fixes re arrays and continuations
[deliverable/binutils-gdb.git] / gdb / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by IBM Corporation.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 extern int symtab_relocated;
22
23 /* Minimum possible text address in AIX */
24
25 #define TEXT_SEGMENT_BASE 0x10000000
26
27
28 /* text addresses in a core file does not necessarily match to symbol table,
29 if symbol table relocation wasn't done yet. */
30
31 #define CORE_NEEDS_RELOCATION(PC) \
32 if (!symtab_relocated && !inferior_pid) \
33 xcoff_relocate_core ();
34 extern void xcoff_relocate_core PARAMS ((void));
35
36 /* Load segment of a given pc value. */
37
38 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
39
40 /* AIX cc seems to get this right. */
41
42 #define BELIEVE_PCC_PROMOTION 1
43
44 /* Conversion between a register number in stab string to actual register num. */
45
46 #define STAB_REG_TO_REGNUM(value) (value)
47
48 /* return true if a given `pc' value is in `call dummy' function. */
49
50 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
51 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
52
53 /* For each symtab, we keep track of which BFD it came from. */
54 #define EXTRA_SYMTAB_INFO \
55 unsigned nonreloc:1; /* TRUE if non relocatable */
56
57 #define INIT_EXTRA_SYMTAB_INFO(symtab) \
58 symtab->nonreloc = 0; \
59
60 extern unsigned int text_start, data_start;
61 extern int inferior_pid;
62 extern char *corefile;
63
64 /* setpgrp() messes up controling terminal. The other version of it
65 requires libbsd.a. */
66 #define setpgrp(XX,YY) setpgid (XX, YY)
67
68 /* We are missing register descriptions in the system header files. Sigh! */
69
70 struct regs {
71 int gregs [32]; /* general purpose registers */
72 int pc; /* program conter */
73 int ps; /* processor status, or machine state */
74 };
75
76 struct fp_status {
77 double fpregs [32]; /* floating GP registers */
78 };
79
80
81 /* To be used by function_frame_info. */
82
83 struct aix_framedata {
84 int offset; /* # of bytes in gpr's and fpr's are saved */
85 int saved_gpr; /* smallest # of saved gpr */
86 int saved_fpr; /* smallest # of saved fpr */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 };
91
92 void
93 function_frame_info PARAMS ((CORE_ADDR, struct aix_framedata *));
94
95 /* Define the byte order of the machine. */
96
97 #define TARGET_BYTE_ORDER BIG_ENDIAN
98
99 /* AIX's assembler doesn't grok dollar signs in identifiers.
100 So we use dots instead. This item must be coordinated with G++. */
101 #undef CPLUS_MARKER
102 #define CPLUS_MARKER '.'
103
104 /* Offset from address of function to start of its code.
105 Zero on most machines. */
106
107 #define FUNCTION_START_OFFSET 0
108
109 /* Advance PC across any function entry prologue instructions
110 to reach some "real" code. */
111
112 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
113
114 /* If PC is in some function-call trampoline code, return the PC
115 where the function itself actually starts. If not, return NULL. */
116
117 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
118
119 /* When a child process is just starting, we sneak in and relocate
120 the symbol table (and other stuff) after the dynamic linker has
121 figured out where they go. But we want to do this relocation just
122 once. */
123
124 extern int loadinfotextindex;
125
126 #define SOLIB_CREATE_INFERIOR_HOOK(PID) \
127 do { \
128 if (loadinfotextindex == 0) \
129 xcoff_relocate_symtab (PID); \
130 } while (0)
131
132
133 /* Number of trap signals we need to skip over, once the inferior process
134 starts running. */
135
136 #define START_INFERIOR_TRAPS_EXPECTED 2
137
138 /* AIX might return a sigtrap, with a "stop after load" status. It should
139 be ignored by gdb, shouldn't be mixed up with breakpoint traps. */
140
141 /* Another little glitch in AIX is signal 0. I have no idea why wait(2)
142 returns with this status word. It looks harmless. */
143
144 #define SIGTRAP_STOP_AFTER_LOAD(W) \
145 if ( (W) == 0x57c || (W) == 0x7f) { \
146 if ((W)==0x57c && breakpoints_inserted) { \
147 mark_breakpoints_out (); \
148 insert_breakpoints (); \
149 insert_step_breakpoint (); \
150 } \
151 resume (0, 0); \
152 continue; \
153 }
154
155 /* In xcoff, we cannot process line numbers when we see them. This is
156 mainly because we don't know the boundaries of the include files. So,
157 we postpone that, and then enter and sort(?) the whole line table at
158 once, when we are closing the current symbol table in end_symtab(). */
159
160 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
161
162
163 /* When a target process or core-file has been attached, we sneak in
164 and figure out where the shared libraries have got to. In case there
165 is no inferior_process exists (e.g. bringing up a core file), we can't
166 attemtp to relocate symbol table, since we don't have information about
167 load segments. */
168
169 #define SOLIB_ADD(a, b, c) \
170 if (inferior_pid) xcoff_relocate_symtab (inferior_pid)
171
172 /* Immediately after a function call, return the saved pc.
173 Can't go through the frames for this because on some machines
174 the new frame is not set up until the new function executes
175 some instructions. */
176
177 #define SAVED_PC_AFTER_CALL(frame) read_register (LR_REGNUM)
178
179 /* Address of end of stack space. */
180
181 #define STACK_END_ADDR 0x2ff80000
182
183 /* Stack grows downward. */
184
185 #define INNER_THAN <
186
187 #if 0
188 /* No, we shouldn't use this. push_arguments() should leave stack in a
189 proper alignment! */
190 /* Stack has strict alignment. */
191
192 #define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
193 #endif
194
195 /* This is how argumets pushed onto stack or passed in registers. */
196
197 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
198 sp = push_arguments(nargs, args, sp, struct_return, struct_addr)
199
200 /* Sequence of bytes for breakpoint instruction. */
201
202 #define BREAKPOINT {0x7d, 0x82, 0x10, 0x08}
203
204 /* Amount PC must be decremented by after a breakpoint.
205 This is often the number of bytes in BREAKPOINT
206 but not always. */
207
208 #define DECR_PC_AFTER_BREAK 0
209
210 /* Nonzero if instruction at PC is a return instruction. */
211 /* Allow any of the return instructions, including a trapv and a return
212 from interrupt. */
213
214 #define ABOUT_TO_RETURN(pc) \
215 ((read_memory_integer (pc, 4) & 0xfe8007ff) == 0x4e800020)
216
217 /* Return 1 if P points to an invalid floating point value. */
218
219 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
220
221 /* Largest integer type */
222
223 #define LONGEST long
224
225 /* Name of the builtin type for the LONGEST type above. */
226
227 #define BUILTIN_TYPE_LONGEST builtin_type_long
228
229 /* Say how long (ordinary) registers are. */
230
231 #define REGISTER_TYPE long
232
233 /* Number of machine registers */
234
235 #define NUM_REGS 71
236
237 /* Initializer for an array of names of registers.
238 There should be NUM_REGS strings in this initializer. */
239
240 #define REGISTER_NAMES \
241 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
242 "r8", "r9", "r10","r11","r12","r13","r14","r15", \
243 "r16","r17","r18","r19","r20","r21","r22","r23", \
244 "r24","r25","r26","r27","r28","r29","r30","r31", \
245 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
246 "f8", "f9", "f10","f11","f12","f13","f14","f15", \
247 "f16","f17","f18","f19","f20","f21","f22","f23", \
248 "f24","f25","f26","f27","f28","f29","f30","f31", \
249 "pc", "ps", "cnd", "lr", "cnt", "xer", "mq" }
250
251 /* Register numbers of various important registers.
252 Note that some of these values are "real" register numbers,
253 and correspond to the general registers of the machine,
254 and some are "phony" register numbers which are too large
255 to be actual register numbers as far as the user is concerned
256 but do serve to get the desired values when passed to read_register. */
257
258 #define FP_REGNUM 1 /* Contains address of executing stack frame */
259 #define SP_REGNUM 1 /* Contains address of top of stack */
260 #define TOC_REGNUM 2 /* TOC register */
261 #define FP0_REGNUM 32 /* Floating point register 0 */
262 #define GP0_REGNUM 0 /* GPR register 0 */
263 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
264 #define FPLAST_REGNUM 63 /* Last floating point register */
265
266 /* Special purpose registers... */
267 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave' structure, for
268 easier processing */
269
270 #define PC_REGNUM 64 /* Program counter (instruction address %iar) */
271 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
272 #define CR_REGNUM 66 /* Condition register */
273 #define LR_REGNUM 67 /* Link register */
274 #define CTR_REGNUM 68 /* Count register */
275 #define XER_REGNUM 69 /* Fixed point exception registers */
276 #define MQ_REGNUM 70 /* Multiply/quotient register */
277
278 #define FIRST_SP_REGNUM 64 /* first special register number */
279 #define LAST_SP_REGNUM 70 /* last special register number */
280
281 /* Total amount of space needed to store our copies of the machine's
282 register state, the array `registers'.
283
284 32 4-byte gpr's
285 32 8-byte fpr's
286 7 4-byte special purpose registers,
287
288 total 416 bytes. Keep some extra space for now, in case to add more. */
289
290 #define REGISTER_BYTES 420
291
292
293 /* Index within `registers' of the first byte of the space for
294 register N. */
295
296 #define REGISTER_BYTE(N) \
297 ( \
298 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
299 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
300 :((N) * 4) )
301
302 /* Number of bytes of storage in the actual machine representation
303 for register N. */
304 /* Note that the unsigned cast here forces the result of the
305 subtractiion to very high positive values if N < FP0_REGNUM */
306
307 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
308
309 /* Number of bytes of storage in the program's representation
310 for register N. On the RS6000, all regs are 4 bytes
311 except the floating point regs which are 8-byte doubles. */
312
313 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
314
315 /* Largest value REGISTER_RAW_SIZE can have. */
316
317 #define MAX_REGISTER_RAW_SIZE 8
318
319 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
320
321 #define MAX_REGISTER_VIRTUAL_SIZE 8
322
323 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
324
325 #define STAB_REG_TO_REGNUM(value) (value)
326
327 /* Nonzero if register N requires conversion
328 from raw format to virtual format. */
329
330 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
331
332 /* Convert data from raw format for register REGNUM
333 to virtual format for register REGNUM. */
334
335 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
336 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
337
338 /* Convert data from virtual format for register REGNUM
339 to raw format for register REGNUM. */
340
341 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
342 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
343
344 /* Return the GDB type object for the "standard" data type
345 of data in register N. */
346
347 #define REGISTER_VIRTUAL_TYPE(N) \
348 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
349
350 /* Store the address of the place in which to copy the structure the
351 subroutine will return. This is called from call_function. */
352 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
353 In function return, callee is not responsible of returning this address back.
354 Since gdb needs to find it, we will store in a designated variable
355 `rs6000_struct_return_address'. */
356
357 extern unsigned int rs6000_struct_return_address;
358
359 #define STORE_STRUCT_RETURN(ADDR, SP) \
360 { write_register (3, (ADDR)); \
361 rs6000_struct_return_address = (unsigned int)(ADDR); }
362
363 /* Extract from an array REGBUF containing the (raw) register state
364 a function return value of type TYPE, and copy that, in virtual format,
365 into VALBUF. */
366
367 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
368 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) */
369
370 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
371 extract_return_value(TYPE,REGBUF,VALBUF)
372
373 /* Write into appropriate registers a function return value
374 of type TYPE, given in virtual format. */
375
376 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
377 { \
378 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
379 \
380 /* Floating point values are returned starting from FPR1 and up. \
381 Say a double_double_double type could be returned in \
382 FPR1/FPR2/FPR3 triple. */ \
383 \
384 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
385 TYPE_LENGTH (TYPE)); \
386 else \
387 /* Everything else is returned in GPR3 and up. */ \
388 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
389 TYPE_LENGTH (TYPE)); \
390 }
391
392
393 /* Extract from an array REGBUF containing the (raw) register state
394 the address in which a function should return its structure value,
395 as a CORE_ADDR (or an expression that can be used as one). */
396
397 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
398 \f
399 /* Describe the pointer in each stack frame to the previous stack frame
400 (its caller). */
401
402 /* FRAME_CHAIN takes a frame's nominal address
403 and produces the frame's chain-pointer. */
404
405 /* In the case of the RS6000, the frame's nominal address
406 is the address of a 4-byte word containing the calling frame's address. */
407
408 #define FRAME_CHAIN(thisframe) \
409 (!inside_entry_file ((thisframe)->pc) ? \
410 read_memory_integer ((thisframe)->frame, 4) :\
411 0)
412
413 /* Define other aspects of the stack frame. */
414
415 /* A macro that tells us whether the function invocation represented
416 by FI does not have a frame on the stack associated with it. If it
417 does not, FRAMELESS is set to 1, else 0. */
418
419 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
420 FRAMELESS = frameless_function_invocation (FI, 0)
421
422 /* Functions calling alloca() change the value of the stack pointer. We
423 need to use initial stack pointer (which is saved in r31 by gcc) in
424 such cases. If a compiler emits traceback table, then we should use the
425 alloca register specified in traceback table. FIXME. */
426 /* Also, it is a good idea to cache information about frame's saved registers
427 in the frame structure to speed things up. See tm-m88k.h. FIXME. */
428
429 #define EXTRA_FRAME_INFO \
430 CORE_ADDR initial_sp; /* initial stack pointer. */ \
431 struct frame_saved_regs *cache_fsr; /* saved registers */
432
433 /* Frameless function invocation in IBM RS/6000 is sometimes
434 half-done. It perfectly sets up a new frame, e.g. a new frame (in
435 fact stack) pointer, etc, but it doesn't save the %pc. We call
436 frameless_function_invocation to tell us how to get the %pc. */
437
438 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
439 fi->initial_sp = 0; \
440 fi->cache_fsr = 0;
441
442 #define FRAME_SAVED_PC(FRAME) \
443 (frameless_function_invocation (FRAME, 1) \
444 ? SAVED_PC_AFTER_CALL (FRAME) \
445 : read_memory_integer (read_memory_integer ((FRAME)->frame, 4)+8, 4))
446
447 #define FRAME_ARGS_ADDRESS(FI) \
448 (((struct frame_info*)(FI))->initial_sp ? \
449 ((struct frame_info*)(FI))->initial_sp : \
450 frame_initial_stack_address (FI))
451
452 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
453
454
455 /* Set VAL to the number of args passed to frame described by FI.
456 Can set VAL to -1, meaning no way to tell. */
457
458 /* We can't tell how many args there are
459 now that the C compiler delays popping them. */
460
461 #define FRAME_NUM_ARGS(val,fi) (val = -1)
462
463 /* Return number of bytes at start of arglist that are not really args. */
464
465 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
466
467 /* Put here the code to store, into a struct frame_saved_regs,
468 the addresses of the saved registers of frame described by FRAME_INFO.
469 This includes special registers such as pc and fp saved in special
470 ways in the stack frame. sp is even more special:
471 the address we return for it IS the sp for the next frame. */
472 /* In the following implementation for RS6000, we did *not* save sp. I am
473 not sure if it will be needed. The following macro takes care of gpr's
474 and fpr's only. */
475
476 #define FRAME_FIND_SAVED_REGS(FRAME_INFO, FRAME_SAVED_REGS) \
477 { \
478 int ii; \
479 CORE_ADDR frame_addr, func_start; \
480 struct aix_framedata fdata; \
481 \
482 /* find the start of the function and collect info about its frame. */\
483 \
484 func_start = get_pc_function_start ((FRAME_INFO)->pc) + FUNCTION_START_OFFSET; \
485 function_frame_info (func_start, &fdata); \
486 bzero (&(FRAME_SAVED_REGS), sizeof (FRAME_SAVED_REGS)); \
487 \
488 /* if there were any saved registers, figure out parent's stack pointer. */ \
489 frame_addr = 0; \
490 /* the following is true only if the frame doesn't have a call to alloca(), \
491 FIXME. */ \
492 if (fdata.saved_fpr >= 0 || fdata.saved_gpr >= 0) { \
493 if ((FRAME_INFO)->prev && (FRAME_INFO)->prev->frame) \
494 frame_addr = (FRAME_INFO)->prev->frame; \
495 else \
496 frame_addr = read_memory_integer ((FRAME_INFO)->frame, 4); \
497 } \
498 \
499 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. All fpr's \
500 from saved_fpr to fp31 are saved right underneath caller stack pointer, \
501 starting from fp31 first. */ \
502 \
503 if (fdata.saved_fpr >= 0) { \
504 for (ii=31; ii >= fdata.saved_fpr; --ii) \
505 (FRAME_SAVED_REGS).regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); \
506 frame_addr -= (32 - fdata.saved_fpr) * 8; \
507 } \
508 \
509 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. All gpr's \
510 from saved_gpr to gpr31 are saved right under saved fprs, starting \
511 from r31 first. */ \
512 \
513 if (fdata.saved_gpr >= 0) \
514 for (ii=31; ii >= fdata.saved_gpr; --ii) \
515 (FRAME_SAVED_REGS).regs [ii] = frame_addr - ((32 - ii) * 4); \
516 }
517
518 \f
519 /* Things needed for making the inferior call functions. */
520
521 /* Push an empty stack frame, to record the current PC, etc. */
522 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
523
524 #define PUSH_DUMMY_FRAME push_dummy_frame ()
525
526 /* Discard from the stack the innermost frame,
527 restoring all saved registers. */
528
529 #define POP_FRAME pop_frame ()
530
531 /* This sequence of words is the instructions:
532
533 mflr r0 // 0x7c0802a6
534 // save fpr's
535 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
536 // save gpr's
537 stm r0, num(r1) // 0xbc010000
538 stu r1, num(r1) // 0x94210000
539
540 // the function we want to branch might be in a different load
541 // segment. reset the toc register. Note that the actual toc address
542 // will be fix by fix_call_dummy () along with function address.
543
544 st r2, 0x14(r1) // 0x90410014 save toc register
545 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
546 oril r2, r2,0x5678 // 0x60425678
547
548 // load absolute address 0x12345678 to r0
549 liu r0, 0x1234 // 0x3c001234
550 oril r0, r0,0x5678 // 0x60005678
551 mtctr r0 // 0x7c0903a6 ctr <- r0
552 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
553 cror 0xf, 0xf, 0xf // 0x4def7b82
554 brpt // 0x7d821008, breakpoint
555 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
556
557
558 We actually start executing by saving the toc register first, since the pushing
559 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
560 the arguments for the function called by the `bctrl' would be pushed
561 between the `stu' and the `bctrl', and we could allow it to execute through.
562 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
563 and we cannot allow to push the registers again.
564 */
565
566 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
567 0x90410014, 0x3c401234, 0x60425678, \
568 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
569 0x4def7b82, 0x7d821008, 0x4def7b82 }
570
571
572 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
573 #define CALL_DUMMY_LENGTH 56
574
575 #define CALL_DUMMY_START_OFFSET 16
576
577 /* Insert the specified number of args and function address
578 into a call sequence of the above form stored at DUMMYNAME. */
579
580 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, using_gcc) \
581 fix_call_dummy(dummyname, pc, fun, nargs, type)
582
583 /* Flag for machine-specific stuff in shared files. FIXME */
584 #define IBM6000_TARGET
585
586 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
587
588 #define NO_SINGLE_STEP
This page took 0.040971 seconds and 4 git commands to generate.