* expprint.c (print_subexp): Add missing ']'.
[deliverable/binutils-gdb.git] / gdb / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3 Contributed by IBM Corporation.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* A successful ptrace(continue) might return errno != 0 in this particular port
23 of rs6000. I am not sure why. We will use this kludge and ignore it until
24 we figure out the real problem. */
25
26 #define AIX_BUGGY_PTRACE_CONTINUE \
27 { \
28 int ret = ptrace (PT_CONTINUE, inferior_pid, (int *)1, signal, 0); \
29 if (errno) { \
30 /* printf ("ret: %d, errno: %d, signal: %d\n", ret, errno, signal); */ \
31 errno = 0; } \
32 }
33
34 extern int symtab_relocated;
35
36 /* Minimum possible text address in AIX */
37
38 #define TEXT_SEGMENT_BASE 0x10000000
39
40
41 /* text addresses in a core file does not necessarily match to symbol table,
42 if symbol table relocation wasn't done yet. */
43
44 #define CORE_NEEDS_RELOCATION(PC) \
45 if (!symtab_relocated && !inferior_pid && (PC) > TEXT_SEGMENT_BASE) \
46 (PC) -= ( TEXT_SEGMENT_BASE + text_adjustment (exec_bfd));
47
48 /* Load segment of a given pc value. */
49
50 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
51
52
53 /* Conversion between a register number in stab string to actual register num. */
54
55 #define STAB_REG_TO_REGNUM(value) (value)
56
57 /* return true if a given `pc' value is in `call dummy' function. */
58
59 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
60 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
61
62 /* For each symtab, we keep track of which BFD it came from. */
63 #define EXTRA_SYMTAB_INFO \
64 unsigned nonreloc:1; /* TRUE if non relocatable */
65
66 #define INIT_EXTRA_SYMTAB_INFO(symtab) \
67 symtab->nonreloc = 0; \
68
69 extern unsigned int text_start, data_start;
70 extern int inferior_pid;
71 extern char *corefile;
72
73 /* setpgrp() messes up controling terminal. The other version of it
74 requires libbsd.a. */
75 #define setpgrp(XX,YY) setpgid (XX, YY)
76
77 /* We are missing register descriptions in the system header files. Sigh! */
78
79 struct regs {
80 int gregs [32]; /* general purpose registers */
81 int pc; /* program conter */
82 int ps; /* processor status, or machine state */
83 };
84
85 struct fp_status {
86 double fpregs [32]; /* floating GP registers */
87 };
88
89
90 /* To be used by function_frame_info. */
91
92 struct aix_framedata {
93 int offset; /* # of bytes in gpr's and fpr's are saved */
94 int saved_gpr; /* smallest # of saved gpr */
95 int saved_fpr; /* smallest # of saved fpr */
96 int alloca_reg; /* alloca register number (frame ptr) */
97 char frameless; /* true if frameless functions. */
98 };
99
100
101 /* Define the byte order of the machine. */
102
103 #define TARGET_BYTE_ORDER BIG_ENDIAN
104
105 /* Define this if the C compiler puts an underscore at the front
106 of external names before giving them to the linker. */
107
108 #undef NAMES_HAVE_UNDERSCORE
109
110 /* AIX's assembler doesn't grok dollar signs in identifiers.
111 So we use dots instead. This item must be coordinated with G++. */
112 #undef CPLUS_MARKER
113 #define CPLUS_MARKER '.'
114
115 /* Offset from address of function to start of its code.
116 Zero on most machines. */
117
118 #define FUNCTION_START_OFFSET 0
119
120 /* Advance PC across any function entry prologue instructions
121 to reach some "real" code. */
122
123 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
124
125 /* If PC is in some function-call trampoline code, return the PC
126 where the function itself actually starts. If not, return NULL. */
127
128 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
129
130 /* When a child process is just starting, we sneak in and relocate
131 the symbol table (and other stuff) after the dynamic linker has
132 figured out where they go. But we want to do this relocation just
133 once. */
134
135 extern int aix_loadInfoTextIndex;
136
137 #define SOLIB_CREATE_INFERIOR_HOOK(PID) \
138 do { \
139 if (aix_loadInfoTextIndex == 0) \
140 aixcoff_relocate_symtab (PID); \
141 } while (0)
142
143
144 /* Number of trap signals we need to skip over, once the inferior process
145 starts running. */
146
147 #define START_INFERIOR_TRAPS_EXPECTED 2
148
149 /* AIX might return a sigtrap, with a "stop after load" status. It should
150 be ignored by gdb, shouldn't be mixed up with breakpoint traps. */
151
152 /* Another little glitch in AIX is signal 0. I have no idea why wait(2)
153 returns with this status word. It looks harmless. */
154
155 #define SIGTRAP_STOP_AFTER_LOAD(W) \
156 if ( (W) == 0x57c || (W) == 0x7f) { \
157 if ((W)==0x57c && breakpoints_inserted) { \
158 mark_breakpoints_out (); \
159 insert_breakpoints (); \
160 insert_step_breakpoint (); \
161 } \
162 resume (0, 0); \
163 continue; \
164 }
165
166 /* In aixcoff, we cannot process line numbers when we see them. This is
167 mainly because we don't know the boundaries of the include files. So,
168 we postpone that, and then enter and sort(?) the whole line table at
169 once, when we are closing the current symbol table in end_symtab(). */
170
171 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
172
173
174 /* When a target process or core-file has been attached, we sneak in
175 and figure out where the shared libraries have got to. In case there
176 is no inferior_process exists (e.g. bringing up a core file), we can't
177 attemtp to relocate symbol table, since we don't have information about
178 load segments. */
179
180 #define SOLIB_ADD(a, b, c) \
181 if (inferior_pid) aixcoff_relocate_symtab (inferior_pid)
182
183 /* Immediately after a function call, return the saved pc.
184 Can't go through the frames for this because on some machines
185 the new frame is not set up until the new function executes
186 some instructions. */
187
188 #include "inferior.h" /* For registers[] and register_valid[]. */
189
190 #define SAVED_PC_AFTER_CALL(frame) \
191 (register_valid [LR_REGNUM] ? \
192 (*(int*)&registers[REGISTER_BYTE (LR_REGNUM)]) : \
193 read_register (LR_REGNUM))
194
195 /*#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call(frame) */
196
197
198 /* Address of end of stack space. */
199
200 #define STACK_END_ADDR 0x2ff80000
201
202 /* Stack grows downward. */
203
204 #define INNER_THAN <
205
206 #if 0
207 /* No, we shouldn't use this. push_arguments() should leave stack in a
208 proper alignment! */
209 /* Stack has strict alignment. */
210
211 #define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
212 #endif
213
214 /* This is how argumets pushed onto stack or passed in registers. */
215
216 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
217 sp = push_arguments(nargs, args, sp, struct_return, struct_addr)
218
219 /* Sequence of bytes for breakpoint instruction. */
220
221 #define BREAKPOINT {0x7d, 0x82, 0x10, 0x08}
222
223 /* Amount PC must be decremented by after a breakpoint.
224 This is often the number of bytes in BREAKPOINT
225 but not always. */
226
227 #define DECR_PC_AFTER_BREAK 0
228
229 /* Nonzero if instruction at PC is a return instruction. */
230 /* Allow any of the return instructions, including a trapv and a return
231 from interrupt. */
232
233 #define ABOUT_TO_RETURN(pc) \
234 ((read_memory_integer (pc, 4) & 0xfe8007ff) == 0x4e800020)
235
236 /* Return 1 if P points to an invalid floating point value. */
237
238 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
239
240 /* Largest integer type */
241
242 #define LONGEST long
243
244 /* Name of the builtin type for the LONGEST type above. */
245
246 #define BUILTIN_TYPE_LONGEST builtin_type_long
247
248 /* Say how long (ordinary) registers are. */
249
250 #define REGISTER_TYPE long
251
252 /* Number of machine registers */
253
254 #define NUM_REGS 71
255
256 /* Initializer for an array of names of registers.
257 There should be NUM_REGS strings in this initializer. */
258
259 #define REGISTER_NAMES \
260 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
261 "r8", "r9", "r10","r11","r12","r13","r14","r15", \
262 "r16","r17","r18","r19","r20","r21","r22","r23", \
263 "r24","r25","r26","r27","r28","r29","r30","r31", \
264 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
265 "f8", "f9", "f10","f11","f12","f13","f14","f15", \
266 "f16","f17","f18","f19","f20","f21","f22","f23", \
267 "f24","f25","f26","f27","f28","f29","f30","f31", \
268 "pc", "ps", "cnd", "lr", "cnt", "xer", "mq" }
269
270 /* Register numbers of various important registers.
271 Note that some of these values are "real" register numbers,
272 and correspond to the general registers of the machine,
273 and some are "phony" register numbers which are too large
274 to be actual register numbers as far as the user is concerned
275 but do serve to get the desired values when passed to read_register. */
276
277 #define FP_REGNUM 1 /* Contains address of executing stack frame */
278 #define SP_REGNUM 1 /* Contains address of top of stack */
279 #define TOC_REGNUM 2 /* TOC register */
280 #define FP0_REGNUM 32 /* Floating point register 0 */
281 #define GP0_REGNUM 0 /* GPR register 0 */
282 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
283 #define FPLAST_REGNUM 63 /* Last floating point register */
284
285 /* Special purpose registers... */
286 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave' structure, for
287 easier processing */
288
289 #define PC_REGNUM 64 /* Program counter (instruction address %iar) */
290 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
291 #define CR_REGNUM 66 /* Condition register */
292 #define LR_REGNUM 67 /* Link register */
293 #define CTR_REGNUM 68 /* Count register */
294 #define XER_REGNUM 69 /* Fixed point exception registers */
295 #define MQ_REGNUM 70 /* Multiply/quotient register */
296
297 #define FIRST_SP_REGNUM 64 /* first special register number */
298 #define LAST_SP_REGNUM 70 /* last special register number */
299
300 /* Total amount of space needed to store our copies of the machine's
301 register state, the array `registers'.
302
303 32 4-byte gpr's
304 32 8-byte fpr's
305 7 4-byte special purpose registers,
306
307 total 416 bytes. Keep some extra space for now, in case to add more. */
308
309 #define REGISTER_BYTES 420
310
311
312 /* Index within `registers' of the first byte of the space for
313 register N. */
314
315 #define REGISTER_BYTE(N) \
316 ( \
317 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
318 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
319 :((N) * 4) )
320
321 /* Number of bytes of storage in the actual machine representation
322 for register N. */
323 /* Note that the unsigned cast here forces the result of the
324 subtractiion to very high positive values if N < FP0_REGNUM */
325
326 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
327
328 /* Number of bytes of storage in the program's representation
329 for register N. On the RS6000, all regs are 4 bytes
330 except the floating point regs which are 8-byte doubles. */
331
332 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
333
334 /* Largest value REGISTER_RAW_SIZE can have. */
335
336 #define MAX_REGISTER_RAW_SIZE 8
337
338 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
339
340 #define MAX_REGISTER_VIRTUAL_SIZE 8
341
342 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
343
344 #define STAB_REG_TO_REGNUM(value) (value)
345
346 /* Nonzero if register N requires conversion
347 from raw format to virtual format. */
348
349 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
350
351 /* Convert data from raw format for register REGNUM
352 to virtual format for register REGNUM. */
353
354 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
355 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
356
357 /* Convert data from virtual format for register REGNUM
358 to raw format for register REGNUM. */
359
360 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
361 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
362
363 /* Return the GDB type object for the "standard" data type
364 of data in register N. */
365
366 #define REGISTER_VIRTUAL_TYPE(N) \
367 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
368
369 /* Store the address of the place in which to copy the structure the
370 subroutine will return. This is called from call_function. */
371 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
372 In function return, callee is not responsible of returning this address back.
373 Since gdb needs to find it, we will store in a designated variable
374 `rs6000_struct_return_address'. */
375
376 extern unsigned int rs6000_struct_return_address;
377
378 #define STORE_STRUCT_RETURN(ADDR, SP) \
379 { write_register (3, (ADDR)); \
380 rs6000_struct_return_address = (unsigned int)(ADDR); }
381
382 /* Extract from an array REGBUF containing the (raw) register state
383 a function return value of type TYPE, and copy that, in virtual format,
384 into VALBUF. */
385
386 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
387 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) */
388
389 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
390 extract_return_value(TYPE,REGBUF,VALBUF)
391
392 /* Write into appropriate registers a function return value
393 of type TYPE, given in virtual format. */
394
395 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
396 { \
397 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
398 \
399 /* Floating point values are returned starting from FPR1 and up. \
400 Say a double_double_double type could be returned in \
401 FPR1/FPR2/FPR3 triple. */ \
402 \
403 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
404 TYPE_LENGTH (TYPE)); \
405 else \
406 /* Everything else is returned in GPR3 and up. */ \
407 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
408 TYPE_LENGTH (TYPE)); \
409 }
410
411
412 /* Extract from an array REGBUF containing the (raw) register state
413 the address in which a function should return its structure value,
414 as a CORE_ADDR (or an expression that can be used as one). */
415
416 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
417
418
419 /* Do implement the attach and detach commands. */
420
421 #define ATTACH_DETACH
422
423 /* infptrace.c requires those. */
424
425 #define PTRACE_ATTACH 30
426 #define PTRACE_DETACH 31
427
428 \f
429 /* Describe the pointer in each stack frame to the previous stack frame
430 (its caller). */
431
432 /* FRAME_CHAIN takes a frame's nominal address
433 and produces the frame's chain-pointer. */
434
435 /* In the case of the RS6000, the frame's nominal address
436 is the address of a 4-byte word containing the calling frame's address. */
437
438 #define FRAME_CHAIN(thisframe) \
439 (!inside_entry_file ((thisframe)->pc) ? \
440 read_memory_integer ((thisframe)->frame, 4) :\
441 0)
442
443 /* Define other aspects of the stack frame. */
444
445 /* A macro that tells us whether the function invocation represented
446 by FI does not have a frame on the stack associated with it. If it
447 does not, FRAMELESS is set to 1, else 0. */
448
449 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
450 FRAMELESS = frameless_function_invocation (FI)
451
452 /* Functions calling alloca() change the value of the stack pointer. We
453 need to use initial stack pointer (which is saved in r31 by gcc) in
454 such cases. If a compiler emits traceback table, then we should use the
455 alloca register specified in traceback table. FIXME. */
456 /* Also, it is a good idea to cache information about frame's saved registers
457 in the frame structure to speed things up. See tm-m88k.h. FIXME. */
458
459 #define EXTRA_FRAME_INFO \
460 CORE_ADDR initial_sp; /* initial stack pointer. */ \
461 struct frame_saved_regs *cache_fsr; /* saved registers */
462
463 /* Frameless function invocation in IBM RS/6000 is half-done. It perfectly
464 sets up a new frame, e.g. a new frame (in fact stack) pointer, etc, but it
465 doesn't save the %pc. In the following, even though it is considered a
466 frameless invocation, we still need to walk one frame up. */
467
468 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
469 fi->initial_sp = 0; \
470 fi->cache_fsr = 0;
471
472 #define FRAME_SAVED_PC(FRAME) \
473 read_memory_integer (read_memory_integer ((FRAME)->frame, 4)+8, 4)
474
475 #define FRAME_ARGS_ADDRESS(FI) \
476 (((struct frame_info*)(FI))->initial_sp ? \
477 ((struct frame_info*)(FI))->initial_sp : \
478 frame_initial_stack_address (FI))
479
480 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
481
482
483 /* Set VAL to the number of args passed to frame described by FI.
484 Can set VAL to -1, meaning no way to tell. */
485
486 /* We can't tell how many args there are
487 now that the C compiler delays popping them. */
488
489 #define FRAME_NUM_ARGS(val,fi) (val = -1)
490
491 /* Return number of bytes at start of arglist that are not really args. */
492
493 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
494
495 /* Put here the code to store, into a struct frame_saved_regs,
496 the addresses of the saved registers of frame described by FRAME_INFO.
497 This includes special registers such as pc and fp saved in special
498 ways in the stack frame. sp is even more special:
499 the address we return for it IS the sp for the next frame. */
500 /* In the following implementation for RS6000, we did *not* save sp. I am
501 not sure if it will be needed. The following macro takes care of gpr's
502 and fpr's only. */
503
504 #define FRAME_FIND_SAVED_REGS(FRAME_INFO, FRAME_SAVED_REGS) \
505 { \
506 int ii, frame_addr, func_start; \
507 struct aix_framedata fdata; \
508 \
509 /* find the start of the function and collect info about its frame. */ \
510 \
511 func_start = get_pc_function_start ((FRAME_INFO)->pc) + FUNCTION_START_OFFSET;\
512 function_frame_info (func_start, &fdata); \
513 bzero (&(FRAME_SAVED_REGS), sizeof (FRAME_SAVED_REGS)); \
514 \
515 /* if there were any saved registers, figure out parent's stack pointer. */ \
516 frame_addr = 0; \
517 /* the following is true only if the frame doesn't have a call to alloca(), \
518 FIXME. */ \
519 if (fdata.saved_fpr >= 0 || fdata.saved_gpr >= 0) { \
520 if ((FRAME_INFO)->prev && (FRAME_INFO)->prev->frame) \
521 frame_addr = (FRAME_INFO)->prev->frame; \
522 else \
523 frame_addr = read_memory_integer ((FRAME_INFO)->frame, 4); \
524 } \
525 \
526 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. All fpr's \
527 from saved_fpr to fp31 are saved right underneath caller stack pointer, \
528 starting from fp31 first. */ \
529 \
530 if (fdata.saved_fpr >= 0) { \
531 for (ii=31; ii >= fdata.saved_fpr; --ii) \
532 (FRAME_SAVED_REGS).regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); \
533 frame_addr -= (32 - fdata.saved_fpr) * 8; \
534 } \
535 \
536 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. All gpr's \
537 from saved_gpr to gpr31 are saved right under saved fprs, starting \
538 from r31 first. */ \
539 \
540 if (fdata.saved_gpr >= 0) \
541 for (ii=31; ii >= fdata.saved_gpr; --ii) \
542 (FRAME_SAVED_REGS).regs [ii] = frame_addr - ((32 - ii) * 4); \
543 }
544
545 \f
546 /* Things needed for making the inferior call functions. */
547
548 /* Push an empty stack frame, to record the current PC, etc. */
549 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
550
551 #define PUSH_DUMMY_FRAME push_dummy_frame ()
552
553 /* Discard from the stack the innermost frame,
554 restoring all saved registers. */
555
556 #define POP_FRAME pop_frame ()
557
558 /* This sequence of words is the instructions:
559
560 mflr r0 // 0x7c0802a6
561 // save fpr's
562 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
563 // save gpr's
564 stm r0, num(r1) // 0xbc010000
565 stu r1, num(r1) // 0x94210000
566
567 // the function we want to branch might be in a different load
568 // segment. reset the toc register. Note that the actual toc address
569 // will be fix by fix_call_dummy () along with function address.
570
571 st r2, 0x14(r1) // 0x90410014 save toc register
572 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
573 oril r2, r2,0x5678 // 0x60425678
574
575 // load absolute address 0x12345678 to r0
576 liu r0, 0x1234 // 0x3c001234
577 oril r0, r0,0x5678 // 0x60005678
578 mtctr r0 // 0x7c0903a6 ctr <- r0
579 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
580 cror 0xf, 0xf, 0xf // 0x4def7b82
581 brpt // 0x7d821008, breakpoint
582 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
583
584
585 We actually start executing by saving the toc register first, since the pushing
586 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
587 the arguments for the function called by the `bctrl' would be pushed
588 between the `stu' and the `bctrl', and we could allow it to execute through.
589 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
590 and we cannot allow to push the registers again.
591 */
592
593 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
594 0x90410014, 0x3c401234, 0x60425678, \
595 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
596 0x4def7b82, 0x7d821008, 0x4def7b82 }
597
598
599 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
600 #define CALL_DUMMY_LENGTH 56
601
602 #define CALL_DUMMY_START_OFFSET 16
603
604 /* Insert the specified number of args and function address
605 into a call sequence of the above form stored at DUMMYNAME. */
606
607 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, using_gcc) \
608 fix_call_dummy(dummyname, pc, fun, nargs, type)
609
610
611 /* Signal handler for SIGWINCH `window size changed'. */
612
613 #define SIGWINCH_HANDLER aix_resizewindow
614 extern void aix_resizewindow ();
615
616 /* `lines_per_page' and `chars_per_line' are local to utils.c. Rectify this. */
617
618 #define SIGWINCH_HANDLER_BODY \
619 \
620 /* Respond to SIGWINCH `window size changed' signal, and reset GDB's \
621 window settings approproatelt. */ \
622 \
623 void \
624 aix_resizewindow () \
625 { \
626 int fd = fileno (stdout); \
627 if (isatty (fd)) { \
628 int val; \
629 \
630 val = atoi (termdef (fd, 'l')); \
631 if (val > 0) \
632 lines_per_page = val; \
633 val = atoi (termdef (fd, 'c')); \
634 if (val > 0) \
635 chars_per_line = val; \
636 } \
637 }
638
639
640 /* Flag for machine-specific stuff in shared files. FIXME */
641 #define IBM6000_TARGET
This page took 0.043994 seconds and 4 git commands to generate.