nuke no-op STAB_REG_TO_REGNUM
[deliverable/binutils-gdb.git] / gdb / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by IBM Corporation.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 extern int symtab_relocated;
22
23 /* Minimum possible text address in AIX */
24
25 #define TEXT_SEGMENT_BASE 0x10000000
26
27
28 /* text addresses in a core file does not necessarily match to symbol table,
29 if symbol table relocation wasn't done yet. */
30
31 #define CORE_NEEDS_RELOCATION(PC) \
32 if (!symtab_relocated && !inferior_pid) \
33 xcoff_relocate_core ();
34 extern void xcoff_relocate_core PARAMS ((void));
35
36 /* Load segment of a given pc value. */
37
38 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
39
40 /* AIX cc seems to get this right. */
41
42 #define BELIEVE_PCC_PROMOTION 1
43
44 /* return true if a given `pc' value is in `call dummy' function. */
45
46 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
47 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
48
49 /* For each symtab, we keep track of which BFD it came from. */
50 #define EXTRA_SYMTAB_INFO \
51 unsigned nonreloc:1; /* TRUE if non relocatable */
52
53 #define INIT_EXTRA_SYMTAB_INFO(symtab) \
54 symtab->nonreloc = 0; \
55
56 extern unsigned int text_start, data_start;
57 extern int inferior_pid;
58 extern char *corefile;
59
60 /* setpgrp() messes up controling terminal. The other version of it
61 requires libbsd.a. */
62 #define setpgrp(XX,YY) setpgid (XX, YY)
63
64 /* We are missing register descriptions in the system header files. Sigh! */
65
66 struct regs {
67 int gregs [32]; /* general purpose registers */
68 int pc; /* program conter */
69 int ps; /* processor status, or machine state */
70 };
71
72 struct fp_status {
73 double fpregs [32]; /* floating GP registers */
74 };
75
76
77 /* To be used by function_frame_info. */
78
79 struct aix_framedata {
80 int offset; /* # of bytes in gpr's and fpr's are saved */
81 int saved_gpr; /* smallest # of saved gpr */
82 int saved_fpr; /* smallest # of saved fpr */
83 int alloca_reg; /* alloca register number (frame ptr) */
84 char frameless; /* true if frameless functions. */
85 char nosavedpc; /* true if pc not saved. */
86 };
87
88 void
89 function_frame_info PARAMS ((CORE_ADDR, struct aix_framedata *));
90
91 /* Define the byte order of the machine. */
92
93 #define TARGET_BYTE_ORDER BIG_ENDIAN
94
95 /* AIX's assembler doesn't grok dollar signs in identifiers.
96 So we use dots instead. This item must be coordinated with G++. */
97 #undef CPLUS_MARKER
98 #define CPLUS_MARKER '.'
99
100 /* Offset from address of function to start of its code.
101 Zero on most machines. */
102
103 #define FUNCTION_START_OFFSET 0
104
105 /* Advance PC across any function entry prologue instructions
106 to reach some "real" code. */
107
108 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
109
110 /* If PC is in some function-call trampoline code, return the PC
111 where the function itself actually starts. If not, return NULL. */
112
113 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
114
115 /* When a child process is just starting, we sneak in and relocate
116 the symbol table (and other stuff) after the dynamic linker has
117 figured out where they go. But we want to do this relocation just
118 once. */
119
120 extern int loadinfotextindex;
121
122 #define SOLIB_CREATE_INFERIOR_HOOK(PID) \
123 do { \
124 if (loadinfotextindex == 0) \
125 xcoff_relocate_symtab (PID); \
126 } while (0)
127
128
129 /* Number of trap signals we need to skip over, once the inferior process
130 starts running. */
131
132 #define START_INFERIOR_TRAPS_EXPECTED 2
133
134 /* AIX might return a sigtrap, with a "stop after load" status. It should
135 be ignored by gdb, shouldn't be mixed up with breakpoint traps. */
136
137 /* Another little glitch in AIX is signal 0. I have no idea why wait(2)
138 returns with this status word. It looks harmless. */
139
140 #define SIGTRAP_STOP_AFTER_LOAD(W) \
141 if ( (W) == 0x57c || (W) == 0x7f) { \
142 if ((W)==0x57c && breakpoints_inserted) { \
143 mark_breakpoints_out (); \
144 insert_breakpoints (); \
145 insert_step_breakpoint (); \
146 } \
147 resume (0, 0); \
148 continue; \
149 }
150
151 /* In xcoff, we cannot process line numbers when we see them. This is
152 mainly because we don't know the boundaries of the include files. So,
153 we postpone that, and then enter and sort(?) the whole line table at
154 once, when we are closing the current symbol table in end_symtab(). */
155
156 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
157
158
159 /* When a target process or core-file has been attached, we sneak in
160 and figure out where the shared libraries have got to. In case there
161 is no inferior_process exists (e.g. bringing up a core file), we can't
162 attemtp to relocate symbol table, since we don't have information about
163 load segments. */
164
165 #define SOLIB_ADD(a, b, c) \
166 if (inferior_pid) xcoff_relocate_symtab (inferior_pid)
167
168 /* Immediately after a function call, return the saved pc.
169 Can't go through the frames for this because on some machines
170 the new frame is not set up until the new function executes
171 some instructions. */
172
173 #define SAVED_PC_AFTER_CALL(frame) read_register (LR_REGNUM)
174
175 /* Address of end of stack space. */
176
177 #define STACK_END_ADDR 0x2ff80000
178
179 /* Stack grows downward. */
180
181 #define INNER_THAN <
182
183 #if 0
184 /* No, we shouldn't use this. push_arguments() should leave stack in a
185 proper alignment! */
186 /* Stack has strict alignment. */
187
188 #define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
189 #endif
190
191 /* This is how argumets pushed onto stack or passed in registers. */
192
193 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
194 sp = push_arguments(nargs, args, sp, struct_return, struct_addr)
195
196 /* Sequence of bytes for breakpoint instruction. */
197
198 #define BREAKPOINT {0x7d, 0x82, 0x10, 0x08}
199
200 /* Amount PC must be decremented by after a breakpoint.
201 This is often the number of bytes in BREAKPOINT
202 but not always. */
203
204 #define DECR_PC_AFTER_BREAK 0
205
206 /* Nonzero if instruction at PC is a return instruction. */
207 /* Allow any of the return instructions, including a trapv and a return
208 from interrupt. */
209
210 #define ABOUT_TO_RETURN(pc) \
211 ((read_memory_integer (pc, 4) & 0xfe8007ff) == 0x4e800020)
212
213 /* Return 1 if P points to an invalid floating point value. */
214
215 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
216
217 /* Largest integer type */
218
219 #define LONGEST long
220
221 /* Name of the builtin type for the LONGEST type above. */
222
223 #define BUILTIN_TYPE_LONGEST builtin_type_long
224
225 /* Say how long (ordinary) registers are. */
226
227 #define REGISTER_TYPE long
228
229 /* Number of machine registers */
230
231 #define NUM_REGS 71
232
233 /* Initializer for an array of names of registers.
234 There should be NUM_REGS strings in this initializer. */
235
236 #define REGISTER_NAMES \
237 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
238 "r8", "r9", "r10","r11","r12","r13","r14","r15", \
239 "r16","r17","r18","r19","r20","r21","r22","r23", \
240 "r24","r25","r26","r27","r28","r29","r30","r31", \
241 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
242 "f8", "f9", "f10","f11","f12","f13","f14","f15", \
243 "f16","f17","f18","f19","f20","f21","f22","f23", \
244 "f24","f25","f26","f27","f28","f29","f30","f31", \
245 "pc", "ps", "cnd", "lr", "cnt", "xer", "mq" }
246
247 /* Register numbers of various important registers.
248 Note that some of these values are "real" register numbers,
249 and correspond to the general registers of the machine,
250 and some are "phony" register numbers which are too large
251 to be actual register numbers as far as the user is concerned
252 but do serve to get the desired values when passed to read_register. */
253
254 #define FP_REGNUM 1 /* Contains address of executing stack frame */
255 #define SP_REGNUM 1 /* Contains address of top of stack */
256 #define TOC_REGNUM 2 /* TOC register */
257 #define FP0_REGNUM 32 /* Floating point register 0 */
258 #define GP0_REGNUM 0 /* GPR register 0 */
259 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
260 #define FPLAST_REGNUM 63 /* Last floating point register */
261
262 /* Special purpose registers... */
263 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave' structure, for
264 easier processing */
265
266 #define PC_REGNUM 64 /* Program counter (instruction address %iar) */
267 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
268 #define CR_REGNUM 66 /* Condition register */
269 #define LR_REGNUM 67 /* Link register */
270 #define CTR_REGNUM 68 /* Count register */
271 #define XER_REGNUM 69 /* Fixed point exception registers */
272 #define MQ_REGNUM 70 /* Multiply/quotient register */
273
274 #define FIRST_SP_REGNUM 64 /* first special register number */
275 #define LAST_SP_REGNUM 70 /* last special register number */
276
277 /* Total amount of space needed to store our copies of the machine's
278 register state, the array `registers'.
279
280 32 4-byte gpr's
281 32 8-byte fpr's
282 7 4-byte special purpose registers,
283
284 total 416 bytes. Keep some extra space for now, in case to add more. */
285
286 #define REGISTER_BYTES 420
287
288
289 /* Index within `registers' of the first byte of the space for
290 register N. */
291
292 #define REGISTER_BYTE(N) \
293 ( \
294 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
295 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
296 :((N) * 4) )
297
298 /* Number of bytes of storage in the actual machine representation
299 for register N. */
300 /* Note that the unsigned cast here forces the result of the
301 subtractiion to very high positive values if N < FP0_REGNUM */
302
303 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
304
305 /* Number of bytes of storage in the program's representation
306 for register N. On the RS6000, all regs are 4 bytes
307 except the floating point regs which are 8-byte doubles. */
308
309 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
310
311 /* Largest value REGISTER_RAW_SIZE can have. */
312
313 #define MAX_REGISTER_RAW_SIZE 8
314
315 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
316
317 #define MAX_REGISTER_VIRTUAL_SIZE 8
318
319 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
320
321 #define STAB_REG_TO_REGNUM(value) (value)
322
323 /* Nonzero if register N requires conversion
324 from raw format to virtual format. */
325
326 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
327
328 /* Convert data from raw format for register REGNUM
329 to virtual format for register REGNUM. */
330
331 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
332 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
333
334 /* Convert data from virtual format for register REGNUM
335 to raw format for register REGNUM. */
336
337 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
338 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
339
340 /* Return the GDB type object for the "standard" data type
341 of data in register N. */
342
343 #define REGISTER_VIRTUAL_TYPE(N) \
344 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
345
346 /* Store the address of the place in which to copy the structure the
347 subroutine will return. This is called from call_function. */
348 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
349 In function return, callee is not responsible of returning this address back.
350 Since gdb needs to find it, we will store in a designated variable
351 `rs6000_struct_return_address'. */
352
353 extern unsigned int rs6000_struct_return_address;
354
355 #define STORE_STRUCT_RETURN(ADDR, SP) \
356 { write_register (3, (ADDR)); \
357 rs6000_struct_return_address = (unsigned int)(ADDR); }
358
359 /* Extract from an array REGBUF containing the (raw) register state
360 a function return value of type TYPE, and copy that, in virtual format,
361 into VALBUF. */
362
363 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
364 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) */
365
366 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
367 extract_return_value(TYPE,REGBUF,VALBUF)
368
369 /* Write into appropriate registers a function return value
370 of type TYPE, given in virtual format. */
371
372 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
373 { \
374 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
375 \
376 /* Floating point values are returned starting from FPR1 and up. \
377 Say a double_double_double type could be returned in \
378 FPR1/FPR2/FPR3 triple. */ \
379 \
380 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
381 TYPE_LENGTH (TYPE)); \
382 else \
383 /* Everything else is returned in GPR3 and up. */ \
384 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
385 TYPE_LENGTH (TYPE)); \
386 }
387
388
389 /* Extract from an array REGBUF containing the (raw) register state
390 the address in which a function should return its structure value,
391 as a CORE_ADDR (or an expression that can be used as one). */
392
393 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
394 \f
395 /* Describe the pointer in each stack frame to the previous stack frame
396 (its caller). */
397
398 /* FRAME_CHAIN takes a frame's nominal address
399 and produces the frame's chain-pointer. */
400
401 /* In the case of the RS6000, the frame's nominal address
402 is the address of a 4-byte word containing the calling frame's address. */
403
404 #define FRAME_CHAIN(thisframe) \
405 (!inside_entry_file ((thisframe)->pc) ? \
406 read_memory_integer ((thisframe)->frame, 4) :\
407 0)
408
409 /* Define other aspects of the stack frame. */
410
411 /* A macro that tells us whether the function invocation represented
412 by FI does not have a frame on the stack associated with it. If it
413 does not, FRAMELESS is set to 1, else 0. */
414
415 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
416 FRAMELESS = frameless_function_invocation (FI, 0)
417
418 /* Functions calling alloca() change the value of the stack pointer. We
419 need to use initial stack pointer (which is saved in r31 by gcc) in
420 such cases. If a compiler emits traceback table, then we should use the
421 alloca register specified in traceback table. FIXME. */
422 /* Also, it is a good idea to cache information about frame's saved registers
423 in the frame structure to speed things up. See tm-m88k.h. FIXME. */
424
425 #define EXTRA_FRAME_INFO \
426 CORE_ADDR initial_sp; /* initial stack pointer. */ \
427 struct frame_saved_regs *cache_fsr; /* saved registers */
428
429 /* Frameless function invocation in IBM RS/6000 is sometimes
430 half-done. It perfectly sets up a new frame, e.g. a new frame (in
431 fact stack) pointer, etc, but it doesn't save the %pc. We call
432 frameless_function_invocation to tell us how to get the %pc. */
433
434 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
435 fi->initial_sp = 0; \
436 fi->cache_fsr = 0;
437
438 #define FRAME_SAVED_PC(FRAME) \
439 (frameless_function_invocation (FRAME, 1) \
440 ? SAVED_PC_AFTER_CALL (FRAME) \
441 : read_memory_integer (read_memory_integer ((FRAME)->frame, 4)+8, 4))
442
443 #define FRAME_ARGS_ADDRESS(FI) \
444 (((struct frame_info*)(FI))->initial_sp ? \
445 ((struct frame_info*)(FI))->initial_sp : \
446 frame_initial_stack_address (FI))
447
448 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
449
450
451 /* Set VAL to the number of args passed to frame described by FI.
452 Can set VAL to -1, meaning no way to tell. */
453
454 /* We can't tell how many args there are
455 now that the C compiler delays popping them. */
456
457 #define FRAME_NUM_ARGS(val,fi) (val = -1)
458
459 /* Return number of bytes at start of arglist that are not really args. */
460
461 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
462
463 /* Put here the code to store, into a struct frame_saved_regs,
464 the addresses of the saved registers of frame described by FRAME_INFO.
465 This includes special registers such as pc and fp saved in special
466 ways in the stack frame. sp is even more special:
467 the address we return for it IS the sp for the next frame. */
468 /* In the following implementation for RS6000, we did *not* save sp. I am
469 not sure if it will be needed. The following macro takes care of gpr's
470 and fpr's only. */
471
472 #define FRAME_FIND_SAVED_REGS(FRAME_INFO, FRAME_SAVED_REGS) \
473 { \
474 int ii; \
475 CORE_ADDR frame_addr, func_start; \
476 struct aix_framedata fdata; \
477 \
478 /* find the start of the function and collect info about its frame. */\
479 \
480 func_start = get_pc_function_start ((FRAME_INFO)->pc) + FUNCTION_START_OFFSET; \
481 function_frame_info (func_start, &fdata); \
482 bzero (&(FRAME_SAVED_REGS), sizeof (FRAME_SAVED_REGS)); \
483 \
484 /* if there were any saved registers, figure out parent's stack pointer. */ \
485 frame_addr = 0; \
486 /* the following is true only if the frame doesn't have a call to alloca(), \
487 FIXME. */ \
488 if (fdata.saved_fpr >= 0 || fdata.saved_gpr >= 0) { \
489 if ((FRAME_INFO)->prev && (FRAME_INFO)->prev->frame) \
490 frame_addr = (FRAME_INFO)->prev->frame; \
491 else \
492 frame_addr = read_memory_integer ((FRAME_INFO)->frame, 4); \
493 } \
494 \
495 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. All fpr's \
496 from saved_fpr to fp31 are saved right underneath caller stack pointer, \
497 starting from fp31 first. */ \
498 \
499 if (fdata.saved_fpr >= 0) { \
500 for (ii=31; ii >= fdata.saved_fpr; --ii) \
501 (FRAME_SAVED_REGS).regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); \
502 frame_addr -= (32 - fdata.saved_fpr) * 8; \
503 } \
504 \
505 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. All gpr's \
506 from saved_gpr to gpr31 are saved right under saved fprs, starting \
507 from r31 first. */ \
508 \
509 if (fdata.saved_gpr >= 0) \
510 for (ii=31; ii >= fdata.saved_gpr; --ii) \
511 (FRAME_SAVED_REGS).regs [ii] = frame_addr - ((32 - ii) * 4); \
512 }
513
514 \f
515 /* Things needed for making the inferior call functions. */
516
517 /* Push an empty stack frame, to record the current PC, etc. */
518 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
519
520 #define PUSH_DUMMY_FRAME push_dummy_frame ()
521
522 /* Discard from the stack the innermost frame,
523 restoring all saved registers. */
524
525 #define POP_FRAME pop_frame ()
526
527 /* This sequence of words is the instructions:
528
529 mflr r0 // 0x7c0802a6
530 // save fpr's
531 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
532 // save gpr's
533 stm r0, num(r1) // 0xbc010000
534 stu r1, num(r1) // 0x94210000
535
536 // the function we want to branch might be in a different load
537 // segment. reset the toc register. Note that the actual toc address
538 // will be fix by fix_call_dummy () along with function address.
539
540 st r2, 0x14(r1) // 0x90410014 save toc register
541 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
542 oril r2, r2,0x5678 // 0x60425678
543
544 // load absolute address 0x12345678 to r0
545 liu r0, 0x1234 // 0x3c001234
546 oril r0, r0,0x5678 // 0x60005678
547 mtctr r0 // 0x7c0903a6 ctr <- r0
548 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
549 cror 0xf, 0xf, 0xf // 0x4def7b82
550 brpt // 0x7d821008, breakpoint
551 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
552
553
554 We actually start executing by saving the toc register first, since the pushing
555 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
556 the arguments for the function called by the `bctrl' would be pushed
557 between the `stu' and the `bctrl', and we could allow it to execute through.
558 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
559 and we cannot allow to push the registers again.
560 */
561
562 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
563 0x90410014, 0x3c401234, 0x60425678, \
564 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
565 0x4def7b82, 0x7d821008, 0x4def7b82 }
566
567
568 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
569 #define CALL_DUMMY_LENGTH 56
570
571 #define CALL_DUMMY_START_OFFSET 16
572
573 /* Insert the specified number of args and function address
574 into a call sequence of the above form stored at DUMMYNAME. */
575
576 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, using_gcc) \
577 fix_call_dummy(dummyname, pc, fun, nargs, type)
578
579 /* Flag for machine-specific stuff in shared files. FIXME */
580 #define IBM6000_TARGET
581
582 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
583
584 #define NO_SINGLE_STEP
This page took 0.04065 seconds and 5 git commands to generate.