* tm-rs6000.h: Remove #include of inferior.h. Fixes many
[deliverable/binutils-gdb.git] / gdb / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3 Contributed by IBM Corporation.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* A successful ptrace(continue) might return errno != 0 in this particular port
23 of rs6000. I am not sure why. We will use this kludge and ignore it until
24 we figure out the real problem. */
25
26 #define AIX_BUGGY_PTRACE_CONTINUE \
27 { \
28 int ret = ptrace (PT_CONTINUE, inferior_pid, (int *)1, signal, 0); \
29 if (errno) { \
30 /* printf ("ret: %d, errno: %d, signal: %d\n", ret, errno, signal); */ \
31 errno = 0; } \
32 }
33
34 extern int symtab_relocated;
35
36 /* Minimum possible text address in AIX */
37
38 #define TEXT_SEGMENT_BASE 0x10000000
39
40
41 /* text addresses in a core file does not necessarily match to symbol table,
42 if symbol table relocation wasn't done yet. */
43
44 #define CORE_NEEDS_RELOCATION(PC) \
45 if (!symtab_relocated && !inferior_pid && (PC) > TEXT_SEGMENT_BASE) \
46 (PC) -= ( TEXT_SEGMENT_BASE + text_adjustment (exec_bfd));
47
48 /* Load segment of a given pc value. */
49
50 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
51
52
53 /* Conversion between a register number in stab string to actual register num. */
54
55 #define STAB_REG_TO_REGNUM(value) (value)
56
57 /* return true if a given `pc' value is in `call dummy' function. */
58
59 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
60 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
61
62 /* For each symtab, we keep track of which BFD it came from. */
63 #define EXTRA_SYMTAB_INFO \
64 unsigned nonreloc:1; /* TRUE if non relocatable */
65
66 #define INIT_EXTRA_SYMTAB_INFO(symtab) \
67 symtab->nonreloc = 0; \
68
69 extern unsigned int text_start, data_start;
70 extern int inferior_pid;
71 extern char *corefile;
72
73 /* setpgrp() messes up controling terminal. The other version of it
74 requires libbsd.a. */
75 #define setpgrp(XX,YY) setpgid (XX, YY)
76
77 /* We are missing register descriptions in the system header files. Sigh! */
78
79 struct regs {
80 int gregs [32]; /* general purpose registers */
81 int pc; /* program conter */
82 int ps; /* processor status, or machine state */
83 };
84
85 struct fp_status {
86 double fpregs [32]; /* floating GP registers */
87 };
88
89
90 /* To be used by function_frame_info. */
91
92 struct aix_framedata {
93 int offset; /* # of bytes in gpr's and fpr's are saved */
94 int saved_gpr; /* smallest # of saved gpr */
95 int saved_fpr; /* smallest # of saved fpr */
96 int alloca_reg; /* alloca register number (frame ptr) */
97 char frameless; /* true if frameless functions. */
98 };
99
100
101 /* Define the byte order of the machine. */
102
103 #define TARGET_BYTE_ORDER BIG_ENDIAN
104
105 /* Define this if the C compiler puts an underscore at the front
106 of external names before giving them to the linker. */
107
108 #undef NAMES_HAVE_UNDERSCORE
109
110 /* AIX's assembler doesn't grok dollar signs in identifiers.
111 So we use dots instead. This item must be coordinated with G++. */
112 #undef CPLUS_MARKER
113 #define CPLUS_MARKER '.'
114
115 /* Offset from address of function to start of its code.
116 Zero on most machines. */
117
118 #define FUNCTION_START_OFFSET 0
119
120 /* Advance PC across any function entry prologue instructions
121 to reach some "real" code. */
122
123 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
124
125 /* If PC is in some function-call trampoline code, return the PC
126 where the function itself actually starts. If not, return NULL. */
127
128 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
129
130 /* When a child process is just starting, we sneak in and relocate
131 the symbol table (and other stuff) after the dynamic linker has
132 figured out where they go. But we want to do this relocation just
133 once. */
134
135 extern int aix_loadInfoTextIndex;
136
137 #define SOLIB_CREATE_INFERIOR_HOOK(PID) \
138 do { \
139 if (aix_loadInfoTextIndex == 0) \
140 aixcoff_relocate_symtab (PID); \
141 } while (0)
142
143
144 /* Number of trap signals we need to skip over, once the inferior process
145 starts running. */
146
147 #define START_INFERIOR_TRAPS_EXPECTED 2
148
149 /* AIX might return a sigtrap, with a "stop after load" status. It should
150 be ignored by gdb, shouldn't be mixed up with breakpoint traps. */
151
152 /* Another little glitch in AIX is signal 0. I have no idea why wait(2)
153 returns with this status word. It looks harmless. */
154
155 #define SIGTRAP_STOP_AFTER_LOAD(W) \
156 if ( (W) == 0x57c || (W) == 0x7f) { \
157 if ((W)==0x57c && breakpoints_inserted) { \
158 mark_breakpoints_out (); \
159 insert_breakpoints (); \
160 insert_step_breakpoint (); \
161 } \
162 resume (0, 0); \
163 continue; \
164 }
165
166 /* In aixcoff, we cannot process line numbers when we see them. This is
167 mainly because we don't know the boundaries of the include files. So,
168 we postpone that, and then enter and sort(?) the whole line table at
169 once, when we are closing the current symbol table in end_symtab(). */
170
171 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
172
173
174 /* When a target process or core-file has been attached, we sneak in
175 and figure out where the shared libraries have got to. In case there
176 is no inferior_process exists (e.g. bringing up a core file), we can't
177 attemtp to relocate symbol table, since we don't have information about
178 load segments. */
179
180 #define SOLIB_ADD(a, b, c) \
181 if (inferior_pid) aixcoff_relocate_symtab (inferior_pid)
182
183 /* Immediately after a function call, return the saved pc.
184 Can't go through the frames for this because on some machines
185 the new frame is not set up until the new function executes
186 some instructions. */
187
188 #define SAVED_PC_AFTER_CALL(frame) \
189 (register_valid [LR_REGNUM] ? \
190 (*(int*)&registers[REGISTER_BYTE (LR_REGNUM)]) : \
191 read_register (LR_REGNUM))
192
193 /*#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call(frame) */
194
195
196 /* Address of end of stack space. */
197
198 #define STACK_END_ADDR 0x2ff80000
199
200 /* Stack grows downward. */
201
202 #define INNER_THAN <
203
204 #if 0
205 /* No, we shouldn't use this. push_arguments() should leave stack in a
206 proper alignment! */
207 /* Stack has strict alignment. */
208
209 #define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
210 #endif
211
212 /* This is how argumets pushed onto stack or passed in registers. */
213
214 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
215 sp = push_arguments(nargs, args, sp, struct_return, struct_addr)
216
217 /* Sequence of bytes for breakpoint instruction. */
218
219 #define BREAKPOINT {0x7d, 0x82, 0x10, 0x08}
220
221 /* Amount PC must be decremented by after a breakpoint.
222 This is often the number of bytes in BREAKPOINT
223 but not always. */
224
225 #define DECR_PC_AFTER_BREAK 0
226
227 /* Nonzero if instruction at PC is a return instruction. */
228 /* Allow any of the return instructions, including a trapv and a return
229 from interrupt. */
230
231 #define ABOUT_TO_RETURN(pc) \
232 ((read_memory_integer (pc, 4) & 0xfe8007ff) == 0x4e800020)
233
234 /* Return 1 if P points to an invalid floating point value. */
235
236 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
237
238 /* Largest integer type */
239
240 #define LONGEST long
241
242 /* Name of the builtin type for the LONGEST type above. */
243
244 #define BUILTIN_TYPE_LONGEST builtin_type_long
245
246 /* Say how long (ordinary) registers are. */
247
248 #define REGISTER_TYPE long
249
250 /* Number of machine registers */
251
252 #define NUM_REGS 71
253
254 /* Initializer for an array of names of registers.
255 There should be NUM_REGS strings in this initializer. */
256
257 #define REGISTER_NAMES \
258 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
259 "r8", "r9", "r10","r11","r12","r13","r14","r15", \
260 "r16","r17","r18","r19","r20","r21","r22","r23", \
261 "r24","r25","r26","r27","r28","r29","r30","r31", \
262 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
263 "f8", "f9", "f10","f11","f12","f13","f14","f15", \
264 "f16","f17","f18","f19","f20","f21","f22","f23", \
265 "f24","f25","f26","f27","f28","f29","f30","f31", \
266 "pc", "ps", "cnd", "lr", "cnt", "xer", "mq" }
267
268 /* Register numbers of various important registers.
269 Note that some of these values are "real" register numbers,
270 and correspond to the general registers of the machine,
271 and some are "phony" register numbers which are too large
272 to be actual register numbers as far as the user is concerned
273 but do serve to get the desired values when passed to read_register. */
274
275 #define FP_REGNUM 1 /* Contains address of executing stack frame */
276 #define SP_REGNUM 1 /* Contains address of top of stack */
277 #define TOC_REGNUM 2 /* TOC register */
278 #define FP0_REGNUM 32 /* Floating point register 0 */
279 #define GP0_REGNUM 0 /* GPR register 0 */
280 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
281 #define FPLAST_REGNUM 63 /* Last floating point register */
282
283 /* Special purpose registers... */
284 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave' structure, for
285 easier processing */
286
287 #define PC_REGNUM 64 /* Program counter (instruction address %iar) */
288 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
289 #define CR_REGNUM 66 /* Condition register */
290 #define LR_REGNUM 67 /* Link register */
291 #define CTR_REGNUM 68 /* Count register */
292 #define XER_REGNUM 69 /* Fixed point exception registers */
293 #define MQ_REGNUM 70 /* Multiply/quotient register */
294
295 #define FIRST_SP_REGNUM 64 /* first special register number */
296 #define LAST_SP_REGNUM 70 /* last special register number */
297
298 /* Total amount of space needed to store our copies of the machine's
299 register state, the array `registers'.
300
301 32 4-byte gpr's
302 32 8-byte fpr's
303 7 4-byte special purpose registers,
304
305 total 416 bytes. Keep some extra space for now, in case to add more. */
306
307 #define REGISTER_BYTES 420
308
309
310 /* Index within `registers' of the first byte of the space for
311 register N. */
312
313 #define REGISTER_BYTE(N) \
314 ( \
315 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
316 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
317 :((N) * 4) )
318
319 /* Number of bytes of storage in the actual machine representation
320 for register N. */
321 /* Note that the unsigned cast here forces the result of the
322 subtractiion to very high positive values if N < FP0_REGNUM */
323
324 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
325
326 /* Number of bytes of storage in the program's representation
327 for register N. On the RS6000, all regs are 4 bytes
328 except the floating point regs which are 8-byte doubles. */
329
330 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
331
332 /* Largest value REGISTER_RAW_SIZE can have. */
333
334 #define MAX_REGISTER_RAW_SIZE 8
335
336 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
337
338 #define MAX_REGISTER_VIRTUAL_SIZE 8
339
340 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
341
342 #define STAB_REG_TO_REGNUM(value) (value)
343
344 /* Nonzero if register N requires conversion
345 from raw format to virtual format. */
346
347 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
348
349 /* Convert data from raw format for register REGNUM
350 to virtual format for register REGNUM. */
351
352 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
353 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
354
355 /* Convert data from virtual format for register REGNUM
356 to raw format for register REGNUM. */
357
358 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
359 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
360
361 /* Return the GDB type object for the "standard" data type
362 of data in register N. */
363
364 #define REGISTER_VIRTUAL_TYPE(N) \
365 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
366
367 /* Store the address of the place in which to copy the structure the
368 subroutine will return. This is called from call_function. */
369 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
370 In function return, callee is not responsible of returning this address back.
371 Since gdb needs to find it, we will store in a designated variable
372 `rs6000_struct_return_address'. */
373
374 extern unsigned int rs6000_struct_return_address;
375
376 #define STORE_STRUCT_RETURN(ADDR, SP) \
377 { write_register (3, (ADDR)); \
378 rs6000_struct_return_address = (unsigned int)(ADDR); }
379
380 /* Extract from an array REGBUF containing the (raw) register state
381 a function return value of type TYPE, and copy that, in virtual format,
382 into VALBUF. */
383
384 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
385 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) */
386
387 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
388 extract_return_value(TYPE,REGBUF,VALBUF)
389
390 /* Write into appropriate registers a function return value
391 of type TYPE, given in virtual format. */
392
393 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
394 { \
395 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
396 \
397 /* Floating point values are returned starting from FPR1 and up. \
398 Say a double_double_double type could be returned in \
399 FPR1/FPR2/FPR3 triple. */ \
400 \
401 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
402 TYPE_LENGTH (TYPE)); \
403 else \
404 /* Everything else is returned in GPR3 and up. */ \
405 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
406 TYPE_LENGTH (TYPE)); \
407 }
408
409
410 /* Extract from an array REGBUF containing the (raw) register state
411 the address in which a function should return its structure value,
412 as a CORE_ADDR (or an expression that can be used as one). */
413
414 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
415
416
417 /* Do implement the attach and detach commands. */
418
419 #define ATTACH_DETACH
420
421 /* infptrace.c requires those. */
422
423 #define PTRACE_ATTACH 30
424 #define PTRACE_DETACH 31
425
426 \f
427 /* Describe the pointer in each stack frame to the previous stack frame
428 (its caller). */
429
430 /* FRAME_CHAIN takes a frame's nominal address
431 and produces the frame's chain-pointer. */
432
433 /* In the case of the RS6000, the frame's nominal address
434 is the address of a 4-byte word containing the calling frame's address. */
435
436 #define FRAME_CHAIN(thisframe) \
437 (!inside_entry_file ((thisframe)->pc) ? \
438 read_memory_integer ((thisframe)->frame, 4) :\
439 0)
440
441 /* Define other aspects of the stack frame. */
442
443 /* A macro that tells us whether the function invocation represented
444 by FI does not have a frame on the stack associated with it. If it
445 does not, FRAMELESS is set to 1, else 0. */
446
447 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
448 FRAMELESS = frameless_function_invocation (FI)
449
450 /* Functions calling alloca() change the value of the stack pointer. We
451 need to use initial stack pointer (which is saved in r31 by gcc) in
452 such cases. If a compiler emits traceback table, then we should use the
453 alloca register specified in traceback table. FIXME. */
454 /* Also, it is a good idea to cache information about frame's saved registers
455 in the frame structure to speed things up. See tm-m88k.h. FIXME. */
456
457 #define EXTRA_FRAME_INFO \
458 CORE_ADDR initial_sp; /* initial stack pointer. */ \
459 struct frame_saved_regs *cache_fsr; /* saved registers */
460
461 /* Frameless function invocation in IBM RS/6000 is half-done. It perfectly
462 sets up a new frame, e.g. a new frame (in fact stack) pointer, etc, but it
463 doesn't save the %pc. In the following, even though it is considered a
464 frameless invocation, we still need to walk one frame up. */
465
466 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
467 fi->initial_sp = 0; \
468 fi->cache_fsr = 0;
469
470 #define FRAME_SAVED_PC(FRAME) \
471 read_memory_integer (read_memory_integer ((FRAME)->frame, 4)+8, 4)
472
473 #define FRAME_ARGS_ADDRESS(FI) \
474 (((struct frame_info*)(FI))->initial_sp ? \
475 ((struct frame_info*)(FI))->initial_sp : \
476 frame_initial_stack_address (FI))
477
478 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
479
480
481 /* Set VAL to the number of args passed to frame described by FI.
482 Can set VAL to -1, meaning no way to tell. */
483
484 /* We can't tell how many args there are
485 now that the C compiler delays popping them. */
486
487 #define FRAME_NUM_ARGS(val,fi) (val = -1)
488
489 /* Return number of bytes at start of arglist that are not really args. */
490
491 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
492
493 /* Put here the code to store, into a struct frame_saved_regs,
494 the addresses of the saved registers of frame described by FRAME_INFO.
495 This includes special registers such as pc and fp saved in special
496 ways in the stack frame. sp is even more special:
497 the address we return for it IS the sp for the next frame. */
498 /* In the following implementation for RS6000, we did *not* save sp. I am
499 not sure if it will be needed. The following macro takes care of gpr's
500 and fpr's only. */
501
502 #define FRAME_FIND_SAVED_REGS(FRAME_INFO, FRAME_SAVED_REGS) \
503 { \
504 int ii, frame_addr, func_start; \
505 struct aix_framedata fdata; \
506 \
507 /* find the start of the function and collect info about its frame. */ \
508 \
509 func_start = get_pc_function_start ((FRAME_INFO)->pc) + FUNCTION_START_OFFSET;\
510 function_frame_info (func_start, &fdata); \
511 bzero (&(FRAME_SAVED_REGS), sizeof (FRAME_SAVED_REGS)); \
512 \
513 /* if there were any saved registers, figure out parent's stack pointer. */ \
514 frame_addr = 0; \
515 /* the following is true only if the frame doesn't have a call to alloca(), \
516 FIXME. */ \
517 if (fdata.saved_fpr >= 0 || fdata.saved_gpr >= 0) { \
518 if ((FRAME_INFO)->prev && (FRAME_INFO)->prev->frame) \
519 frame_addr = (FRAME_INFO)->prev->frame; \
520 else \
521 frame_addr = read_memory_integer ((FRAME_INFO)->frame, 4); \
522 } \
523 \
524 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. All fpr's \
525 from saved_fpr to fp31 are saved right underneath caller stack pointer, \
526 starting from fp31 first. */ \
527 \
528 if (fdata.saved_fpr >= 0) { \
529 for (ii=31; ii >= fdata.saved_fpr; --ii) \
530 (FRAME_SAVED_REGS).regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); \
531 frame_addr -= (32 - fdata.saved_fpr) * 8; \
532 } \
533 \
534 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. All gpr's \
535 from saved_gpr to gpr31 are saved right under saved fprs, starting \
536 from r31 first. */ \
537 \
538 if (fdata.saved_gpr >= 0) \
539 for (ii=31; ii >= fdata.saved_gpr; --ii) \
540 (FRAME_SAVED_REGS).regs [ii] = frame_addr - ((32 - ii) * 4); \
541 }
542
543 \f
544 /* Things needed for making the inferior call functions. */
545
546 /* Push an empty stack frame, to record the current PC, etc. */
547 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
548
549 #define PUSH_DUMMY_FRAME push_dummy_frame ()
550
551 /* Discard from the stack the innermost frame,
552 restoring all saved registers. */
553
554 #define POP_FRAME pop_frame ()
555
556 /* This sequence of words is the instructions:
557
558 mflr r0 // 0x7c0802a6
559 // save fpr's
560 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
561 // save gpr's
562 stm r0, num(r1) // 0xbc010000
563 stu r1, num(r1) // 0x94210000
564
565 // the function we want to branch might be in a different load
566 // segment. reset the toc register. Note that the actual toc address
567 // will be fix by fix_call_dummy () along with function address.
568
569 st r2, 0x14(r1) // 0x90410014 save toc register
570 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
571 oril r2, r2,0x5678 // 0x60425678
572
573 // load absolute address 0x12345678 to r0
574 liu r0, 0x1234 // 0x3c001234
575 oril r0, r0,0x5678 // 0x60005678
576 mtctr r0 // 0x7c0903a6 ctr <- r0
577 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
578 cror 0xf, 0xf, 0xf // 0x4def7b82
579 brpt // 0x7d821008, breakpoint
580 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
581
582
583 We actually start executing by saving the toc register first, since the pushing
584 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
585 the arguments for the function called by the `bctrl' would be pushed
586 between the `stu' and the `bctrl', and we could allow it to execute through.
587 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
588 and we cannot allow to push the registers again.
589 */
590
591 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
592 0x90410014, 0x3c401234, 0x60425678, \
593 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
594 0x4def7b82, 0x7d821008, 0x4def7b82 }
595
596
597 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
598 #define CALL_DUMMY_LENGTH 56
599
600 #define CALL_DUMMY_START_OFFSET 16
601
602 /* Insert the specified number of args and function address
603 into a call sequence of the above form stored at DUMMYNAME. */
604
605 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, using_gcc) \
606 fix_call_dummy(dummyname, pc, fun, nargs, type)
607
608
609 /* Signal handler for SIGWINCH `window size changed'. */
610
611 #define SIGWINCH_HANDLER aix_resizewindow
612 extern void aix_resizewindow ();
613
614 /* `lines_per_page' and `chars_per_line' are local to utils.c. Rectify this. */
615
616 #define SIGWINCH_HANDLER_BODY \
617 \
618 /* Respond to SIGWINCH `window size changed' signal, and reset GDB's \
619 window settings approproatelt. */ \
620 \
621 void \
622 aix_resizewindow () \
623 { \
624 int fd = fileno (stdout); \
625 if (isatty (fd)) { \
626 int val; \
627 \
628 val = atoi (termdef (fd, 'l')); \
629 if (val > 0) \
630 lines_per_page = val; \
631 val = atoi (termdef (fd, 'c')); \
632 if (val > 0) \
633 chars_per_line = val; \
634 } \
635 }
636
637
638 /* Flag for machine-specific stuff in shared files. FIXME */
639 #define IBM6000_TARGET
This page took 0.041935 seconds and 5 git commands to generate.