Accept 16-bit addresses.
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include "gdb_string.h"
25 #include "event-top.h"
26
27 #ifdef HAVE_CURSES_H
28 #include <curses.h>
29 #endif
30 #ifdef HAVE_TERM_H
31 #include <term.h>
32 #endif
33
34 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
35 #ifdef reg
36 #undef reg
37 #endif
38
39 #include "signals.h"
40 #include "gdbcmd.h"
41 #include "serial.h"
42 #include "bfd.h"
43 #include "target.h"
44 #include "demangle.h"
45 #include "expression.h"
46 #include "language.h"
47 #include "annotate.h"
48
49 #include <readline/readline.h>
50
51 #undef XMALLOC
52 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
53
54 /* readline defines this. */
55 #undef savestring
56
57 void (*error_begin_hook) PARAMS ((void));
58
59 /* Holds the last error message issued by gdb */
60
61 static struct ui_file *gdb_lasterr;
62
63 /* Prototypes for local functions */
64
65 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
66 va_list, int);
67
68 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
69
70 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
71 static void malloc_botch PARAMS ((void));
72 #endif
73
74 static void
75 prompt_for_continue PARAMS ((void));
76
77 static void
78 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
79
80 static void
81 set_width PARAMS ((void));
82
83 /* Chain of cleanup actions established with make_cleanup,
84 to be executed if an error happens. */
85
86 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
87 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
88 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
89 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
90 /* cleaned up on each error from within an execution command */
91 static struct cleanup *exec_error_cleanup_chain;
92
93 /* Pointer to what is left to do for an execution command after the
94 target stops. Used only in asynchronous mode, by targets that
95 support async execution. The finish and until commands use it. So
96 does the target extended-remote command. */
97 struct continuation *cmd_continuation;
98 struct continuation *intermediate_continuation;
99
100 /* Nonzero if we have job control. */
101
102 int job_control;
103
104 /* Nonzero means a quit has been requested. */
105
106 int quit_flag;
107
108 /* Nonzero means quit immediately if Control-C is typed now, rather
109 than waiting until QUIT is executed. Be careful in setting this;
110 code which executes with immediate_quit set has to be very careful
111 about being able to deal with being interrupted at any time. It is
112 almost always better to use QUIT; the only exception I can think of
113 is being able to quit out of a system call (using EINTR loses if
114 the SIGINT happens between the previous QUIT and the system call).
115 To immediately quit in the case in which a SIGINT happens between
116 the previous QUIT and setting immediate_quit (desirable anytime we
117 expect to block), call QUIT after setting immediate_quit. */
118
119 int immediate_quit;
120
121 /* Nonzero means that encoded C++ names should be printed out in their
122 C++ form rather than raw. */
123
124 int demangle = 1;
125
126 /* Nonzero means that encoded C++ names should be printed out in their
127 C++ form even in assembler language displays. If this is set, but
128 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
129
130 int asm_demangle = 0;
131
132 /* Nonzero means that strings with character values >0x7F should be printed
133 as octal escapes. Zero means just print the value (e.g. it's an
134 international character, and the terminal or window can cope.) */
135
136 int sevenbit_strings = 0;
137
138 /* String to be printed before error messages, if any. */
139
140 char *error_pre_print;
141
142 /* String to be printed before quit messages, if any. */
143
144 char *quit_pre_print;
145
146 /* String to be printed before warning messages, if any. */
147
148 char *warning_pre_print = "\nwarning: ";
149
150 int pagination_enabled = 1;
151 \f
152
153 /* Add a new cleanup to the cleanup_chain,
154 and return the previous chain pointer
155 to be passed later to do_cleanups or discard_cleanups.
156 Args are FUNCTION to clean up with, and ARG to pass to it. */
157
158 struct cleanup *
159 make_cleanup (function, arg)
160 void (*function) PARAMS ((PTR));
161 PTR arg;
162 {
163 return make_my_cleanup (&cleanup_chain, function, arg);
164 }
165
166 struct cleanup *
167 make_final_cleanup (function, arg)
168 void (*function) PARAMS ((PTR));
169 PTR arg;
170 {
171 return make_my_cleanup (&final_cleanup_chain, function, arg);
172 }
173
174 struct cleanup *
175 make_run_cleanup (function, arg)
176 void (*function) PARAMS ((PTR));
177 PTR arg;
178 {
179 return make_my_cleanup (&run_cleanup_chain, function, arg);
180 }
181
182 struct cleanup *
183 make_exec_cleanup (function, arg)
184 void (*function) PARAMS ((PTR));
185 PTR arg;
186 {
187 return make_my_cleanup (&exec_cleanup_chain, function, arg);
188 }
189
190 struct cleanup *
191 make_exec_error_cleanup (function, arg)
192 void (*function) PARAMS ((PTR));
193 PTR arg;
194 {
195 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
196 }
197
198 static void
199 do_freeargv (arg)
200 void *arg;
201 {
202 freeargv ((char **) arg);
203 }
204
205 struct cleanup *
206 make_cleanup_freeargv (arg)
207 char **arg;
208 {
209 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
210 }
211
212 static void
213 do_ui_file_delete (void *arg)
214 {
215 ui_file_delete (arg);
216 }
217
218 struct cleanup *
219 make_cleanup_ui_file_delete (struct ui_file *arg)
220 {
221 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
222 }
223
224 struct cleanup *
225 make_my_cleanup (pmy_chain, function, arg)
226 struct cleanup **pmy_chain;
227 void (*function) PARAMS ((PTR));
228 PTR arg;
229 {
230 register struct cleanup *new
231 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
232 register struct cleanup *old_chain = *pmy_chain;
233
234 new->next = *pmy_chain;
235 new->function = function;
236 new->arg = arg;
237 *pmy_chain = new;
238
239 return old_chain;
240 }
241
242 /* Discard cleanups and do the actions they describe
243 until we get back to the point OLD_CHAIN in the cleanup_chain. */
244
245 void
246 do_cleanups (old_chain)
247 register struct cleanup *old_chain;
248 {
249 do_my_cleanups (&cleanup_chain, old_chain);
250 }
251
252 void
253 do_final_cleanups (old_chain)
254 register struct cleanup *old_chain;
255 {
256 do_my_cleanups (&final_cleanup_chain, old_chain);
257 }
258
259 void
260 do_run_cleanups (old_chain)
261 register struct cleanup *old_chain;
262 {
263 do_my_cleanups (&run_cleanup_chain, old_chain);
264 }
265
266 void
267 do_exec_cleanups (old_chain)
268 register struct cleanup *old_chain;
269 {
270 do_my_cleanups (&exec_cleanup_chain, old_chain);
271 }
272
273 void
274 do_exec_error_cleanups (old_chain)
275 register struct cleanup *old_chain;
276 {
277 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
278 }
279
280 void
281 do_my_cleanups (pmy_chain, old_chain)
282 register struct cleanup **pmy_chain;
283 register struct cleanup *old_chain;
284 {
285 register struct cleanup *ptr;
286 while ((ptr = *pmy_chain) != old_chain)
287 {
288 *pmy_chain = ptr->next; /* Do this first incase recursion */
289 (*ptr->function) (ptr->arg);
290 free (ptr);
291 }
292 }
293
294 /* Discard cleanups, not doing the actions they describe,
295 until we get back to the point OLD_CHAIN in the cleanup_chain. */
296
297 void
298 discard_cleanups (old_chain)
299 register struct cleanup *old_chain;
300 {
301 discard_my_cleanups (&cleanup_chain, old_chain);
302 }
303
304 void
305 discard_final_cleanups (old_chain)
306 register struct cleanup *old_chain;
307 {
308 discard_my_cleanups (&final_cleanup_chain, old_chain);
309 }
310
311 void
312 discard_exec_error_cleanups (old_chain)
313 register struct cleanup *old_chain;
314 {
315 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
316 }
317
318 void
319 discard_my_cleanups (pmy_chain, old_chain)
320 register struct cleanup **pmy_chain;
321 register struct cleanup *old_chain;
322 {
323 register struct cleanup *ptr;
324 while ((ptr = *pmy_chain) != old_chain)
325 {
326 *pmy_chain = ptr->next;
327 free ((PTR) ptr);
328 }
329 }
330
331 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
332 struct cleanup *
333 save_cleanups ()
334 {
335 return save_my_cleanups (&cleanup_chain);
336 }
337
338 struct cleanup *
339 save_final_cleanups ()
340 {
341 return save_my_cleanups (&final_cleanup_chain);
342 }
343
344 struct cleanup *
345 save_my_cleanups (pmy_chain)
346 struct cleanup **pmy_chain;
347 {
348 struct cleanup *old_chain = *pmy_chain;
349
350 *pmy_chain = 0;
351 return old_chain;
352 }
353
354 /* Restore the cleanup chain from a previously saved chain. */
355 void
356 restore_cleanups (chain)
357 struct cleanup *chain;
358 {
359 restore_my_cleanups (&cleanup_chain, chain);
360 }
361
362 void
363 restore_final_cleanups (chain)
364 struct cleanup *chain;
365 {
366 restore_my_cleanups (&final_cleanup_chain, chain);
367 }
368
369 void
370 restore_my_cleanups (pmy_chain, chain)
371 struct cleanup **pmy_chain;
372 struct cleanup *chain;
373 {
374 *pmy_chain = chain;
375 }
376
377 /* This function is useful for cleanups.
378 Do
379
380 foo = xmalloc (...);
381 old_chain = make_cleanup (free_current_contents, &foo);
382
383 to arrange to free the object thus allocated. */
384
385 void
386 free_current_contents (location)
387 char **location;
388 {
389 free (*location);
390 }
391
392 /* Provide a known function that does nothing, to use as a base for
393 for a possibly long chain of cleanups. This is useful where we
394 use the cleanup chain for handling normal cleanups as well as dealing
395 with cleanups that need to be done as a result of a call to error().
396 In such cases, we may not be certain where the first cleanup is, unless
397 we have a do-nothing one to always use as the base. */
398
399 /* ARGSUSED */
400 void
401 null_cleanup (arg)
402 PTR arg;
403 {
404 }
405
406 /* Add a continuation to the continuation list, the gloabl list
407 cmd_continuation. The new continuation will be added at the front.*/
408 void
409 add_continuation (continuation_hook, arg_list)
410 void (*continuation_hook) PARAMS ((struct continuation_arg *));
411 struct continuation_arg *arg_list;
412 {
413 struct continuation *continuation_ptr;
414
415 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
416 continuation_ptr->continuation_hook = continuation_hook;
417 continuation_ptr->arg_list = arg_list;
418 continuation_ptr->next = cmd_continuation;
419 cmd_continuation = continuation_ptr;
420 }
421
422 /* Walk down the cmd_continuation list, and execute all the
423 continuations. There is a problem though. In some cases new
424 continuations may be added while we are in the middle of this
425 loop. If this happens they will be added in the front, and done
426 before we have a chance of exhausting those that were already
427 there. We need to then save the beginning of the list in a pointer
428 and do the continuations from there on, instead of using the
429 global beginning of list as our iteration pointer.*/
430 void
431 do_all_continuations ()
432 {
433 struct continuation *continuation_ptr;
434 struct continuation *saved_continuation;
435
436 /* Copy the list header into another pointer, and set the global
437 list header to null, so that the global list can change as a side
438 effect of invoking the continuations and the processing of
439 the preexisting continuations will not be affected. */
440 continuation_ptr = cmd_continuation;
441 cmd_continuation = NULL;
442
443 /* Work now on the list we have set aside. */
444 while (continuation_ptr)
445 {
446 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
447 saved_continuation = continuation_ptr;
448 continuation_ptr = continuation_ptr->next;
449 free (saved_continuation);
450 }
451 }
452
453 /* Walk down the cmd_continuation list, and get rid of all the
454 continuations. */
455 void
456 discard_all_continuations ()
457 {
458 struct continuation *continuation_ptr;
459
460 while (cmd_continuation)
461 {
462 continuation_ptr = cmd_continuation;
463 cmd_continuation = continuation_ptr->next;
464 free (continuation_ptr);
465 }
466 }
467
468 /* Add a continuation to the continuation list, the gloabl list
469 intermediate_continuation. The new continuation will be added at the front.*/
470 void
471 add_intermediate_continuation (continuation_hook, arg_list)
472 void (*continuation_hook) PARAMS ((struct continuation_arg *));
473 struct continuation_arg *arg_list;
474 {
475 struct continuation *continuation_ptr;
476
477 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
478 continuation_ptr->continuation_hook = continuation_hook;
479 continuation_ptr->arg_list = arg_list;
480 continuation_ptr->next = intermediate_continuation;
481 intermediate_continuation = continuation_ptr;
482 }
483
484 /* Walk down the cmd_continuation list, and execute all the
485 continuations. There is a problem though. In some cases new
486 continuations may be added while we are in the middle of this
487 loop. If this happens they will be added in the front, and done
488 before we have a chance of exhausting those that were already
489 there. We need to then save the beginning of the list in a pointer
490 and do the continuations from there on, instead of using the
491 global beginning of list as our iteration pointer.*/
492 void
493 do_all_intermediate_continuations ()
494 {
495 struct continuation *continuation_ptr;
496 struct continuation *saved_continuation;
497
498 /* Copy the list header into another pointer, and set the global
499 list header to null, so that the global list can change as a side
500 effect of invoking the continuations and the processing of
501 the preexisting continuations will not be affected. */
502 continuation_ptr = intermediate_continuation;
503 intermediate_continuation = NULL;
504
505 /* Work now on the list we have set aside. */
506 while (continuation_ptr)
507 {
508 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
509 saved_continuation = continuation_ptr;
510 continuation_ptr = continuation_ptr->next;
511 free (saved_continuation);
512 }
513 }
514
515 /* Walk down the cmd_continuation list, and get rid of all the
516 continuations. */
517 void
518 discard_all_intermediate_continuations ()
519 {
520 struct continuation *continuation_ptr;
521
522 while (intermediate_continuation)
523 {
524 continuation_ptr = intermediate_continuation;
525 intermediate_continuation = continuation_ptr->next;
526 free (continuation_ptr);
527 }
528 }
529
530 \f
531
532 /* Print a warning message. Way to use this is to call warning_begin,
533 output the warning message (use unfiltered output to gdb_stderr),
534 ending in a newline. There is not currently a warning_end that you
535 call afterwards, but such a thing might be added if it is useful
536 for a GUI to separate warning messages from other output.
537
538 FIXME: Why do warnings use unfiltered output and errors filtered?
539 Is this anything other than a historical accident? */
540
541 void
542 warning_begin ()
543 {
544 target_terminal_ours ();
545 wrap_here (""); /* Force out any buffered output */
546 gdb_flush (gdb_stdout);
547 if (warning_pre_print)
548 fprintf_unfiltered (gdb_stderr, warning_pre_print);
549 }
550
551 /* Print a warning message.
552 The first argument STRING is the warning message, used as a fprintf string,
553 and the remaining args are passed as arguments to it.
554 The primary difference between warnings and errors is that a warning
555 does not force the return to command level. */
556
557 void
558 warning (const char *string,...)
559 {
560 va_list args;
561 va_start (args, string);
562 if (warning_hook)
563 (*warning_hook) (string, args);
564 else
565 {
566 warning_begin ();
567 vfprintf_unfiltered (gdb_stderr, string, args);
568 fprintf_unfiltered (gdb_stderr, "\n");
569 va_end (args);
570 }
571 }
572
573 /* Start the printing of an error message. Way to use this is to call
574 this, output the error message (use filtered output to gdb_stderr
575 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
576 in a newline, and then call return_to_top_level (RETURN_ERROR).
577 error() provides a convenient way to do this for the special case
578 that the error message can be formatted with a single printf call,
579 but this is more general. */
580 void
581 error_begin ()
582 {
583 if (error_begin_hook)
584 error_begin_hook ();
585
586 target_terminal_ours ();
587 wrap_here (""); /* Force out any buffered output */
588 gdb_flush (gdb_stdout);
589
590 annotate_error_begin ();
591
592 if (error_pre_print)
593 fprintf_filtered (gdb_stderr, error_pre_print);
594 }
595
596 /* Print an error message and return to command level.
597 The first argument STRING is the error message, used as a fprintf string,
598 and the remaining args are passed as arguments to it. */
599
600 NORETURN void
601 verror (const char *string, va_list args)
602 {
603 char *err_string;
604 struct cleanup *err_string_cleanup;
605 /* FIXME: cagney/1999-11-10: All error calls should come here.
606 Unfortunatly some code uses the sequence: error_begin(); print
607 error message; return_to_top_level. That code should be
608 flushed. */
609 error_begin ();
610 /* NOTE: It's tempting to just do the following...
611 vfprintf_filtered (gdb_stderr, string, args);
612 and then follow with a similar looking statement to cause the message
613 to also go to gdb_lasterr. But if we do this, we'll be traversing the
614 va_list twice which works on some platforms and fails miserably on
615 others. */
616 /* Save it as the last error */
617 ui_file_rewind (gdb_lasterr);
618 vfprintf_filtered (gdb_lasterr, string, args);
619 /* Retrieve the last error and print it to gdb_stderr */
620 err_string = error_last_message ();
621 err_string_cleanup = make_cleanup (free, err_string);
622 fputs_filtered (err_string, gdb_stderr);
623 fprintf_filtered (gdb_stderr, "\n");
624 do_cleanups (err_string_cleanup);
625 return_to_top_level (RETURN_ERROR);
626 }
627
628 NORETURN void
629 error (const char *string,...)
630 {
631 va_list args;
632 va_start (args, string);
633 verror (string, args);
634 va_end (args);
635 }
636
637 NORETURN void
638 error_stream (struct ui_file *stream)
639 {
640 long size;
641 char *msg = ui_file_xstrdup (stream, &size);
642 make_cleanup (free, msg);
643 error ("%s", msg);
644 }
645
646 /* Get the last error message issued by gdb */
647
648 char *
649 error_last_message (void)
650 {
651 long len;
652 return ui_file_xstrdup (gdb_lasterr, &len);
653 }
654
655 /* This is to be called by main() at the very beginning */
656
657 void
658 error_init (void)
659 {
660 gdb_lasterr = mem_fileopen ();
661 }
662
663 /* Print a message reporting an internal error. Ask the user if they
664 want to continue, dump core, or just exit. */
665
666 NORETURN void
667 internal_verror (const char *fmt, va_list ap)
668 {
669 static char msg[] = "Internal GDB error: recursive internal error.\n";
670 static int dejavu = 0;
671 int continue_p;
672 int dump_core_p;
673
674 /* don't allow infinite error recursion. */
675 switch (dejavu)
676 {
677 case 0:
678 dejavu = 1;
679 break;
680 case 1:
681 dejavu = 2;
682 fputs_unfiltered (msg, gdb_stderr);
683 abort ();
684 default:
685 dejavu = 3;
686 write (STDERR_FILENO, msg, sizeof (msg));
687 exit (1);
688 }
689
690 /* Try to get the message out */
691 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
692 vfprintf_unfiltered (gdb_stderr, fmt, ap);
693 fputs_unfiltered ("\n", gdb_stderr);
694
695 /* Default (no case) is to quit GDB. When in batch mode this
696 lessens the likelhood of GDB going into an infinate loop. */
697 continue_p = query ("\
698 An internal GDB error was detected. This may make make further\n\
699 debugging unreliable. Continue this debugging session? ");
700
701 /* Default (no case) is to not dump core. Lessen the chance of GDB
702 leaving random core files around. */
703 dump_core_p = query ("\
704 Create a core file containing the current state of GDB? ");
705
706 if (continue_p)
707 {
708 if (dump_core_p)
709 {
710 if (fork () == 0)
711 abort ();
712 }
713 }
714 else
715 {
716 if (dump_core_p)
717 abort ();
718 else
719 exit (1);
720 }
721
722 dejavu = 0;
723 return_to_top_level (RETURN_ERROR);
724 }
725
726 NORETURN void
727 internal_error (char *string, ...)
728 {
729 va_list ap;
730 va_start (ap, string);
731 internal_verror (string, ap);
732 va_end (ap);
733 }
734
735 /* The strerror() function can return NULL for errno values that are
736 out of range. Provide a "safe" version that always returns a
737 printable string. */
738
739 char *
740 safe_strerror (errnum)
741 int errnum;
742 {
743 char *msg;
744 static char buf[32];
745
746 if ((msg = strerror (errnum)) == NULL)
747 {
748 sprintf (buf, "(undocumented errno %d)", errnum);
749 msg = buf;
750 }
751 return (msg);
752 }
753
754 /* The strsignal() function can return NULL for signal values that are
755 out of range. Provide a "safe" version that always returns a
756 printable string. */
757
758 char *
759 safe_strsignal (signo)
760 int signo;
761 {
762 char *msg;
763 static char buf[32];
764
765 if ((msg = strsignal (signo)) == NULL)
766 {
767 sprintf (buf, "(undocumented signal %d)", signo);
768 msg = buf;
769 }
770 return (msg);
771 }
772
773
774 /* Print the system error message for errno, and also mention STRING
775 as the file name for which the error was encountered.
776 Then return to command level. */
777
778 NORETURN void
779 perror_with_name (string)
780 char *string;
781 {
782 char *err;
783 char *combined;
784
785 err = safe_strerror (errno);
786 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
787 strcpy (combined, string);
788 strcat (combined, ": ");
789 strcat (combined, err);
790
791 /* I understand setting these is a matter of taste. Still, some people
792 may clear errno but not know about bfd_error. Doing this here is not
793 unreasonable. */
794 bfd_set_error (bfd_error_no_error);
795 errno = 0;
796
797 error ("%s.", combined);
798 }
799
800 /* Print the system error message for ERRCODE, and also mention STRING
801 as the file name for which the error was encountered. */
802
803 void
804 print_sys_errmsg (string, errcode)
805 char *string;
806 int errcode;
807 {
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821 }
822
823 /* Control C eventually causes this to be called, at a convenient time. */
824
825 void
826 quit ()
827 {
828 serial_t gdb_stdout_serial = serial_fdopen (1);
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
838 wrap_here ((char *) 0);
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
845 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
846 SERIAL_UN_FDOPEN (gdb_stdout_serial);
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
854 #ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858 #else
859 if (job_control
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
866 "Quit (expect signal SIGINT when the program is resumed)\n");
867 #endif
868 return_to_top_level (RETURN_QUIT);
869 }
870
871
872 #if defined(_MSC_VER) /* should test for wingdb instead? */
873
874 /*
875 * Windows translates all keyboard and mouse events
876 * into a message which is appended to the message
877 * queue for the process.
878 */
879
880 void
881 notice_quit ()
882 {
883 int k = win32pollquit ();
884 if (k == 1)
885 quit_flag = 1;
886 else if (k == 2)
887 immediate_quit = 1;
888 }
889
890 #else /* !defined(_MSC_VER) */
891
892 void
893 notice_quit ()
894 {
895 /* Done by signals */
896 }
897
898 #endif /* !defined(_MSC_VER) */
899
900 /* Control C comes here */
901 void
902 request_quit (signo)
903 int signo;
904 {
905 quit_flag = 1;
906 /* Restore the signal handler. Harmless with BSD-style signals, needed
907 for System V-style signals. So just always do it, rather than worrying
908 about USG defines and stuff like that. */
909 signal (signo, request_quit);
910
911 #ifdef REQUEST_QUIT
912 REQUEST_QUIT;
913 #else
914 if (immediate_quit)
915 quit ();
916 #endif
917 }
918 \f
919 /* Memory management stuff (malloc friends). */
920
921 /* Make a substitute size_t for non-ANSI compilers. */
922
923 #ifndef HAVE_STDDEF_H
924 #ifndef size_t
925 #define size_t unsigned int
926 #endif
927 #endif
928
929 #if !defined (USE_MMALLOC)
930
931 void *
932 mcalloc (void *md, size_t number, size_t size)
933 {
934 return calloc (number, size);
935 }
936
937 PTR
938 mmalloc (md, size)
939 PTR md;
940 size_t size;
941 {
942 return malloc (size);
943 }
944
945 PTR
946 mrealloc (md, ptr, size)
947 PTR md;
948 PTR ptr;
949 size_t size;
950 {
951 if (ptr == 0) /* Guard against old realloc's */
952 return malloc (size);
953 else
954 return realloc (ptr, size);
955 }
956
957 void
958 mfree (md, ptr)
959 PTR md;
960 PTR ptr;
961 {
962 free (ptr);
963 }
964
965 #endif /* USE_MMALLOC */
966
967 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
968
969 void
970 init_malloc (md)
971 PTR md;
972 {
973 }
974
975 #else /* Have mmalloc and want corruption checking */
976
977 static void
978 malloc_botch ()
979 {
980 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
981 abort ();
982 }
983
984 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
985 by MD, to detect memory corruption. Note that MD may be NULL to specify
986 the default heap that grows via sbrk.
987
988 Note that for freshly created regions, we must call mmcheckf prior to any
989 mallocs in the region. Otherwise, any region which was allocated prior to
990 installing the checking hooks, which is later reallocated or freed, will
991 fail the checks! The mmcheck function only allows initial hooks to be
992 installed before the first mmalloc. However, anytime after we have called
993 mmcheck the first time to install the checking hooks, we can call it again
994 to update the function pointer to the memory corruption handler.
995
996 Returns zero on failure, non-zero on success. */
997
998 #ifndef MMCHECK_FORCE
999 #define MMCHECK_FORCE 0
1000 #endif
1001
1002 void
1003 init_malloc (md)
1004 PTR md;
1005 {
1006 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1007 {
1008 /* Don't use warning(), which relies on current_target being set
1009 to something other than dummy_target, until after
1010 initialize_all_files(). */
1011
1012 fprintf_unfiltered
1013 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1014 fprintf_unfiltered
1015 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1016 }
1017
1018 mmtrace ();
1019 }
1020
1021 #endif /* Have mmalloc and want corruption checking */
1022
1023 /* Called when a memory allocation fails, with the number of bytes of
1024 memory requested in SIZE. */
1025
1026 NORETURN void
1027 nomem (size)
1028 long size;
1029 {
1030 if (size > 0)
1031 {
1032 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1033 }
1034 else
1035 {
1036 internal_error ("virtual memory exhausted.");
1037 }
1038 }
1039
1040 /* Like mmalloc but get error if no storage available, and protect against
1041 the caller wanting to allocate zero bytes. Whether to return NULL for
1042 a zero byte request, or translate the request into a request for one
1043 byte of zero'd storage, is a religious issue. */
1044
1045 PTR
1046 xmmalloc (md, size)
1047 PTR md;
1048 long size;
1049 {
1050 register PTR val;
1051
1052 if (size == 0)
1053 {
1054 val = NULL;
1055 }
1056 else if ((val = mmalloc (md, size)) == NULL)
1057 {
1058 nomem (size);
1059 }
1060 return (val);
1061 }
1062
1063 /* Like mrealloc but get error if no storage available. */
1064
1065 PTR
1066 xmrealloc (md, ptr, size)
1067 PTR md;
1068 PTR ptr;
1069 long size;
1070 {
1071 register PTR val;
1072
1073 if (ptr != NULL)
1074 {
1075 val = mrealloc (md, ptr, size);
1076 }
1077 else
1078 {
1079 val = mmalloc (md, size);
1080 }
1081 if (val == NULL)
1082 {
1083 nomem (size);
1084 }
1085 return (val);
1086 }
1087
1088 /* Like malloc but get error if no storage available, and protect against
1089 the caller wanting to allocate zero bytes. */
1090
1091 PTR
1092 xmalloc (size)
1093 size_t size;
1094 {
1095 return (xmmalloc ((PTR) NULL, size));
1096 }
1097
1098 /* Like calloc but get error if no storage available */
1099
1100 PTR
1101 xcalloc (size_t number, size_t size)
1102 {
1103 void *mem = mcalloc (NULL, number, size);
1104 if (mem == NULL)
1105 nomem (number * size);
1106 return mem;
1107 }
1108
1109 /* Like mrealloc but get error if no storage available. */
1110
1111 PTR
1112 xrealloc (ptr, size)
1113 PTR ptr;
1114 size_t size;
1115 {
1116 return (xmrealloc ((PTR) NULL, ptr, size));
1117 }
1118 \f
1119
1120 /* My replacement for the read system call.
1121 Used like `read' but keeps going if `read' returns too soon. */
1122
1123 int
1124 myread (desc, addr, len)
1125 int desc;
1126 char *addr;
1127 int len;
1128 {
1129 register int val;
1130 int orglen = len;
1131
1132 while (len > 0)
1133 {
1134 val = read (desc, addr, len);
1135 if (val < 0)
1136 return val;
1137 if (val == 0)
1138 return orglen - len;
1139 len -= val;
1140 addr += val;
1141 }
1142 return orglen;
1143 }
1144 \f
1145 /* Make a copy of the string at PTR with SIZE characters
1146 (and add a null character at the end in the copy).
1147 Uses malloc to get the space. Returns the address of the copy. */
1148
1149 char *
1150 savestring (ptr, size)
1151 const char *ptr;
1152 int size;
1153 {
1154 register char *p = (char *) xmalloc (size + 1);
1155 memcpy (p, ptr, size);
1156 p[size] = 0;
1157 return p;
1158 }
1159
1160 char *
1161 msavestring (md, ptr, size)
1162 PTR md;
1163 const char *ptr;
1164 int size;
1165 {
1166 register char *p = (char *) xmmalloc (md, size + 1);
1167 memcpy (p, ptr, size);
1168 p[size] = 0;
1169 return p;
1170 }
1171
1172 /* The "const" is so it compiles under DGUX (which prototypes strsave
1173 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1174 Doesn't real strsave return NULL if out of memory? */
1175 char *
1176 strsave (ptr)
1177 const char *ptr;
1178 {
1179 return savestring (ptr, strlen (ptr));
1180 }
1181
1182 char *
1183 mstrsave (md, ptr)
1184 PTR md;
1185 const char *ptr;
1186 {
1187 return (msavestring (md, ptr, strlen (ptr)));
1188 }
1189
1190 void
1191 print_spaces (n, file)
1192 register int n;
1193 register struct ui_file *file;
1194 {
1195 fputs_unfiltered (n_spaces (n), file);
1196 }
1197
1198 /* Print a host address. */
1199
1200 void
1201 gdb_print_host_address (void *addr, struct ui_file *stream)
1202 {
1203
1204 /* We could use the %p conversion specifier to fprintf if we had any
1205 way of knowing whether this host supports it. But the following
1206 should work on the Alpha and on 32 bit machines. */
1207
1208 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1209 }
1210
1211 /* Ask user a y-or-n question and return 1 iff answer is yes.
1212 Takes three args which are given to printf to print the question.
1213 The first, a control string, should end in "? ".
1214 It should not say how to answer, because we do that. */
1215
1216 /* VARARGS */
1217 int
1218 query (char *ctlstr,...)
1219 {
1220 va_list args;
1221 register int answer;
1222 register int ans2;
1223 int retval;
1224
1225 va_start (args, ctlstr);
1226
1227 if (query_hook)
1228 {
1229 return query_hook (ctlstr, args);
1230 }
1231
1232 /* Automatically answer "yes" if input is not from a terminal. */
1233 if (!input_from_terminal_p ())
1234 return 1;
1235 #ifdef MPW
1236 /* FIXME Automatically answer "yes" if called from MacGDB. */
1237 if (mac_app)
1238 return 1;
1239 #endif /* MPW */
1240
1241 while (1)
1242 {
1243 wrap_here (""); /* Flush any buffered output */
1244 gdb_flush (gdb_stdout);
1245
1246 if (annotation_level > 1)
1247 printf_filtered ("\n\032\032pre-query\n");
1248
1249 vfprintf_filtered (gdb_stdout, ctlstr, args);
1250 printf_filtered ("(y or n) ");
1251
1252 if (annotation_level > 1)
1253 printf_filtered ("\n\032\032query\n");
1254
1255 #ifdef MPW
1256 /* If not in MacGDB, move to a new line so the entered line doesn't
1257 have a prompt on the front of it. */
1258 if (!mac_app)
1259 fputs_unfiltered ("\n", gdb_stdout);
1260 #endif /* MPW */
1261
1262 wrap_here ("");
1263 gdb_flush (gdb_stdout);
1264
1265 #if defined(TUI)
1266 if (!tui_version || cmdWin == tuiWinWithFocus ())
1267 #endif
1268 answer = fgetc (stdin);
1269 #if defined(TUI)
1270 else
1271 answer = (unsigned char) tuiBufferGetc ();
1272
1273 #endif
1274 clearerr (stdin); /* in case of C-d */
1275 if (answer == EOF) /* C-d */
1276 {
1277 retval = 1;
1278 break;
1279 }
1280 /* Eat rest of input line, to EOF or newline */
1281 if ((answer != '\n') || (tui_version && answer != '\r'))
1282 do
1283 {
1284 #if defined(TUI)
1285 if (!tui_version || cmdWin == tuiWinWithFocus ())
1286 #endif
1287 ans2 = fgetc (stdin);
1288 #if defined(TUI)
1289 else
1290 ans2 = (unsigned char) tuiBufferGetc ();
1291 #endif
1292 clearerr (stdin);
1293 }
1294 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1295 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1296
1297 if (answer >= 'a')
1298 answer -= 040;
1299 if (answer == 'Y')
1300 {
1301 retval = 1;
1302 break;
1303 }
1304 if (answer == 'N')
1305 {
1306 retval = 0;
1307 break;
1308 }
1309 printf_filtered ("Please answer y or n.\n");
1310 }
1311
1312 if (annotation_level > 1)
1313 printf_filtered ("\n\032\032post-query\n");
1314 return retval;
1315 }
1316 \f
1317
1318 /* Parse a C escape sequence. STRING_PTR points to a variable
1319 containing a pointer to the string to parse. That pointer
1320 should point to the character after the \. That pointer
1321 is updated past the characters we use. The value of the
1322 escape sequence is returned.
1323
1324 A negative value means the sequence \ newline was seen,
1325 which is supposed to be equivalent to nothing at all.
1326
1327 If \ is followed by a null character, we return a negative
1328 value and leave the string pointer pointing at the null character.
1329
1330 If \ is followed by 000, we return 0 and leave the string pointer
1331 after the zeros. A value of 0 does not mean end of string. */
1332
1333 int
1334 parse_escape (string_ptr)
1335 char **string_ptr;
1336 {
1337 register int c = *(*string_ptr)++;
1338 switch (c)
1339 {
1340 case 'a':
1341 return 007; /* Bell (alert) char */
1342 case 'b':
1343 return '\b';
1344 case 'e': /* Escape character */
1345 return 033;
1346 case 'f':
1347 return '\f';
1348 case 'n':
1349 return '\n';
1350 case 'r':
1351 return '\r';
1352 case 't':
1353 return '\t';
1354 case 'v':
1355 return '\v';
1356 case '\n':
1357 return -2;
1358 case 0:
1359 (*string_ptr)--;
1360 return 0;
1361 case '^':
1362 c = *(*string_ptr)++;
1363 if (c == '\\')
1364 c = parse_escape (string_ptr);
1365 if (c == '?')
1366 return 0177;
1367 return (c & 0200) | (c & 037);
1368
1369 case '0':
1370 case '1':
1371 case '2':
1372 case '3':
1373 case '4':
1374 case '5':
1375 case '6':
1376 case '7':
1377 {
1378 register int i = c - '0';
1379 register int count = 0;
1380 while (++count < 3)
1381 {
1382 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1383 {
1384 i *= 8;
1385 i += c - '0';
1386 }
1387 else
1388 {
1389 (*string_ptr)--;
1390 break;
1391 }
1392 }
1393 return i;
1394 }
1395 default:
1396 return c;
1397 }
1398 }
1399 \f
1400 /* Print the character C on STREAM as part of the contents of a literal
1401 string whose delimiter is QUOTER. Note that this routine should only
1402 be call for printing things which are independent of the language
1403 of the program being debugged. */
1404
1405 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1406
1407 static void
1408 printchar (c, do_fputs, do_fprintf, stream, quoter)
1409 int c;
1410 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1411 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1412 struct ui_file *stream;
1413 int quoter;
1414 {
1415
1416 c &= 0xFF; /* Avoid sign bit follies */
1417
1418 if (c < 0x20 || /* Low control chars */
1419 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1420 (sevenbit_strings && c >= 0x80))
1421 { /* high order bit set */
1422 switch (c)
1423 {
1424 case '\n':
1425 do_fputs ("\\n", stream);
1426 break;
1427 case '\b':
1428 do_fputs ("\\b", stream);
1429 break;
1430 case '\t':
1431 do_fputs ("\\t", stream);
1432 break;
1433 case '\f':
1434 do_fputs ("\\f", stream);
1435 break;
1436 case '\r':
1437 do_fputs ("\\r", stream);
1438 break;
1439 case '\033':
1440 do_fputs ("\\e", stream);
1441 break;
1442 case '\007':
1443 do_fputs ("\\a", stream);
1444 break;
1445 default:
1446 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1447 break;
1448 }
1449 }
1450 else
1451 {
1452 if (c == '\\' || c == quoter)
1453 do_fputs ("\\", stream);
1454 do_fprintf (stream, "%c", c);
1455 }
1456 }
1457
1458 /* Print the character C on STREAM as part of the contents of a
1459 literal string whose delimiter is QUOTER. Note that these routines
1460 should only be call for printing things which are independent of
1461 the language of the program being debugged. */
1462
1463 void
1464 fputstr_filtered (str, quoter, stream)
1465 const char *str;
1466 int quoter;
1467 struct ui_file *stream;
1468 {
1469 while (*str)
1470 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1471 }
1472
1473 void
1474 fputstr_unfiltered (str, quoter, stream)
1475 const char *str;
1476 int quoter;
1477 struct ui_file *stream;
1478 {
1479 while (*str)
1480 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1481 }
1482
1483 void
1484 fputstrn_unfiltered (str, n, quoter, stream)
1485 const char *str;
1486 int n;
1487 int quoter;
1488 struct ui_file *stream;
1489 {
1490 int i;
1491 for (i = 0; i < n; i++)
1492 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1493 }
1494
1495 \f
1496
1497 /* Number of lines per page or UINT_MAX if paging is disabled. */
1498 static unsigned int lines_per_page;
1499 /* Number of chars per line or UNIT_MAX if line folding is disabled. */
1500 static unsigned int chars_per_line;
1501 /* Current count of lines printed on this page, chars on this line. */
1502 static unsigned int lines_printed, chars_printed;
1503
1504 /* Buffer and start column of buffered text, for doing smarter word-
1505 wrapping. When someone calls wrap_here(), we start buffering output
1506 that comes through fputs_filtered(). If we see a newline, we just
1507 spit it out and forget about the wrap_here(). If we see another
1508 wrap_here(), we spit it out and remember the newer one. If we see
1509 the end of the line, we spit out a newline, the indent, and then
1510 the buffered output. */
1511
1512 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1513 are waiting to be output (they have already been counted in chars_printed).
1514 When wrap_buffer[0] is null, the buffer is empty. */
1515 static char *wrap_buffer;
1516
1517 /* Pointer in wrap_buffer to the next character to fill. */
1518 static char *wrap_pointer;
1519
1520 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1521 is non-zero. */
1522 static char *wrap_indent;
1523
1524 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1525 is not in effect. */
1526 static int wrap_column;
1527 \f
1528
1529 /* Inialize the lines and chars per page */
1530 void
1531 init_page_info ()
1532 {
1533 #if defined(TUI)
1534 if (tui_version && m_winPtrNotNull (cmdWin))
1535 {
1536 lines_per_page = cmdWin->generic.height;
1537 chars_per_line = cmdWin->generic.width;
1538 }
1539 else
1540 #endif
1541 {
1542 /* These defaults will be used if we are unable to get the correct
1543 values from termcap. */
1544 #if defined(__GO32__)
1545 lines_per_page = ScreenRows ();
1546 chars_per_line = ScreenCols ();
1547 #else
1548 lines_per_page = 24;
1549 chars_per_line = 80;
1550
1551 #if !defined (MPW) && !defined (_WIN32)
1552 /* No termcap under MPW, although might be cool to do something
1553 by looking at worksheet or console window sizes. */
1554 /* Initialize the screen height and width from termcap. */
1555 {
1556 char *termtype = getenv ("TERM");
1557
1558 /* Positive means success, nonpositive means failure. */
1559 int status;
1560
1561 /* 2048 is large enough for all known terminals, according to the
1562 GNU termcap manual. */
1563 char term_buffer[2048];
1564
1565 if (termtype)
1566 {
1567 status = tgetent (term_buffer, termtype);
1568 if (status > 0)
1569 {
1570 int val;
1571 int running_in_emacs = getenv ("EMACS") != NULL;
1572
1573 val = tgetnum ("li");
1574 if (val >= 0 && !running_in_emacs)
1575 lines_per_page = val;
1576 else
1577 /* The number of lines per page is not mentioned
1578 in the terminal description. This probably means
1579 that paging is not useful (e.g. emacs shell window),
1580 so disable paging. */
1581 lines_per_page = UINT_MAX;
1582
1583 val = tgetnum ("co");
1584 if (val >= 0)
1585 chars_per_line = val;
1586 }
1587 }
1588 }
1589 #endif /* MPW */
1590
1591 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1592
1593 /* If there is a better way to determine the window size, use it. */
1594 SIGWINCH_HANDLER (SIGWINCH);
1595 #endif
1596 #endif
1597 /* If the output is not a terminal, don't paginate it. */
1598 if (!ui_file_isatty (gdb_stdout))
1599 lines_per_page = UINT_MAX;
1600 } /* the command_line_version */
1601 set_width ();
1602 }
1603
1604 static void
1605 set_width ()
1606 {
1607 if (chars_per_line == 0)
1608 init_page_info ();
1609
1610 if (!wrap_buffer)
1611 {
1612 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1613 wrap_buffer[0] = '\0';
1614 }
1615 else
1616 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1617 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1618 }
1619
1620 /* ARGSUSED */
1621 static void
1622 set_width_command (args, from_tty, c)
1623 char *args;
1624 int from_tty;
1625 struct cmd_list_element *c;
1626 {
1627 set_width ();
1628 }
1629
1630 /* Wait, so the user can read what's on the screen. Prompt the user
1631 to continue by pressing RETURN. */
1632
1633 static void
1634 prompt_for_continue ()
1635 {
1636 char *ignore;
1637 char cont_prompt[120];
1638
1639 if (annotation_level > 1)
1640 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1641
1642 strcpy (cont_prompt,
1643 "---Type <return> to continue, or q <return> to quit---");
1644 if (annotation_level > 1)
1645 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1646
1647 /* We must do this *before* we call gdb_readline, else it will eventually
1648 call us -- thinking that we're trying to print beyond the end of the
1649 screen. */
1650 reinitialize_more_filter ();
1651
1652 immediate_quit++;
1653 /* On a real operating system, the user can quit with SIGINT.
1654 But not on GO32.
1655
1656 'q' is provided on all systems so users don't have to change habits
1657 from system to system, and because telling them what to do in
1658 the prompt is more user-friendly than expecting them to think of
1659 SIGINT. */
1660 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1661 whereas control-C to gdb_readline will cause the user to get dumped
1662 out to DOS. */
1663 ignore = readline (cont_prompt);
1664
1665 if (annotation_level > 1)
1666 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1667
1668 if (ignore)
1669 {
1670 char *p = ignore;
1671 while (*p == ' ' || *p == '\t')
1672 ++p;
1673 if (p[0] == 'q')
1674 {
1675 if (!event_loop_p)
1676 request_quit (SIGINT);
1677 else
1678 async_request_quit (0);
1679 }
1680 free (ignore);
1681 }
1682 immediate_quit--;
1683
1684 /* Now we have to do this again, so that GDB will know that it doesn't
1685 need to save the ---Type <return>--- line at the top of the screen. */
1686 reinitialize_more_filter ();
1687
1688 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1689 }
1690
1691 /* Reinitialize filter; ie. tell it to reset to original values. */
1692
1693 void
1694 reinitialize_more_filter ()
1695 {
1696 lines_printed = 0;
1697 chars_printed = 0;
1698 }
1699
1700 /* Indicate that if the next sequence of characters overflows the line,
1701 a newline should be inserted here rather than when it hits the end.
1702 If INDENT is non-null, it is a string to be printed to indent the
1703 wrapped part on the next line. INDENT must remain accessible until
1704 the next call to wrap_here() or until a newline is printed through
1705 fputs_filtered().
1706
1707 If the line is already overfull, we immediately print a newline and
1708 the indentation, and disable further wrapping.
1709
1710 If we don't know the width of lines, but we know the page height,
1711 we must not wrap words, but should still keep track of newlines
1712 that were explicitly printed.
1713
1714 INDENT should not contain tabs, as that will mess up the char count
1715 on the next line. FIXME.
1716
1717 This routine is guaranteed to force out any output which has been
1718 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1719 used to force out output from the wrap_buffer. */
1720
1721 void
1722 wrap_here (indent)
1723 char *indent;
1724 {
1725 /* This should have been allocated, but be paranoid anyway. */
1726 if (!wrap_buffer)
1727 abort ();
1728
1729 if (wrap_buffer[0])
1730 {
1731 *wrap_pointer = '\0';
1732 fputs_unfiltered (wrap_buffer, gdb_stdout);
1733 }
1734 wrap_pointer = wrap_buffer;
1735 wrap_buffer[0] = '\0';
1736 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1737 {
1738 wrap_column = 0;
1739 }
1740 else if (chars_printed >= chars_per_line)
1741 {
1742 puts_filtered ("\n");
1743 if (indent != NULL)
1744 puts_filtered (indent);
1745 wrap_column = 0;
1746 }
1747 else
1748 {
1749 wrap_column = chars_printed;
1750 if (indent == NULL)
1751 wrap_indent = "";
1752 else
1753 wrap_indent = indent;
1754 }
1755 }
1756
1757 /* Ensure that whatever gets printed next, using the filtered output
1758 commands, starts at the beginning of the line. I.E. if there is
1759 any pending output for the current line, flush it and start a new
1760 line. Otherwise do nothing. */
1761
1762 void
1763 begin_line ()
1764 {
1765 if (chars_printed > 0)
1766 {
1767 puts_filtered ("\n");
1768 }
1769 }
1770
1771
1772 /* Like fputs but if FILTER is true, pause after every screenful.
1773
1774 Regardless of FILTER can wrap at points other than the final
1775 character of a line.
1776
1777 Unlike fputs, fputs_maybe_filtered does not return a value.
1778 It is OK for LINEBUFFER to be NULL, in which case just don't print
1779 anything.
1780
1781 Note that a longjmp to top level may occur in this routine (only if
1782 FILTER is true) (since prompt_for_continue may do so) so this
1783 routine should not be called when cleanups are not in place. */
1784
1785 static void
1786 fputs_maybe_filtered (linebuffer, stream, filter)
1787 const char *linebuffer;
1788 struct ui_file *stream;
1789 int filter;
1790 {
1791 const char *lineptr;
1792
1793 if (linebuffer == 0)
1794 return;
1795
1796 /* Don't do any filtering if it is disabled. */
1797 if ((stream != gdb_stdout) || !pagination_enabled
1798 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1799 {
1800 fputs_unfiltered (linebuffer, stream);
1801 return;
1802 }
1803
1804 /* Go through and output each character. Show line extension
1805 when this is necessary; prompt user for new page when this is
1806 necessary. */
1807
1808 lineptr = linebuffer;
1809 while (*lineptr)
1810 {
1811 /* Possible new page. */
1812 if (filter &&
1813 (lines_printed >= lines_per_page - 1))
1814 prompt_for_continue ();
1815
1816 while (*lineptr && *lineptr != '\n')
1817 {
1818 /* Print a single line. */
1819 if (*lineptr == '\t')
1820 {
1821 if (wrap_column)
1822 *wrap_pointer++ = '\t';
1823 else
1824 fputc_unfiltered ('\t', stream);
1825 /* Shifting right by 3 produces the number of tab stops
1826 we have already passed, and then adding one and
1827 shifting left 3 advances to the next tab stop. */
1828 chars_printed = ((chars_printed >> 3) + 1) << 3;
1829 lineptr++;
1830 }
1831 else
1832 {
1833 if (wrap_column)
1834 *wrap_pointer++ = *lineptr;
1835 else
1836 fputc_unfiltered (*lineptr, stream);
1837 chars_printed++;
1838 lineptr++;
1839 }
1840
1841 if (chars_printed >= chars_per_line)
1842 {
1843 unsigned int save_chars = chars_printed;
1844
1845 chars_printed = 0;
1846 lines_printed++;
1847 /* If we aren't actually wrapping, don't output newline --
1848 if chars_per_line is right, we probably just overflowed
1849 anyway; if it's wrong, let us keep going. */
1850 if (wrap_column)
1851 fputc_unfiltered ('\n', stream);
1852
1853 /* Possible new page. */
1854 if (lines_printed >= lines_per_page - 1)
1855 prompt_for_continue ();
1856
1857 /* Now output indentation and wrapped string */
1858 if (wrap_column)
1859 {
1860 fputs_unfiltered (wrap_indent, stream);
1861 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1862 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1863 /* FIXME, this strlen is what prevents wrap_indent from
1864 containing tabs. However, if we recurse to print it
1865 and count its chars, we risk trouble if wrap_indent is
1866 longer than (the user settable) chars_per_line.
1867 Note also that this can set chars_printed > chars_per_line
1868 if we are printing a long string. */
1869 chars_printed = strlen (wrap_indent)
1870 + (save_chars - wrap_column);
1871 wrap_pointer = wrap_buffer; /* Reset buffer */
1872 wrap_buffer[0] = '\0';
1873 wrap_column = 0; /* And disable fancy wrap */
1874 }
1875 }
1876 }
1877
1878 if (*lineptr == '\n')
1879 {
1880 chars_printed = 0;
1881 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1882 lines_printed++;
1883 fputc_unfiltered ('\n', stream);
1884 lineptr++;
1885 }
1886 }
1887 }
1888
1889 void
1890 fputs_filtered (linebuffer, stream)
1891 const char *linebuffer;
1892 struct ui_file *stream;
1893 {
1894 fputs_maybe_filtered (linebuffer, stream, 1);
1895 }
1896
1897 int
1898 putchar_unfiltered (c)
1899 int c;
1900 {
1901 char buf = c;
1902 ui_file_write (gdb_stdout, &buf, 1);
1903 return c;
1904 }
1905
1906 int
1907 fputc_unfiltered (c, stream)
1908 int c;
1909 struct ui_file *stream;
1910 {
1911 char buf = c;
1912 ui_file_write (stream, &buf, 1);
1913 return c;
1914 }
1915
1916 int
1917 fputc_filtered (c, stream)
1918 int c;
1919 struct ui_file *stream;
1920 {
1921 char buf[2];
1922
1923 buf[0] = c;
1924 buf[1] = 0;
1925 fputs_filtered (buf, stream);
1926 return c;
1927 }
1928
1929 /* puts_debug is like fputs_unfiltered, except it prints special
1930 characters in printable fashion. */
1931
1932 void
1933 puts_debug (prefix, string, suffix)
1934 char *prefix;
1935 char *string;
1936 char *suffix;
1937 {
1938 int ch;
1939
1940 /* Print prefix and suffix after each line. */
1941 static int new_line = 1;
1942 static int return_p = 0;
1943 static char *prev_prefix = "";
1944 static char *prev_suffix = "";
1945
1946 if (*string == '\n')
1947 return_p = 0;
1948
1949 /* If the prefix is changing, print the previous suffix, a new line,
1950 and the new prefix. */
1951 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1952 {
1953 fputs_unfiltered (prev_suffix, gdb_stdlog);
1954 fputs_unfiltered ("\n", gdb_stdlog);
1955 fputs_unfiltered (prefix, gdb_stdlog);
1956 }
1957
1958 /* Print prefix if we printed a newline during the previous call. */
1959 if (new_line)
1960 {
1961 new_line = 0;
1962 fputs_unfiltered (prefix, gdb_stdlog);
1963 }
1964
1965 prev_prefix = prefix;
1966 prev_suffix = suffix;
1967
1968 /* Output characters in a printable format. */
1969 while ((ch = *string++) != '\0')
1970 {
1971 switch (ch)
1972 {
1973 default:
1974 if (isprint (ch))
1975 fputc_unfiltered (ch, gdb_stdlog);
1976
1977 else
1978 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1979 break;
1980
1981 case '\\':
1982 fputs_unfiltered ("\\\\", gdb_stdlog);
1983 break;
1984 case '\b':
1985 fputs_unfiltered ("\\b", gdb_stdlog);
1986 break;
1987 case '\f':
1988 fputs_unfiltered ("\\f", gdb_stdlog);
1989 break;
1990 case '\n':
1991 new_line = 1;
1992 fputs_unfiltered ("\\n", gdb_stdlog);
1993 break;
1994 case '\r':
1995 fputs_unfiltered ("\\r", gdb_stdlog);
1996 break;
1997 case '\t':
1998 fputs_unfiltered ("\\t", gdb_stdlog);
1999 break;
2000 case '\v':
2001 fputs_unfiltered ("\\v", gdb_stdlog);
2002 break;
2003 }
2004
2005 return_p = ch == '\r';
2006 }
2007
2008 /* Print suffix if we printed a newline. */
2009 if (new_line)
2010 {
2011 fputs_unfiltered (suffix, gdb_stdlog);
2012 fputs_unfiltered ("\n", gdb_stdlog);
2013 }
2014 }
2015
2016
2017 /* Print a variable number of ARGS using format FORMAT. If this
2018 information is going to put the amount written (since the last call
2019 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2020 call prompt_for_continue to get the users permision to continue.
2021
2022 Unlike fprintf, this function does not return a value.
2023
2024 We implement three variants, vfprintf (takes a vararg list and stream),
2025 fprintf (takes a stream to write on), and printf (the usual).
2026
2027 Note also that a longjmp to top level may occur in this routine
2028 (since prompt_for_continue may do so) so this routine should not be
2029 called when cleanups are not in place. */
2030
2031 static void
2032 vfprintf_maybe_filtered (stream, format, args, filter)
2033 struct ui_file *stream;
2034 const char *format;
2035 va_list args;
2036 int filter;
2037 {
2038 char *linebuffer;
2039 struct cleanup *old_cleanups;
2040
2041 vasprintf (&linebuffer, format, args);
2042 if (linebuffer == NULL)
2043 {
2044 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2045 exit (1);
2046 }
2047 old_cleanups = make_cleanup (free, linebuffer);
2048 fputs_maybe_filtered (linebuffer, stream, filter);
2049 do_cleanups (old_cleanups);
2050 }
2051
2052
2053 void
2054 vfprintf_filtered (stream, format, args)
2055 struct ui_file *stream;
2056 const char *format;
2057 va_list args;
2058 {
2059 vfprintf_maybe_filtered (stream, format, args, 1);
2060 }
2061
2062 void
2063 vfprintf_unfiltered (stream, format, args)
2064 struct ui_file *stream;
2065 const char *format;
2066 va_list args;
2067 {
2068 char *linebuffer;
2069 struct cleanup *old_cleanups;
2070
2071 vasprintf (&linebuffer, format, args);
2072 if (linebuffer == NULL)
2073 {
2074 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2075 exit (1);
2076 }
2077 old_cleanups = make_cleanup (free, linebuffer);
2078 fputs_unfiltered (linebuffer, stream);
2079 do_cleanups (old_cleanups);
2080 }
2081
2082 void
2083 vprintf_filtered (format, args)
2084 const char *format;
2085 va_list args;
2086 {
2087 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2088 }
2089
2090 void
2091 vprintf_unfiltered (format, args)
2092 const char *format;
2093 va_list args;
2094 {
2095 vfprintf_unfiltered (gdb_stdout, format, args);
2096 }
2097
2098 void
2099 fprintf_filtered (struct ui_file * stream, const char *format,...)
2100 {
2101 va_list args;
2102 va_start (args, format);
2103 vfprintf_filtered (stream, format, args);
2104 va_end (args);
2105 }
2106
2107 void
2108 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2109 {
2110 va_list args;
2111 va_start (args, format);
2112 vfprintf_unfiltered (stream, format, args);
2113 va_end (args);
2114 }
2115
2116 /* Like fprintf_filtered, but prints its result indented.
2117 Called as fprintfi_filtered (spaces, stream, format, ...); */
2118
2119 void
2120 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2121 {
2122 va_list args;
2123 va_start (args, format);
2124 print_spaces_filtered (spaces, stream);
2125
2126 vfprintf_filtered (stream, format, args);
2127 va_end (args);
2128 }
2129
2130
2131 void
2132 printf_filtered (const char *format,...)
2133 {
2134 va_list args;
2135 va_start (args, format);
2136 vfprintf_filtered (gdb_stdout, format, args);
2137 va_end (args);
2138 }
2139
2140
2141 void
2142 printf_unfiltered (const char *format,...)
2143 {
2144 va_list args;
2145 va_start (args, format);
2146 vfprintf_unfiltered (gdb_stdout, format, args);
2147 va_end (args);
2148 }
2149
2150 /* Like printf_filtered, but prints it's result indented.
2151 Called as printfi_filtered (spaces, format, ...); */
2152
2153 void
2154 printfi_filtered (int spaces, const char *format,...)
2155 {
2156 va_list args;
2157 va_start (args, format);
2158 print_spaces_filtered (spaces, gdb_stdout);
2159 vfprintf_filtered (gdb_stdout, format, args);
2160 va_end (args);
2161 }
2162
2163 /* Easy -- but watch out!
2164
2165 This routine is *not* a replacement for puts()! puts() appends a newline.
2166 This one doesn't, and had better not! */
2167
2168 void
2169 puts_filtered (string)
2170 const char *string;
2171 {
2172 fputs_filtered (string, gdb_stdout);
2173 }
2174
2175 void
2176 puts_unfiltered (string)
2177 const char *string;
2178 {
2179 fputs_unfiltered (string, gdb_stdout);
2180 }
2181
2182 /* Return a pointer to N spaces and a null. The pointer is good
2183 until the next call to here. */
2184 char *
2185 n_spaces (n)
2186 int n;
2187 {
2188 char *t;
2189 static char *spaces = 0;
2190 static int max_spaces = -1;
2191
2192 if (n > max_spaces)
2193 {
2194 if (spaces)
2195 free (spaces);
2196 spaces = (char *) xmalloc (n + 1);
2197 for (t = spaces + n; t != spaces;)
2198 *--t = ' ';
2199 spaces[n] = '\0';
2200 max_spaces = n;
2201 }
2202
2203 return spaces + max_spaces - n;
2204 }
2205
2206 /* Print N spaces. */
2207 void
2208 print_spaces_filtered (n, stream)
2209 int n;
2210 struct ui_file *stream;
2211 {
2212 fputs_filtered (n_spaces (n), stream);
2213 }
2214 \f
2215 /* C++ demangler stuff. */
2216
2217 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2218 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2219 If the name is not mangled, or the language for the name is unknown, or
2220 demangling is off, the name is printed in its "raw" form. */
2221
2222 void
2223 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2224 struct ui_file *stream;
2225 char *name;
2226 enum language lang;
2227 int arg_mode;
2228 {
2229 char *demangled;
2230
2231 if (name != NULL)
2232 {
2233 /* If user wants to see raw output, no problem. */
2234 if (!demangle)
2235 {
2236 fputs_filtered (name, stream);
2237 }
2238 else
2239 {
2240 switch (lang)
2241 {
2242 case language_cplus:
2243 demangled = cplus_demangle (name, arg_mode);
2244 break;
2245 case language_java:
2246 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2247 break;
2248 case language_chill:
2249 demangled = chill_demangle (name);
2250 break;
2251 default:
2252 demangled = NULL;
2253 break;
2254 }
2255 fputs_filtered (demangled ? demangled : name, stream);
2256 if (demangled != NULL)
2257 {
2258 free (demangled);
2259 }
2260 }
2261 }
2262 }
2263
2264 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2265 differences in whitespace. Returns 0 if they match, non-zero if they
2266 don't (slightly different than strcmp()'s range of return values).
2267
2268 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2269 This "feature" is useful when searching for matching C++ function names
2270 (such as if the user types 'break FOO', where FOO is a mangled C++
2271 function). */
2272
2273 int
2274 strcmp_iw (string1, string2)
2275 const char *string1;
2276 const char *string2;
2277 {
2278 while ((*string1 != '\0') && (*string2 != '\0'))
2279 {
2280 while (isspace (*string1))
2281 {
2282 string1++;
2283 }
2284 while (isspace (*string2))
2285 {
2286 string2++;
2287 }
2288 if (*string1 != *string2)
2289 {
2290 break;
2291 }
2292 if (*string1 != '\0')
2293 {
2294 string1++;
2295 string2++;
2296 }
2297 }
2298 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2299 }
2300 \f
2301
2302 /*
2303 ** subset_compare()
2304 ** Answer whether string_to_compare is a full or partial match to
2305 ** template_string. The partial match must be in sequence starting
2306 ** at index 0.
2307 */
2308 int
2309 subset_compare (string_to_compare, template_string)
2310 char *string_to_compare;
2311 char *template_string;
2312 {
2313 int match;
2314 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2315 strlen (string_to_compare) <= strlen (template_string))
2316 match = (strncmp (template_string,
2317 string_to_compare,
2318 strlen (string_to_compare)) == 0);
2319 else
2320 match = 0;
2321 return match;
2322 }
2323
2324
2325 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2326 static void
2327 pagination_on_command (arg, from_tty)
2328 char *arg;
2329 int from_tty;
2330 {
2331 pagination_enabled = 1;
2332 }
2333
2334 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2335 static void
2336 pagination_off_command (arg, from_tty)
2337 char *arg;
2338 int from_tty;
2339 {
2340 pagination_enabled = 0;
2341 }
2342 \f
2343
2344 void
2345 initialize_utils ()
2346 {
2347 struct cmd_list_element *c;
2348
2349 c = add_set_cmd ("width", class_support, var_uinteger,
2350 (char *) &chars_per_line,
2351 "Set number of characters gdb thinks are in a line.",
2352 &setlist);
2353 add_show_from_set (c, &showlist);
2354 c->function.sfunc = set_width_command;
2355
2356 add_show_from_set
2357 (add_set_cmd ("height", class_support,
2358 var_uinteger, (char *) &lines_per_page,
2359 "Set number of lines gdb thinks are in a page.", &setlist),
2360 &showlist);
2361
2362 init_page_info ();
2363
2364 /* If the output is not a terminal, don't paginate it. */
2365 if (!ui_file_isatty (gdb_stdout))
2366 lines_per_page = UINT_MAX;
2367
2368 set_width_command ((char *) NULL, 0, c);
2369
2370 add_show_from_set
2371 (add_set_cmd ("demangle", class_support, var_boolean,
2372 (char *) &demangle,
2373 "Set demangling of encoded C++ names when displaying symbols.",
2374 &setprintlist),
2375 &showprintlist);
2376
2377 add_show_from_set
2378 (add_set_cmd ("pagination", class_support,
2379 var_boolean, (char *) &pagination_enabled,
2380 "Set state of pagination.", &setlist),
2381 &showlist);
2382 if (xdb_commands)
2383 {
2384 add_com ("am", class_support, pagination_on_command,
2385 "Enable pagination");
2386 add_com ("sm", class_support, pagination_off_command,
2387 "Disable pagination");
2388 }
2389
2390 add_show_from_set
2391 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2392 (char *) &sevenbit_strings,
2393 "Set printing of 8-bit characters in strings as \\nnn.",
2394 &setprintlist),
2395 &showprintlist);
2396
2397 add_show_from_set
2398 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2399 (char *) &asm_demangle,
2400 "Set demangling of C++ names in disassembly listings.",
2401 &setprintlist),
2402 &showprintlist);
2403 }
2404
2405 /* Machine specific function to handle SIGWINCH signal. */
2406
2407 #ifdef SIGWINCH_HANDLER_BODY
2408 SIGWINCH_HANDLER_BODY
2409 #endif
2410 \f
2411 /* Support for converting target fp numbers into host DOUBLEST format. */
2412
2413 /* XXX - This code should really be in libiberty/floatformat.c, however
2414 configuration issues with libiberty made this very difficult to do in the
2415 available time. */
2416
2417 #include "floatformat.h"
2418 #include <math.h> /* ldexp */
2419
2420 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2421 going to bother with trying to muck around with whether it is defined in
2422 a system header, what we do if not, etc. */
2423 #define FLOATFORMAT_CHAR_BIT 8
2424
2425 static unsigned long get_field PARAMS ((unsigned char *,
2426 enum floatformat_byteorders,
2427 unsigned int,
2428 unsigned int,
2429 unsigned int));
2430
2431 /* Extract a field which starts at START and is LEN bytes long. DATA and
2432 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2433 static unsigned long
2434 get_field (data, order, total_len, start, len)
2435 unsigned char *data;
2436 enum floatformat_byteorders order;
2437 unsigned int total_len;
2438 unsigned int start;
2439 unsigned int len;
2440 {
2441 unsigned long result;
2442 unsigned int cur_byte;
2443 int cur_bitshift;
2444
2445 /* Start at the least significant part of the field. */
2446 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2447 {
2448 /* We start counting from the other end (i.e, from the high bytes
2449 rather than the low bytes). As such, we need to be concerned
2450 with what happens if bit 0 doesn't start on a byte boundary.
2451 I.e, we need to properly handle the case where total_len is
2452 not evenly divisible by 8. So we compute ``excess'' which
2453 represents the number of bits from the end of our starting
2454 byte needed to get to bit 0. */
2455 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2456 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2457 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2458 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2459 - FLOATFORMAT_CHAR_BIT;
2460 }
2461 else
2462 {
2463 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2464 cur_bitshift =
2465 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2466 }
2467 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2468 result = *(data + cur_byte) >> (-cur_bitshift);
2469 else
2470 result = 0;
2471 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2472 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2473 ++cur_byte;
2474 else
2475 --cur_byte;
2476
2477 /* Move towards the most significant part of the field. */
2478 while (cur_bitshift < len)
2479 {
2480 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2481 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2482 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2483 ++cur_byte;
2484 else
2485 --cur_byte;
2486 }
2487 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2488 /* Mask out bits which are not part of the field */
2489 result &= ((1UL << len) - 1);
2490 return result;
2491 }
2492
2493 /* Convert from FMT to a DOUBLEST.
2494 FROM is the address of the extended float.
2495 Store the DOUBLEST in *TO. */
2496
2497 void
2498 floatformat_to_doublest (fmt, from, to)
2499 const struct floatformat *fmt;
2500 char *from;
2501 DOUBLEST *to;
2502 {
2503 unsigned char *ufrom = (unsigned char *) from;
2504 DOUBLEST dto;
2505 long exponent;
2506 unsigned long mant;
2507 unsigned int mant_bits, mant_off;
2508 int mant_bits_left;
2509 int special_exponent; /* It's a NaN, denorm or zero */
2510
2511 /* If the mantissa bits are not contiguous from one end of the
2512 mantissa to the other, we need to make a private copy of the
2513 source bytes that is in the right order since the unpacking
2514 algorithm assumes that the bits are contiguous.
2515
2516 Swap the bytes individually rather than accessing them through
2517 "long *" since we have no guarantee that they start on a long
2518 alignment, and also sizeof(long) for the host could be different
2519 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2520 for the target is 4. */
2521
2522 if (fmt->byteorder == floatformat_littlebyte_bigword)
2523 {
2524 static unsigned char *newfrom;
2525 unsigned char *swapin, *swapout;
2526 int longswaps;
2527
2528 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2529 longswaps >>= 3;
2530
2531 if (newfrom == NULL)
2532 {
2533 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2534 }
2535 swapout = newfrom;
2536 swapin = ufrom;
2537 ufrom = newfrom;
2538 while (longswaps-- > 0)
2539 {
2540 /* This is ugly, but efficient */
2541 *swapout++ = swapin[4];
2542 *swapout++ = swapin[5];
2543 *swapout++ = swapin[6];
2544 *swapout++ = swapin[7];
2545 *swapout++ = swapin[0];
2546 *swapout++ = swapin[1];
2547 *swapout++ = swapin[2];
2548 *swapout++ = swapin[3];
2549 swapin += 8;
2550 }
2551 }
2552
2553 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2554 fmt->exp_start, fmt->exp_len);
2555 /* Note that if exponent indicates a NaN, we can't really do anything useful
2556 (not knowing if the host has NaN's, or how to build one). So it will
2557 end up as an infinity or something close; that is OK. */
2558
2559 mant_bits_left = fmt->man_len;
2560 mant_off = fmt->man_start;
2561 dto = 0.0;
2562
2563 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2564
2565 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2566 we don't check for zero as the exponent doesn't matter. */
2567 if (!special_exponent)
2568 exponent -= fmt->exp_bias;
2569 else if (exponent == 0)
2570 exponent = 1 - fmt->exp_bias;
2571
2572 /* Build the result algebraically. Might go infinite, underflow, etc;
2573 who cares. */
2574
2575 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2576 increment the exponent by one to account for the integer bit. */
2577
2578 if (!special_exponent)
2579 {
2580 if (fmt->intbit == floatformat_intbit_no)
2581 dto = ldexp (1.0, exponent);
2582 else
2583 exponent++;
2584 }
2585
2586 while (mant_bits_left > 0)
2587 {
2588 mant_bits = min (mant_bits_left, 32);
2589
2590 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2591 mant_off, mant_bits);
2592
2593 dto += ldexp ((double) mant, exponent - mant_bits);
2594 exponent -= mant_bits;
2595 mant_off += mant_bits;
2596 mant_bits_left -= mant_bits;
2597 }
2598
2599 /* Negate it if negative. */
2600 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2601 dto = -dto;
2602 *to = dto;
2603 }
2604 \f
2605 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2606 unsigned int,
2607 unsigned int,
2608 unsigned int,
2609 unsigned long));
2610
2611 /* Set a field which starts at START and is LEN bytes long. DATA and
2612 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2613 static void
2614 put_field (data, order, total_len, start, len, stuff_to_put)
2615 unsigned char *data;
2616 enum floatformat_byteorders order;
2617 unsigned int total_len;
2618 unsigned int start;
2619 unsigned int len;
2620 unsigned long stuff_to_put;
2621 {
2622 unsigned int cur_byte;
2623 int cur_bitshift;
2624
2625 /* Start at the least significant part of the field. */
2626 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2627 {
2628 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2629 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2630 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2631 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2632 - FLOATFORMAT_CHAR_BIT;
2633 }
2634 else
2635 {
2636 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2637 cur_bitshift =
2638 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2639 }
2640 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2641 {
2642 *(data + cur_byte) &=
2643 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2644 << (-cur_bitshift));
2645 *(data + cur_byte) |=
2646 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2647 }
2648 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2649 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2650 ++cur_byte;
2651 else
2652 --cur_byte;
2653
2654 /* Move towards the most significant part of the field. */
2655 while (cur_bitshift < len)
2656 {
2657 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2658 {
2659 /* This is the last byte. */
2660 *(data + cur_byte) &=
2661 ~((1 << (len - cur_bitshift)) - 1);
2662 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2663 }
2664 else
2665 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2666 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2667 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2668 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2669 ++cur_byte;
2670 else
2671 --cur_byte;
2672 }
2673 }
2674
2675 #ifdef HAVE_LONG_DOUBLE
2676 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2677 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2678 frexp, but operates on the long double data type. */
2679
2680 static long double ldfrexp PARAMS ((long double value, int *eptr));
2681
2682 static long double
2683 ldfrexp (value, eptr)
2684 long double value;
2685 int *eptr;
2686 {
2687 long double tmp;
2688 int exp;
2689
2690 /* Unfortunately, there are no portable functions for extracting the exponent
2691 of a long double, so we have to do it iteratively by multiplying or dividing
2692 by two until the fraction is between 0.5 and 1.0. */
2693
2694 if (value < 0.0l)
2695 value = -value;
2696
2697 tmp = 1.0l;
2698 exp = 0;
2699
2700 if (value >= tmp) /* Value >= 1.0 */
2701 while (value >= tmp)
2702 {
2703 tmp *= 2.0l;
2704 exp++;
2705 }
2706 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2707 {
2708 while (value < tmp)
2709 {
2710 tmp /= 2.0l;
2711 exp--;
2712 }
2713 tmp *= 2.0l;
2714 exp++;
2715 }
2716
2717 *eptr = exp;
2718 return value / tmp;
2719 }
2720 #endif /* HAVE_LONG_DOUBLE */
2721
2722
2723 /* The converse: convert the DOUBLEST *FROM to an extended float
2724 and store where TO points. Neither FROM nor TO have any alignment
2725 restrictions. */
2726
2727 void
2728 floatformat_from_doublest (fmt, from, to)
2729 CONST struct floatformat *fmt;
2730 DOUBLEST *from;
2731 char *to;
2732 {
2733 DOUBLEST dfrom;
2734 int exponent;
2735 DOUBLEST mant;
2736 unsigned int mant_bits, mant_off;
2737 int mant_bits_left;
2738 unsigned char *uto = (unsigned char *) to;
2739
2740 memcpy (&dfrom, from, sizeof (dfrom));
2741 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2742 if (dfrom == 0)
2743 return; /* Result is zero */
2744 if (dfrom != dfrom) /* Result is NaN */
2745 {
2746 /* From is NaN */
2747 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2748 fmt->exp_len, fmt->exp_nan);
2749 /* Be sure it's not infinity, but NaN value is irrel */
2750 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2751 32, 1);
2752 return;
2753 }
2754
2755 /* If negative, set the sign bit. */
2756 if (dfrom < 0)
2757 {
2758 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2759 dfrom = -dfrom;
2760 }
2761
2762 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2763 {
2764 /* Infinity exponent is same as NaN's. */
2765 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2766 fmt->exp_len, fmt->exp_nan);
2767 /* Infinity mantissa is all zeroes. */
2768 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2769 fmt->man_len, 0);
2770 return;
2771 }
2772
2773 #ifdef HAVE_LONG_DOUBLE
2774 mant = ldfrexp (dfrom, &exponent);
2775 #else
2776 mant = frexp (dfrom, &exponent);
2777 #endif
2778
2779 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2780 exponent + fmt->exp_bias - 1);
2781
2782 mant_bits_left = fmt->man_len;
2783 mant_off = fmt->man_start;
2784 while (mant_bits_left > 0)
2785 {
2786 unsigned long mant_long;
2787 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2788
2789 mant *= 4294967296.0;
2790 mant_long = (unsigned long) mant;
2791 mant -= mant_long;
2792
2793 /* If the integer bit is implicit, then we need to discard it.
2794 If we are discarding a zero, we should be (but are not) creating
2795 a denormalized number which means adjusting the exponent
2796 (I think). */
2797 if (mant_bits_left == fmt->man_len
2798 && fmt->intbit == floatformat_intbit_no)
2799 {
2800 mant_long <<= 1;
2801 mant_bits -= 1;
2802 }
2803
2804 if (mant_bits < 32)
2805 {
2806 /* The bits we want are in the most significant MANT_BITS bits of
2807 mant_long. Move them to the least significant. */
2808 mant_long >>= 32 - mant_bits;
2809 }
2810
2811 put_field (uto, fmt->byteorder, fmt->totalsize,
2812 mant_off, mant_bits, mant_long);
2813 mant_off += mant_bits;
2814 mant_bits_left -= mant_bits;
2815 }
2816 if (fmt->byteorder == floatformat_littlebyte_bigword)
2817 {
2818 int count;
2819 unsigned char *swaplow = uto;
2820 unsigned char *swaphigh = uto + 4;
2821 unsigned char tmp;
2822
2823 for (count = 0; count < 4; count++)
2824 {
2825 tmp = *swaplow;
2826 *swaplow++ = *swaphigh;
2827 *swaphigh++ = tmp;
2828 }
2829 }
2830 }
2831
2832 /* temporary storage using circular buffer */
2833 #define NUMCELLS 16
2834 #define CELLSIZE 32
2835 static char *
2836 get_cell ()
2837 {
2838 static char buf[NUMCELLS][CELLSIZE];
2839 static int cell = 0;
2840 if (++cell >= NUMCELLS)
2841 cell = 0;
2842 return buf[cell];
2843 }
2844
2845 /* print routines to handle variable size regs, etc.
2846
2847 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2848 unsigned long or unsigned long long, determined at configure time.
2849 If t_addr is an unsigned long long and sizeof (unsigned long long)
2850 is greater than sizeof (unsigned long), then I believe this code will
2851 probably lose, at least for little endian machines. I believe that
2852 it would also be better to eliminate the switch on the absolute size
2853 of t_addr and replace it with a sequence of if statements that compare
2854 sizeof t_addr with sizeof the various types and do the right thing,
2855 which includes knowing whether or not the host supports long long.
2856 -fnf
2857
2858 */
2859
2860 int
2861 strlen_paddr (void)
2862 {
2863 return (TARGET_PTR_BIT / 8 * 2);
2864 }
2865
2866
2867 /* eliminate warning from compiler on 32-bit systems */
2868 static int thirty_two = 32;
2869
2870 char *
2871 paddr (CORE_ADDR addr)
2872 {
2873 char *paddr_str = get_cell ();
2874 switch (TARGET_PTR_BIT / 8)
2875 {
2876 case 8:
2877 sprintf (paddr_str, "%08lx%08lx",
2878 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2879 break;
2880 case 4:
2881 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2882 break;
2883 case 2:
2884 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2885 break;
2886 default:
2887 sprintf (paddr_str, "%lx", (unsigned long) addr);
2888 }
2889 return paddr_str;
2890 }
2891
2892 char *
2893 paddr_nz (CORE_ADDR addr)
2894 {
2895 char *paddr_str = get_cell ();
2896 switch (TARGET_PTR_BIT / 8)
2897 {
2898 case 8:
2899 {
2900 unsigned long high = (unsigned long) (addr >> thirty_two);
2901 if (high == 0)
2902 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2903 else
2904 sprintf (paddr_str, "%lx%08lx",
2905 high, (unsigned long) (addr & 0xffffffff));
2906 break;
2907 }
2908 case 4:
2909 sprintf (paddr_str, "%lx", (unsigned long) addr);
2910 break;
2911 case 2:
2912 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2913 break;
2914 default:
2915 sprintf (paddr_str, "%lx", (unsigned long) addr);
2916 }
2917 return paddr_str;
2918 }
2919
2920 static void
2921 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2922 {
2923 /* steal code from valprint.c:print_decimal(). Should this worry
2924 about the real size of addr as the above does? */
2925 unsigned long temp[3];
2926 int i = 0;
2927 do
2928 {
2929 temp[i] = addr % (1000 * 1000 * 1000);
2930 addr /= (1000 * 1000 * 1000);
2931 i++;
2932 }
2933 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2934 switch (i)
2935 {
2936 case 1:
2937 sprintf (paddr_str, "%s%lu",
2938 sign, temp[0]);
2939 break;
2940 case 2:
2941 sprintf (paddr_str, "%s%lu%09lu",
2942 sign, temp[1], temp[0]);
2943 break;
2944 case 3:
2945 sprintf (paddr_str, "%s%lu%09lu%09lu",
2946 sign, temp[2], temp[1], temp[0]);
2947 break;
2948 default:
2949 abort ();
2950 }
2951 }
2952
2953 char *
2954 paddr_u (CORE_ADDR addr)
2955 {
2956 char *paddr_str = get_cell ();
2957 decimal2str (paddr_str, "", addr);
2958 return paddr_str;
2959 }
2960
2961 char *
2962 paddr_d (LONGEST addr)
2963 {
2964 char *paddr_str = get_cell ();
2965 if (addr < 0)
2966 decimal2str (paddr_str, "-", -addr);
2967 else
2968 decimal2str (paddr_str, "", addr);
2969 return paddr_str;
2970 }
2971
2972 char *
2973 preg (reg)
2974 t_reg reg;
2975 {
2976 char *preg_str = get_cell ();
2977 switch (sizeof (t_reg))
2978 {
2979 case 8:
2980 sprintf (preg_str, "%08lx%08lx",
2981 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2982 break;
2983 case 4:
2984 sprintf (preg_str, "%08lx", (unsigned long) reg);
2985 break;
2986 case 2:
2987 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2988 break;
2989 default:
2990 sprintf (preg_str, "%lx", (unsigned long) reg);
2991 }
2992 return preg_str;
2993 }
2994
2995 char *
2996 preg_nz (reg)
2997 t_reg reg;
2998 {
2999 char *preg_str = get_cell ();
3000 switch (sizeof (t_reg))
3001 {
3002 case 8:
3003 {
3004 unsigned long high = (unsigned long) (reg >> thirty_two);
3005 if (high == 0)
3006 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
3007 else
3008 sprintf (preg_str, "%lx%08lx",
3009 high, (unsigned long) (reg & 0xffffffff));
3010 break;
3011 }
3012 case 4:
3013 sprintf (preg_str, "%lx", (unsigned long) reg);
3014 break;
3015 case 2:
3016 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3017 break;
3018 default:
3019 sprintf (preg_str, "%lx", (unsigned long) reg);
3020 }
3021 return preg_str;
3022 }
3023
3024 /* Helper functions for INNER_THAN */
3025 int
3026 core_addr_lessthan (lhs, rhs)
3027 CORE_ADDR lhs;
3028 CORE_ADDR rhs;
3029 {
3030 return (lhs < rhs);
3031 }
3032
3033 int
3034 core_addr_greaterthan (lhs, rhs)
3035 CORE_ADDR lhs;
3036 CORE_ADDR rhs;
3037 {
3038 return (lhs > rhs);
3039 }
This page took 0.10716 seconds and 4 git commands to generate.