Lint fixes from Paul Eggert (eggert@twinsun.com):
[deliverable/binutils-gdb.git] / gdb / tm-umax.h
1 /* Definitions to make GDB run on an encore under umax 4.2
2 Copyright 1987, 1989, 1991, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
21
22 /* Need to get function ends by adding this to epilogue address from .bf
23 record, not using x_fsize field. */
24 #define FUNCTION_EPILOGUE_SIZE 4
25
26 /* Offset from address of function to start of its code.
27 Zero on most machines. */
28
29 #define FUNCTION_START_OFFSET 0
30
31 /* Advance PC across any function entry prologue instructions
32 to reach some "real" code. */
33
34 #define SKIP_PROLOGUE(pc) \
35 { register unsigned char op = read_memory_integer (pc, 1); \
36 if (op == 0x82) { op = read_memory_integer (pc+2,1); \
37 if ((op & 0x80) == 0) pc += 3; \
38 else if ((op & 0xc0) == 0x80) pc += 4; \
39 else pc += 6; \
40 } \
41 }
42
43 /* Immediately after a function call, return the saved pc.
44 Can't always go through the frames for this because on some machines
45 the new frame is not set up until the new function executes
46 some instructions. */
47
48 #define SAVED_PC_AFTER_CALL(frame) \
49 read_memory_integer (read_register (SP_REGNUM), 4)
50
51 /* Address of end of stack space. */
52
53 #define STACK_END_ADDR (0xfffff000)
54
55 /* Stack grows downward. */
56
57 #define INNER_THAN <
58
59 /* Sequence of bytes for breakpoint instruction. */
60
61 #define BREAKPOINT {0xf2}
62
63 /* Amount PC must be decremented by after a breakpoint.
64 This is often the number of bytes in BREAKPOINT
65 but not always. */
66
67 #define DECR_PC_AFTER_BREAK 0
68
69 /* Nonzero if instruction at PC is a return instruction. */
70
71 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x12)
72
73 #ifndef NaN
74 #include <nan.h>
75 #endif NaN
76
77 /* Return 1 if P points to an invalid floating point value. */
78 /* Surely wrong for cross-debugging. */
79 #define INVALID_FLOAT(p, s) \
80 ((s == sizeof (float))? \
81 NaF (*(float *) p) : \
82 NaD (*(double *) p))
83
84 /* Say how long (ordinary) registers are. */
85
86 #define REGISTER_TYPE long
87
88 /* Number of machine registers */
89
90 #define NUM_REGS 25
91
92 #define NUM_GENERAL_REGS 8
93
94 /* Initializer for an array of names of registers.
95 There should be NUM_REGS strings in this initializer. */
96
97 #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
98 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
99 "sp", "fp", "pc", "ps", \
100 "fsr", \
101 "l0", "l1", "l2", "l3", "xx", \
102 }
103
104 /* Register numbers of various important registers.
105 Note that some of these values are "real" register numbers,
106 and correspond to the general registers of the machine,
107 and some are "phony" register numbers which are too large
108 to be actual register numbers as far as the user is concerned
109 but do serve to get the desired values when passed to read_register. */
110
111 #define R0_REGNUM 0 /* General register 0 */
112 #define FP0_REGNUM 8 /* Floating point register 0 */
113 #define SP_REGNUM 16 /* Contains address of top of stack */
114 #define AP_REGNUM FP_REGNUM
115 #define FP_REGNUM 17 /* Contains address of executing stack frame */
116 #define PC_REGNUM 18 /* Contains program counter */
117 #define PS_REGNUM 19 /* Contains processor status */
118 #define FPS_REGNUM 20 /* Floating point status register */
119 #define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
120
121 /* Total amount of space needed to store our copies of the machine's
122 register state, the array `registers'. */
123 #define REGISTER_BYTES \
124 ((NUM_REGS - 4) * REGISTER_RAW_SIZE(R0_REGNUM) \
125 + 4 * REGISTER_RAW_SIZE(LP0_REGNUM))
126
127 /* Index within `registers' of the first byte of the space for
128 register N. */
129
130 #define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
131 LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
132
133 /* Number of bytes of storage in the actual machine representation
134 for register N. On the 32000, all regs are 4 bytes
135 except for the doubled floating registers. */
136
137 #define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
138
139 /* Number of bytes of storage in the program's representation
140 for register N. On the 32000, all regs are 4 bytes
141 except for the doubled floating registers. */
142
143 #define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
144
145 /* Largest value REGISTER_RAW_SIZE can have. */
146
147 #define MAX_REGISTER_RAW_SIZE 8
148
149 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
150
151 #define MAX_REGISTER_VIRTUAL_SIZE 8
152
153 /* Nonzero if register N requires conversion
154 from raw format to virtual format. */
155
156 #define REGISTER_CONVERTIBLE(N) 0
157
158 /* Convert data from raw format for register REGNUM
159 to virtual format for register REGNUM. */
160
161 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
162 bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
163
164 /* Convert data from virtual format for register REGNUM
165 to raw format for register REGNUM. */
166
167 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
168 bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
169
170 /* Return the GDB type object for the "standard" data type
171 of data in register N. */
172
173 #define REGISTER_VIRTUAL_TYPE(N) \
174 (((N) < FP0_REGNUM) ? \
175 builtin_type_int : \
176 ((N) < FP0_REGNUM + 8) ? \
177 builtin_type_float : \
178 ((N) < LP0_REGNUM) ? \
179 builtin_type_int : \
180 builtin_type_double)
181
182 /* Store the address of the place in which to copy the structure the
183 subroutine will return. This is called from call_function.
184
185 On this machine this is a no-op, because gcc isn't used on it
186 yet. So this calling convention is not used. */
187
188 #define STORE_STRUCT_RETURN(ADDR, SP)
189
190 /* Extract from an array REGBUF containing the (raw) register state
191 a function return value of type TYPE, and copy that, in virtual format,
192 into VALBUF. */
193
194 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
195 bcopy (REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE))
196
197 /* Write into appropriate registers a function return value
198 of type TYPE, given in virtual format. */
199
200 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
201 write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE))
202
203 /* Extract from an array REGBUF containing the (raw) register state
204 the address in which a function should return its structure value,
205 as a CORE_ADDR (or an expression that can be used as one). */
206
207 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
208 \f
209 /* Describe the pointer in each stack frame to the previous stack frame
210 (its caller). */
211
212 /* FRAME_CHAIN takes a frame's nominal address
213 and produces the frame's chain-pointer. */
214
215 /* In the case of the ns32000 series, the frame's nominal address is the FP
216 value, and at that address is saved previous FP value as a 4-byte word. */
217
218 #define FRAME_CHAIN(thisframe) \
219 (!inside_entry_file ((thisframe)->pc) ? \
220 read_memory_integer ((thisframe)->frame, 4) :\
221 0)
222
223 /* Define other aspects of the stack frame. */
224
225 #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
226
227 /* Compute base of arguments. */
228
229 #define FRAME_ARGS_ADDRESS(fi) \
230 ((ns32k_get_enter_addr ((fi)->pc) > 1) ? \
231 ((fi)->frame) : (read_register (SP_REGNUM) - 4))
232
233 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
234
235 /* Get the address of the enter opcode for this function, if it is active.
236 Returns positive address > 1 if pc is between enter/exit,
237 1 if pc before enter or after exit, 0 otherwise. */
238
239 extern CORE_ADDR ns32k_get_enter_addr ();
240
241 /* Return number of args passed to a frame.
242 Can return -1, meaning no way to tell.
243 Encore's C compiler often reuses same area on stack for args,
244 so this will often not work properly. If the arg names
245 are known, it's likely most of them will be printed. */
246
247 #define FRAME_NUM_ARGS(numargs, fi) \
248 { CORE_ADDR pc; \
249 CORE_ADDR enter_addr; \
250 unsigned int insn; \
251 unsigned int addr_mode; \
252 int width; \
253 \
254 numargs = -1; \
255 enter_addr = ns32k_get_enter_addr ((fi)->pc); \
256 if (enter_addr > 0) \
257 { \
258 pc = (enter_addr == 1) ? \
259 SAVED_PC_AFTER_CALL (fi) : \
260 FRAME_SAVED_PC (fi); \
261 insn = read_memory_integer (pc,2); \
262 addr_mode = (insn >> 11) & 0x1f; \
263 insn = insn & 0x7ff; \
264 if ((insn & 0x7fc) == 0x57c && \
265 addr_mode == 0x14) /* immediate */ \
266 { \
267 if (insn == 0x57c) /* adjspb */ \
268 width = 1; \
269 else if (insn == 0x57d) /* adjspw */ \
270 width = 2; \
271 else if (insn == 0x57f) /* adjspd */ \
272 width = 4; \
273 numargs = read_memory_integer (pc+2,width); \
274 if (width > 1) \
275 flip_bytes (&numargs, width); \
276 numargs = - sign_extend (numargs, width*8) / 4;\
277 } \
278 } \
279 }
280
281 /* Return number of bytes at start of arglist that are not really args. */
282
283 #define FRAME_ARGS_SKIP 8
284
285 /* Put here the code to store, into a struct frame_saved_regs,
286 the addresses of the saved registers of frame described by FRAME_INFO.
287 This includes special registers such as pc and fp saved in special
288 ways in the stack frame. sp is even more special:
289 the address we return for it IS the sp for the next frame. */
290
291 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
292 { \
293 register int regmask, regnum; \
294 int localcount; \
295 register CORE_ADDR enter_addr; \
296 register CORE_ADDR next_addr; \
297 \
298 bzero (&(frame_saved_regs), sizeof (frame_saved_regs)); \
299 enter_addr = ns32k_get_enter_addr ((frame_info)->pc); \
300 if (enter_addr > 1) \
301 { \
302 regmask = read_memory_integer (enter_addr+1, 1) & 0xff; \
303 localcount = ns32k_localcount (enter_addr); \
304 next_addr = (frame_info)->frame + localcount; \
305 for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
306 (frame_saved_regs).regs[regnum] = (regmask & 1) ? \
307 (next_addr -= 4) : 0; \
308 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4;\
309 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4;\
310 (frame_saved_regs).regs[FP_REGNUM] = \
311 (read_memory_integer ((frame_info)->frame, 4));\
312 } \
313 else if (enter_addr == 1) \
314 { \
315 CORE_ADDR sp = read_register (SP_REGNUM); \
316 (frame_saved_regs).regs[PC_REGNUM] = sp; \
317 (frame_saved_regs).regs[SP_REGNUM] = sp + 4; \
318 } \
319 }
320 \f
321 /* Things needed for making the inferior call functions. */
322
323 /* Push an empty stack frame, to record the current PC, etc. */
324
325 #define PUSH_DUMMY_FRAME \
326 { register CORE_ADDR sp = read_register (SP_REGNUM);\
327 register int regnum; \
328 sp = push_word (sp, read_register (PC_REGNUM)); \
329 sp = push_word (sp, read_register (FP_REGNUM)); \
330 write_register (FP_REGNUM, sp); \
331 for (regnum = 0; regnum < 8; regnum++) \
332 sp = push_word (sp, read_register (regnum)); \
333 write_register (SP_REGNUM, sp); \
334 }
335
336 /* Discard from the stack the innermost frame, restoring all registers. */
337
338 #define POP_FRAME \
339 { register FRAME frame = get_current_frame (); \
340 register CORE_ADDR fp; \
341 register int regnum; \
342 struct frame_saved_regs fsr; \
343 struct frame_info *fi; \
344 fi = get_frame_info (frame); \
345 fp = fi->frame; \
346 get_frame_saved_regs (fi, &fsr); \
347 for (regnum = 0; regnum < 8; regnum++) \
348 if (fsr.regs[regnum]) \
349 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
350 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
351 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
352 write_register (SP_REGNUM, fp + 8); \
353 flush_cached_frames (); \
354 set_current_frame (create_new_frame (read_register (FP_REGNUM),\
355 read_pc ())); }
356
357 /* This sequence of words is the instructions
358 enter 0xff,0 82 ff 00
359 jsr @0x00010203 7f ae c0 01 02 03
360 adjspd 0x69696969 7f a5 01 02 03 04
361 bpt f2
362 Note this is 16 bytes. */
363
364 #define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
365
366 #define CALL_DUMMY_START_OFFSET 3
367 #define CALL_DUMMY_LENGTH 16
368 #define CALL_DUMMY_ADDR 5
369 #define CALL_DUMMY_NARGS 11
370
371 /* Insert the specified number of args and function address
372 into a call sequence of the above form stored at DUMMYNAME. */
373
374 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
375 { \
376 int flipped; \
377 flipped = fun | 0xc0000000; \
378 flip_bytes (&flipped, 4); \
379 *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
380 flipped = - nargs * 4; \
381 flip_bytes (&flipped, 4); \
382 *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \
383 }
This page took 0.037661 seconds and 4 git commands to generate.