Correct/clarify credit for C++ work.
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_assert.h"
25 #include <ctype.h>
26 #include "gdb_string.h"
27 #include "event-top.h"
28
29 #ifdef HAVE_CURSES_H
30 #include <curses.h>
31 #endif
32 #ifdef HAVE_TERM_H
33 #include <term.h>
34 #endif
35
36 #ifdef __GO32__
37 #include <pc.h>
38 #endif
39
40 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41 #ifdef reg
42 #undef reg
43 #endif
44
45 #include <signal.h>
46 #include "gdbcmd.h"
47 #include "serial.h"
48 #include "bfd.h"
49 #include "target.h"
50 #include "demangle.h"
51 #include "expression.h"
52 #include "language.h"
53 #include "annotate.h"
54
55 #include "inferior.h" /* for signed_pointer_to_address */
56
57 #include <readline/readline.h>
58
59 #ifndef MALLOC_INCOMPATIBLE
60 #ifdef NEED_DECLARATION_MALLOC
61 extern PTR malloc ();
62 #endif
63 #ifdef NEED_DECLARATION_REALLOC
64 extern PTR realloc ();
65 #endif
66 #ifdef NEED_DECLARATION_FREE
67 extern void free ();
68 #endif
69 #endif
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 /* readline defines this. */
75 #undef savestring
76
77 void (*error_begin_hook) (void);
78
79 /* Holds the last error message issued by gdb */
80
81 static struct ui_file *gdb_lasterr;
82
83 /* Prototypes for local functions */
84
85 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
87
88 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
89
90 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
91 static void malloc_botch (void);
92 #endif
93
94 static void prompt_for_continue (void);
95
96 static void set_width_command (char *, int, struct cmd_list_element *);
97
98 static void set_width (void);
99
100 /* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
103 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
107 /* cleaned up on each error from within an execution command */
108 static struct cleanup *exec_error_cleanup_chain;
109
110 /* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114 struct continuation *cmd_continuation;
115 struct continuation *intermediate_continuation;
116
117 /* Nonzero if we have job control. */
118
119 int job_control;
120
121 /* Nonzero means a quit has been requested. */
122
123 int quit_flag;
124
125 /* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136 int immediate_quit;
137
138 /* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141 int demangle = 1;
142
143 /* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147 int asm_demangle = 0;
148
149 /* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153 int sevenbit_strings = 0;
154
155 /* String to be printed before error messages, if any. */
156
157 char *error_pre_print;
158
159 /* String to be printed before quit messages, if any. */
160
161 char *quit_pre_print;
162
163 /* String to be printed before warning messages, if any. */
164
165 char *warning_pre_print = "\nwarning: ";
166
167 int pagination_enabled = 1;
168 \f
169
170 /* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175 struct cleanup *
176 make_cleanup (make_cleanup_ftype *function, void *arg)
177 {
178 return make_my_cleanup (&cleanup_chain, function, arg);
179 }
180
181 struct cleanup *
182 make_final_cleanup (make_cleanup_ftype *function, void *arg)
183 {
184 return make_my_cleanup (&final_cleanup_chain, function, arg);
185 }
186
187 struct cleanup *
188 make_run_cleanup (make_cleanup_ftype *function, void *arg)
189 {
190 return make_my_cleanup (&run_cleanup_chain, function, arg);
191 }
192
193 struct cleanup *
194 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
195 {
196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
197 }
198
199 struct cleanup *
200 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
201 {
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203 }
204
205 static void
206 do_freeargv (void *arg)
207 {
208 freeargv ((char **) arg);
209 }
210
211 struct cleanup *
212 make_cleanup_freeargv (char **arg)
213 {
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215 }
216
217 static void
218 do_bfd_close_cleanup (void *arg)
219 {
220 bfd_close (arg);
221 }
222
223 struct cleanup *
224 make_cleanup_bfd_close (bfd *abfd)
225 {
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227 }
228
229 static void
230 do_close_cleanup (void *arg)
231 {
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
235 }
236
237 struct cleanup *
238 make_cleanup_close (int fd)
239 {
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
243 }
244
245 static void
246 do_ui_file_delete (void *arg)
247 {
248 ui_file_delete (arg);
249 }
250
251 struct cleanup *
252 make_cleanup_ui_file_delete (struct ui_file *arg)
253 {
254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
255 }
256
257 struct cleanup *
258 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
260 {
261 register struct cleanup *new
262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271 }
272
273 /* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276 void
277 do_cleanups (register struct cleanup *old_chain)
278 {
279 do_my_cleanups (&cleanup_chain, old_chain);
280 }
281
282 void
283 do_final_cleanups (register struct cleanup *old_chain)
284 {
285 do_my_cleanups (&final_cleanup_chain, old_chain);
286 }
287
288 void
289 do_run_cleanups (register struct cleanup *old_chain)
290 {
291 do_my_cleanups (&run_cleanup_chain, old_chain);
292 }
293
294 void
295 do_exec_cleanups (register struct cleanup *old_chain)
296 {
297 do_my_cleanups (&exec_cleanup_chain, old_chain);
298 }
299
300 void
301 do_exec_error_cleanups (register struct cleanup *old_chain)
302 {
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304 }
305
306 void
307 do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
309 {
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
315 xfree (ptr);
316 }
317 }
318
319 /* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322 void
323 discard_cleanups (register struct cleanup *old_chain)
324 {
325 discard_my_cleanups (&cleanup_chain, old_chain);
326 }
327
328 void
329 discard_final_cleanups (register struct cleanup *old_chain)
330 {
331 discard_my_cleanups (&final_cleanup_chain, old_chain);
332 }
333
334 void
335 discard_exec_error_cleanups (register struct cleanup *old_chain)
336 {
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338 }
339
340 void
341 discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
343 {
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
348 xfree (ptr);
349 }
350 }
351
352 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
353 struct cleanup *
354 save_cleanups (void)
355 {
356 return save_my_cleanups (&cleanup_chain);
357 }
358
359 struct cleanup *
360 save_final_cleanups (void)
361 {
362 return save_my_cleanups (&final_cleanup_chain);
363 }
364
365 struct cleanup *
366 save_my_cleanups (struct cleanup **pmy_chain)
367 {
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372 }
373
374 /* Restore the cleanup chain from a previously saved chain. */
375 void
376 restore_cleanups (struct cleanup *chain)
377 {
378 restore_my_cleanups (&cleanup_chain, chain);
379 }
380
381 void
382 restore_final_cleanups (struct cleanup *chain)
383 {
384 restore_my_cleanups (&final_cleanup_chain, chain);
385 }
386
387 void
388 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
389 {
390 *pmy_chain = chain;
391 }
392
393 /* This function is useful for cleanups.
394 Do
395
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
398
399 to arrange to free the object thus allocated. */
400
401 void
402 free_current_contents (void *ptr)
403 {
404 void **location = ptr;
405 if (location == NULL)
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
408 if (*location != NULL)
409 {
410 xfree (*location);
411 *location = NULL;
412 }
413 }
414
415 /* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422 /* ARGSUSED */
423 void
424 null_cleanup (void *arg)
425 {
426 }
427
428 /* Add a continuation to the continuation list, the global list
429 cmd_continuation. The new continuation will be added at the front.*/
430 void
431 add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
433 {
434 struct continuation *continuation_ptr;
435
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
441 }
442
443 /* Walk down the cmd_continuation list, and execute all the
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
451 void
452 do_all_continuations (void)
453 {
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
470 xfree (saved_continuation);
471 }
472 }
473
474 /* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476 void
477 discard_all_continuations (void)
478 {
479 struct continuation *continuation_ptr;
480
481 while (cmd_continuation)
482 {
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
485 xfree (continuation_ptr);
486 }
487 }
488
489 /* Add a continuation to the continuation list, the global list
490 intermediate_continuation. The new continuation will be added at the front.*/
491 void
492 add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
495 {
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503 }
504
505 /* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513 void
514 do_all_intermediate_continuations (void)
515 {
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
532 xfree (saved_continuation);
533 }
534 }
535
536 /* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538 void
539 discard_all_intermediate_continuations (void)
540 {
541 struct continuation *continuation_ptr;
542
543 while (intermediate_continuation)
544 {
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
547 xfree (continuation_ptr);
548 }
549 }
550
551 \f
552
553 /* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562 void
563 warning_begin (void)
564 {
565 target_terminal_ours ();
566 wrap_here (""); /* Force out any buffered output */
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570 }
571
572 /* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
578 void
579 warning (const char *string,...)
580 {
581 va_list args;
582 va_start (args, string);
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
592 }
593
594 /* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601 void
602 error_begin (void)
603 {
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
608 wrap_here (""); /* Force out any buffered output */
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615 }
616
617 /* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
621 NORETURN void
622 verror (const char *string, va_list args)
623 {
624 char *err_string;
625 struct cleanup *err_string_cleanup;
626 /* FIXME: cagney/1999-11-10: All error calls should come here.
627 Unfortunately some code uses the sequence: error_begin(); print
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
638 ui_file_rewind (gdb_lasterr);
639 vfprintf_filtered (gdb_lasterr, string, args);
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
642 err_string_cleanup = make_cleanup (xfree, err_string);
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
646 return_to_top_level (RETURN_ERROR);
647 }
648
649 NORETURN void
650 error (const char *string,...)
651 {
652 va_list args;
653 va_start (args, string);
654 verror (string, args);
655 va_end (args);
656 }
657
658 NORETURN void
659 error_stream (struct ui_file *stream)
660 {
661 long size;
662 char *msg = ui_file_xstrdup (stream, &size);
663 make_cleanup (xfree, msg);
664 error ("%s", msg);
665 }
666
667 /* Get the last error message issued by gdb */
668
669 char *
670 error_last_message (void)
671 {
672 long len;
673 return ui_file_xstrdup (gdb_lasterr, &len);
674 }
675
676 /* This is to be called by main() at the very beginning */
677
678 void
679 error_init (void)
680 {
681 gdb_lasterr = mem_fileopen ();
682 }
683
684 /* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
686
687 NORETURN void
688 internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
690 {
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
693 int continue_p;
694 int dump_core_p;
695
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
711
712 /* Try to get the message out */
713 target_terminal_ours ();
714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
716 fputs_unfiltered ("\n", gdb_stderr);
717
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
721 An internal GDB error was detected. This may make further\n\
722 debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727 Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
735 }
736 }
737 else
738 {
739 if (dump_core_p)
740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
741 else
742 exit (1);
743 }
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
747 }
748
749 NORETURN void
750 internal_error (const char *file, int line, const char *string, ...)
751 {
752 va_list ap;
753 va_start (ap, string);
754
755 internal_verror (file, line, string, ap);
756 va_end (ap);
757 }
758
759 /* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763 char *
764 safe_strerror (int errnum)
765 {
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775 }
776
777 /* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781 NORETURN void
782 perror_with_name (char *string)
783 {
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
799 error ("%s.", combined);
800 }
801
802 /* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805 void
806 print_sys_errmsg (char *string, int errcode)
807 {
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821 }
822
823 /* Control C eventually causes this to be called, at a convenient time. */
824
825 void
826 quit (void)
827 {
828 serial_t gdb_stdout_serial = serial_fdopen (1);
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
838 wrap_here ((char *) 0);
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
845 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
846 SERIAL_UN_FDOPEN (gdb_stdout_serial);
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
854 #ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858 #else
859 if (job_control
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
866 "Quit (expect signal SIGINT when the program is resumed)\n");
867 #endif
868 return_to_top_level (RETURN_QUIT);
869 }
870
871
872 #if defined(_MSC_VER) /* should test for wingdb instead? */
873
874 /*
875 * Windows translates all keyboard and mouse events
876 * into a message which is appended to the message
877 * queue for the process.
878 */
879
880 void
881 notice_quit (void)
882 {
883 int k = win32pollquit ();
884 if (k == 1)
885 quit_flag = 1;
886 else if (k == 2)
887 immediate_quit = 1;
888 }
889
890 #else /* !defined(_MSC_VER) */
891
892 void
893 notice_quit (void)
894 {
895 /* Done by signals */
896 }
897
898 #endif /* !defined(_MSC_VER) */
899
900 /* Control C comes here */
901 void
902 request_quit (int signo)
903 {
904 quit_flag = 1;
905 /* Restore the signal handler. Harmless with BSD-style signals, needed
906 for System V-style signals. So just always do it, rather than worrying
907 about USG defines and stuff like that. */
908 signal (signo, request_quit);
909
910 #ifdef REQUEST_QUIT
911 REQUEST_QUIT;
912 #else
913 if (immediate_quit)
914 quit ();
915 #endif
916 }
917 \f
918 /* Memory management stuff (malloc friends). */
919
920 #if !defined (USE_MMALLOC)
921
922 /* NOTE: These must use PTR so that their definition matches the
923 declaration found in "mmalloc.h". */
924
925 PTR
926 mmalloc (PTR md, size_t size)
927 {
928 return malloc (size); /* NOTE: GDB's only call to malloc() */
929 }
930
931 PTR
932 mrealloc (PTR md, PTR ptr, size_t size)
933 {
934 if (ptr == 0) /* Guard against old realloc's */
935 return mmalloc (md, size);
936 else
937 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
938 }
939
940 PTR
941 mcalloc (PTR md, size_t number, size_t size)
942 {
943 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
944 }
945
946 void
947 mfree (PTR md, PTR ptr)
948 {
949 free (ptr); /* NOTE: GDB's only call to free() */
950 }
951
952 #endif /* USE_MMALLOC */
953
954 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
955
956 void
957 init_malloc (void *md)
958 {
959 }
960
961 #else /* Have mmalloc and want corruption checking */
962
963 static void
964 malloc_botch (void)
965 {
966 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
967 internal_error (__FILE__, __LINE__, "failed internal consistency check");
968 }
969
970 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
971 by MD, to detect memory corruption. Note that MD may be NULL to specify
972 the default heap that grows via sbrk.
973
974 Note that for freshly created regions, we must call mmcheckf prior to any
975 mallocs in the region. Otherwise, any region which was allocated prior to
976 installing the checking hooks, which is later reallocated or freed, will
977 fail the checks! The mmcheck function only allows initial hooks to be
978 installed before the first mmalloc. However, anytime after we have called
979 mmcheck the first time to install the checking hooks, we can call it again
980 to update the function pointer to the memory corruption handler.
981
982 Returns zero on failure, non-zero on success. */
983
984 #ifndef MMCHECK_FORCE
985 #define MMCHECK_FORCE 0
986 #endif
987
988 void
989 init_malloc (void *md)
990 {
991 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
992 {
993 /* Don't use warning(), which relies on current_target being set
994 to something other than dummy_target, until after
995 initialize_all_files(). */
996
997 fprintf_unfiltered
998 (gdb_stderr, "warning: failed to install memory consistency checks; ");
999 fprintf_unfiltered
1000 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1001 }
1002
1003 mmtrace ();
1004 }
1005
1006 #endif /* Have mmalloc and want corruption checking */
1007
1008 /* Called when a memory allocation fails, with the number of bytes of
1009 memory requested in SIZE. */
1010
1011 NORETURN void
1012 nomem (long size)
1013 {
1014 if (size > 0)
1015 {
1016 internal_error (__FILE__, __LINE__,
1017 "virtual memory exhausted: can't allocate %ld bytes.", size);
1018 }
1019 else
1020 {
1021 internal_error (__FILE__, __LINE__,
1022 "virtual memory exhausted.");
1023 }
1024 }
1025
1026 /* The xmmalloc() family of memory management routines.
1027
1028 These are are like the mmalloc() family except that they implement
1029 consistent semantics and guard against typical memory management
1030 problems: if a malloc fails, an internal error is thrown; if
1031 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1032 is returned.
1033
1034 All these routines are implemented using the mmalloc() family. */
1035
1036 void *
1037 xmmalloc (void *md, size_t size)
1038 {
1039 void *val;
1040
1041 if (size == 0)
1042 {
1043 val = NULL;
1044 }
1045 else
1046 {
1047 val = mmalloc (md, size);
1048 if (val == NULL)
1049 nomem (size);
1050 }
1051 return (val);
1052 }
1053
1054 void *
1055 xmrealloc (void *md, void *ptr, size_t size)
1056 {
1057 void *val;
1058
1059 if (size == 0)
1060 {
1061 if (ptr != NULL)
1062 mfree (md, ptr);
1063 val = NULL;
1064 }
1065 else
1066 {
1067 if (ptr != NULL)
1068 {
1069 val = mrealloc (md, ptr, size);
1070 }
1071 else
1072 {
1073 val = mmalloc (md, size);
1074 }
1075 if (val == NULL)
1076 {
1077 nomem (size);
1078 }
1079 }
1080 return (val);
1081 }
1082
1083 void *
1084 xmcalloc (void *md, size_t number, size_t size)
1085 {
1086 void *mem;
1087 if (number == 0 || size == 0)
1088 mem = NULL;
1089 else
1090 {
1091 mem = mcalloc (md, number, size);
1092 if (mem == NULL)
1093 nomem (number * size);
1094 }
1095 return mem;
1096 }
1097
1098 void
1099 xmfree (void *md, void *ptr)
1100 {
1101 if (ptr != NULL)
1102 mfree (md, ptr);
1103 }
1104
1105 /* The xmalloc() (libiberty.h) family of memory management routines.
1106
1107 These are like the ISO-C malloc() family except that they implement
1108 consistent semantics and guard against typical memory management
1109 problems. See xmmalloc() above for further information.
1110
1111 All these routines are wrappers to the xmmalloc() family. */
1112
1113 /* NOTE: These are declared using PTR to ensure consistency with
1114 "libiberty.h". xfree() is GDB local. */
1115
1116 PTR
1117 xmalloc (size_t size)
1118 {
1119 return xmmalloc (NULL, size);
1120 }
1121
1122 PTR
1123 xrealloc (PTR ptr, size_t size)
1124 {
1125 return xmrealloc (NULL, ptr, size);
1126 }
1127
1128 PTR
1129 xcalloc (size_t number, size_t size)
1130 {
1131 return xmcalloc (NULL, number, size);
1132 }
1133
1134 void
1135 xfree (void *ptr)
1136 {
1137 xmfree (NULL, ptr);
1138 }
1139 \f
1140
1141 /* Like asprintf/vasprintf but get an internal_error if the call
1142 fails. */
1143
1144 void
1145 xasprintf (char **ret, const char *format, ...)
1146 {
1147 va_list args;
1148 va_start (args, format);
1149 xvasprintf (ret, format, args);
1150 va_end (args);
1151 }
1152
1153 void
1154 xvasprintf (char **ret, const char *format, va_list ap)
1155 {
1156 int status = vasprintf (ret, format, ap);
1157 /* NULL could be returned due to a memory allocation problem; a
1158 badly format string; or something else. */
1159 if ((*ret) == NULL)
1160 internal_error (__FILE__, __LINE__,
1161 "vasprintf returned NULL buffer (errno %d)",
1162 errno);
1163 /* A negative status with a non-NULL buffer shouldn't never
1164 happen. But to be sure. */
1165 if (status < 0)
1166 internal_error (__FILE__, __LINE__,
1167 "vasprintf call failed (errno %d)",
1168 errno);
1169 }
1170
1171
1172 /* My replacement for the read system call.
1173 Used like `read' but keeps going if `read' returns too soon. */
1174
1175 int
1176 myread (int desc, char *addr, int len)
1177 {
1178 register int val;
1179 int orglen = len;
1180
1181 while (len > 0)
1182 {
1183 val = read (desc, addr, len);
1184 if (val < 0)
1185 return val;
1186 if (val == 0)
1187 return orglen - len;
1188 len -= val;
1189 addr += val;
1190 }
1191 return orglen;
1192 }
1193 \f
1194 /* Make a copy of the string at PTR with SIZE characters
1195 (and add a null character at the end in the copy).
1196 Uses malloc to get the space. Returns the address of the copy. */
1197
1198 char *
1199 savestring (const char *ptr, size_t size)
1200 {
1201 register char *p = (char *) xmalloc (size + 1);
1202 memcpy (p, ptr, size);
1203 p[size] = 0;
1204 return p;
1205 }
1206
1207 char *
1208 msavestring (void *md, const char *ptr, size_t size)
1209 {
1210 register char *p = (char *) xmmalloc (md, size + 1);
1211 memcpy (p, ptr, size);
1212 p[size] = 0;
1213 return p;
1214 }
1215
1216 char *
1217 mstrsave (void *md, const char *ptr)
1218 {
1219 return (msavestring (md, ptr, strlen (ptr)));
1220 }
1221
1222 void
1223 print_spaces (register int n, register struct ui_file *file)
1224 {
1225 fputs_unfiltered (n_spaces (n), file);
1226 }
1227
1228 /* Print a host address. */
1229
1230 void
1231 gdb_print_host_address (void *addr, struct ui_file *stream)
1232 {
1233
1234 /* We could use the %p conversion specifier to fprintf if we had any
1235 way of knowing whether this host supports it. But the following
1236 should work on the Alpha and on 32 bit machines. */
1237
1238 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1239 }
1240
1241 /* Ask user a y-or-n question and return 1 iff answer is yes.
1242 Takes three args which are given to printf to print the question.
1243 The first, a control string, should end in "? ".
1244 It should not say how to answer, because we do that. */
1245
1246 /* VARARGS */
1247 int
1248 query (char *ctlstr,...)
1249 {
1250 va_list args;
1251 register int answer;
1252 register int ans2;
1253 int retval;
1254
1255 va_start (args, ctlstr);
1256
1257 if (query_hook)
1258 {
1259 return query_hook (ctlstr, args);
1260 }
1261
1262 /* Automatically answer "yes" if input is not from a terminal. */
1263 if (!input_from_terminal_p ())
1264 return 1;
1265 #ifdef MPW
1266 /* FIXME Automatically answer "yes" if called from MacGDB. */
1267 if (mac_app)
1268 return 1;
1269 #endif /* MPW */
1270
1271 while (1)
1272 {
1273 wrap_here (""); /* Flush any buffered output */
1274 gdb_flush (gdb_stdout);
1275
1276 if (annotation_level > 1)
1277 printf_filtered ("\n\032\032pre-query\n");
1278
1279 vfprintf_filtered (gdb_stdout, ctlstr, args);
1280 printf_filtered ("(y or n) ");
1281
1282 if (annotation_level > 1)
1283 printf_filtered ("\n\032\032query\n");
1284
1285 #ifdef MPW
1286 /* If not in MacGDB, move to a new line so the entered line doesn't
1287 have a prompt on the front of it. */
1288 if (!mac_app)
1289 fputs_unfiltered ("\n", gdb_stdout);
1290 #endif /* MPW */
1291
1292 wrap_here ("");
1293 gdb_flush (gdb_stdout);
1294
1295 #if defined(TUI)
1296 if (!tui_version || cmdWin == tuiWinWithFocus ())
1297 #endif
1298 answer = fgetc (stdin);
1299 #if defined(TUI)
1300 else
1301 answer = (unsigned char) tuiBufferGetc ();
1302
1303 #endif
1304 clearerr (stdin); /* in case of C-d */
1305 if (answer == EOF) /* C-d */
1306 {
1307 retval = 1;
1308 break;
1309 }
1310 /* Eat rest of input line, to EOF or newline */
1311 if ((answer != '\n') || (tui_version && answer != '\r'))
1312 do
1313 {
1314 #if defined(TUI)
1315 if (!tui_version || cmdWin == tuiWinWithFocus ())
1316 #endif
1317 ans2 = fgetc (stdin);
1318 #if defined(TUI)
1319 else
1320 ans2 = (unsigned char) tuiBufferGetc ();
1321 #endif
1322 clearerr (stdin);
1323 }
1324 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1325 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1326
1327 if (answer >= 'a')
1328 answer -= 040;
1329 if (answer == 'Y')
1330 {
1331 retval = 1;
1332 break;
1333 }
1334 if (answer == 'N')
1335 {
1336 retval = 0;
1337 break;
1338 }
1339 printf_filtered ("Please answer y or n.\n");
1340 }
1341
1342 if (annotation_level > 1)
1343 printf_filtered ("\n\032\032post-query\n");
1344 return retval;
1345 }
1346 \f
1347
1348 /* Parse a C escape sequence. STRING_PTR points to a variable
1349 containing a pointer to the string to parse. That pointer
1350 should point to the character after the \. That pointer
1351 is updated past the characters we use. The value of the
1352 escape sequence is returned.
1353
1354 A negative value means the sequence \ newline was seen,
1355 which is supposed to be equivalent to nothing at all.
1356
1357 If \ is followed by a null character, we return a negative
1358 value and leave the string pointer pointing at the null character.
1359
1360 If \ is followed by 000, we return 0 and leave the string pointer
1361 after the zeros. A value of 0 does not mean end of string. */
1362
1363 int
1364 parse_escape (char **string_ptr)
1365 {
1366 register int c = *(*string_ptr)++;
1367 switch (c)
1368 {
1369 case 'a':
1370 return 007; /* Bell (alert) char */
1371 case 'b':
1372 return '\b';
1373 case 'e': /* Escape character */
1374 return 033;
1375 case 'f':
1376 return '\f';
1377 case 'n':
1378 return '\n';
1379 case 'r':
1380 return '\r';
1381 case 't':
1382 return '\t';
1383 case 'v':
1384 return '\v';
1385 case '\n':
1386 return -2;
1387 case 0:
1388 (*string_ptr)--;
1389 return 0;
1390 case '^':
1391 c = *(*string_ptr)++;
1392 if (c == '\\')
1393 c = parse_escape (string_ptr);
1394 if (c == '?')
1395 return 0177;
1396 return (c & 0200) | (c & 037);
1397
1398 case '0':
1399 case '1':
1400 case '2':
1401 case '3':
1402 case '4':
1403 case '5':
1404 case '6':
1405 case '7':
1406 {
1407 register int i = c - '0';
1408 register int count = 0;
1409 while (++count < 3)
1410 {
1411 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1412 {
1413 i *= 8;
1414 i += c - '0';
1415 }
1416 else
1417 {
1418 (*string_ptr)--;
1419 break;
1420 }
1421 }
1422 return i;
1423 }
1424 default:
1425 return c;
1426 }
1427 }
1428 \f
1429 /* Print the character C on STREAM as part of the contents of a literal
1430 string whose delimiter is QUOTER. Note that this routine should only
1431 be call for printing things which are independent of the language
1432 of the program being debugged. */
1433
1434 static void
1435 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1436 void (*do_fprintf) (struct ui_file *, const char *, ...),
1437 struct ui_file *stream, int quoter)
1438 {
1439
1440 c &= 0xFF; /* Avoid sign bit follies */
1441
1442 if (c < 0x20 || /* Low control chars */
1443 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1444 (sevenbit_strings && c >= 0x80))
1445 { /* high order bit set */
1446 switch (c)
1447 {
1448 case '\n':
1449 do_fputs ("\\n", stream);
1450 break;
1451 case '\b':
1452 do_fputs ("\\b", stream);
1453 break;
1454 case '\t':
1455 do_fputs ("\\t", stream);
1456 break;
1457 case '\f':
1458 do_fputs ("\\f", stream);
1459 break;
1460 case '\r':
1461 do_fputs ("\\r", stream);
1462 break;
1463 case '\033':
1464 do_fputs ("\\e", stream);
1465 break;
1466 case '\007':
1467 do_fputs ("\\a", stream);
1468 break;
1469 default:
1470 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1471 break;
1472 }
1473 }
1474 else
1475 {
1476 if (c == '\\' || c == quoter)
1477 do_fputs ("\\", stream);
1478 do_fprintf (stream, "%c", c);
1479 }
1480 }
1481
1482 /* Print the character C on STREAM as part of the contents of a
1483 literal string whose delimiter is QUOTER. Note that these routines
1484 should only be call for printing things which are independent of
1485 the language of the program being debugged. */
1486
1487 void
1488 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1489 {
1490 while (*str)
1491 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1492 }
1493
1494 void
1495 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1496 {
1497 while (*str)
1498 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1499 }
1500
1501 void
1502 fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
1503 {
1504 int i;
1505 for (i = 0; i < n; i++)
1506 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1507 }
1508
1509 \f
1510
1511 /* Number of lines per page or UINT_MAX if paging is disabled. */
1512 static unsigned int lines_per_page;
1513 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1514 static unsigned int chars_per_line;
1515 /* Current count of lines printed on this page, chars on this line. */
1516 static unsigned int lines_printed, chars_printed;
1517
1518 /* Buffer and start column of buffered text, for doing smarter word-
1519 wrapping. When someone calls wrap_here(), we start buffering output
1520 that comes through fputs_filtered(). If we see a newline, we just
1521 spit it out and forget about the wrap_here(). If we see another
1522 wrap_here(), we spit it out and remember the newer one. If we see
1523 the end of the line, we spit out a newline, the indent, and then
1524 the buffered output. */
1525
1526 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1527 are waiting to be output (they have already been counted in chars_printed).
1528 When wrap_buffer[0] is null, the buffer is empty. */
1529 static char *wrap_buffer;
1530
1531 /* Pointer in wrap_buffer to the next character to fill. */
1532 static char *wrap_pointer;
1533
1534 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1535 is non-zero. */
1536 static char *wrap_indent;
1537
1538 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1539 is not in effect. */
1540 static int wrap_column;
1541 \f
1542
1543 /* Inialize the lines and chars per page */
1544 void
1545 init_page_info (void)
1546 {
1547 #if defined(TUI)
1548 if (tui_version && m_winPtrNotNull (cmdWin))
1549 {
1550 lines_per_page = cmdWin->generic.height;
1551 chars_per_line = cmdWin->generic.width;
1552 }
1553 else
1554 #endif
1555 {
1556 /* These defaults will be used if we are unable to get the correct
1557 values from termcap. */
1558 #if defined(__GO32__)
1559 lines_per_page = ScreenRows ();
1560 chars_per_line = ScreenCols ();
1561 #else
1562 lines_per_page = 24;
1563 chars_per_line = 80;
1564
1565 #if !defined (MPW) && !defined (_WIN32)
1566 /* No termcap under MPW, although might be cool to do something
1567 by looking at worksheet or console window sizes. */
1568 /* Initialize the screen height and width from termcap. */
1569 {
1570 char *termtype = getenv ("TERM");
1571
1572 /* Positive means success, nonpositive means failure. */
1573 int status;
1574
1575 /* 2048 is large enough for all known terminals, according to the
1576 GNU termcap manual. */
1577 char term_buffer[2048];
1578
1579 if (termtype)
1580 {
1581 status = tgetent (term_buffer, termtype);
1582 if (status > 0)
1583 {
1584 int val;
1585 int running_in_emacs = getenv ("EMACS") != NULL;
1586
1587 val = tgetnum ("li");
1588 if (val >= 0 && !running_in_emacs)
1589 lines_per_page = val;
1590 else
1591 /* The number of lines per page is not mentioned
1592 in the terminal description. This probably means
1593 that paging is not useful (e.g. emacs shell window),
1594 so disable paging. */
1595 lines_per_page = UINT_MAX;
1596
1597 val = tgetnum ("co");
1598 if (val >= 0)
1599 chars_per_line = val;
1600 }
1601 }
1602 }
1603 #endif /* MPW */
1604
1605 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1606
1607 /* If there is a better way to determine the window size, use it. */
1608 SIGWINCH_HANDLER (SIGWINCH);
1609 #endif
1610 #endif
1611 /* If the output is not a terminal, don't paginate it. */
1612 if (!ui_file_isatty (gdb_stdout))
1613 lines_per_page = UINT_MAX;
1614 } /* the command_line_version */
1615 set_width ();
1616 }
1617
1618 static void
1619 set_width (void)
1620 {
1621 if (chars_per_line == 0)
1622 init_page_info ();
1623
1624 if (!wrap_buffer)
1625 {
1626 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1627 wrap_buffer[0] = '\0';
1628 }
1629 else
1630 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1631 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1632 }
1633
1634 /* ARGSUSED */
1635 static void
1636 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1637 {
1638 set_width ();
1639 }
1640
1641 /* Wait, so the user can read what's on the screen. Prompt the user
1642 to continue by pressing RETURN. */
1643
1644 static void
1645 prompt_for_continue (void)
1646 {
1647 char *ignore;
1648 char cont_prompt[120];
1649
1650 if (annotation_level > 1)
1651 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1652
1653 strcpy (cont_prompt,
1654 "---Type <return> to continue, or q <return> to quit---");
1655 if (annotation_level > 1)
1656 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1657
1658 /* We must do this *before* we call gdb_readline, else it will eventually
1659 call us -- thinking that we're trying to print beyond the end of the
1660 screen. */
1661 reinitialize_more_filter ();
1662
1663 immediate_quit++;
1664 /* On a real operating system, the user can quit with SIGINT.
1665 But not on GO32.
1666
1667 'q' is provided on all systems so users don't have to change habits
1668 from system to system, and because telling them what to do in
1669 the prompt is more user-friendly than expecting them to think of
1670 SIGINT. */
1671 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1672 whereas control-C to gdb_readline will cause the user to get dumped
1673 out to DOS. */
1674 ignore = readline (cont_prompt);
1675
1676 if (annotation_level > 1)
1677 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1678
1679 if (ignore)
1680 {
1681 char *p = ignore;
1682 while (*p == ' ' || *p == '\t')
1683 ++p;
1684 if (p[0] == 'q')
1685 {
1686 if (!event_loop_p)
1687 request_quit (SIGINT);
1688 else
1689 async_request_quit (0);
1690 }
1691 xfree (ignore);
1692 }
1693 immediate_quit--;
1694
1695 /* Now we have to do this again, so that GDB will know that it doesn't
1696 need to save the ---Type <return>--- line at the top of the screen. */
1697 reinitialize_more_filter ();
1698
1699 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1700 }
1701
1702 /* Reinitialize filter; ie. tell it to reset to original values. */
1703
1704 void
1705 reinitialize_more_filter (void)
1706 {
1707 lines_printed = 0;
1708 chars_printed = 0;
1709 }
1710
1711 /* Indicate that if the next sequence of characters overflows the line,
1712 a newline should be inserted here rather than when it hits the end.
1713 If INDENT is non-null, it is a string to be printed to indent the
1714 wrapped part on the next line. INDENT must remain accessible until
1715 the next call to wrap_here() or until a newline is printed through
1716 fputs_filtered().
1717
1718 If the line is already overfull, we immediately print a newline and
1719 the indentation, and disable further wrapping.
1720
1721 If we don't know the width of lines, but we know the page height,
1722 we must not wrap words, but should still keep track of newlines
1723 that were explicitly printed.
1724
1725 INDENT should not contain tabs, as that will mess up the char count
1726 on the next line. FIXME.
1727
1728 This routine is guaranteed to force out any output which has been
1729 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1730 used to force out output from the wrap_buffer. */
1731
1732 void
1733 wrap_here (char *indent)
1734 {
1735 /* This should have been allocated, but be paranoid anyway. */
1736 if (!wrap_buffer)
1737 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1738
1739 if (wrap_buffer[0])
1740 {
1741 *wrap_pointer = '\0';
1742 fputs_unfiltered (wrap_buffer, gdb_stdout);
1743 }
1744 wrap_pointer = wrap_buffer;
1745 wrap_buffer[0] = '\0';
1746 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1747 {
1748 wrap_column = 0;
1749 }
1750 else if (chars_printed >= chars_per_line)
1751 {
1752 puts_filtered ("\n");
1753 if (indent != NULL)
1754 puts_filtered (indent);
1755 wrap_column = 0;
1756 }
1757 else
1758 {
1759 wrap_column = chars_printed;
1760 if (indent == NULL)
1761 wrap_indent = "";
1762 else
1763 wrap_indent = indent;
1764 }
1765 }
1766
1767 /* Ensure that whatever gets printed next, using the filtered output
1768 commands, starts at the beginning of the line. I.E. if there is
1769 any pending output for the current line, flush it and start a new
1770 line. Otherwise do nothing. */
1771
1772 void
1773 begin_line (void)
1774 {
1775 if (chars_printed > 0)
1776 {
1777 puts_filtered ("\n");
1778 }
1779 }
1780
1781
1782 /* Like fputs but if FILTER is true, pause after every screenful.
1783
1784 Regardless of FILTER can wrap at points other than the final
1785 character of a line.
1786
1787 Unlike fputs, fputs_maybe_filtered does not return a value.
1788 It is OK for LINEBUFFER to be NULL, in which case just don't print
1789 anything.
1790
1791 Note that a longjmp to top level may occur in this routine (only if
1792 FILTER is true) (since prompt_for_continue may do so) so this
1793 routine should not be called when cleanups are not in place. */
1794
1795 static void
1796 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1797 int filter)
1798 {
1799 const char *lineptr;
1800
1801 if (linebuffer == 0)
1802 return;
1803
1804 /* Don't do any filtering if it is disabled. */
1805 if ((stream != gdb_stdout) || !pagination_enabled
1806 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1807 {
1808 fputs_unfiltered (linebuffer, stream);
1809 return;
1810 }
1811
1812 /* Go through and output each character. Show line extension
1813 when this is necessary; prompt user for new page when this is
1814 necessary. */
1815
1816 lineptr = linebuffer;
1817 while (*lineptr)
1818 {
1819 /* Possible new page. */
1820 if (filter &&
1821 (lines_printed >= lines_per_page - 1))
1822 prompt_for_continue ();
1823
1824 while (*lineptr && *lineptr != '\n')
1825 {
1826 /* Print a single line. */
1827 if (*lineptr == '\t')
1828 {
1829 if (wrap_column)
1830 *wrap_pointer++ = '\t';
1831 else
1832 fputc_unfiltered ('\t', stream);
1833 /* Shifting right by 3 produces the number of tab stops
1834 we have already passed, and then adding one and
1835 shifting left 3 advances to the next tab stop. */
1836 chars_printed = ((chars_printed >> 3) + 1) << 3;
1837 lineptr++;
1838 }
1839 else
1840 {
1841 if (wrap_column)
1842 *wrap_pointer++ = *lineptr;
1843 else
1844 fputc_unfiltered (*lineptr, stream);
1845 chars_printed++;
1846 lineptr++;
1847 }
1848
1849 if (chars_printed >= chars_per_line)
1850 {
1851 unsigned int save_chars = chars_printed;
1852
1853 chars_printed = 0;
1854 lines_printed++;
1855 /* If we aren't actually wrapping, don't output newline --
1856 if chars_per_line is right, we probably just overflowed
1857 anyway; if it's wrong, let us keep going. */
1858 if (wrap_column)
1859 fputc_unfiltered ('\n', stream);
1860
1861 /* Possible new page. */
1862 if (lines_printed >= lines_per_page - 1)
1863 prompt_for_continue ();
1864
1865 /* Now output indentation and wrapped string */
1866 if (wrap_column)
1867 {
1868 fputs_unfiltered (wrap_indent, stream);
1869 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1870 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1871 /* FIXME, this strlen is what prevents wrap_indent from
1872 containing tabs. However, if we recurse to print it
1873 and count its chars, we risk trouble if wrap_indent is
1874 longer than (the user settable) chars_per_line.
1875 Note also that this can set chars_printed > chars_per_line
1876 if we are printing a long string. */
1877 chars_printed = strlen (wrap_indent)
1878 + (save_chars - wrap_column);
1879 wrap_pointer = wrap_buffer; /* Reset buffer */
1880 wrap_buffer[0] = '\0';
1881 wrap_column = 0; /* And disable fancy wrap */
1882 }
1883 }
1884 }
1885
1886 if (*lineptr == '\n')
1887 {
1888 chars_printed = 0;
1889 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1890 lines_printed++;
1891 fputc_unfiltered ('\n', stream);
1892 lineptr++;
1893 }
1894 }
1895 }
1896
1897 void
1898 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1899 {
1900 fputs_maybe_filtered (linebuffer, stream, 1);
1901 }
1902
1903 int
1904 putchar_unfiltered (int c)
1905 {
1906 char buf = c;
1907 ui_file_write (gdb_stdout, &buf, 1);
1908 return c;
1909 }
1910
1911 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1912 May return nonlocally. */
1913
1914 int
1915 putchar_filtered (int c)
1916 {
1917 return fputc_filtered (c, gdb_stdout);
1918 }
1919
1920 int
1921 fputc_unfiltered (int c, struct ui_file *stream)
1922 {
1923 char buf = c;
1924 ui_file_write (stream, &buf, 1);
1925 return c;
1926 }
1927
1928 int
1929 fputc_filtered (int c, struct ui_file *stream)
1930 {
1931 char buf[2];
1932
1933 buf[0] = c;
1934 buf[1] = 0;
1935 fputs_filtered (buf, stream);
1936 return c;
1937 }
1938
1939 /* puts_debug is like fputs_unfiltered, except it prints special
1940 characters in printable fashion. */
1941
1942 void
1943 puts_debug (char *prefix, char *string, char *suffix)
1944 {
1945 int ch;
1946
1947 /* Print prefix and suffix after each line. */
1948 static int new_line = 1;
1949 static int return_p = 0;
1950 static char *prev_prefix = "";
1951 static char *prev_suffix = "";
1952
1953 if (*string == '\n')
1954 return_p = 0;
1955
1956 /* If the prefix is changing, print the previous suffix, a new line,
1957 and the new prefix. */
1958 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1959 {
1960 fputs_unfiltered (prev_suffix, gdb_stdlog);
1961 fputs_unfiltered ("\n", gdb_stdlog);
1962 fputs_unfiltered (prefix, gdb_stdlog);
1963 }
1964
1965 /* Print prefix if we printed a newline during the previous call. */
1966 if (new_line)
1967 {
1968 new_line = 0;
1969 fputs_unfiltered (prefix, gdb_stdlog);
1970 }
1971
1972 prev_prefix = prefix;
1973 prev_suffix = suffix;
1974
1975 /* Output characters in a printable format. */
1976 while ((ch = *string++) != '\0')
1977 {
1978 switch (ch)
1979 {
1980 default:
1981 if (isprint (ch))
1982 fputc_unfiltered (ch, gdb_stdlog);
1983
1984 else
1985 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1986 break;
1987
1988 case '\\':
1989 fputs_unfiltered ("\\\\", gdb_stdlog);
1990 break;
1991 case '\b':
1992 fputs_unfiltered ("\\b", gdb_stdlog);
1993 break;
1994 case '\f':
1995 fputs_unfiltered ("\\f", gdb_stdlog);
1996 break;
1997 case '\n':
1998 new_line = 1;
1999 fputs_unfiltered ("\\n", gdb_stdlog);
2000 break;
2001 case '\r':
2002 fputs_unfiltered ("\\r", gdb_stdlog);
2003 break;
2004 case '\t':
2005 fputs_unfiltered ("\\t", gdb_stdlog);
2006 break;
2007 case '\v':
2008 fputs_unfiltered ("\\v", gdb_stdlog);
2009 break;
2010 }
2011
2012 return_p = ch == '\r';
2013 }
2014
2015 /* Print suffix if we printed a newline. */
2016 if (new_line)
2017 {
2018 fputs_unfiltered (suffix, gdb_stdlog);
2019 fputs_unfiltered ("\n", gdb_stdlog);
2020 }
2021 }
2022
2023
2024 /* Print a variable number of ARGS using format FORMAT. If this
2025 information is going to put the amount written (since the last call
2026 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2027 call prompt_for_continue to get the users permision to continue.
2028
2029 Unlike fprintf, this function does not return a value.
2030
2031 We implement three variants, vfprintf (takes a vararg list and stream),
2032 fprintf (takes a stream to write on), and printf (the usual).
2033
2034 Note also that a longjmp to top level may occur in this routine
2035 (since prompt_for_continue may do so) so this routine should not be
2036 called when cleanups are not in place. */
2037
2038 static void
2039 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2040 va_list args, int filter)
2041 {
2042 char *linebuffer;
2043 struct cleanup *old_cleanups;
2044
2045 xvasprintf (&linebuffer, format, args);
2046 old_cleanups = make_cleanup (xfree, linebuffer);
2047 fputs_maybe_filtered (linebuffer, stream, filter);
2048 do_cleanups (old_cleanups);
2049 }
2050
2051
2052 void
2053 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2054 {
2055 vfprintf_maybe_filtered (stream, format, args, 1);
2056 }
2057
2058 void
2059 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2060 {
2061 char *linebuffer;
2062 struct cleanup *old_cleanups;
2063
2064 xvasprintf (&linebuffer, format, args);
2065 old_cleanups = make_cleanup (xfree, linebuffer);
2066 fputs_unfiltered (linebuffer, stream);
2067 do_cleanups (old_cleanups);
2068 }
2069
2070 void
2071 vprintf_filtered (const char *format, va_list args)
2072 {
2073 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2074 }
2075
2076 void
2077 vprintf_unfiltered (const char *format, va_list args)
2078 {
2079 vfprintf_unfiltered (gdb_stdout, format, args);
2080 }
2081
2082 void
2083 fprintf_filtered (struct ui_file * stream, const char *format,...)
2084 {
2085 va_list args;
2086 va_start (args, format);
2087 vfprintf_filtered (stream, format, args);
2088 va_end (args);
2089 }
2090
2091 void
2092 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2093 {
2094 va_list args;
2095 va_start (args, format);
2096 vfprintf_unfiltered (stream, format, args);
2097 va_end (args);
2098 }
2099
2100 /* Like fprintf_filtered, but prints its result indented.
2101 Called as fprintfi_filtered (spaces, stream, format, ...); */
2102
2103 void
2104 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2105 {
2106 va_list args;
2107 va_start (args, format);
2108 print_spaces_filtered (spaces, stream);
2109
2110 vfprintf_filtered (stream, format, args);
2111 va_end (args);
2112 }
2113
2114
2115 void
2116 printf_filtered (const char *format,...)
2117 {
2118 va_list args;
2119 va_start (args, format);
2120 vfprintf_filtered (gdb_stdout, format, args);
2121 va_end (args);
2122 }
2123
2124
2125 void
2126 printf_unfiltered (const char *format,...)
2127 {
2128 va_list args;
2129 va_start (args, format);
2130 vfprintf_unfiltered (gdb_stdout, format, args);
2131 va_end (args);
2132 }
2133
2134 /* Like printf_filtered, but prints it's result indented.
2135 Called as printfi_filtered (spaces, format, ...); */
2136
2137 void
2138 printfi_filtered (int spaces, const char *format,...)
2139 {
2140 va_list args;
2141 va_start (args, format);
2142 print_spaces_filtered (spaces, gdb_stdout);
2143 vfprintf_filtered (gdb_stdout, format, args);
2144 va_end (args);
2145 }
2146
2147 /* Easy -- but watch out!
2148
2149 This routine is *not* a replacement for puts()! puts() appends a newline.
2150 This one doesn't, and had better not! */
2151
2152 void
2153 puts_filtered (const char *string)
2154 {
2155 fputs_filtered (string, gdb_stdout);
2156 }
2157
2158 void
2159 puts_unfiltered (const char *string)
2160 {
2161 fputs_unfiltered (string, gdb_stdout);
2162 }
2163
2164 /* Return a pointer to N spaces and a null. The pointer is good
2165 until the next call to here. */
2166 char *
2167 n_spaces (int n)
2168 {
2169 char *t;
2170 static char *spaces = 0;
2171 static int max_spaces = -1;
2172
2173 if (n > max_spaces)
2174 {
2175 if (spaces)
2176 xfree (spaces);
2177 spaces = (char *) xmalloc (n + 1);
2178 for (t = spaces + n; t != spaces;)
2179 *--t = ' ';
2180 spaces[n] = '\0';
2181 max_spaces = n;
2182 }
2183
2184 return spaces + max_spaces - n;
2185 }
2186
2187 /* Print N spaces. */
2188 void
2189 print_spaces_filtered (int n, struct ui_file *stream)
2190 {
2191 fputs_filtered (n_spaces (n), stream);
2192 }
2193 \f
2194 /* C++ demangler stuff. */
2195
2196 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2197 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2198 If the name is not mangled, or the language for the name is unknown, or
2199 demangling is off, the name is printed in its "raw" form. */
2200
2201 void
2202 fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2203 int arg_mode)
2204 {
2205 char *demangled;
2206
2207 if (name != NULL)
2208 {
2209 /* If user wants to see raw output, no problem. */
2210 if (!demangle)
2211 {
2212 fputs_filtered (name, stream);
2213 }
2214 else
2215 {
2216 switch (lang)
2217 {
2218 case language_cplus:
2219 demangled = cplus_demangle (name, arg_mode);
2220 break;
2221 case language_java:
2222 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2223 break;
2224 case language_chill:
2225 demangled = chill_demangle (name);
2226 break;
2227 default:
2228 demangled = NULL;
2229 break;
2230 }
2231 fputs_filtered (demangled ? demangled : name, stream);
2232 if (demangled != NULL)
2233 {
2234 xfree (demangled);
2235 }
2236 }
2237 }
2238 }
2239
2240 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2241 differences in whitespace. Returns 0 if they match, non-zero if they
2242 don't (slightly different than strcmp()'s range of return values).
2243
2244 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2245 This "feature" is useful when searching for matching C++ function names
2246 (such as if the user types 'break FOO', where FOO is a mangled C++
2247 function). */
2248
2249 int
2250 strcmp_iw (const char *string1, const char *string2)
2251 {
2252 while ((*string1 != '\0') && (*string2 != '\0'))
2253 {
2254 while (isspace (*string1))
2255 {
2256 string1++;
2257 }
2258 while (isspace (*string2))
2259 {
2260 string2++;
2261 }
2262 if (*string1 != *string2)
2263 {
2264 break;
2265 }
2266 if (*string1 != '\0')
2267 {
2268 string1++;
2269 string2++;
2270 }
2271 }
2272 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2273 }
2274 \f
2275
2276 /*
2277 ** subset_compare()
2278 ** Answer whether string_to_compare is a full or partial match to
2279 ** template_string. The partial match must be in sequence starting
2280 ** at index 0.
2281 */
2282 int
2283 subset_compare (char *string_to_compare, char *template_string)
2284 {
2285 int match;
2286 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2287 strlen (string_to_compare) <= strlen (template_string))
2288 match = (strncmp (template_string,
2289 string_to_compare,
2290 strlen (string_to_compare)) == 0);
2291 else
2292 match = 0;
2293 return match;
2294 }
2295
2296
2297 static void pagination_on_command (char *arg, int from_tty);
2298 static void
2299 pagination_on_command (char *arg, int from_tty)
2300 {
2301 pagination_enabled = 1;
2302 }
2303
2304 static void pagination_on_command (char *arg, int from_tty);
2305 static void
2306 pagination_off_command (char *arg, int from_tty)
2307 {
2308 pagination_enabled = 0;
2309 }
2310 \f
2311
2312 void
2313 initialize_utils (void)
2314 {
2315 struct cmd_list_element *c;
2316
2317 c = add_set_cmd ("width", class_support, var_uinteger,
2318 (char *) &chars_per_line,
2319 "Set number of characters gdb thinks are in a line.",
2320 &setlist);
2321 add_show_from_set (c, &showlist);
2322 c->function.sfunc = set_width_command;
2323
2324 add_show_from_set
2325 (add_set_cmd ("height", class_support,
2326 var_uinteger, (char *) &lines_per_page,
2327 "Set number of lines gdb thinks are in a page.", &setlist),
2328 &showlist);
2329
2330 init_page_info ();
2331
2332 /* If the output is not a terminal, don't paginate it. */
2333 if (!ui_file_isatty (gdb_stdout))
2334 lines_per_page = UINT_MAX;
2335
2336 set_width_command ((char *) NULL, 0, c);
2337
2338 add_show_from_set
2339 (add_set_cmd ("demangle", class_support, var_boolean,
2340 (char *) &demangle,
2341 "Set demangling of encoded C++ names when displaying symbols.",
2342 &setprintlist),
2343 &showprintlist);
2344
2345 add_show_from_set
2346 (add_set_cmd ("pagination", class_support,
2347 var_boolean, (char *) &pagination_enabled,
2348 "Set state of pagination.", &setlist),
2349 &showlist);
2350
2351 if (xdb_commands)
2352 {
2353 add_com ("am", class_support, pagination_on_command,
2354 "Enable pagination");
2355 add_com ("sm", class_support, pagination_off_command,
2356 "Disable pagination");
2357 }
2358
2359 add_show_from_set
2360 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2361 (char *) &sevenbit_strings,
2362 "Set printing of 8-bit characters in strings as \\nnn.",
2363 &setprintlist),
2364 &showprintlist);
2365
2366 add_show_from_set
2367 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2368 (char *) &asm_demangle,
2369 "Set demangling of C++ names in disassembly listings.",
2370 &setprintlist),
2371 &showprintlist);
2372 }
2373
2374 /* Machine specific function to handle SIGWINCH signal. */
2375
2376 #ifdef SIGWINCH_HANDLER_BODY
2377 SIGWINCH_HANDLER_BODY
2378 #endif
2379 \f
2380 /* Support for converting target fp numbers into host DOUBLEST format. */
2381
2382 /* XXX - This code should really be in libiberty/floatformat.c, however
2383 configuration issues with libiberty made this very difficult to do in the
2384 available time. */
2385
2386 #include "floatformat.h"
2387 #include <math.h> /* ldexp */
2388
2389 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2390 going to bother with trying to muck around with whether it is defined in
2391 a system header, what we do if not, etc. */
2392 #define FLOATFORMAT_CHAR_BIT 8
2393
2394 static unsigned long get_field (unsigned char *,
2395 enum floatformat_byteorders,
2396 unsigned int, unsigned int, unsigned int);
2397
2398 /* Extract a field which starts at START and is LEN bytes long. DATA and
2399 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2400 static unsigned long
2401 get_field (unsigned char *data, enum floatformat_byteorders order,
2402 unsigned int total_len, unsigned int start, unsigned int len)
2403 {
2404 unsigned long result;
2405 unsigned int cur_byte;
2406 int cur_bitshift;
2407
2408 /* Start at the least significant part of the field. */
2409 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2410 {
2411 /* We start counting from the other end (i.e, from the high bytes
2412 rather than the low bytes). As such, we need to be concerned
2413 with what happens if bit 0 doesn't start on a byte boundary.
2414 I.e, we need to properly handle the case where total_len is
2415 not evenly divisible by 8. So we compute ``excess'' which
2416 represents the number of bits from the end of our starting
2417 byte needed to get to bit 0. */
2418 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2419 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2420 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2421 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2422 - FLOATFORMAT_CHAR_BIT;
2423 }
2424 else
2425 {
2426 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2427 cur_bitshift =
2428 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2429 }
2430 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2431 result = *(data + cur_byte) >> (-cur_bitshift);
2432 else
2433 result = 0;
2434 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2435 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2436 ++cur_byte;
2437 else
2438 --cur_byte;
2439
2440 /* Move towards the most significant part of the field. */
2441 while (cur_bitshift < len)
2442 {
2443 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2444 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2445 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2446 ++cur_byte;
2447 else
2448 --cur_byte;
2449 }
2450 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2451 /* Mask out bits which are not part of the field */
2452 result &= ((1UL << len) - 1);
2453 return result;
2454 }
2455
2456 /* Convert from FMT to a DOUBLEST.
2457 FROM is the address of the extended float.
2458 Store the DOUBLEST in *TO. */
2459
2460 void
2461 floatformat_to_doublest (const struct floatformat *fmt, char *from,
2462 DOUBLEST *to)
2463 {
2464 unsigned char *ufrom = (unsigned char *) from;
2465 DOUBLEST dto;
2466 long exponent;
2467 unsigned long mant;
2468 unsigned int mant_bits, mant_off;
2469 int mant_bits_left;
2470 int special_exponent; /* It's a NaN, denorm or zero */
2471
2472 /* If the mantissa bits are not contiguous from one end of the
2473 mantissa to the other, we need to make a private copy of the
2474 source bytes that is in the right order since the unpacking
2475 algorithm assumes that the bits are contiguous.
2476
2477 Swap the bytes individually rather than accessing them through
2478 "long *" since we have no guarantee that they start on a long
2479 alignment, and also sizeof(long) for the host could be different
2480 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2481 for the target is 4. */
2482
2483 if (fmt->byteorder == floatformat_littlebyte_bigword)
2484 {
2485 static unsigned char *newfrom;
2486 unsigned char *swapin, *swapout;
2487 int longswaps;
2488
2489 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2490 longswaps >>= 3;
2491
2492 if (newfrom == NULL)
2493 {
2494 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2495 }
2496 swapout = newfrom;
2497 swapin = ufrom;
2498 ufrom = newfrom;
2499 while (longswaps-- > 0)
2500 {
2501 /* This is ugly, but efficient */
2502 *swapout++ = swapin[4];
2503 *swapout++ = swapin[5];
2504 *swapout++ = swapin[6];
2505 *swapout++ = swapin[7];
2506 *swapout++ = swapin[0];
2507 *swapout++ = swapin[1];
2508 *swapout++ = swapin[2];
2509 *swapout++ = swapin[3];
2510 swapin += 8;
2511 }
2512 }
2513
2514 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2515 fmt->exp_start, fmt->exp_len);
2516 /* Note that if exponent indicates a NaN, we can't really do anything useful
2517 (not knowing if the host has NaN's, or how to build one). So it will
2518 end up as an infinity or something close; that is OK. */
2519
2520 mant_bits_left = fmt->man_len;
2521 mant_off = fmt->man_start;
2522 dto = 0.0;
2523
2524 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2525
2526 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2527 we don't check for zero as the exponent doesn't matter. */
2528 if (!special_exponent)
2529 exponent -= fmt->exp_bias;
2530 else if (exponent == 0)
2531 exponent = 1 - fmt->exp_bias;
2532
2533 /* Build the result algebraically. Might go infinite, underflow, etc;
2534 who cares. */
2535
2536 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2537 increment the exponent by one to account for the integer bit. */
2538
2539 if (!special_exponent)
2540 {
2541 if (fmt->intbit == floatformat_intbit_no)
2542 dto = ldexp (1.0, exponent);
2543 else
2544 exponent++;
2545 }
2546
2547 while (mant_bits_left > 0)
2548 {
2549 mant_bits = min (mant_bits_left, 32);
2550
2551 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2552 mant_off, mant_bits);
2553
2554 dto += ldexp ((double) mant, exponent - mant_bits);
2555 exponent -= mant_bits;
2556 mant_off += mant_bits;
2557 mant_bits_left -= mant_bits;
2558 }
2559
2560 /* Negate it if negative. */
2561 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2562 dto = -dto;
2563 *to = dto;
2564 }
2565 \f
2566 static void put_field (unsigned char *, enum floatformat_byteorders,
2567 unsigned int,
2568 unsigned int, unsigned int, unsigned long);
2569
2570 /* Set a field which starts at START and is LEN bytes long. DATA and
2571 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2572 static void
2573 put_field (unsigned char *data, enum floatformat_byteorders order,
2574 unsigned int total_len, unsigned int start, unsigned int len,
2575 unsigned long stuff_to_put)
2576 {
2577 unsigned int cur_byte;
2578 int cur_bitshift;
2579
2580 /* Start at the least significant part of the field. */
2581 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2582 {
2583 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2584 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2585 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2586 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2587 - FLOATFORMAT_CHAR_BIT;
2588 }
2589 else
2590 {
2591 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2592 cur_bitshift =
2593 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2594 }
2595 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2596 {
2597 *(data + cur_byte) &=
2598 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2599 << (-cur_bitshift));
2600 *(data + cur_byte) |=
2601 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2602 }
2603 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2604 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2605 ++cur_byte;
2606 else
2607 --cur_byte;
2608
2609 /* Move towards the most significant part of the field. */
2610 while (cur_bitshift < len)
2611 {
2612 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2613 {
2614 /* This is the last byte. */
2615 *(data + cur_byte) &=
2616 ~((1 << (len - cur_bitshift)) - 1);
2617 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2618 }
2619 else
2620 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2621 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2622 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2623 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2624 ++cur_byte;
2625 else
2626 --cur_byte;
2627 }
2628 }
2629
2630 #ifdef HAVE_LONG_DOUBLE
2631 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2632 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2633 frexp, but operates on the long double data type. */
2634
2635 static long double ldfrexp (long double value, int *eptr);
2636
2637 static long double
2638 ldfrexp (long double value, int *eptr)
2639 {
2640 long double tmp;
2641 int exp;
2642
2643 /* Unfortunately, there are no portable functions for extracting the exponent
2644 of a long double, so we have to do it iteratively by multiplying or dividing
2645 by two until the fraction is between 0.5 and 1.0. */
2646
2647 if (value < 0.0l)
2648 value = -value;
2649
2650 tmp = 1.0l;
2651 exp = 0;
2652
2653 if (value >= tmp) /* Value >= 1.0 */
2654 while (value >= tmp)
2655 {
2656 tmp *= 2.0l;
2657 exp++;
2658 }
2659 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2660 {
2661 while (value < tmp)
2662 {
2663 tmp /= 2.0l;
2664 exp--;
2665 }
2666 tmp *= 2.0l;
2667 exp++;
2668 }
2669
2670 *eptr = exp;
2671 return value / tmp;
2672 }
2673 #endif /* HAVE_LONG_DOUBLE */
2674
2675
2676 /* The converse: convert the DOUBLEST *FROM to an extended float
2677 and store where TO points. Neither FROM nor TO have any alignment
2678 restrictions. */
2679
2680 void
2681 floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2682 char *to)
2683 {
2684 DOUBLEST dfrom;
2685 int exponent;
2686 DOUBLEST mant;
2687 unsigned int mant_bits, mant_off;
2688 int mant_bits_left;
2689 unsigned char *uto = (unsigned char *) to;
2690
2691 memcpy (&dfrom, from, sizeof (dfrom));
2692 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2693 / FLOATFORMAT_CHAR_BIT);
2694 if (dfrom == 0)
2695 return; /* Result is zero */
2696 if (dfrom != dfrom) /* Result is NaN */
2697 {
2698 /* From is NaN */
2699 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2700 fmt->exp_len, fmt->exp_nan);
2701 /* Be sure it's not infinity, but NaN value is irrel */
2702 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2703 32, 1);
2704 return;
2705 }
2706
2707 /* If negative, set the sign bit. */
2708 if (dfrom < 0)
2709 {
2710 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2711 dfrom = -dfrom;
2712 }
2713
2714 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2715 {
2716 /* Infinity exponent is same as NaN's. */
2717 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2718 fmt->exp_len, fmt->exp_nan);
2719 /* Infinity mantissa is all zeroes. */
2720 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2721 fmt->man_len, 0);
2722 return;
2723 }
2724
2725 #ifdef HAVE_LONG_DOUBLE
2726 mant = ldfrexp (dfrom, &exponent);
2727 #else
2728 mant = frexp (dfrom, &exponent);
2729 #endif
2730
2731 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2732 exponent + fmt->exp_bias - 1);
2733
2734 mant_bits_left = fmt->man_len;
2735 mant_off = fmt->man_start;
2736 while (mant_bits_left > 0)
2737 {
2738 unsigned long mant_long;
2739 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2740
2741 mant *= 4294967296.0;
2742 mant_long = ((unsigned long) mant) & 0xffffffffL;
2743 mant -= mant_long;
2744
2745 /* If the integer bit is implicit, then we need to discard it.
2746 If we are discarding a zero, we should be (but are not) creating
2747 a denormalized number which means adjusting the exponent
2748 (I think). */
2749 if (mant_bits_left == fmt->man_len
2750 && fmt->intbit == floatformat_intbit_no)
2751 {
2752 mant_long <<= 1;
2753 mant_long &= 0xffffffffL;
2754 mant_bits -= 1;
2755 }
2756
2757 if (mant_bits < 32)
2758 {
2759 /* The bits we want are in the most significant MANT_BITS bits of
2760 mant_long. Move them to the least significant. */
2761 mant_long >>= 32 - mant_bits;
2762 }
2763
2764 put_field (uto, fmt->byteorder, fmt->totalsize,
2765 mant_off, mant_bits, mant_long);
2766 mant_off += mant_bits;
2767 mant_bits_left -= mant_bits;
2768 }
2769 if (fmt->byteorder == floatformat_littlebyte_bigword)
2770 {
2771 int count;
2772 unsigned char *swaplow = uto;
2773 unsigned char *swaphigh = uto + 4;
2774 unsigned char tmp;
2775
2776 for (count = 0; count < 4; count++)
2777 {
2778 tmp = *swaplow;
2779 *swaplow++ = *swaphigh;
2780 *swaphigh++ = tmp;
2781 }
2782 }
2783 }
2784
2785 /* Check if VAL (which is assumed to be a floating point number whose
2786 format is described by FMT) is negative. */
2787
2788 int
2789 floatformat_is_negative (const struct floatformat *fmt, char *val)
2790 {
2791 unsigned char *uval = (unsigned char *) val;
2792
2793 return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
2794 }
2795
2796 /* Check if VAL is "not a number" (NaN) for FMT. */
2797
2798 int
2799 floatformat_is_nan (const struct floatformat *fmt, char *val)
2800 {
2801 unsigned char *uval = (unsigned char *) val;
2802 long exponent;
2803 unsigned long mant;
2804 unsigned int mant_bits, mant_off;
2805 int mant_bits_left;
2806
2807 if (! fmt->exp_nan)
2808 return 0;
2809
2810 exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
2811 fmt->exp_start, fmt->exp_len);
2812
2813 if (exponent != fmt->exp_nan)
2814 return 0;
2815
2816 mant_bits_left = fmt->man_len;
2817 mant_off = fmt->man_start;
2818
2819 while (mant_bits_left > 0)
2820 {
2821 mant_bits = min (mant_bits_left, 32);
2822
2823 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2824 mant_off, mant_bits);
2825
2826 /* If there is an explicit integer bit, mask it off. */
2827 if (mant_off == fmt->man_start
2828 && fmt->intbit == floatformat_intbit_yes)
2829 mant &= ~(1 << (mant_bits - 1));
2830
2831 if (mant)
2832 return 1;
2833
2834 mant_off += mant_bits;
2835 mant_bits_left -= mant_bits;
2836 }
2837
2838 return 0;
2839 }
2840
2841 /* Convert the mantissa of VAL (which is assumed to be a floating
2842 point number whose format is described by FMT) into a hexadecimal
2843 and store it in a static string. Return a pointer to that string. */
2844
2845 char *
2846 floatformat_mantissa (const struct floatformat *fmt, char *val)
2847 {
2848 unsigned char *uval = (unsigned char *) val;
2849 unsigned long mant;
2850 unsigned int mant_bits, mant_off;
2851 int mant_bits_left;
2852 static char res[50];
2853 char buf[9];
2854
2855 /* Make sure we have enough room to store the mantissa. */
2856 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
2857
2858 mant_off = fmt->man_start;
2859 mant_bits_left = fmt->man_len;
2860 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
2861
2862 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2863 mant_off, mant_bits);
2864
2865 sprintf (res, "%lx", mant);
2866
2867 mant_off += mant_bits;
2868 mant_bits_left -= mant_bits;
2869
2870 while (mant_bits_left > 0)
2871 {
2872 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2873 mant_off, 32);
2874
2875 sprintf (buf, "%08lx", mant);
2876 strcat (res, buf);
2877
2878 mant_off += 32;
2879 mant_bits_left -= 32;
2880 }
2881
2882 return res;
2883 }
2884
2885 /* print routines to handle variable size regs, etc. */
2886
2887 /* temporary storage using circular buffer */
2888 #define NUMCELLS 16
2889 #define CELLSIZE 32
2890 static char *
2891 get_cell (void)
2892 {
2893 static char buf[NUMCELLS][CELLSIZE];
2894 static int cell = 0;
2895 if (++cell >= NUMCELLS)
2896 cell = 0;
2897 return buf[cell];
2898 }
2899
2900 int
2901 strlen_paddr (void)
2902 {
2903 return (TARGET_ADDR_BIT / 8 * 2);
2904 }
2905
2906 char *
2907 paddr (CORE_ADDR addr)
2908 {
2909 return phex (addr, TARGET_ADDR_BIT / 8);
2910 }
2911
2912 char *
2913 paddr_nz (CORE_ADDR addr)
2914 {
2915 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2916 }
2917
2918 static void
2919 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2920 {
2921 /* steal code from valprint.c:print_decimal(). Should this worry
2922 about the real size of addr as the above does? */
2923 unsigned long temp[3];
2924 int i = 0;
2925 do
2926 {
2927 temp[i] = addr % (1000 * 1000 * 1000);
2928 addr /= (1000 * 1000 * 1000);
2929 i++;
2930 }
2931 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2932 switch (i)
2933 {
2934 case 1:
2935 sprintf (paddr_str, "%s%lu",
2936 sign, temp[0]);
2937 break;
2938 case 2:
2939 sprintf (paddr_str, "%s%lu%09lu",
2940 sign, temp[1], temp[0]);
2941 break;
2942 case 3:
2943 sprintf (paddr_str, "%s%lu%09lu%09lu",
2944 sign, temp[2], temp[1], temp[0]);
2945 break;
2946 default:
2947 internal_error (__FILE__, __LINE__, "failed internal consistency check");
2948 }
2949 }
2950
2951 char *
2952 paddr_u (CORE_ADDR addr)
2953 {
2954 char *paddr_str = get_cell ();
2955 decimal2str (paddr_str, "", addr);
2956 return paddr_str;
2957 }
2958
2959 char *
2960 paddr_d (LONGEST addr)
2961 {
2962 char *paddr_str = get_cell ();
2963 if (addr < 0)
2964 decimal2str (paddr_str, "-", -addr);
2965 else
2966 decimal2str (paddr_str, "", addr);
2967 return paddr_str;
2968 }
2969
2970 /* eliminate warning from compiler on 32-bit systems */
2971 static int thirty_two = 32;
2972
2973 char *
2974 phex (ULONGEST l, int sizeof_l)
2975 {
2976 char *str = get_cell ();
2977 switch (sizeof_l)
2978 {
2979 case 8:
2980 sprintf (str, "%08lx%08lx",
2981 (unsigned long) (l >> thirty_two),
2982 (unsigned long) (l & 0xffffffff));
2983 break;
2984 case 4:
2985 sprintf (str, "%08lx", (unsigned long) l);
2986 break;
2987 case 2:
2988 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2989 break;
2990 default:
2991 phex (l, sizeof (l));
2992 break;
2993 }
2994 return str;
2995 }
2996
2997 char *
2998 phex_nz (ULONGEST l, int sizeof_l)
2999 {
3000 char *str = get_cell ();
3001 switch (sizeof_l)
3002 {
3003 case 8:
3004 {
3005 unsigned long high = (unsigned long) (l >> thirty_two);
3006 if (high == 0)
3007 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
3008 else
3009 sprintf (str, "%lx%08lx",
3010 high, (unsigned long) (l & 0xffffffff));
3011 break;
3012 }
3013 case 4:
3014 sprintf (str, "%lx", (unsigned long) l);
3015 break;
3016 case 2:
3017 sprintf (str, "%x", (unsigned short) (l & 0xffff));
3018 break;
3019 default:
3020 phex_nz (l, sizeof (l));
3021 break;
3022 }
3023 return str;
3024 }
3025
3026
3027 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
3028 using the target's conversion routines. */
3029 CORE_ADDR
3030 host_pointer_to_address (void *ptr)
3031 {
3032 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
3033 internal_error (__FILE__, __LINE__,
3034 "core_addr_to_void_ptr: bad cast");
3035 return POINTER_TO_ADDRESS (builtin_type_ptr, &ptr);
3036 }
3037
3038 void *
3039 address_to_host_pointer (CORE_ADDR addr)
3040 {
3041 void *ptr;
3042 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
3043 internal_error (__FILE__, __LINE__,
3044 "core_addr_to_void_ptr: bad cast");
3045 ADDRESS_TO_POINTER (builtin_type_ptr, &ptr, addr);
3046 return ptr;
3047 }
This page took 0.189593 seconds and 4 git commands to generate.