result\",return-value=\"$ret\"" \
1273 "$test"
1274 }
1275
1276 proc mi0_continue_to { bkptno func args file line test } {
1277 mi0_execute_to "exec-continue" "breakpoint-hit\",bkptno=\"$bkptno" \
1278 "$func" "$args" "$file" "$line" "" "$test"
1279 }
1280
1281 # Creates a breakpoint and checks the reported fields are as expected.
1282 # This procedure takes the same options as mi_make_breakpoint and
1283 # returns the breakpoint regexp from that procedure.
1284
1285 proc mi_create_breakpoint {location test args} {
1286 set bp [eval mi_make_breakpoint $args]
1287 mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test
1288 return $bp
1289 }
1290
1291 # Creates varobj named NAME for EXPRESSION.
1292 # Name cannot be "-".
1293 proc mi_create_varobj { name expression testname } {
1294 mi_gdb_test "-var-create $name * $expression" \
1295 "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=.*,has_more=\"0\"" \
1296 $testname
1297 }
1298
1299 proc mi_create_floating_varobj { name expression testname } {
1300 mi_gdb_test "-var-create $name @ $expression" \
1301 "\\^done,name=\"$name\",numchild=\"\(-1\|\[0-9\]+\)\",value=\".*\",type=.*" \
1302 $testname
1303 }
1304
1305
1306 # Same as mi_create_varobj, but also checks the reported type
1307 # of the varobj.
1308 proc mi_create_varobj_checked { name expression type testname } {
1309 mi_gdb_test "-var-create $name * $expression" \
1310 "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=\"$type\".*" \
1311 $testname
1312 }
1313
1314 # Same as mi_create_floating_varobj, but assumes the test is creating
1315 # a dynamic varobj that has children, so the value must be "{...}".
1316 # The "has_more" attribute is checked.
1317 proc mi_create_dynamic_varobj {name expression has_more testname} {
1318 mi_gdb_test "-var-create $name @ $expression" \
1319 "\\^done,name=\"$name\",numchild=\"0\",value=\"{\\.\\.\\.}\",type=.*,has_more=\"${has_more}\"" \
1320 $testname
1321 }
1322
1323 # Deletes the specified NAME.
1324 proc mi_delete_varobj { name testname } {
1325 mi_gdb_test "-var-delete $name" \
1326 "\\^done,ndeleted=.*" \
1327 $testname
1328 }
1329
1330 # Updates varobj named NAME and checks that all varobjs in EXPECTED
1331 # are reported as updated, and no other varobj is updated.
1332 # Assumes that no varobj is out of scope and that no varobj changes
1333 # types.
1334 proc mi_varobj_update { name expected testname } {
1335 set er "\\^done,changelist=\\\["
1336 set first 1
1337 foreach item $expected {
1338 set v "{name=\"$item\",in_scope=\"true\",type_changed=\"false\",has_more=\".\"}"
1339 if {$first == 1} {
1340 set er "$er$v"
1341 set first 0
1342 } else {
1343 set er "$er,$v"
1344 }
1345 }
1346 set er "$er\\\]"
1347
1348 verbose -log "Expecting: $er" 2
1349 mi_gdb_test "-var-update $name" $er $testname
1350 }
1351
1352 proc mi_varobj_update_with_child_type_change { name child_name new_type new_children testname } {
1353 set v "{name=\"$child_name\",in_scope=\"true\",type_changed=\"true\",new_type=\"$new_type\",new_num_children=\"$new_children\",has_more=\".\"}"
1354 set er "\\^done,changelist=\\\[$v\\\]"
1355 verbose -log "Expecting: $er"
1356 mi_gdb_test "-var-update $name" $er $testname
1357 }
1358
1359 proc mi_varobj_update_with_type_change { name new_type new_children testname } {
1360 mi_varobj_update_with_child_type_change $name $name $new_type $new_children $testname
1361 }
1362
1363 # A helper that turns a key/value list into a regular expression
1364 # matching some MI output.
1365 proc mi_varobj_update_kv_helper {list} {
1366 set first 1
1367 set rx ""
1368 foreach {key value} $list {
1369 if {!$first} {
1370 append rx ,
1371 }
1372 set first 0
1373 if {$key == "new_children"} {
1374 append rx "$key=\\\[$value\\\]"
1375 } else {
1376 append rx "$key=\"$value\""
1377 }
1378 }
1379 return $rx
1380 }
1381
1382 # A helper for mi_varobj_update_dynamic that computes a match
1383 # expression given a child list.
1384 proc mi_varobj_update_dynamic_helper {children} {
1385 set crx ""
1386
1387 set first 1
1388 foreach child $children {
1389 if {!$first} {
1390 append crx ,
1391 }
1392 set first 0
1393 append crx "{"
1394 append crx [mi_varobj_update_kv_helper $child]
1395 append crx "}"
1396 }
1397
1398 return $crx
1399 }
1400
1401 # Update a dynamic varobj named NAME. CHILDREN is a list of children
1402 # that have been updated; NEW_CHILDREN is a list of children that were
1403 # added to the primary varobj. Each child is a list of key/value
1404 # pairs that are expected. SELF is a key/value list holding
1405 # information about the varobj itself. TESTNAME is the name of the
1406 # test.
1407 proc mi_varobj_update_dynamic {name testname self children new_children} {
1408 if {[llength $new_children]} {
1409 set newrx [mi_varobj_update_dynamic_helper $new_children]
1410 lappend self new_children $newrx
1411 }
1412 set selfrx [mi_varobj_update_kv_helper $self]
1413 set crx [mi_varobj_update_dynamic_helper $children]
1414
1415 set er "\\^done,changelist=\\\[\{name=\"$name\",in_scope=\"true\""
1416 append er ",$selfrx\}"
1417 if {"$crx" != ""} {
1418 append er ",$crx"
1419 }
1420 append er "\\\]"
1421
1422 verbose -log "Expecting: $er"
1423 mi_gdb_test "-var-update $name" $er $testname
1424 }
1425
1426 proc mi_check_varobj_value { name value testname } {
1427
1428 mi_gdb_test "-var-evaluate-expression $name" \
1429 "\\^done,value=\"$value\"" \
1430 $testname
1431 }
1432
1433 # Helper proc which constructs a child regexp for
1434 # mi_list_varobj_children and mi_varobj_update_dynamic.
1435 proc mi_child_regexp {children add_child} {
1436 set children_exp {}
1437
1438 if {$add_child} {
1439 set pre "child="
1440 } else {
1441 set pre ""
1442 }
1443
1444 foreach item $children {
1445
1446 set name [lindex $item 0]
1447 set exp [lindex $item 1]
1448 set numchild [lindex $item 2]
1449 if {[llength $item] == 5} {
1450 set type [lindex $item 3]
1451 set value [lindex $item 4]
1452
1453 lappend children_exp\
1454 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",value=\"$value\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
1455 } elseif {[llength $item] == 4} {
1456 set type [lindex $item 3]
1457
1458 lappend children_exp\
1459 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
1460 } else {
1461 lappend children_exp\
1462 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\"(,thread-id=\"\[0-9\]+\")?}"
1463 }
1464 }
1465 return [join $children_exp ","]
1466 }
1467
1468 # Check the results of the:
1469 #
1470 # -var-list-children VARNAME
1471 #
1472 # command. The CHILDREN parement should be a list of lists.
1473 # Each inner list can have either 3 or 4 elements, describing
1474 # fields that gdb is expected to report for child variable object,
1475 # in the following order
1476 #
1477 # - Name
1478 # - Expression
1479 # - Number of children
1480 # - Type
1481 #
1482 # If inner list has 3 elements, the gdb is expected to output no
1483 # type for a child and no value.
1484 #
1485 # If the inner list has 4 elements, gdb output is expected to
1486 # have no value.
1487 #
1488 proc mi_list_varobj_children { varname children testname } {
1489 mi_list_varobj_children_range $varname "" "" [llength $children] $children \
1490 $testname
1491 }
1492
1493 # Like mi_list_varobj_children, but sets a subrange. NUMCHILDREN is
1494 # the total number of children.
1495 proc mi_list_varobj_children_range {varname from to numchildren children testname} {
1496 set options ""
1497 if {[llength $varname] == 2} {
1498 set options [lindex $varname 1]
1499 set varname [lindex $varname 0]
1500 }
1501
1502 set children_exp_j [mi_child_regexp $children 1]
1503 if {$numchildren} {
1504 set expected "\\^done,numchild=\".*\",children=\\\[$children_exp_j.*\\\]"
1505 } {
1506 set expected "\\^done,numchild=\"0\""
1507 }
1508
1509 if {"$to" == ""} {
1510 append expected ",has_more=\"0\""
1511 } elseif {$to >= 0 && $numchildren > $to} {
1512 append expected ",has_more=\"1\""
1513 } else {
1514 append expected ",has_more=\"0\""
1515 }
1516
1517 verbose -log "Expecting: $expected"
1518
1519 mi_gdb_test "-var-list-children $options $varname $from $to" \
1520 $expected $testname
1521 }
1522
1523 # Verifies that variable object VARNAME has NUMBER children,
1524 # where each one is named $VARNAME.<index-of-child> and has type TYPE.
1525 proc mi_list_array_varobj_children { varname number type testname } {
1526 mi_list_array_varobj_children_with_index $varname $number 0 $type $testname
1527 }
1528
1529 # Same as mi_list_array_varobj_children, but allowing to pass a start index
1530 # for an array.
1531 proc mi_list_array_varobj_children_with_index { varname number start_index \
1532 type testname } {
1533 set t {}
1534 set index $start_index
1535 for {set i 0} {$i < $number} {incr i} {
1536 lappend t [list $varname.$index $index 0 $type]
1537 incr index
1538 }
1539 mi_list_varobj_children $varname $t $testname
1540 }
1541
1542 # A list of two-element lists. First element of each list is
1543 # a Tcl statement, and the second element is the line
1544 # number of source C file where the statement originates.
1545 set mi_autotest_data ""
1546 # The name of the source file for autotesting.
1547 set mi_autotest_source ""
1548
1549 proc count_newlines { string } {
1550 return [regexp -all "\n" $string]
1551 }
1552
1553 # Prepares for running inline tests in FILENAME.
1554 # See comments for mi_run_inline_test for detailed
1555 # explanation of the idea and syntax.
1556 proc mi_prepare_inline_tests { filename } {
1557
1558 global srcdir
1559 global subdir
1560 global mi_autotest_source
1561 global mi_autotest_data
1562
1563 set mi_autotest_data {}
1564
1565 set mi_autotest_source $filename
1566
1567 if { ! [regexp "^/" "$filename"] } then {
1568 set filename "$srcdir/$subdir/$filename"
1569 }
1570
1571 set chan [open $filename]
1572 set content [read $chan]
1573 set line_number 1
1574 while {1} {
1575 set start [string first "/*:" $content]
1576 if {$start != -1} {
1577 set end [string first ":*/" $content]
1578 if {$end == -1} {
1579 error "Unterminated special comment in $filename"
1580 }
1581
1582 set prefix [string range $content 0 $start]
1583 set prefix_newlines [count_newlines $prefix]
1584
1585 set line_number [expr $line_number+$prefix_newlines]
1586 set comment_line $line_number
1587
1588 set comment [string range $content [expr $start+3] [expr $end-1]]
1589
1590 set comment_newlines [count_newlines $comment]
1591 set line_number [expr $line_number+$comment_newlines]
1592
1593 set comment [string trim $comment]
1594 set content [string range $content [expr $end+3] \
1595 [string length $content]]
1596 lappend mi_autotest_data [list $comment $comment_line]
1597 } else {
1598 break
1599 }
1600 }
1601 close $chan
1602 }
1603
1604 # Helper to mi_run_inline_test below.
1605 # Return the list of all (statement,line_number) lists
1606 # that comprise TESTCASE. The begin and end markers
1607 # are not included.
1608 proc mi_get_inline_test {testcase} {
1609
1610 global mi_gdb_prompt
1611 global mi_autotest_data
1612 global mi_autotest_source
1613
1614 set result {}
1615
1616 set seen_begin 0
1617 set seen_end 0
1618 foreach l $mi_autotest_data {
1619
1620 set comment [lindex $l 0]
1621
1622 if {$comment == "BEGIN: $testcase"} {
1623 set seen_begin 1
1624 } elseif {$comment == "END: $testcase"} {
1625 set seen_end 1
1626 break
1627 } elseif {$seen_begin==1} {
1628 lappend result $l
1629 }
1630 }
1631
1632 if {$seen_begin == 0} {
1633 error "Autotest $testcase not found"
1634 }
1635
1636 if {$seen_begin == 1 && $seen_end == 0} {
1637 error "Missing end marker for test $testcase"
1638 }
1639
1640 return $result
1641 }
1642
1643 # Sets temporary breakpoint at LOCATION.
1644 proc mi_tbreak {location} {
1645
1646 global mi_gdb_prompt
1647
1648 mi_gdb_test "-break-insert -t $location" \
1649 {\^done,bkpt=.*} \
1650 "run to $location (set breakpoint)"
1651 }
1652
1653 # Send COMMAND that must be a command that resumes
1654 # the inferior (run/continue/next/etc) and consumes
1655 # the "^running" output from it.
1656 proc mi_send_resuming_command_raw {command test} {
1657
1658 global mi_gdb_prompt
1659 global thread_selected_re
1660 global library_loaded_re
1661
1662 send_gdb "$command\n"
1663 gdb_expect {
1664 -re "\\^running\r\n\\*running,thread-id=\"\[^\"\]+\"\r\n($library_loaded_re)*($thread_selected_re)?${mi_gdb_prompt}" {
1665 # Note that lack of 'pass' call here -- this works around limitation
1666 # in DejaGNU xfail mechanism. mi-until.exp has this:
1667 #
1668 # setup_kfail gdb/2104 "*-*-*"
1669 # mi_execute_to ...
1670 #
1671 # and mi_execute_to uses mi_send_resuming_command. If we use 'pass' here,
1672 # it will reset kfail, so when the actual test fails, it will be flagged
1673 # as real failure.
1674 return 0
1675 }
1676 -re "\\^error,msg=\"Displaced stepping is only supported in ARM mode\".*" {
1677 unsupported "$test (Thumb mode)"
1678 return -1
1679 }
1680 -re "\\^error,msg=.*" {
1681 fail "$test (MI error)"
1682 return -1
1683 }
1684 -re ".*${mi_gdb_prompt}" {
1685 fail "$test (failed to resume)"
1686 return -1
1687 }
1688 timeout {
1689 fail "$test"
1690 return -1
1691 }
1692 }
1693 }
1694
1695 proc mi_send_resuming_command {command test} {
1696 mi_send_resuming_command_raw -$command $test
1697 }
1698
1699 # Helper to mi_run_inline_test below.
1700 # Sets a temporary breakpoint at LOCATION and runs
1701 # the program using COMMAND. When the program is stopped
1702 # returns the line at which it. Returns -1 if line cannot
1703 # be determined.
1704 # Does not check that the line is the same as requested.
1705 # The caller can check itself if required.
1706 proc mi_continue_to_line {location test} {
1707
1708 mi_tbreak $location
1709 mi_send_resuming_command "exec-continue" "run to $location (exec-continue)"
1710 return [mi_get_stop_line $test]
1711 }
1712
1713 # Wait until gdb prints the current line.
1714 proc mi_get_stop_line {test} {
1715
1716 global mi_gdb_prompt
1717 global async
1718
1719 if {$async} {
1720 set prompt_re ""
1721 } else {
1722 set prompt_re "$mi_gdb_prompt$"
1723 }
1724
1725 gdb_expect {
1726 -re ".*line=\"(\[0-9\]*)\".*\r\n$prompt_re" {
1727 return $expect_out(1,string)
1728 }
1729 -re ".*$mi_gdb_prompt" {
1730 fail "wait for stop ($test)"
1731 }
1732 timeout {
1733 fail "wait for stop ($test)"
1734 }
1735 }
1736 }
1737
1738 # Run a MI test embedded in comments in a C file.
1739 # The C file should contain special comments in the following
1740 # three forms:
1741 #
1742 # /*: BEGIN: testname :*/
1743 # /*: <Tcl statements> :*/
1744 # /*: END: testname :*/
1745 #
1746 # This procedure find the begin and end marker for the requested
1747 # test. Then, a temporary breakpoint is set at the begin
1748 # marker and the program is run (from start).
1749 #
1750 # After that, for each special comment between the begin and end
1751 # marker, the Tcl statements are executed. It is assumed that
1752 # for each comment, the immediately preceding line is executable
1753 # C statement. Then, gdb will be single-stepped until that
1754 # preceding C statement is executed, and after that the
1755 # Tcl statements in the comment will be executed.
1756 #
1757 # For example:
1758 #
1759 # /*: BEGIN: assignment-test :*/
1760 # v = 10;
1761 # /*: <Tcl code to check that 'v' is indeed 10 :*/
1762 # /*: END: assignment-test :*/
1763 #
1764 # The mi_prepare_inline_tests function should be called before
1765 # calling this function. A given C file can contain several
1766 # inline tests. The names of the tests must be unique within one
1767 # C file.
1768 #
1769 proc mi_run_inline_test { testcase } {
1770
1771 global mi_gdb_prompt
1772 global hex
1773 global decimal
1774 global fullname_syntax
1775 global mi_autotest_source
1776
1777 set commands [mi_get_inline_test $testcase]
1778
1779 set first 1
1780 set line_now 1
1781
1782 foreach c $commands {
1783 set statements [lindex $c 0]
1784 set line [lindex $c 1]
1785 set line [expr $line-1]
1786
1787 # We want gdb to be stopped at the expression immediately
1788 # before the comment. If this is the first comment, the
1789 # program is either not started yet or is in some random place,
1790 # so we run it. For further comments, we might be already
1791 # standing at the right line. If not continue till the
1792 # right line.
1793
1794 if {$first==1} {
1795 # Start the program afresh.
1796 mi_tbreak "$mi_autotest_source:$line"
1797 mi_run_cmd
1798 set line_now [mi_get_stop_line "$testcase: step to $line"]
1799 set first 0
1800 } elseif {$line_now!=$line} {
1801 set line_now [mi_continue_to_line "$mi_autotest_source:$line" "continue to $line"]
1802 }
1803
1804 if {$line_now!=$line} {
1805 fail "$testcase: go to line $line"
1806 }
1807
1808 # We're not at the statement right above the comment.
1809 # Execute that statement so that the comment can test
1810 # the state after the statement is executed.
1811
1812 # Single-step past the line.
1813 if { [mi_send_resuming_command "exec-next" "$testcase: step over $line"] != 0 } {
1814 return -1
1815 }
1816 set line_now [mi_get_stop_line "$testcase: step over $line"]
1817
1818 # We probably want to use 'uplevel' so that statements
1819 # have direct access to global variables that the
1820 # main 'exp' file has set up. But it's not yet clear,
1821 # will need more experience to be sure.
1822 eval $statements
1823 }
1824 }
1825
1826 proc get_mi_thread_list {name} {
1827 global expect_out
1828
1829 # MI will return a list of thread ids:
1830 #
1831 # -thread-list-ids
1832 # ^done,thread-ids=[thread-id="1",thread-id="2",...],number-of-threads="N"
1833 # (gdb)
1834 mi_gdb_test "-thread-list-ids" \
1835 {.*\^done,thread-ids={(thread-id="[0-9]+"(,)?)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \
1836 "-thread_list_ids ($name)"
1837
1838 set output {}
1839 if {[info exists expect_out(buffer)]} {
1840 set output $expect_out(buffer)
1841 }
1842
1843 set thread_list {}
1844 if {![regexp {thread-ids=\{(thread-id="[0-9]+"(,)?)*\}} $output threads]} {
1845 fail "finding threads in MI output ($name)"
1846 } else {
1847 pass "finding threads in MI output ($name)"
1848
1849 # Make list of console threads
1850 set start [expr {[string first \{ $threads] + 1}]
1851 set end [expr {[string first \} $threads] - 1}]
1852 set threads [string range $threads $start $end]
1853 foreach thread [split $threads ,] {
1854 if {[scan $thread {thread-id="%d"} num]} {
1855 lappend thread_list $num
1856 }
1857 }
1858 }
1859
1860 return $thread_list
1861 }
1862
1863 # Check that MI and the console know of the same threads.
1864 # Appends NAME to all test names.
1865 proc check_mi_and_console_threads {name} {
1866 global expect_out
1867
1868 mi_gdb_test "-thread-list-ids" \
1869 {.*\^done,thread-ids={(thread-id="[0-9]+"(,)*)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \
1870 "-thread-list-ids ($name)"
1871 set mi_output {}
1872 if {[info exists expect_out(buffer)]} {
1873 set mi_output $expect_out(buffer)
1874 }
1875
1876 # GDB will return a list of thread ids and some more info:
1877 #
1878 # (gdb)
1879 # -interpreter-exec console "info threads"
1880 # ~" 4 Thread 2051 (LWP 7734) 0x401166b1 in __libc_nanosleep () at __libc_nanosleep:-1"
1881 # ~" 3 Thread 1026 (LWP 7733) () at __libc_nanosleep:-1"
1882 # ~" 2 Thread 2049 (LWP 7732) 0x401411f8 in __poll (fds=0x804bb24, nfds=1, timeout=2000) at ../sysdeps/unix/sysv/linux/poll.c:63"
1883 # ~"* 1 Thread 1024 (LWP 7731) main (argc=1, argv=0xbfffdd94) at ../../../src/gdb/testsuite/gdb.mi/pthreads.c:160"
1884 # FIXME: kseitz/2002-09-05: Don't use the hack-cli method.
1885 mi_gdb_test "info threads" \
1886 {.*(~".*"[\r\n]*)+.*} \
1887 "info threads ($name)"
1888 set console_output {}
1889 if {[info exists expect_out(buffer)]} {
1890 set console_output $expect_out(buffer)
1891 }
1892
1893 # Make a list of all known threads to console (gdb's thread IDs)
1894 set console_thread_list {}
1895 foreach line [split $console_output \n] {
1896 if {[string index $line 0] == "~"} {
1897 # This is a line from the console; trim off "~", " ", "*", and "\""
1898 set line [string trim $line ~\ \"\*]
1899 if {[scan $line "%d" id] == 1} {
1900 lappend console_thread_list $id
1901 }
1902 }
1903 }
1904
1905 # Now find the result string from MI
1906 set mi_result ""
1907 foreach line [split $mi_output \n] {
1908 if {[string range $line 0 4] == "^done"} {
1909 set mi_result $line
1910 }
1911 }
1912 if {$mi_result == ""} {
1913 fail "finding MI result string ($name)"
1914 } else {
1915 pass "finding MI result string ($name)"
1916 }
1917
1918 # Finally, extract the thread ids and compare them to the console
1919 set num_mi_threads_str ""
1920 if {![regexp {number-of-threads="[0-9]+"} $mi_result num_mi_threads_str]} {
1921 fail "finding number of threads in MI output ($name)"
1922 } else {
1923 pass "finding number of threads in MI output ($name)"
1924
1925 # Extract the number of threads from the MI result
1926 if {![scan $num_mi_threads_str {number-of-threads="%d"} num_mi_threads]} {
1927 fail "got number of threads from MI ($name)"
1928 } else {
1929 pass "got number of threads from MI ($name)"
1930
1931 # Check if MI and console have same number of threads
1932 if {$num_mi_threads != [llength $console_thread_list]} {
1933 fail "console and MI have same number of threads ($name)"
1934 } else {
1935 pass "console and MI have same number of threads ($name)"
1936
1937 # Get MI thread list
1938 set mi_thread_list [get_mi_thread_list $name]
1939
1940 # Check if MI and console have the same threads
1941 set fails 0
1942 foreach ct [lsort $console_thread_list] mt [lsort $mi_thread_list] {
1943 if {$ct != $mt} {
1944 incr fails
1945 }
1946 }
1947 if {$fails > 0} {
1948 fail "MI and console have same threads ($name)"
1949
1950 # Send a list of failures to the log
1951 send_log "Console has thread ids: $console_thread_list\n"
1952 send_log "MI has thread ids: $mi_thread_list\n"
1953 } else {
1954 pass "MI and console have same threads ($name)"
1955 }
1956 }
1957 }
1958 }
1959 }
1960
1961 # Download shared libraries to the target.
1962 proc mi_load_shlibs { args } {
1963 if {![is_remote target]} {
1964 return
1965 }
1966
1967 foreach file $args {
1968 gdb_download [shlib_target_file $file]
1969 }
1970
1971 # Even if the target supplies full paths for shared libraries,
1972 # they may not be paths for this system.
1973 mi_gdb_test "set solib-search-path [file dirname [lindex $args 0]]" "\^done" ""
1974 }
1975
1976 proc mi_reverse_list { list } {
1977 if { [llength $list] <= 1 } {
1978 return $list
1979 }
1980 set tail [lrange $list 1 [llength $list]]
1981 set rtail [mi_reverse_list $tail]
1982 lappend rtail [lindex $list 0]
1983 return $rtail
1984 }
1985
1986 proc mi_check_thread_states { xstates test } {
1987 global expect_out
1988 set states [mi_reverse_list $xstates]
1989 set pattern ".*\\^done,threads=\\\["
1990 foreach s $states {
1991 set pattern "${pattern}(.*)state=\"$s\""
1992 }
1993 set pattern "${pattern}(,core=\"\[0-9\]*\")?\\\}\\\].*"
1994
1995 verbose -log "expecting: $pattern"
1996 mi_gdb_test "-thread-info" $pattern $test
1997 }
1998
1999 # Return a list of MI features supported by this gdb.
2000 proc mi_get_features {} {
2001 global expect_out mi_gdb_prompt
2002
2003 send_gdb "-list-features\n"
2004
2005 gdb_expect {
2006 -re "\\^done,features=\\\[(.*)\\\]\r\n$mi_gdb_prompt$" {
2007 regsub -all -- \" $expect_out(1,string) "" features
2008 return [split $features ,]
2009 }
2010 -re ".*\r\n$mi_gdb_prompt$" {
2011 verbose -log "got $expect_out(buffer)"
2012 return ""
2013 }
2014 timeout {
2015 verbose -log "timeout in mi_gdb_prompt"
2016 return ""
2017 }
2018 }
2019 }
2020
2021 # Variable Object Trees
2022 #
2023 # Yet another way to check varobjs. Pass mi_walk_varobj_tree a "list" of
2024 # variables (not unlike the actual source code definition), and it will
2025 # automagically test the children for you (by default).
2026 #
2027 # Example:
2028 #
2029 # source code:
2030 # struct bar {
2031 # union {
2032 # int integer;
2033 # void *ptr;
2034 # };
2035 # const int *iPtr;
2036 # };
2037 #
2038 # class foo {
2039 # public:
2040 # int a;
2041 # struct {
2042 # int b;
2043 # struct bar *c;
2044 # };
2045 # };
2046 #
2047 # foo *f = new foo (); <-- break here
2048 #
2049 # We want to check all the children of "f".
2050 #
2051 # Translate the above structures into the following tree:
2052 #
2053 # set tree {
2054 # foo f {
2055 # {} public {
2056 # int a {}
2057 # anonymous struct {
2058 # {} public {
2059 # int b {}
2060 # {bar *} c {
2061 # {} public {
2062 # anonymous union {
2063 # {} public {
2064 # int integer {}
2065 # {void *} ptr {}
2066 # }
2067 # }
2068 # {const int *} iPtr {
2069 # {const int} {*iPtr} {}
2070 # }
2071 # }
2072 # }
2073 # }
2074 # }
2075 # }
2076 # }
2077 # }
2078 #
2079 # mi_walk_varobj_tree c++ $tree
2080 #
2081 # If you'd prefer to walk the tree using your own callback,
2082 # simply pass the name of the callback to mi_walk_varobj_tree.
2083 #
2084 # This callback should take one argument, the name of the variable
2085 # to process. This name is the name of a global array holding the
2086 # variable's properties (object name, type, etc).
2087 #
2088 # An example callback:
2089 #
2090 # proc my_callback {var} {
2091 # upvar #0 $var varobj
2092 #
2093 # puts "my_callback: called on varobj $varobj(obj_name)"
2094 # }
2095 #
2096 # The arrays created for each variable object contain the following
2097 # members:
2098 #
2099 # obj_name - the object name for accessing this variable via MI
2100 # display_name - the display name for this variable (exp="display_name" in
2101 # the output of -var-list-children)
2102 # type - the type of this variable (type="type" in the output
2103 # of -var-list-children, or the special tag "anonymous"
2104 # path_expr - the "-var-info-path-expression" for this variable
2105 # NOTE: This member cannot be used reliably with typedefs.
2106 # Use with caution!
2107 # See notes inside get_path_expr for more.
2108 # parent - the variable name of the parent varobj
2109 # children - a list of children variable names (which are the
2110 # names Tcl arrays, not object names)
2111 #
2112 # For each variable object, an array containing the above fields will
2113 # be created under the root node (conveniently called, "root"). For example,
2114 # a variable object with handle "OBJ.public.0_anonymous.a" will have
2115 # a corresponding global Tcl variable named "root.OBJ.public.0_anonymous.a".
2116 #
2117 # Note that right now, this mechanism cannot be used for recursive data
2118 # structures like linked lists.
2119
2120 namespace eval ::varobj_tree {
2121 # An index which is appended to root varobjs to ensure uniqueness.
2122 variable _root_idx 0
2123
2124 # A procedure to help with debuggging varobj trees.
2125 # VARIABLE_NAME is the name of the variable to dump.
2126 # CMD, if present, is the name of the callback to output the contstructed
2127 # strings. By default, it uses expect's "send_log" command.
2128 # TERM, if present, is a terminating character. By default it is the newline.
2129 #
2130 # To output to the terminal (not the expect log), use
2131 # mi_varobj_tree_dump_variable my_variable puts ""
2132
2133 proc mi_varobj_tree_dump_variable {variable_name {cmd send_log} {term "\n"}} {
2134 upvar #0 $variable_name varobj
2135
2136 eval "$cmd \"VAR = $variable_name$term\""
2137
2138 # Explicitly encode the array indices, since outputting them
2139 # in some logical order is better than what "array names" might
2140 # return.
2141 foreach idx {obj_name parent display_name type path_expr} {
2142 eval "$cmd \"\t$idx = $varobj($idx)$term\""
2143 }
2144
2145 # Output children
2146 set num [llength $varobj(children)]
2147 eval "$cmd \"\tnum_children = $num$term\""
2148 if {$num > 0} {
2149 eval "$cmd \"\tchildren = $varobj(children)$term\""
2150 }
2151 }
2152
2153 # The default callback used by mi_walk_varobj_tree. This callback
2154 # simply checks all of VAR's children. It specifically does not test
2155 # path expressions, since that is very problematic.
2156 #
2157 # This procedure may be used in custom callbacks.
2158 proc test_children_callback {variable_name} {
2159 upvar #0 $variable_name varobj
2160
2161 if {[llength $varobj(children)] > 0} {
2162 # Construct the list of children the way mi_list_varobj_children
2163 # expects to get it:
2164 # { {obj_name display_name num_children type} ... }
2165 set children_list {}
2166 foreach child $varobj(children) {
2167 upvar #0 $child c
2168 set clist [list [string_to_regexp $c(obj_name)] \
2169 [string_to_regexp $c(display_name)] \
2170 [llength $c(children)]]
2171 if {[string length $c(type)] > 0} {
2172 lappend clist [string_to_regexp $c(type)]
2173 }
2174 lappend children_list $clist
2175 }
2176
2177 mi_list_varobj_children $varobj(obj_name) $children_list \
2178 "VT: list children of $varobj(obj_name)"
2179 }
2180 }
2181
2182 # Set the properties of the varobj represented by
2183 # PARENT_VARIABLE - the name of the parent's variable
2184 # OBJNAME - the MI object name of this variable
2185 # DISP_NAME - the display name of this variable
2186 # TYPE - the type of this variable
2187 # PATH - the path expression for this variable
2188 # CHILDREN - a list of the variable's children
2189 proc create_varobj {parent_variable objname disp_name \
2190 type path children} {
2191 upvar #0 $parent_variable parent
2192
2193 set var_name "root.$objname"
2194 global $var_name
2195 array set $var_name [list obj_name $objname]
2196 array set $var_name [list display_name $disp_name]
2197 array set $var_name [list type $type]
2198 array set $var_name [list path_expr $path]
2199 array set $var_name [list parent "$parent_variable"]
2200 array set $var_name [list children \
2201 [get_tree_children $var_name $children]]
2202 return $var_name
2203 }
2204
2205 # Should VARIABLE be used in path expressions? The CPLUS_FAKE_CHILD
2206 # varobjs and anonymous structs/unions are not used for path expressions.
2207 proc is_path_expr_parent {variable} {
2208 upvar #0 $variable varobj
2209
2210 # If the varobj's type is "", it is a CPLUS_FAKE_CHILD.
2211 # If the tail of the varobj's object name is "%d_anonymous",
2212 # then it represents an anonymous struct or union.
2213 if {[string length $varobj(type)] == 0 \
2214 || [regexp {[0-9]+_anonymous$} $varobj(obj_name)]} {
2215 return false
2216 }
2217
2218 return true
2219 }
2220
2221 # Return the path expression for the variable named NAME in
2222 # parent varobj whose variable name is given by PARENT_VARIABLE.
2223 proc get_path_expr {parent_variable name type} {
2224 upvar #0 $parent_variable parent
2225 upvar #0 $parent_variable path_parent
2226
2227 # If TYPE is "", this is one of the CPLUS_FAKE_CHILD varobjs,
2228 # which has no path expression. Likewsise for anonymous structs
2229 # and unions.
2230 if {[string length $type] == 0 \
2231 || [string compare $type "anonymous"] == 0} {
2232 return ""
2233 }
2234
2235 # Find the path parent variable.
2236 while {![is_path_expr_parent $parent_variable]} {
2237 set parent_variable $path_parent(parent)
2238 upvar #0 $parent_variable path_parent
2239 }
2240
2241 # This is where things get difficult. We do not actually know
2242 # the real type for variables defined via typedefs, so we don't actually
2243 # know whether the parent is a structure/union or not.
2244 #
2245 # So we assume everything that isn't a simple type is a compound type.
2246 set stars ""
2247 regexp {\*+} $parent(type) stars
2248 set is_compound 1
2249 if {[string index $name 0] == "*"} {
2250 set is_compound 0
2251 }
2252
2253 if {[string index $parent(type) end] == "\]"} {
2254 # Parent is an array.
2255 return "($path_parent(path_expr))\[$name\]"
2256 } elseif {$is_compound} {
2257 # Parent is a structure or union or a pointer to one.
2258 if {[string length $stars]} {
2259 set join "->"
2260 } else {
2261 set join "."
2262 }
2263
2264 global root
2265
2266 # To make matters even more hideous, varobj.c has slightly different
2267 # path expressions for C and C++.
2268 set path_expr "($path_parent(path_expr))$join$name"
2269 if {[string compare -nocase $root(language) "c"] == 0} {
2270 return $path_expr
2271 } else {
2272 return "($path_expr)"
2273 }
2274 } else {
2275 # Parent is a pointer.
2276 return "*($path_parent(path_expr))"
2277 }
2278 }
2279
2280 # Process the CHILDREN (a list of varobj_tree elements) of the variable
2281 # given by PARENT_VARIABLE. Returns a list of children variables.
2282 proc get_tree_children {parent_variable children} {
2283 upvar #0 $parent_variable parent
2284
2285 set field_idx 0
2286 set children_list {}
2287 foreach {type name children} $children {
2288 if {[string compare $parent_variable "root"] == 0} {
2289 # Root variable
2290 variable _root_idx
2291 incr _root_idx
2292 set objname "$name$_root_idx"
2293 set disp_name "$name"
2294 set path_expr "$name"
2295 } elseif {[string compare $type "anonymous"] == 0} {
2296 # Special case: anonymous types. In this case, NAME will either be
2297 # "struct" or "union".
2298 set objname "$parent(obj_name).${field_idx}_anonymous"
2299 set disp_name "<anonymous $name>"
2300 set path_expr ""
2301 set type "$name {...}"
2302 } else {
2303 set objname "$parent(obj_name).$name"
2304 set disp_name $name
2305 set path_expr [get_path_expr $parent_variable $name $type]
2306 }
2307
2308 lappend children_list [create_varobj $parent_variable $objname \
2309 $disp_name $type $path_expr $children]
2310 incr field_idx
2311 }
2312
2313 return $children_list
2314 }
2315
2316 # The main procedure to call the given CALLBACK on the elements of the
2317 # given varobj TREE. See detailed explanation above.
2318 proc walk_tree {language tree callback} {
2319 global root
2320 variable _root_idx
2321
2322 if {[llength $tree] < 3} {
2323 error "tree does not contain enough elements"
2324 }
2325
2326 set _root_idx 0
2327
2328 # Create root node and process the tree.
2329 array set root [list language $language]
2330 array set root [list obj_name "root"]
2331 array set root [list display_name "root"]
2332 array set root [list type "root"]
2333 array set root [list path_expr "root"]
2334 array set root [list parent "root"]
2335 array set root [list children [get_tree_children root $tree]]
2336
2337 # Walk the tree
2338 set all_nodes $root(children); # a stack of nodes
2339 while {[llength $all_nodes] > 0} {
2340 # "Pop" the name of the global variable containing this varobj's
2341 # information from the stack of nodes.
2342 set var_name [lindex $all_nodes 0]
2343 set all_nodes [lreplace $all_nodes 0 0]
2344
2345 # Bring the global named in VAR_NAME into scope as the local variable
2346 # VAROBJ.
2347 upvar #0 $var_name varobj
2348
2349 # Append any children of VAROBJ to the list of nodes to walk.
2350 if {[llength $varobj(children)] > 0} {
2351 set all_nodes [concat $all_nodes $varobj(children)]
2352 }
2353
2354 # If this is a root variable, create the variable object for it.
2355 if {[string compare $varobj(parent) "root"] == 0} {
2356 mi_create_varobj $varobj(obj_name) $varobj(display_name) \
2357 "VT: create root varobj for $varobj(display_name)"
2358 }
2359
2360 # Now call the callback for VAROBJ.
2361 uplevel #0 $callback $var_name
2362 }
2363 }
2364 }
2365
2366 # The default varobj tree callback, which simply tests -var-list-children.
2367 proc mi_varobj_tree_test_children_callback {variable} {
2368 ::varobj_tree::test_children_callback $variable
2369 }
2370
2371 # Walk the variable object tree given by TREE, calling the specified
2372 # CALLBACK. By default this uses mi_varobj_tree_test_children_callback.
2373 proc mi_walk_varobj_tree {language tree \
2374 {callback \
2375 mi_varobj_tree_test_children_callback}} {
2376 ::varobj_tree::walk_tree $language $tree $callback
2377 }
2378
2379 # Build a list of key-value pairs given by the list ATTR_LIST. Flatten
2380 # this list using the optional JOINER, a comma by default.
2381 #
2382 # The list must contain an even number of elements, which are the key-value
2383 # pairs. Each value will be surrounded by quotes, according to the grammar,
2384 # except if the value starts with \[ or \{, when the quotes will be omitted.
2385 #
2386 # Example: mi_build_kv_pairs {a b c d e f g \[.*\]}
2387 # returns a=\"b\",c=\"d\",e=\"f\",g=\[.*\]
2388 proc mi_build_kv_pairs {attr_list {joiner ,}} {
2389 set l {}
2390 foreach {var value} $attr_list {
2391 if {[string range $value 0 1] == "\\\["
2392 || [string range $value 0 1] == "\\\{"} {
2393 lappend l "$var=$value"
2394 } else {
2395 lappend l "$var=\"$value\""
2396 }
2397 }
2398 return "[join $l $joiner]"
2399 }
2400
2401 # Construct a breakpoint regexp. This may be used to test the output of
2402 # -break-insert, -dprintf-insert, or -break-info.
2403 #
2404 # All arguments for the breakpoint may be specified using the options
2405 # number, type, disp, enabled, addr, func, file, fullanme, line,
2406 # thread-groups, times, ignore, script, and original-location.
2407 #
2408 # Only if -script and -ignore are given will they appear in the output.
2409 # Otherwise, this procedure will skip them using ".*".
2410 #
2411 # Example: mi_make_breakpoint -number 2 -file ".*/myfile.c" -line 3
2412 # will return the breakpoint:
2413 # bkpt={number="2",type=".*",disp=".*",enabled=".*",addr=".*",func=".*",
2414 # file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\],
2415 # times="0".*original-location=".*"}
2416
2417 proc mi_make_breakpoint {args} {
2418 parse_args {{number .*} {type .*} {disp .*} {enabled .*} {addr .*}
2419 {func .*} {file .*} {fullname .*} {line .*}
2420 {thread-groups \\\[.*\\\]} {times .*} {ignore 0}
2421 {script ""} {original-location .*}}
2422
2423 set attr_list {}
2424 foreach attr [list number type disp enabled addr func file \
2425 fullname line thread-groups times] {
2426 lappend attr_list $attr [set $attr]
2427 }
2428
2429 set result "bkpt={[mi_build_kv_pairs $attr_list]"
2430
2431 # There are always exceptions.
2432 # If SCRIPT and IGNORE are not present, do not output them.
2433 if {$ignore != 0} {
2434 append result ","
2435 append result [mi_build_kv_pairs [list "ignore" $ignore]]
2436 append result ","
2437 }
2438 if {[string length $script] > 0} {
2439 append result ","
2440 append result [mi_build_kv_pairs [list "script" $script]]
2441 append result ","
2442 } else {
2443 # Allow anything up until the next "official"/required attribute.
2444 # This pattern skips over script/ignore if matches on those
2445 # were not specifically required by the caller.
2446 append result ".*"
2447 }
2448 append result [mi_build_kv_pairs \
2449 [list "original-location" ${original-location}]]
2450 append result "}"
2451 return $result
2452 }
2453
2454 # Build a breakpoint table regexp given the list of breakpoints in `bp_list',
2455 # constructed by mi_make_breakpoint.
2456 #
2457 # Example: Construct a breakpoint table where the only attributes we
2458 # test for are the existence of three breakpoints numbered 1, 2, and 3.
2459 #
2460 # set bps {}
2461 # lappend bps [mi_make_breakpoint -number 1]
2462 # lappend bps [mi_make_breakpoint -number 2]
2463 # lappned bps [mi_make_breakpoint -number 3]
2464 # mi_make_breakpoint_table $bps
2465 # will return (abbreviated for clarity):
2466 # BreakpointTable={nr_rows="3",nr_cols="6",hdr=[{width=".*",...} ...],
2467 # body=[bkpt={number="1",...},bkpt={number="2",...},bkpt={number="3",...}]}
2468
2469 proc mi_make_breakpoint_table {bp_list} {
2470 # Build header -- assume a standard header for all breakpoint tables.
2471 set hl {}
2472 foreach {nm hdr} [list number Num type Type disp Disp enabled Enb \
2473 addr Address what What] {
2474 # The elements here are the MI table headers, which have the
2475 # format:
2476 # {width="7",alignment="-1",col_name="number",colhdr="Num"}
2477 lappend hl "{[mi_build_kv_pairs [list width .* alignment .* \
2478 col_name $nm colhdr $hdr]]}"
2479 }
2480 set header "hdr=\\\[[join $hl ,]\\\]"
2481
2482 # The caller has implicitly supplied the number of columns and rows.
2483 set nc [llength $hl]
2484 set nr [llength $bp_list]
2485
2486 # Build body -- mi_make_breakpoint has done most of the work.
2487 set body "body=\\\[[join $bp_list ,]\\\]"
2488
2489 # Assemble the final regexp.
2490 return "BreakpointTable={nr_rows=\"$nr\",nr_cols=\"$nc\",$header,$body}"
2491 }
This page took 0.078557 seconds and 5 git commands to generate.