501c8618db35cd2bbf914fa22796e005d5492672
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include "gdb_string.h"
25 #include "event-top.h"
26
27 #ifdef HAVE_CURSES_H
28 #include <curses.h>
29 #endif
30 #ifdef HAVE_TERM_H
31 #include <term.h>
32 #endif
33
34 #ifdef __GO32__
35 #include <pc.h>
36 #endif
37
38 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39 #ifdef reg
40 #undef reg
41 #endif
42
43 #include "signals.h"
44 #include "gdbcmd.h"
45 #include "serial.h"
46 #include "bfd.h"
47 #include "target.h"
48 #include "demangle.h"
49 #include "expression.h"
50 #include "language.h"
51 #include "annotate.h"
52
53 #include <readline/readline.h>
54
55 #undef XMALLOC
56 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
57
58 /* readline defines this. */
59 #undef savestring
60
61 void (*error_begin_hook) PARAMS ((void));
62
63 /* Holds the last error message issued by gdb */
64
65 static struct ui_file *gdb_lasterr;
66
67 /* Prototypes for local functions */
68
69 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
70 va_list, int);
71
72 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
73
74 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75 static void malloc_botch PARAMS ((void));
76 #endif
77
78 static void
79 prompt_for_continue PARAMS ((void));
80
81 static void
82 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
83
84 static void
85 set_width PARAMS ((void));
86
87 /* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
89
90 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
94 /* cleaned up on each error from within an execution command */
95 static struct cleanup *exec_error_cleanup_chain;
96
97 /* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101 struct continuation *cmd_continuation;
102 struct continuation *intermediate_continuation;
103
104 /* Nonzero if we have job control. */
105
106 int job_control;
107
108 /* Nonzero means a quit has been requested. */
109
110 int quit_flag;
111
112 /* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
122
123 int immediate_quit;
124
125 /* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
127
128 int demangle = 1;
129
130 /* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
133
134 int asm_demangle = 0;
135
136 /* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
139
140 int sevenbit_strings = 0;
141
142 /* String to be printed before error messages, if any. */
143
144 char *error_pre_print;
145
146 /* String to be printed before quit messages, if any. */
147
148 char *quit_pre_print;
149
150 /* String to be printed before warning messages, if any. */
151
152 char *warning_pre_print = "\nwarning: ";
153
154 int pagination_enabled = 1;
155 \f
156
157 /* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
161
162 struct cleanup *
163 make_cleanup (function, arg)
164 void (*function) PARAMS ((PTR));
165 PTR arg;
166 {
167 return make_my_cleanup (&cleanup_chain, function, arg);
168 }
169
170 struct cleanup *
171 make_final_cleanup (function, arg)
172 void (*function) PARAMS ((PTR));
173 PTR arg;
174 {
175 return make_my_cleanup (&final_cleanup_chain, function, arg);
176 }
177
178 struct cleanup *
179 make_run_cleanup (function, arg)
180 void (*function) PARAMS ((PTR));
181 PTR arg;
182 {
183 return make_my_cleanup (&run_cleanup_chain, function, arg);
184 }
185
186 struct cleanup *
187 make_exec_cleanup (function, arg)
188 void (*function) PARAMS ((PTR));
189 PTR arg;
190 {
191 return make_my_cleanup (&exec_cleanup_chain, function, arg);
192 }
193
194 struct cleanup *
195 make_exec_error_cleanup (function, arg)
196 void (*function) PARAMS ((PTR));
197 PTR arg;
198 {
199 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
200 }
201
202 static void
203 do_freeargv (arg)
204 void *arg;
205 {
206 freeargv ((char **) arg);
207 }
208
209 struct cleanup *
210 make_cleanup_freeargv (arg)
211 char **arg;
212 {
213 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
214 }
215
216 static void
217 do_ui_file_delete (void *arg)
218 {
219 ui_file_delete (arg);
220 }
221
222 struct cleanup *
223 make_cleanup_ui_file_delete (struct ui_file *arg)
224 {
225 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
226 }
227
228 struct cleanup *
229 make_my_cleanup (pmy_chain, function, arg)
230 struct cleanup **pmy_chain;
231 void (*function) PARAMS ((PTR));
232 PTR arg;
233 {
234 register struct cleanup *new
235 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
236 register struct cleanup *old_chain = *pmy_chain;
237
238 new->next = *pmy_chain;
239 new->function = function;
240 new->arg = arg;
241 *pmy_chain = new;
242
243 return old_chain;
244 }
245
246 /* Discard cleanups and do the actions they describe
247 until we get back to the point OLD_CHAIN in the cleanup_chain. */
248
249 void
250 do_cleanups (old_chain)
251 register struct cleanup *old_chain;
252 {
253 do_my_cleanups (&cleanup_chain, old_chain);
254 }
255
256 void
257 do_final_cleanups (old_chain)
258 register struct cleanup *old_chain;
259 {
260 do_my_cleanups (&final_cleanup_chain, old_chain);
261 }
262
263 void
264 do_run_cleanups (old_chain)
265 register struct cleanup *old_chain;
266 {
267 do_my_cleanups (&run_cleanup_chain, old_chain);
268 }
269
270 void
271 do_exec_cleanups (old_chain)
272 register struct cleanup *old_chain;
273 {
274 do_my_cleanups (&exec_cleanup_chain, old_chain);
275 }
276
277 void
278 do_exec_error_cleanups (old_chain)
279 register struct cleanup *old_chain;
280 {
281 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
282 }
283
284 void
285 do_my_cleanups (pmy_chain, old_chain)
286 register struct cleanup **pmy_chain;
287 register struct cleanup *old_chain;
288 {
289 register struct cleanup *ptr;
290 while ((ptr = *pmy_chain) != old_chain)
291 {
292 *pmy_chain = ptr->next; /* Do this first incase recursion */
293 (*ptr->function) (ptr->arg);
294 free (ptr);
295 }
296 }
297
298 /* Discard cleanups, not doing the actions they describe,
299 until we get back to the point OLD_CHAIN in the cleanup_chain. */
300
301 void
302 discard_cleanups (old_chain)
303 register struct cleanup *old_chain;
304 {
305 discard_my_cleanups (&cleanup_chain, old_chain);
306 }
307
308 void
309 discard_final_cleanups (old_chain)
310 register struct cleanup *old_chain;
311 {
312 discard_my_cleanups (&final_cleanup_chain, old_chain);
313 }
314
315 void
316 discard_exec_error_cleanups (old_chain)
317 register struct cleanup *old_chain;
318 {
319 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
320 }
321
322 void
323 discard_my_cleanups (pmy_chain, old_chain)
324 register struct cleanup **pmy_chain;
325 register struct cleanup *old_chain;
326 {
327 register struct cleanup *ptr;
328 while ((ptr = *pmy_chain) != old_chain)
329 {
330 *pmy_chain = ptr->next;
331 free ((PTR) ptr);
332 }
333 }
334
335 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
336 struct cleanup *
337 save_cleanups ()
338 {
339 return save_my_cleanups (&cleanup_chain);
340 }
341
342 struct cleanup *
343 save_final_cleanups ()
344 {
345 return save_my_cleanups (&final_cleanup_chain);
346 }
347
348 struct cleanup *
349 save_my_cleanups (pmy_chain)
350 struct cleanup **pmy_chain;
351 {
352 struct cleanup *old_chain = *pmy_chain;
353
354 *pmy_chain = 0;
355 return old_chain;
356 }
357
358 /* Restore the cleanup chain from a previously saved chain. */
359 void
360 restore_cleanups (chain)
361 struct cleanup *chain;
362 {
363 restore_my_cleanups (&cleanup_chain, chain);
364 }
365
366 void
367 restore_final_cleanups (chain)
368 struct cleanup *chain;
369 {
370 restore_my_cleanups (&final_cleanup_chain, chain);
371 }
372
373 void
374 restore_my_cleanups (pmy_chain, chain)
375 struct cleanup **pmy_chain;
376 struct cleanup *chain;
377 {
378 *pmy_chain = chain;
379 }
380
381 /* This function is useful for cleanups.
382 Do
383
384 foo = xmalloc (...);
385 old_chain = make_cleanup (free_current_contents, &foo);
386
387 to arrange to free the object thus allocated. */
388
389 void
390 free_current_contents (location)
391 char **location;
392 {
393 free (*location);
394 }
395
396 /* Provide a known function that does nothing, to use as a base for
397 for a possibly long chain of cleanups. This is useful where we
398 use the cleanup chain for handling normal cleanups as well as dealing
399 with cleanups that need to be done as a result of a call to error().
400 In such cases, we may not be certain where the first cleanup is, unless
401 we have a do-nothing one to always use as the base. */
402
403 /* ARGSUSED */
404 void
405 null_cleanup (arg)
406 PTR arg;
407 {
408 }
409
410 /* Add a continuation to the continuation list, the gloabl list
411 cmd_continuation. The new continuation will be added at the front.*/
412 void
413 add_continuation (continuation_hook, arg_list)
414 void (*continuation_hook) PARAMS ((struct continuation_arg *));
415 struct continuation_arg *arg_list;
416 {
417 struct continuation *continuation_ptr;
418
419 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
420 continuation_ptr->continuation_hook = continuation_hook;
421 continuation_ptr->arg_list = arg_list;
422 continuation_ptr->next = cmd_continuation;
423 cmd_continuation = continuation_ptr;
424 }
425
426 /* Walk down the cmd_continuation list, and execute all the
427 continuations. There is a problem though. In some cases new
428 continuations may be added while we are in the middle of this
429 loop. If this happens they will be added in the front, and done
430 before we have a chance of exhausting those that were already
431 there. We need to then save the beginning of the list in a pointer
432 and do the continuations from there on, instead of using the
433 global beginning of list as our iteration pointer.*/
434 void
435 do_all_continuations ()
436 {
437 struct continuation *continuation_ptr;
438 struct continuation *saved_continuation;
439
440 /* Copy the list header into another pointer, and set the global
441 list header to null, so that the global list can change as a side
442 effect of invoking the continuations and the processing of
443 the preexisting continuations will not be affected. */
444 continuation_ptr = cmd_continuation;
445 cmd_continuation = NULL;
446
447 /* Work now on the list we have set aside. */
448 while (continuation_ptr)
449 {
450 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
451 saved_continuation = continuation_ptr;
452 continuation_ptr = continuation_ptr->next;
453 free (saved_continuation);
454 }
455 }
456
457 /* Walk down the cmd_continuation list, and get rid of all the
458 continuations. */
459 void
460 discard_all_continuations ()
461 {
462 struct continuation *continuation_ptr;
463
464 while (cmd_continuation)
465 {
466 continuation_ptr = cmd_continuation;
467 cmd_continuation = continuation_ptr->next;
468 free (continuation_ptr);
469 }
470 }
471
472 /* Add a continuation to the continuation list, the gloabl list
473 intermediate_continuation. The new continuation will be added at the front.*/
474 void
475 add_intermediate_continuation (continuation_hook, arg_list)
476 void (*continuation_hook) PARAMS ((struct continuation_arg *));
477 struct continuation_arg *arg_list;
478 {
479 struct continuation *continuation_ptr;
480
481 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
482 continuation_ptr->continuation_hook = continuation_hook;
483 continuation_ptr->arg_list = arg_list;
484 continuation_ptr->next = intermediate_continuation;
485 intermediate_continuation = continuation_ptr;
486 }
487
488 /* Walk down the cmd_continuation list, and execute all the
489 continuations. There is a problem though. In some cases new
490 continuations may be added while we are in the middle of this
491 loop. If this happens they will be added in the front, and done
492 before we have a chance of exhausting those that were already
493 there. We need to then save the beginning of the list in a pointer
494 and do the continuations from there on, instead of using the
495 global beginning of list as our iteration pointer.*/
496 void
497 do_all_intermediate_continuations ()
498 {
499 struct continuation *continuation_ptr;
500 struct continuation *saved_continuation;
501
502 /* Copy the list header into another pointer, and set the global
503 list header to null, so that the global list can change as a side
504 effect of invoking the continuations and the processing of
505 the preexisting continuations will not be affected. */
506 continuation_ptr = intermediate_continuation;
507 intermediate_continuation = NULL;
508
509 /* Work now on the list we have set aside. */
510 while (continuation_ptr)
511 {
512 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
513 saved_continuation = continuation_ptr;
514 continuation_ptr = continuation_ptr->next;
515 free (saved_continuation);
516 }
517 }
518
519 /* Walk down the cmd_continuation list, and get rid of all the
520 continuations. */
521 void
522 discard_all_intermediate_continuations ()
523 {
524 struct continuation *continuation_ptr;
525
526 while (intermediate_continuation)
527 {
528 continuation_ptr = intermediate_continuation;
529 intermediate_continuation = continuation_ptr->next;
530 free (continuation_ptr);
531 }
532 }
533
534 \f
535
536 /* Print a warning message. Way to use this is to call warning_begin,
537 output the warning message (use unfiltered output to gdb_stderr),
538 ending in a newline. There is not currently a warning_end that you
539 call afterwards, but such a thing might be added if it is useful
540 for a GUI to separate warning messages from other output.
541
542 FIXME: Why do warnings use unfiltered output and errors filtered?
543 Is this anything other than a historical accident? */
544
545 void
546 warning_begin ()
547 {
548 target_terminal_ours ();
549 wrap_here (""); /* Force out any buffered output */
550 gdb_flush (gdb_stdout);
551 if (warning_pre_print)
552 fprintf_unfiltered (gdb_stderr, warning_pre_print);
553 }
554
555 /* Print a warning message.
556 The first argument STRING is the warning message, used as a fprintf string,
557 and the remaining args are passed as arguments to it.
558 The primary difference between warnings and errors is that a warning
559 does not force the return to command level. */
560
561 void
562 warning (const char *string,...)
563 {
564 va_list args;
565 va_start (args, string);
566 if (warning_hook)
567 (*warning_hook) (string, args);
568 else
569 {
570 warning_begin ();
571 vfprintf_unfiltered (gdb_stderr, string, args);
572 fprintf_unfiltered (gdb_stderr, "\n");
573 va_end (args);
574 }
575 }
576
577 /* Start the printing of an error message. Way to use this is to call
578 this, output the error message (use filtered output to gdb_stderr
579 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
580 in a newline, and then call return_to_top_level (RETURN_ERROR).
581 error() provides a convenient way to do this for the special case
582 that the error message can be formatted with a single printf call,
583 but this is more general. */
584 void
585 error_begin ()
586 {
587 if (error_begin_hook)
588 error_begin_hook ();
589
590 target_terminal_ours ();
591 wrap_here (""); /* Force out any buffered output */
592 gdb_flush (gdb_stdout);
593
594 annotate_error_begin ();
595
596 if (error_pre_print)
597 fprintf_filtered (gdb_stderr, error_pre_print);
598 }
599
600 /* Print an error message and return to command level.
601 The first argument STRING is the error message, used as a fprintf string,
602 and the remaining args are passed as arguments to it. */
603
604 NORETURN void
605 verror (const char *string, va_list args)
606 {
607 char *err_string;
608 struct cleanup *err_string_cleanup;
609 /* FIXME: cagney/1999-11-10: All error calls should come here.
610 Unfortunatly some code uses the sequence: error_begin(); print
611 error message; return_to_top_level. That code should be
612 flushed. */
613 error_begin ();
614 /* NOTE: It's tempting to just do the following...
615 vfprintf_filtered (gdb_stderr, string, args);
616 and then follow with a similar looking statement to cause the message
617 to also go to gdb_lasterr. But if we do this, we'll be traversing the
618 va_list twice which works on some platforms and fails miserably on
619 others. */
620 /* Save it as the last error */
621 ui_file_rewind (gdb_lasterr);
622 vfprintf_filtered (gdb_lasterr, string, args);
623 /* Retrieve the last error and print it to gdb_stderr */
624 err_string = error_last_message ();
625 err_string_cleanup = make_cleanup (free, err_string);
626 fputs_filtered (err_string, gdb_stderr);
627 fprintf_filtered (gdb_stderr, "\n");
628 do_cleanups (err_string_cleanup);
629 return_to_top_level (RETURN_ERROR);
630 }
631
632 NORETURN void
633 error (const char *string,...)
634 {
635 va_list args;
636 va_start (args, string);
637 verror (string, args);
638 va_end (args);
639 }
640
641 NORETURN void
642 error_stream (struct ui_file *stream)
643 {
644 long size;
645 char *msg = ui_file_xstrdup (stream, &size);
646 make_cleanup (free, msg);
647 error ("%s", msg);
648 }
649
650 /* Get the last error message issued by gdb */
651
652 char *
653 error_last_message (void)
654 {
655 long len;
656 return ui_file_xstrdup (gdb_lasterr, &len);
657 }
658
659 /* This is to be called by main() at the very beginning */
660
661 void
662 error_init (void)
663 {
664 gdb_lasterr = mem_fileopen ();
665 }
666
667 /* Print a message reporting an internal error. Ask the user if they
668 want to continue, dump core, or just exit. */
669
670 NORETURN void
671 internal_verror (const char *fmt, va_list ap)
672 {
673 static char msg[] = "Internal GDB error: recursive internal error.\n";
674 static int dejavu = 0;
675 int continue_p;
676 int dump_core_p;
677
678 /* don't allow infinite error recursion. */
679 switch (dejavu)
680 {
681 case 0:
682 dejavu = 1;
683 break;
684 case 1:
685 dejavu = 2;
686 fputs_unfiltered (msg, gdb_stderr);
687 abort ();
688 default:
689 dejavu = 3;
690 write (STDERR_FILENO, msg, sizeof (msg));
691 exit (1);
692 }
693
694 /* Try to get the message out */
695 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
696 vfprintf_unfiltered (gdb_stderr, fmt, ap);
697 fputs_unfiltered ("\n", gdb_stderr);
698
699 /* Default (no case) is to quit GDB. When in batch mode this
700 lessens the likelhood of GDB going into an infinate loop. */
701 continue_p = query ("\
702 An internal GDB error was detected. This may make make further\n\
703 debugging unreliable. Continue this debugging session? ");
704
705 /* Default (no case) is to not dump core. Lessen the chance of GDB
706 leaving random core files around. */
707 dump_core_p = query ("\
708 Create a core file containing the current state of GDB? ");
709
710 if (continue_p)
711 {
712 if (dump_core_p)
713 {
714 if (fork () == 0)
715 abort ();
716 }
717 }
718 else
719 {
720 if (dump_core_p)
721 abort ();
722 else
723 exit (1);
724 }
725
726 dejavu = 0;
727 return_to_top_level (RETURN_ERROR);
728 }
729
730 NORETURN void
731 internal_error (char *string, ...)
732 {
733 va_list ap;
734 va_start (ap, string);
735 internal_verror (string, ap);
736 va_end (ap);
737 }
738
739 /* The strerror() function can return NULL for errno values that are
740 out of range. Provide a "safe" version that always returns a
741 printable string. */
742
743 char *
744 safe_strerror (errnum)
745 int errnum;
746 {
747 char *msg;
748 static char buf[32];
749
750 if ((msg = strerror (errnum)) == NULL)
751 {
752 sprintf (buf, "(undocumented errno %d)", errnum);
753 msg = buf;
754 }
755 return (msg);
756 }
757
758 /* The strsignal() function can return NULL for signal values that are
759 out of range. Provide a "safe" version that always returns a
760 printable string. */
761
762 char *
763 safe_strsignal (signo)
764 int signo;
765 {
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strsignal (signo)) == NULL)
770 {
771 sprintf (buf, "(undocumented signal %d)", signo);
772 msg = buf;
773 }
774 return (msg);
775 }
776
777
778 /* Print the system error message for errno, and also mention STRING
779 as the file name for which the error was encountered.
780 Then return to command level. */
781
782 NORETURN void
783 perror_with_name (string)
784 char *string;
785 {
786 char *err;
787 char *combined;
788
789 err = safe_strerror (errno);
790 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
791 strcpy (combined, string);
792 strcat (combined, ": ");
793 strcat (combined, err);
794
795 /* I understand setting these is a matter of taste. Still, some people
796 may clear errno but not know about bfd_error. Doing this here is not
797 unreasonable. */
798 bfd_set_error (bfd_error_no_error);
799 errno = 0;
800
801 error ("%s.", combined);
802 }
803
804 /* Print the system error message for ERRCODE, and also mention STRING
805 as the file name for which the error was encountered. */
806
807 void
808 print_sys_errmsg (string, errcode)
809 char *string;
810 int errcode;
811 {
812 char *err;
813 char *combined;
814
815 err = safe_strerror (errcode);
816 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
817 strcpy (combined, string);
818 strcat (combined, ": ");
819 strcat (combined, err);
820
821 /* We want anything which was printed on stdout to come out first, before
822 this message. */
823 gdb_flush (gdb_stdout);
824 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
825 }
826
827 /* Control C eventually causes this to be called, at a convenient time. */
828
829 void
830 quit ()
831 {
832 serial_t gdb_stdout_serial = serial_fdopen (1);
833
834 target_terminal_ours ();
835
836 /* We want all output to appear now, before we print "Quit". We
837 have 3 levels of buffering we have to flush (it's possible that
838 some of these should be changed to flush the lower-level ones
839 too): */
840
841 /* 1. The _filtered buffer. */
842 wrap_here ((char *) 0);
843
844 /* 2. The stdio buffer. */
845 gdb_flush (gdb_stdout);
846 gdb_flush (gdb_stderr);
847
848 /* 3. The system-level buffer. */
849 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
850 SERIAL_UN_FDOPEN (gdb_stdout_serial);
851
852 annotate_error_begin ();
853
854 /* Don't use *_filtered; we don't want to prompt the user to continue. */
855 if (quit_pre_print)
856 fprintf_unfiltered (gdb_stderr, quit_pre_print);
857
858 #ifdef __MSDOS__
859 /* No steenking SIGINT will ever be coming our way when the
860 program is resumed. Don't lie. */
861 fprintf_unfiltered (gdb_stderr, "Quit\n");
862 #else
863 if (job_control
864 /* If there is no terminal switching for this target, then we can't
865 possibly get screwed by the lack of job control. */
866 || current_target.to_terminal_ours == NULL)
867 fprintf_unfiltered (gdb_stderr, "Quit\n");
868 else
869 fprintf_unfiltered (gdb_stderr,
870 "Quit (expect signal SIGINT when the program is resumed)\n");
871 #endif
872 return_to_top_level (RETURN_QUIT);
873 }
874
875
876 #if defined(_MSC_VER) /* should test for wingdb instead? */
877
878 /*
879 * Windows translates all keyboard and mouse events
880 * into a message which is appended to the message
881 * queue for the process.
882 */
883
884 void
885 notice_quit ()
886 {
887 int k = win32pollquit ();
888 if (k == 1)
889 quit_flag = 1;
890 else if (k == 2)
891 immediate_quit = 1;
892 }
893
894 #else /* !defined(_MSC_VER) */
895
896 void
897 notice_quit ()
898 {
899 /* Done by signals */
900 }
901
902 #endif /* !defined(_MSC_VER) */
903
904 /* Control C comes here */
905 void
906 request_quit (signo)
907 int signo;
908 {
909 quit_flag = 1;
910 /* Restore the signal handler. Harmless with BSD-style signals, needed
911 for System V-style signals. So just always do it, rather than worrying
912 about USG defines and stuff like that. */
913 signal (signo, request_quit);
914
915 #ifdef REQUEST_QUIT
916 REQUEST_QUIT;
917 #else
918 if (immediate_quit)
919 quit ();
920 #endif
921 }
922 \f
923 /* Memory management stuff (malloc friends). */
924
925 /* Make a substitute size_t for non-ANSI compilers. */
926
927 #ifndef HAVE_STDDEF_H
928 #ifndef size_t
929 #define size_t unsigned int
930 #endif
931 #endif
932
933 #if !defined (USE_MMALLOC)
934
935 void *
936 mcalloc (void *md, size_t number, size_t size)
937 {
938 return calloc (number, size);
939 }
940
941 PTR
942 mmalloc (md, size)
943 PTR md;
944 size_t size;
945 {
946 return malloc (size);
947 }
948
949 PTR
950 mrealloc (md, ptr, size)
951 PTR md;
952 PTR ptr;
953 size_t size;
954 {
955 if (ptr == 0) /* Guard against old realloc's */
956 return malloc (size);
957 else
958 return realloc (ptr, size);
959 }
960
961 void
962 mfree (md, ptr)
963 PTR md;
964 PTR ptr;
965 {
966 free (ptr);
967 }
968
969 #endif /* USE_MMALLOC */
970
971 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
972
973 void
974 init_malloc (md)
975 PTR md;
976 {
977 }
978
979 #else /* Have mmalloc and want corruption checking */
980
981 static void
982 malloc_botch ()
983 {
984 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
985 abort ();
986 }
987
988 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
989 by MD, to detect memory corruption. Note that MD may be NULL to specify
990 the default heap that grows via sbrk.
991
992 Note that for freshly created regions, we must call mmcheckf prior to any
993 mallocs in the region. Otherwise, any region which was allocated prior to
994 installing the checking hooks, which is later reallocated or freed, will
995 fail the checks! The mmcheck function only allows initial hooks to be
996 installed before the first mmalloc. However, anytime after we have called
997 mmcheck the first time to install the checking hooks, we can call it again
998 to update the function pointer to the memory corruption handler.
999
1000 Returns zero on failure, non-zero on success. */
1001
1002 #ifndef MMCHECK_FORCE
1003 #define MMCHECK_FORCE 0
1004 #endif
1005
1006 void
1007 init_malloc (md)
1008 PTR md;
1009 {
1010 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1011 {
1012 /* Don't use warning(), which relies on current_target being set
1013 to something other than dummy_target, until after
1014 initialize_all_files(). */
1015
1016 fprintf_unfiltered
1017 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1018 fprintf_unfiltered
1019 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1020 }
1021
1022 mmtrace ();
1023 }
1024
1025 #endif /* Have mmalloc and want corruption checking */
1026
1027 /* Called when a memory allocation fails, with the number of bytes of
1028 memory requested in SIZE. */
1029
1030 NORETURN void
1031 nomem (size)
1032 long size;
1033 {
1034 if (size > 0)
1035 {
1036 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1037 }
1038 else
1039 {
1040 internal_error ("virtual memory exhausted.");
1041 }
1042 }
1043
1044 /* Like mmalloc but get error if no storage available, and protect against
1045 the caller wanting to allocate zero bytes. Whether to return NULL for
1046 a zero byte request, or translate the request into a request for one
1047 byte of zero'd storage, is a religious issue. */
1048
1049 PTR
1050 xmmalloc (md, size)
1051 PTR md;
1052 long size;
1053 {
1054 register PTR val;
1055
1056 if (size == 0)
1057 {
1058 val = NULL;
1059 }
1060 else if ((val = mmalloc (md, size)) == NULL)
1061 {
1062 nomem (size);
1063 }
1064 return (val);
1065 }
1066
1067 /* Like mrealloc but get error if no storage available. */
1068
1069 PTR
1070 xmrealloc (md, ptr, size)
1071 PTR md;
1072 PTR ptr;
1073 long size;
1074 {
1075 register PTR val;
1076
1077 if (ptr != NULL)
1078 {
1079 val = mrealloc (md, ptr, size);
1080 }
1081 else
1082 {
1083 val = mmalloc (md, size);
1084 }
1085 if (val == NULL)
1086 {
1087 nomem (size);
1088 }
1089 return (val);
1090 }
1091
1092 /* Like malloc but get error if no storage available, and protect against
1093 the caller wanting to allocate zero bytes. */
1094
1095 PTR
1096 xmalloc (size)
1097 size_t size;
1098 {
1099 return (xmmalloc ((PTR) NULL, size));
1100 }
1101
1102 /* Like calloc but get error if no storage available */
1103
1104 PTR
1105 xcalloc (size_t number, size_t size)
1106 {
1107 void *mem = mcalloc (NULL, number, size);
1108 if (mem == NULL)
1109 nomem (number * size);
1110 return mem;
1111 }
1112
1113 /* Like mrealloc but get error if no storage available. */
1114
1115 PTR
1116 xrealloc (ptr, size)
1117 PTR ptr;
1118 size_t size;
1119 {
1120 return (xmrealloc ((PTR) NULL, ptr, size));
1121 }
1122 \f
1123
1124 /* My replacement for the read system call.
1125 Used like `read' but keeps going if `read' returns too soon. */
1126
1127 int
1128 myread (desc, addr, len)
1129 int desc;
1130 char *addr;
1131 int len;
1132 {
1133 register int val;
1134 int orglen = len;
1135
1136 while (len > 0)
1137 {
1138 val = read (desc, addr, len);
1139 if (val < 0)
1140 return val;
1141 if (val == 0)
1142 return orglen - len;
1143 len -= val;
1144 addr += val;
1145 }
1146 return orglen;
1147 }
1148 \f
1149 /* Make a copy of the string at PTR with SIZE characters
1150 (and add a null character at the end in the copy).
1151 Uses malloc to get the space. Returns the address of the copy. */
1152
1153 char *
1154 savestring (ptr, size)
1155 const char *ptr;
1156 int size;
1157 {
1158 register char *p = (char *) xmalloc (size + 1);
1159 memcpy (p, ptr, size);
1160 p[size] = 0;
1161 return p;
1162 }
1163
1164 char *
1165 msavestring (md, ptr, size)
1166 PTR md;
1167 const char *ptr;
1168 int size;
1169 {
1170 register char *p = (char *) xmmalloc (md, size + 1);
1171 memcpy (p, ptr, size);
1172 p[size] = 0;
1173 return p;
1174 }
1175
1176 /* The "const" is so it compiles under DGUX (which prototypes strsave
1177 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1178 Doesn't real strsave return NULL if out of memory? */
1179 char *
1180 strsave (ptr)
1181 const char *ptr;
1182 {
1183 return savestring (ptr, strlen (ptr));
1184 }
1185
1186 char *
1187 mstrsave (md, ptr)
1188 PTR md;
1189 const char *ptr;
1190 {
1191 return (msavestring (md, ptr, strlen (ptr)));
1192 }
1193
1194 void
1195 print_spaces (n, file)
1196 register int n;
1197 register struct ui_file *file;
1198 {
1199 fputs_unfiltered (n_spaces (n), file);
1200 }
1201
1202 /* Print a host address. */
1203
1204 void
1205 gdb_print_host_address (void *addr, struct ui_file *stream)
1206 {
1207
1208 /* We could use the %p conversion specifier to fprintf if we had any
1209 way of knowing whether this host supports it. But the following
1210 should work on the Alpha and on 32 bit machines. */
1211
1212 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1213 }
1214
1215 /* Ask user a y-or-n question and return 1 iff answer is yes.
1216 Takes three args which are given to printf to print the question.
1217 The first, a control string, should end in "? ".
1218 It should not say how to answer, because we do that. */
1219
1220 /* VARARGS */
1221 int
1222 query (char *ctlstr,...)
1223 {
1224 va_list args;
1225 register int answer;
1226 register int ans2;
1227 int retval;
1228
1229 va_start (args, ctlstr);
1230
1231 if (query_hook)
1232 {
1233 return query_hook (ctlstr, args);
1234 }
1235
1236 /* Automatically answer "yes" if input is not from a terminal. */
1237 if (!input_from_terminal_p ())
1238 return 1;
1239 #ifdef MPW
1240 /* FIXME Automatically answer "yes" if called from MacGDB. */
1241 if (mac_app)
1242 return 1;
1243 #endif /* MPW */
1244
1245 while (1)
1246 {
1247 wrap_here (""); /* Flush any buffered output */
1248 gdb_flush (gdb_stdout);
1249
1250 if (annotation_level > 1)
1251 printf_filtered ("\n\032\032pre-query\n");
1252
1253 vfprintf_filtered (gdb_stdout, ctlstr, args);
1254 printf_filtered ("(y or n) ");
1255
1256 if (annotation_level > 1)
1257 printf_filtered ("\n\032\032query\n");
1258
1259 #ifdef MPW
1260 /* If not in MacGDB, move to a new line so the entered line doesn't
1261 have a prompt on the front of it. */
1262 if (!mac_app)
1263 fputs_unfiltered ("\n", gdb_stdout);
1264 #endif /* MPW */
1265
1266 wrap_here ("");
1267 gdb_flush (gdb_stdout);
1268
1269 #if defined(TUI)
1270 if (!tui_version || cmdWin == tuiWinWithFocus ())
1271 #endif
1272 answer = fgetc (stdin);
1273 #if defined(TUI)
1274 else
1275 answer = (unsigned char) tuiBufferGetc ();
1276
1277 #endif
1278 clearerr (stdin); /* in case of C-d */
1279 if (answer == EOF) /* C-d */
1280 {
1281 retval = 1;
1282 break;
1283 }
1284 /* Eat rest of input line, to EOF or newline */
1285 if ((answer != '\n') || (tui_version && answer != '\r'))
1286 do
1287 {
1288 #if defined(TUI)
1289 if (!tui_version || cmdWin == tuiWinWithFocus ())
1290 #endif
1291 ans2 = fgetc (stdin);
1292 #if defined(TUI)
1293 else
1294 ans2 = (unsigned char) tuiBufferGetc ();
1295 #endif
1296 clearerr (stdin);
1297 }
1298 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1299 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1300
1301 if (answer >= 'a')
1302 answer -= 040;
1303 if (answer == 'Y')
1304 {
1305 retval = 1;
1306 break;
1307 }
1308 if (answer == 'N')
1309 {
1310 retval = 0;
1311 break;
1312 }
1313 printf_filtered ("Please answer y or n.\n");
1314 }
1315
1316 if (annotation_level > 1)
1317 printf_filtered ("\n\032\032post-query\n");
1318 return retval;
1319 }
1320 \f
1321
1322 /* Parse a C escape sequence. STRING_PTR points to a variable
1323 containing a pointer to the string to parse. That pointer
1324 should point to the character after the \. That pointer
1325 is updated past the characters we use. The value of the
1326 escape sequence is returned.
1327
1328 A negative value means the sequence \ newline was seen,
1329 which is supposed to be equivalent to nothing at all.
1330
1331 If \ is followed by a null character, we return a negative
1332 value and leave the string pointer pointing at the null character.
1333
1334 If \ is followed by 000, we return 0 and leave the string pointer
1335 after the zeros. A value of 0 does not mean end of string. */
1336
1337 int
1338 parse_escape (string_ptr)
1339 char **string_ptr;
1340 {
1341 register int c = *(*string_ptr)++;
1342 switch (c)
1343 {
1344 case 'a':
1345 return 007; /* Bell (alert) char */
1346 case 'b':
1347 return '\b';
1348 case 'e': /* Escape character */
1349 return 033;
1350 case 'f':
1351 return '\f';
1352 case 'n':
1353 return '\n';
1354 case 'r':
1355 return '\r';
1356 case 't':
1357 return '\t';
1358 case 'v':
1359 return '\v';
1360 case '\n':
1361 return -2;
1362 case 0:
1363 (*string_ptr)--;
1364 return 0;
1365 case '^':
1366 c = *(*string_ptr)++;
1367 if (c == '\\')
1368 c = parse_escape (string_ptr);
1369 if (c == '?')
1370 return 0177;
1371 return (c & 0200) | (c & 037);
1372
1373 case '0':
1374 case '1':
1375 case '2':
1376 case '3':
1377 case '4':
1378 case '5':
1379 case '6':
1380 case '7':
1381 {
1382 register int i = c - '0';
1383 register int count = 0;
1384 while (++count < 3)
1385 {
1386 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1387 {
1388 i *= 8;
1389 i += c - '0';
1390 }
1391 else
1392 {
1393 (*string_ptr)--;
1394 break;
1395 }
1396 }
1397 return i;
1398 }
1399 default:
1400 return c;
1401 }
1402 }
1403 \f
1404 /* Print the character C on STREAM as part of the contents of a literal
1405 string whose delimiter is QUOTER. Note that this routine should only
1406 be call for printing things which are independent of the language
1407 of the program being debugged. */
1408
1409 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1410
1411 static void
1412 printchar (c, do_fputs, do_fprintf, stream, quoter)
1413 int c;
1414 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1415 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1416 struct ui_file *stream;
1417 int quoter;
1418 {
1419
1420 c &= 0xFF; /* Avoid sign bit follies */
1421
1422 if (c < 0x20 || /* Low control chars */
1423 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1424 (sevenbit_strings && c >= 0x80))
1425 { /* high order bit set */
1426 switch (c)
1427 {
1428 case '\n':
1429 do_fputs ("\\n", stream);
1430 break;
1431 case '\b':
1432 do_fputs ("\\b", stream);
1433 break;
1434 case '\t':
1435 do_fputs ("\\t", stream);
1436 break;
1437 case '\f':
1438 do_fputs ("\\f", stream);
1439 break;
1440 case '\r':
1441 do_fputs ("\\r", stream);
1442 break;
1443 case '\033':
1444 do_fputs ("\\e", stream);
1445 break;
1446 case '\007':
1447 do_fputs ("\\a", stream);
1448 break;
1449 default:
1450 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1451 break;
1452 }
1453 }
1454 else
1455 {
1456 if (c == '\\' || c == quoter)
1457 do_fputs ("\\", stream);
1458 do_fprintf (stream, "%c", c);
1459 }
1460 }
1461
1462 /* Print the character C on STREAM as part of the contents of a
1463 literal string whose delimiter is QUOTER. Note that these routines
1464 should only be call for printing things which are independent of
1465 the language of the program being debugged. */
1466
1467 void
1468 fputstr_filtered (str, quoter, stream)
1469 const char *str;
1470 int quoter;
1471 struct ui_file *stream;
1472 {
1473 while (*str)
1474 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1475 }
1476
1477 void
1478 fputstr_unfiltered (str, quoter, stream)
1479 const char *str;
1480 int quoter;
1481 struct ui_file *stream;
1482 {
1483 while (*str)
1484 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1485 }
1486
1487 void
1488 fputstrn_unfiltered (str, n, quoter, stream)
1489 const char *str;
1490 int n;
1491 int quoter;
1492 struct ui_file *stream;
1493 {
1494 int i;
1495 for (i = 0; i < n; i++)
1496 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1497 }
1498
1499 \f
1500
1501 /* Number of lines per page or UINT_MAX if paging is disabled. */
1502 static unsigned int lines_per_page;
1503 /* Number of chars per line or UNIT_MAX if line folding is disabled. */
1504 static unsigned int chars_per_line;
1505 /* Current count of lines printed on this page, chars on this line. */
1506 static unsigned int lines_printed, chars_printed;
1507
1508 /* Buffer and start column of buffered text, for doing smarter word-
1509 wrapping. When someone calls wrap_here(), we start buffering output
1510 that comes through fputs_filtered(). If we see a newline, we just
1511 spit it out and forget about the wrap_here(). If we see another
1512 wrap_here(), we spit it out and remember the newer one. If we see
1513 the end of the line, we spit out a newline, the indent, and then
1514 the buffered output. */
1515
1516 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1517 are waiting to be output (they have already been counted in chars_printed).
1518 When wrap_buffer[0] is null, the buffer is empty. */
1519 static char *wrap_buffer;
1520
1521 /* Pointer in wrap_buffer to the next character to fill. */
1522 static char *wrap_pointer;
1523
1524 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1525 is non-zero. */
1526 static char *wrap_indent;
1527
1528 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1529 is not in effect. */
1530 static int wrap_column;
1531 \f
1532
1533 /* Inialize the lines and chars per page */
1534 void
1535 init_page_info ()
1536 {
1537 #if defined(TUI)
1538 if (tui_version && m_winPtrNotNull (cmdWin))
1539 {
1540 lines_per_page = cmdWin->generic.height;
1541 chars_per_line = cmdWin->generic.width;
1542 }
1543 else
1544 #endif
1545 {
1546 /* These defaults will be used if we are unable to get the correct
1547 values from termcap. */
1548 #if defined(__GO32__)
1549 lines_per_page = ScreenRows ();
1550 chars_per_line = ScreenCols ();
1551 #else
1552 lines_per_page = 24;
1553 chars_per_line = 80;
1554
1555 #if !defined (MPW) && !defined (_WIN32)
1556 /* No termcap under MPW, although might be cool to do something
1557 by looking at worksheet or console window sizes. */
1558 /* Initialize the screen height and width from termcap. */
1559 {
1560 char *termtype = getenv ("TERM");
1561
1562 /* Positive means success, nonpositive means failure. */
1563 int status;
1564
1565 /* 2048 is large enough for all known terminals, according to the
1566 GNU termcap manual. */
1567 char term_buffer[2048];
1568
1569 if (termtype)
1570 {
1571 status = tgetent (term_buffer, termtype);
1572 if (status > 0)
1573 {
1574 int val;
1575 int running_in_emacs = getenv ("EMACS") != NULL;
1576
1577 val = tgetnum ("li");
1578 if (val >= 0 && !running_in_emacs)
1579 lines_per_page = val;
1580 else
1581 /* The number of lines per page is not mentioned
1582 in the terminal description. This probably means
1583 that paging is not useful (e.g. emacs shell window),
1584 so disable paging. */
1585 lines_per_page = UINT_MAX;
1586
1587 val = tgetnum ("co");
1588 if (val >= 0)
1589 chars_per_line = val;
1590 }
1591 }
1592 }
1593 #endif /* MPW */
1594
1595 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1596
1597 /* If there is a better way to determine the window size, use it. */
1598 SIGWINCH_HANDLER (SIGWINCH);
1599 #endif
1600 #endif
1601 /* If the output is not a terminal, don't paginate it. */
1602 if (!ui_file_isatty (gdb_stdout))
1603 lines_per_page = UINT_MAX;
1604 } /* the command_line_version */
1605 set_width ();
1606 }
1607
1608 static void
1609 set_width ()
1610 {
1611 if (chars_per_line == 0)
1612 init_page_info ();
1613
1614 if (!wrap_buffer)
1615 {
1616 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1617 wrap_buffer[0] = '\0';
1618 }
1619 else
1620 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1621 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1622 }
1623
1624 /* ARGSUSED */
1625 static void
1626 set_width_command (args, from_tty, c)
1627 char *args;
1628 int from_tty;
1629 struct cmd_list_element *c;
1630 {
1631 set_width ();
1632 }
1633
1634 /* Wait, so the user can read what's on the screen. Prompt the user
1635 to continue by pressing RETURN. */
1636
1637 static void
1638 prompt_for_continue ()
1639 {
1640 char *ignore;
1641 char cont_prompt[120];
1642
1643 if (annotation_level > 1)
1644 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1645
1646 strcpy (cont_prompt,
1647 "---Type <return> to continue, or q <return> to quit---");
1648 if (annotation_level > 1)
1649 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1650
1651 /* We must do this *before* we call gdb_readline, else it will eventually
1652 call us -- thinking that we're trying to print beyond the end of the
1653 screen. */
1654 reinitialize_more_filter ();
1655
1656 immediate_quit++;
1657 /* On a real operating system, the user can quit with SIGINT.
1658 But not on GO32.
1659
1660 'q' is provided on all systems so users don't have to change habits
1661 from system to system, and because telling them what to do in
1662 the prompt is more user-friendly than expecting them to think of
1663 SIGINT. */
1664 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1665 whereas control-C to gdb_readline will cause the user to get dumped
1666 out to DOS. */
1667 ignore = readline (cont_prompt);
1668
1669 if (annotation_level > 1)
1670 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1671
1672 if (ignore)
1673 {
1674 char *p = ignore;
1675 while (*p == ' ' || *p == '\t')
1676 ++p;
1677 if (p[0] == 'q')
1678 {
1679 if (!event_loop_p)
1680 request_quit (SIGINT);
1681 else
1682 async_request_quit (0);
1683 }
1684 free (ignore);
1685 }
1686 immediate_quit--;
1687
1688 /* Now we have to do this again, so that GDB will know that it doesn't
1689 need to save the ---Type <return>--- line at the top of the screen. */
1690 reinitialize_more_filter ();
1691
1692 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1693 }
1694
1695 /* Reinitialize filter; ie. tell it to reset to original values. */
1696
1697 void
1698 reinitialize_more_filter ()
1699 {
1700 lines_printed = 0;
1701 chars_printed = 0;
1702 }
1703
1704 /* Indicate that if the next sequence of characters overflows the line,
1705 a newline should be inserted here rather than when it hits the end.
1706 If INDENT is non-null, it is a string to be printed to indent the
1707 wrapped part on the next line. INDENT must remain accessible until
1708 the next call to wrap_here() or until a newline is printed through
1709 fputs_filtered().
1710
1711 If the line is already overfull, we immediately print a newline and
1712 the indentation, and disable further wrapping.
1713
1714 If we don't know the width of lines, but we know the page height,
1715 we must not wrap words, but should still keep track of newlines
1716 that were explicitly printed.
1717
1718 INDENT should not contain tabs, as that will mess up the char count
1719 on the next line. FIXME.
1720
1721 This routine is guaranteed to force out any output which has been
1722 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1723 used to force out output from the wrap_buffer. */
1724
1725 void
1726 wrap_here (indent)
1727 char *indent;
1728 {
1729 /* This should have been allocated, but be paranoid anyway. */
1730 if (!wrap_buffer)
1731 abort ();
1732
1733 if (wrap_buffer[0])
1734 {
1735 *wrap_pointer = '\0';
1736 fputs_unfiltered (wrap_buffer, gdb_stdout);
1737 }
1738 wrap_pointer = wrap_buffer;
1739 wrap_buffer[0] = '\0';
1740 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1741 {
1742 wrap_column = 0;
1743 }
1744 else if (chars_printed >= chars_per_line)
1745 {
1746 puts_filtered ("\n");
1747 if (indent != NULL)
1748 puts_filtered (indent);
1749 wrap_column = 0;
1750 }
1751 else
1752 {
1753 wrap_column = chars_printed;
1754 if (indent == NULL)
1755 wrap_indent = "";
1756 else
1757 wrap_indent = indent;
1758 }
1759 }
1760
1761 /* Ensure that whatever gets printed next, using the filtered output
1762 commands, starts at the beginning of the line. I.E. if there is
1763 any pending output for the current line, flush it and start a new
1764 line. Otherwise do nothing. */
1765
1766 void
1767 begin_line ()
1768 {
1769 if (chars_printed > 0)
1770 {
1771 puts_filtered ("\n");
1772 }
1773 }
1774
1775
1776 /* Like fputs but if FILTER is true, pause after every screenful.
1777
1778 Regardless of FILTER can wrap at points other than the final
1779 character of a line.
1780
1781 Unlike fputs, fputs_maybe_filtered does not return a value.
1782 It is OK for LINEBUFFER to be NULL, in which case just don't print
1783 anything.
1784
1785 Note that a longjmp to top level may occur in this routine (only if
1786 FILTER is true) (since prompt_for_continue may do so) so this
1787 routine should not be called when cleanups are not in place. */
1788
1789 static void
1790 fputs_maybe_filtered (linebuffer, stream, filter)
1791 const char *linebuffer;
1792 struct ui_file *stream;
1793 int filter;
1794 {
1795 const char *lineptr;
1796
1797 if (linebuffer == 0)
1798 return;
1799
1800 /* Don't do any filtering if it is disabled. */
1801 if ((stream != gdb_stdout) || !pagination_enabled
1802 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1803 {
1804 fputs_unfiltered (linebuffer, stream);
1805 return;
1806 }
1807
1808 /* Go through and output each character. Show line extension
1809 when this is necessary; prompt user for new page when this is
1810 necessary. */
1811
1812 lineptr = linebuffer;
1813 while (*lineptr)
1814 {
1815 /* Possible new page. */
1816 if (filter &&
1817 (lines_printed >= lines_per_page - 1))
1818 prompt_for_continue ();
1819
1820 while (*lineptr && *lineptr != '\n')
1821 {
1822 /* Print a single line. */
1823 if (*lineptr == '\t')
1824 {
1825 if (wrap_column)
1826 *wrap_pointer++ = '\t';
1827 else
1828 fputc_unfiltered ('\t', stream);
1829 /* Shifting right by 3 produces the number of tab stops
1830 we have already passed, and then adding one and
1831 shifting left 3 advances to the next tab stop. */
1832 chars_printed = ((chars_printed >> 3) + 1) << 3;
1833 lineptr++;
1834 }
1835 else
1836 {
1837 if (wrap_column)
1838 *wrap_pointer++ = *lineptr;
1839 else
1840 fputc_unfiltered (*lineptr, stream);
1841 chars_printed++;
1842 lineptr++;
1843 }
1844
1845 if (chars_printed >= chars_per_line)
1846 {
1847 unsigned int save_chars = chars_printed;
1848
1849 chars_printed = 0;
1850 lines_printed++;
1851 /* If we aren't actually wrapping, don't output newline --
1852 if chars_per_line is right, we probably just overflowed
1853 anyway; if it's wrong, let us keep going. */
1854 if (wrap_column)
1855 fputc_unfiltered ('\n', stream);
1856
1857 /* Possible new page. */
1858 if (lines_printed >= lines_per_page - 1)
1859 prompt_for_continue ();
1860
1861 /* Now output indentation and wrapped string */
1862 if (wrap_column)
1863 {
1864 fputs_unfiltered (wrap_indent, stream);
1865 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1866 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1867 /* FIXME, this strlen is what prevents wrap_indent from
1868 containing tabs. However, if we recurse to print it
1869 and count its chars, we risk trouble if wrap_indent is
1870 longer than (the user settable) chars_per_line.
1871 Note also that this can set chars_printed > chars_per_line
1872 if we are printing a long string. */
1873 chars_printed = strlen (wrap_indent)
1874 + (save_chars - wrap_column);
1875 wrap_pointer = wrap_buffer; /* Reset buffer */
1876 wrap_buffer[0] = '\0';
1877 wrap_column = 0; /* And disable fancy wrap */
1878 }
1879 }
1880 }
1881
1882 if (*lineptr == '\n')
1883 {
1884 chars_printed = 0;
1885 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1886 lines_printed++;
1887 fputc_unfiltered ('\n', stream);
1888 lineptr++;
1889 }
1890 }
1891 }
1892
1893 void
1894 fputs_filtered (linebuffer, stream)
1895 const char *linebuffer;
1896 struct ui_file *stream;
1897 {
1898 fputs_maybe_filtered (linebuffer, stream, 1);
1899 }
1900
1901 int
1902 putchar_unfiltered (c)
1903 int c;
1904 {
1905 char buf = c;
1906 ui_file_write (gdb_stdout, &buf, 1);
1907 return c;
1908 }
1909
1910 int
1911 fputc_unfiltered (c, stream)
1912 int c;
1913 struct ui_file *stream;
1914 {
1915 char buf = c;
1916 ui_file_write (stream, &buf, 1);
1917 return c;
1918 }
1919
1920 int
1921 fputc_filtered (c, stream)
1922 int c;
1923 struct ui_file *stream;
1924 {
1925 char buf[2];
1926
1927 buf[0] = c;
1928 buf[1] = 0;
1929 fputs_filtered (buf, stream);
1930 return c;
1931 }
1932
1933 /* puts_debug is like fputs_unfiltered, except it prints special
1934 characters in printable fashion. */
1935
1936 void
1937 puts_debug (prefix, string, suffix)
1938 char *prefix;
1939 char *string;
1940 char *suffix;
1941 {
1942 int ch;
1943
1944 /* Print prefix and suffix after each line. */
1945 static int new_line = 1;
1946 static int return_p = 0;
1947 static char *prev_prefix = "";
1948 static char *prev_suffix = "";
1949
1950 if (*string == '\n')
1951 return_p = 0;
1952
1953 /* If the prefix is changing, print the previous suffix, a new line,
1954 and the new prefix. */
1955 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1956 {
1957 fputs_unfiltered (prev_suffix, gdb_stdlog);
1958 fputs_unfiltered ("\n", gdb_stdlog);
1959 fputs_unfiltered (prefix, gdb_stdlog);
1960 }
1961
1962 /* Print prefix if we printed a newline during the previous call. */
1963 if (new_line)
1964 {
1965 new_line = 0;
1966 fputs_unfiltered (prefix, gdb_stdlog);
1967 }
1968
1969 prev_prefix = prefix;
1970 prev_suffix = suffix;
1971
1972 /* Output characters in a printable format. */
1973 while ((ch = *string++) != '\0')
1974 {
1975 switch (ch)
1976 {
1977 default:
1978 if (isprint (ch))
1979 fputc_unfiltered (ch, gdb_stdlog);
1980
1981 else
1982 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1983 break;
1984
1985 case '\\':
1986 fputs_unfiltered ("\\\\", gdb_stdlog);
1987 break;
1988 case '\b':
1989 fputs_unfiltered ("\\b", gdb_stdlog);
1990 break;
1991 case '\f':
1992 fputs_unfiltered ("\\f", gdb_stdlog);
1993 break;
1994 case '\n':
1995 new_line = 1;
1996 fputs_unfiltered ("\\n", gdb_stdlog);
1997 break;
1998 case '\r':
1999 fputs_unfiltered ("\\r", gdb_stdlog);
2000 break;
2001 case '\t':
2002 fputs_unfiltered ("\\t", gdb_stdlog);
2003 break;
2004 case '\v':
2005 fputs_unfiltered ("\\v", gdb_stdlog);
2006 break;
2007 }
2008
2009 return_p = ch == '\r';
2010 }
2011
2012 /* Print suffix if we printed a newline. */
2013 if (new_line)
2014 {
2015 fputs_unfiltered (suffix, gdb_stdlog);
2016 fputs_unfiltered ("\n", gdb_stdlog);
2017 }
2018 }
2019
2020
2021 /* Print a variable number of ARGS using format FORMAT. If this
2022 information is going to put the amount written (since the last call
2023 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2024 call prompt_for_continue to get the users permision to continue.
2025
2026 Unlike fprintf, this function does not return a value.
2027
2028 We implement three variants, vfprintf (takes a vararg list and stream),
2029 fprintf (takes a stream to write on), and printf (the usual).
2030
2031 Note also that a longjmp to top level may occur in this routine
2032 (since prompt_for_continue may do so) so this routine should not be
2033 called when cleanups are not in place. */
2034
2035 static void
2036 vfprintf_maybe_filtered (stream, format, args, filter)
2037 struct ui_file *stream;
2038 const char *format;
2039 va_list args;
2040 int filter;
2041 {
2042 char *linebuffer;
2043 struct cleanup *old_cleanups;
2044
2045 vasprintf (&linebuffer, format, args);
2046 if (linebuffer == NULL)
2047 {
2048 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2049 exit (1);
2050 }
2051 old_cleanups = make_cleanup (free, linebuffer);
2052 fputs_maybe_filtered (linebuffer, stream, filter);
2053 do_cleanups (old_cleanups);
2054 }
2055
2056
2057 void
2058 vfprintf_filtered (stream, format, args)
2059 struct ui_file *stream;
2060 const char *format;
2061 va_list args;
2062 {
2063 vfprintf_maybe_filtered (stream, format, args, 1);
2064 }
2065
2066 void
2067 vfprintf_unfiltered (stream, format, args)
2068 struct ui_file *stream;
2069 const char *format;
2070 va_list args;
2071 {
2072 char *linebuffer;
2073 struct cleanup *old_cleanups;
2074
2075 vasprintf (&linebuffer, format, args);
2076 if (linebuffer == NULL)
2077 {
2078 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2079 exit (1);
2080 }
2081 old_cleanups = make_cleanup (free, linebuffer);
2082 fputs_unfiltered (linebuffer, stream);
2083 do_cleanups (old_cleanups);
2084 }
2085
2086 void
2087 vprintf_filtered (format, args)
2088 const char *format;
2089 va_list args;
2090 {
2091 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2092 }
2093
2094 void
2095 vprintf_unfiltered (format, args)
2096 const char *format;
2097 va_list args;
2098 {
2099 vfprintf_unfiltered (gdb_stdout, format, args);
2100 }
2101
2102 void
2103 fprintf_filtered (struct ui_file * stream, const char *format,...)
2104 {
2105 va_list args;
2106 va_start (args, format);
2107 vfprintf_filtered (stream, format, args);
2108 va_end (args);
2109 }
2110
2111 void
2112 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2113 {
2114 va_list args;
2115 va_start (args, format);
2116 vfprintf_unfiltered (stream, format, args);
2117 va_end (args);
2118 }
2119
2120 /* Like fprintf_filtered, but prints its result indented.
2121 Called as fprintfi_filtered (spaces, stream, format, ...); */
2122
2123 void
2124 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2125 {
2126 va_list args;
2127 va_start (args, format);
2128 print_spaces_filtered (spaces, stream);
2129
2130 vfprintf_filtered (stream, format, args);
2131 va_end (args);
2132 }
2133
2134
2135 void
2136 printf_filtered (const char *format,...)
2137 {
2138 va_list args;
2139 va_start (args, format);
2140 vfprintf_filtered (gdb_stdout, format, args);
2141 va_end (args);
2142 }
2143
2144
2145 void
2146 printf_unfiltered (const char *format,...)
2147 {
2148 va_list args;
2149 va_start (args, format);
2150 vfprintf_unfiltered (gdb_stdout, format, args);
2151 va_end (args);
2152 }
2153
2154 /* Like printf_filtered, but prints it's result indented.
2155 Called as printfi_filtered (spaces, format, ...); */
2156
2157 void
2158 printfi_filtered (int spaces, const char *format,...)
2159 {
2160 va_list args;
2161 va_start (args, format);
2162 print_spaces_filtered (spaces, gdb_stdout);
2163 vfprintf_filtered (gdb_stdout, format, args);
2164 va_end (args);
2165 }
2166
2167 /* Easy -- but watch out!
2168
2169 This routine is *not* a replacement for puts()! puts() appends a newline.
2170 This one doesn't, and had better not! */
2171
2172 void
2173 puts_filtered (string)
2174 const char *string;
2175 {
2176 fputs_filtered (string, gdb_stdout);
2177 }
2178
2179 void
2180 puts_unfiltered (string)
2181 const char *string;
2182 {
2183 fputs_unfiltered (string, gdb_stdout);
2184 }
2185
2186 /* Return a pointer to N spaces and a null. The pointer is good
2187 until the next call to here. */
2188 char *
2189 n_spaces (n)
2190 int n;
2191 {
2192 char *t;
2193 static char *spaces = 0;
2194 static int max_spaces = -1;
2195
2196 if (n > max_spaces)
2197 {
2198 if (spaces)
2199 free (spaces);
2200 spaces = (char *) xmalloc (n + 1);
2201 for (t = spaces + n; t != spaces;)
2202 *--t = ' ';
2203 spaces[n] = '\0';
2204 max_spaces = n;
2205 }
2206
2207 return spaces + max_spaces - n;
2208 }
2209
2210 /* Print N spaces. */
2211 void
2212 print_spaces_filtered (n, stream)
2213 int n;
2214 struct ui_file *stream;
2215 {
2216 fputs_filtered (n_spaces (n), stream);
2217 }
2218 \f
2219 /* C++ demangler stuff. */
2220
2221 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2222 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2223 If the name is not mangled, or the language for the name is unknown, or
2224 demangling is off, the name is printed in its "raw" form. */
2225
2226 void
2227 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2228 struct ui_file *stream;
2229 char *name;
2230 enum language lang;
2231 int arg_mode;
2232 {
2233 char *demangled;
2234
2235 if (name != NULL)
2236 {
2237 /* If user wants to see raw output, no problem. */
2238 if (!demangle)
2239 {
2240 fputs_filtered (name, stream);
2241 }
2242 else
2243 {
2244 switch (lang)
2245 {
2246 case language_cplus:
2247 demangled = cplus_demangle (name, arg_mode);
2248 break;
2249 case language_java:
2250 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2251 break;
2252 case language_chill:
2253 demangled = chill_demangle (name);
2254 break;
2255 default:
2256 demangled = NULL;
2257 break;
2258 }
2259 fputs_filtered (demangled ? demangled : name, stream);
2260 if (demangled != NULL)
2261 {
2262 free (demangled);
2263 }
2264 }
2265 }
2266 }
2267
2268 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2269 differences in whitespace. Returns 0 if they match, non-zero if they
2270 don't (slightly different than strcmp()'s range of return values).
2271
2272 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2273 This "feature" is useful when searching for matching C++ function names
2274 (such as if the user types 'break FOO', where FOO is a mangled C++
2275 function). */
2276
2277 int
2278 strcmp_iw (string1, string2)
2279 const char *string1;
2280 const char *string2;
2281 {
2282 while ((*string1 != '\0') && (*string2 != '\0'))
2283 {
2284 while (isspace (*string1))
2285 {
2286 string1++;
2287 }
2288 while (isspace (*string2))
2289 {
2290 string2++;
2291 }
2292 if (*string1 != *string2)
2293 {
2294 break;
2295 }
2296 if (*string1 != '\0')
2297 {
2298 string1++;
2299 string2++;
2300 }
2301 }
2302 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2303 }
2304 \f
2305
2306 /*
2307 ** subset_compare()
2308 ** Answer whether string_to_compare is a full or partial match to
2309 ** template_string. The partial match must be in sequence starting
2310 ** at index 0.
2311 */
2312 int
2313 subset_compare (string_to_compare, template_string)
2314 char *string_to_compare;
2315 char *template_string;
2316 {
2317 int match;
2318 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2319 strlen (string_to_compare) <= strlen (template_string))
2320 match = (strncmp (template_string,
2321 string_to_compare,
2322 strlen (string_to_compare)) == 0);
2323 else
2324 match = 0;
2325 return match;
2326 }
2327
2328
2329 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2330 static void
2331 pagination_on_command (arg, from_tty)
2332 char *arg;
2333 int from_tty;
2334 {
2335 pagination_enabled = 1;
2336 }
2337
2338 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2339 static void
2340 pagination_off_command (arg, from_tty)
2341 char *arg;
2342 int from_tty;
2343 {
2344 pagination_enabled = 0;
2345 }
2346 \f
2347
2348 void
2349 initialize_utils ()
2350 {
2351 struct cmd_list_element *c;
2352
2353 c = add_set_cmd ("width", class_support, var_uinteger,
2354 (char *) &chars_per_line,
2355 "Set number of characters gdb thinks are in a line.",
2356 &setlist);
2357 add_show_from_set (c, &showlist);
2358 c->function.sfunc = set_width_command;
2359
2360 add_show_from_set
2361 (add_set_cmd ("height", class_support,
2362 var_uinteger, (char *) &lines_per_page,
2363 "Set number of lines gdb thinks are in a page.", &setlist),
2364 &showlist);
2365
2366 init_page_info ();
2367
2368 /* If the output is not a terminal, don't paginate it. */
2369 if (!ui_file_isatty (gdb_stdout))
2370 lines_per_page = UINT_MAX;
2371
2372 set_width_command ((char *) NULL, 0, c);
2373
2374 add_show_from_set
2375 (add_set_cmd ("demangle", class_support, var_boolean,
2376 (char *) &demangle,
2377 "Set demangling of encoded C++ names when displaying symbols.",
2378 &setprintlist),
2379 &showprintlist);
2380
2381 add_show_from_set
2382 (add_set_cmd ("pagination", class_support,
2383 var_boolean, (char *) &pagination_enabled,
2384 "Set state of pagination.", &setlist),
2385 &showlist);
2386 if (xdb_commands)
2387 {
2388 add_com ("am", class_support, pagination_on_command,
2389 "Enable pagination");
2390 add_com ("sm", class_support, pagination_off_command,
2391 "Disable pagination");
2392 }
2393
2394 add_show_from_set
2395 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2396 (char *) &sevenbit_strings,
2397 "Set printing of 8-bit characters in strings as \\nnn.",
2398 &setprintlist),
2399 &showprintlist);
2400
2401 add_show_from_set
2402 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2403 (char *) &asm_demangle,
2404 "Set demangling of C++ names in disassembly listings.",
2405 &setprintlist),
2406 &showprintlist);
2407 }
2408
2409 /* Machine specific function to handle SIGWINCH signal. */
2410
2411 #ifdef SIGWINCH_HANDLER_BODY
2412 SIGWINCH_HANDLER_BODY
2413 #endif
2414 \f
2415 /* Support for converting target fp numbers into host DOUBLEST format. */
2416
2417 /* XXX - This code should really be in libiberty/floatformat.c, however
2418 configuration issues with libiberty made this very difficult to do in the
2419 available time. */
2420
2421 #include "floatformat.h"
2422 #include <math.h> /* ldexp */
2423
2424 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2425 going to bother with trying to muck around with whether it is defined in
2426 a system header, what we do if not, etc. */
2427 #define FLOATFORMAT_CHAR_BIT 8
2428
2429 static unsigned long get_field PARAMS ((unsigned char *,
2430 enum floatformat_byteorders,
2431 unsigned int,
2432 unsigned int,
2433 unsigned int));
2434
2435 /* Extract a field which starts at START and is LEN bytes long. DATA and
2436 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2437 static unsigned long
2438 get_field (data, order, total_len, start, len)
2439 unsigned char *data;
2440 enum floatformat_byteorders order;
2441 unsigned int total_len;
2442 unsigned int start;
2443 unsigned int len;
2444 {
2445 unsigned long result;
2446 unsigned int cur_byte;
2447 int cur_bitshift;
2448
2449 /* Start at the least significant part of the field. */
2450 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2451 {
2452 /* We start counting from the other end (i.e, from the high bytes
2453 rather than the low bytes). As such, we need to be concerned
2454 with what happens if bit 0 doesn't start on a byte boundary.
2455 I.e, we need to properly handle the case where total_len is
2456 not evenly divisible by 8. So we compute ``excess'' which
2457 represents the number of bits from the end of our starting
2458 byte needed to get to bit 0. */
2459 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2460 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2461 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2462 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2463 - FLOATFORMAT_CHAR_BIT;
2464 }
2465 else
2466 {
2467 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2468 cur_bitshift =
2469 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2470 }
2471 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2472 result = *(data + cur_byte) >> (-cur_bitshift);
2473 else
2474 result = 0;
2475 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2476 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2477 ++cur_byte;
2478 else
2479 --cur_byte;
2480
2481 /* Move towards the most significant part of the field. */
2482 while (cur_bitshift < len)
2483 {
2484 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2485 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2486 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2487 ++cur_byte;
2488 else
2489 --cur_byte;
2490 }
2491 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2492 /* Mask out bits which are not part of the field */
2493 result &= ((1UL << len) - 1);
2494 return result;
2495 }
2496
2497 /* Convert from FMT to a DOUBLEST.
2498 FROM is the address of the extended float.
2499 Store the DOUBLEST in *TO. */
2500
2501 void
2502 floatformat_to_doublest (fmt, from, to)
2503 const struct floatformat *fmt;
2504 char *from;
2505 DOUBLEST *to;
2506 {
2507 unsigned char *ufrom = (unsigned char *) from;
2508 DOUBLEST dto;
2509 long exponent;
2510 unsigned long mant;
2511 unsigned int mant_bits, mant_off;
2512 int mant_bits_left;
2513 int special_exponent; /* It's a NaN, denorm or zero */
2514
2515 /* If the mantissa bits are not contiguous from one end of the
2516 mantissa to the other, we need to make a private copy of the
2517 source bytes that is in the right order since the unpacking
2518 algorithm assumes that the bits are contiguous.
2519
2520 Swap the bytes individually rather than accessing them through
2521 "long *" since we have no guarantee that they start on a long
2522 alignment, and also sizeof(long) for the host could be different
2523 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2524 for the target is 4. */
2525
2526 if (fmt->byteorder == floatformat_littlebyte_bigword)
2527 {
2528 static unsigned char *newfrom;
2529 unsigned char *swapin, *swapout;
2530 int longswaps;
2531
2532 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2533 longswaps >>= 3;
2534
2535 if (newfrom == NULL)
2536 {
2537 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2538 }
2539 swapout = newfrom;
2540 swapin = ufrom;
2541 ufrom = newfrom;
2542 while (longswaps-- > 0)
2543 {
2544 /* This is ugly, but efficient */
2545 *swapout++ = swapin[4];
2546 *swapout++ = swapin[5];
2547 *swapout++ = swapin[6];
2548 *swapout++ = swapin[7];
2549 *swapout++ = swapin[0];
2550 *swapout++ = swapin[1];
2551 *swapout++ = swapin[2];
2552 *swapout++ = swapin[3];
2553 swapin += 8;
2554 }
2555 }
2556
2557 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2558 fmt->exp_start, fmt->exp_len);
2559 /* Note that if exponent indicates a NaN, we can't really do anything useful
2560 (not knowing if the host has NaN's, or how to build one). So it will
2561 end up as an infinity or something close; that is OK. */
2562
2563 mant_bits_left = fmt->man_len;
2564 mant_off = fmt->man_start;
2565 dto = 0.0;
2566
2567 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2568
2569 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2570 we don't check for zero as the exponent doesn't matter. */
2571 if (!special_exponent)
2572 exponent -= fmt->exp_bias;
2573 else if (exponent == 0)
2574 exponent = 1 - fmt->exp_bias;
2575
2576 /* Build the result algebraically. Might go infinite, underflow, etc;
2577 who cares. */
2578
2579 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2580 increment the exponent by one to account for the integer bit. */
2581
2582 if (!special_exponent)
2583 {
2584 if (fmt->intbit == floatformat_intbit_no)
2585 dto = ldexp (1.0, exponent);
2586 else
2587 exponent++;
2588 }
2589
2590 while (mant_bits_left > 0)
2591 {
2592 mant_bits = min (mant_bits_left, 32);
2593
2594 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2595 mant_off, mant_bits);
2596
2597 dto += ldexp ((double) mant, exponent - mant_bits);
2598 exponent -= mant_bits;
2599 mant_off += mant_bits;
2600 mant_bits_left -= mant_bits;
2601 }
2602
2603 /* Negate it if negative. */
2604 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2605 dto = -dto;
2606 *to = dto;
2607 }
2608 \f
2609 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2610 unsigned int,
2611 unsigned int,
2612 unsigned int,
2613 unsigned long));
2614
2615 /* Set a field which starts at START and is LEN bytes long. DATA and
2616 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2617 static void
2618 put_field (data, order, total_len, start, len, stuff_to_put)
2619 unsigned char *data;
2620 enum floatformat_byteorders order;
2621 unsigned int total_len;
2622 unsigned int start;
2623 unsigned int len;
2624 unsigned long stuff_to_put;
2625 {
2626 unsigned int cur_byte;
2627 int cur_bitshift;
2628
2629 /* Start at the least significant part of the field. */
2630 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2631 {
2632 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2633 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2634 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2635 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2636 - FLOATFORMAT_CHAR_BIT;
2637 }
2638 else
2639 {
2640 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2641 cur_bitshift =
2642 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2643 }
2644 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2645 {
2646 *(data + cur_byte) &=
2647 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2648 << (-cur_bitshift));
2649 *(data + cur_byte) |=
2650 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2651 }
2652 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2653 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2654 ++cur_byte;
2655 else
2656 --cur_byte;
2657
2658 /* Move towards the most significant part of the field. */
2659 while (cur_bitshift < len)
2660 {
2661 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2662 {
2663 /* This is the last byte. */
2664 *(data + cur_byte) &=
2665 ~((1 << (len - cur_bitshift)) - 1);
2666 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2667 }
2668 else
2669 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2670 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2671 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2672 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2673 ++cur_byte;
2674 else
2675 --cur_byte;
2676 }
2677 }
2678
2679 #ifdef HAVE_LONG_DOUBLE
2680 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2681 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2682 frexp, but operates on the long double data type. */
2683
2684 static long double ldfrexp PARAMS ((long double value, int *eptr));
2685
2686 static long double
2687 ldfrexp (value, eptr)
2688 long double value;
2689 int *eptr;
2690 {
2691 long double tmp;
2692 int exp;
2693
2694 /* Unfortunately, there are no portable functions for extracting the exponent
2695 of a long double, so we have to do it iteratively by multiplying or dividing
2696 by two until the fraction is between 0.5 and 1.0. */
2697
2698 if (value < 0.0l)
2699 value = -value;
2700
2701 tmp = 1.0l;
2702 exp = 0;
2703
2704 if (value >= tmp) /* Value >= 1.0 */
2705 while (value >= tmp)
2706 {
2707 tmp *= 2.0l;
2708 exp++;
2709 }
2710 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2711 {
2712 while (value < tmp)
2713 {
2714 tmp /= 2.0l;
2715 exp--;
2716 }
2717 tmp *= 2.0l;
2718 exp++;
2719 }
2720
2721 *eptr = exp;
2722 return value / tmp;
2723 }
2724 #endif /* HAVE_LONG_DOUBLE */
2725
2726
2727 /* The converse: convert the DOUBLEST *FROM to an extended float
2728 and store where TO points. Neither FROM nor TO have any alignment
2729 restrictions. */
2730
2731 void
2732 floatformat_from_doublest (fmt, from, to)
2733 CONST struct floatformat *fmt;
2734 DOUBLEST *from;
2735 char *to;
2736 {
2737 DOUBLEST dfrom;
2738 int exponent;
2739 DOUBLEST mant;
2740 unsigned int mant_bits, mant_off;
2741 int mant_bits_left;
2742 unsigned char *uto = (unsigned char *) to;
2743
2744 memcpy (&dfrom, from, sizeof (dfrom));
2745 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2746 if (dfrom == 0)
2747 return; /* Result is zero */
2748 if (dfrom != dfrom) /* Result is NaN */
2749 {
2750 /* From is NaN */
2751 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2752 fmt->exp_len, fmt->exp_nan);
2753 /* Be sure it's not infinity, but NaN value is irrel */
2754 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2755 32, 1);
2756 return;
2757 }
2758
2759 /* If negative, set the sign bit. */
2760 if (dfrom < 0)
2761 {
2762 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2763 dfrom = -dfrom;
2764 }
2765
2766 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2767 {
2768 /* Infinity exponent is same as NaN's. */
2769 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2770 fmt->exp_len, fmt->exp_nan);
2771 /* Infinity mantissa is all zeroes. */
2772 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2773 fmt->man_len, 0);
2774 return;
2775 }
2776
2777 #ifdef HAVE_LONG_DOUBLE
2778 mant = ldfrexp (dfrom, &exponent);
2779 #else
2780 mant = frexp (dfrom, &exponent);
2781 #endif
2782
2783 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2784 exponent + fmt->exp_bias - 1);
2785
2786 mant_bits_left = fmt->man_len;
2787 mant_off = fmt->man_start;
2788 while (mant_bits_left > 0)
2789 {
2790 unsigned long mant_long;
2791 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2792
2793 mant *= 4294967296.0;
2794 mant_long = (unsigned long) mant;
2795 mant -= mant_long;
2796
2797 /* If the integer bit is implicit, then we need to discard it.
2798 If we are discarding a zero, we should be (but are not) creating
2799 a denormalized number which means adjusting the exponent
2800 (I think). */
2801 if (mant_bits_left == fmt->man_len
2802 && fmt->intbit == floatformat_intbit_no)
2803 {
2804 mant_long <<= 1;
2805 mant_bits -= 1;
2806 }
2807
2808 if (mant_bits < 32)
2809 {
2810 /* The bits we want are in the most significant MANT_BITS bits of
2811 mant_long. Move them to the least significant. */
2812 mant_long >>= 32 - mant_bits;
2813 }
2814
2815 put_field (uto, fmt->byteorder, fmt->totalsize,
2816 mant_off, mant_bits, mant_long);
2817 mant_off += mant_bits;
2818 mant_bits_left -= mant_bits;
2819 }
2820 if (fmt->byteorder == floatformat_littlebyte_bigword)
2821 {
2822 int count;
2823 unsigned char *swaplow = uto;
2824 unsigned char *swaphigh = uto + 4;
2825 unsigned char tmp;
2826
2827 for (count = 0; count < 4; count++)
2828 {
2829 tmp = *swaplow;
2830 *swaplow++ = *swaphigh;
2831 *swaphigh++ = tmp;
2832 }
2833 }
2834 }
2835
2836 /* temporary storage using circular buffer */
2837 #define NUMCELLS 16
2838 #define CELLSIZE 32
2839 static char *
2840 get_cell ()
2841 {
2842 static char buf[NUMCELLS][CELLSIZE];
2843 static int cell = 0;
2844 if (++cell >= NUMCELLS)
2845 cell = 0;
2846 return buf[cell];
2847 }
2848
2849 /* print routines to handle variable size regs, etc.
2850
2851 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2852 unsigned long or unsigned long long, determined at configure time.
2853 If t_addr is an unsigned long long and sizeof (unsigned long long)
2854 is greater than sizeof (unsigned long), then I believe this code will
2855 probably lose, at least for little endian machines. I believe that
2856 it would also be better to eliminate the switch on the absolute size
2857 of t_addr and replace it with a sequence of if statements that compare
2858 sizeof t_addr with sizeof the various types and do the right thing,
2859 which includes knowing whether or not the host supports long long.
2860 -fnf
2861
2862 */
2863
2864 int
2865 strlen_paddr (void)
2866 {
2867 return (TARGET_PTR_BIT / 8 * 2);
2868 }
2869
2870
2871 /* eliminate warning from compiler on 32-bit systems */
2872 static int thirty_two = 32;
2873
2874 char *
2875 paddr (CORE_ADDR addr)
2876 {
2877 char *paddr_str = get_cell ();
2878 switch (TARGET_PTR_BIT / 8)
2879 {
2880 case 8:
2881 sprintf (paddr_str, "%08lx%08lx",
2882 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2883 break;
2884 case 4:
2885 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2886 break;
2887 case 2:
2888 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2889 break;
2890 default:
2891 sprintf (paddr_str, "%lx", (unsigned long) addr);
2892 }
2893 return paddr_str;
2894 }
2895
2896 char *
2897 paddr_nz (CORE_ADDR addr)
2898 {
2899 char *paddr_str = get_cell ();
2900 switch (TARGET_PTR_BIT / 8)
2901 {
2902 case 8:
2903 {
2904 unsigned long high = (unsigned long) (addr >> thirty_two);
2905 if (high == 0)
2906 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2907 else
2908 sprintf (paddr_str, "%lx%08lx",
2909 high, (unsigned long) (addr & 0xffffffff));
2910 break;
2911 }
2912 case 4:
2913 sprintf (paddr_str, "%lx", (unsigned long) addr);
2914 break;
2915 case 2:
2916 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2917 break;
2918 default:
2919 sprintf (paddr_str, "%lx", (unsigned long) addr);
2920 }
2921 return paddr_str;
2922 }
2923
2924 static void
2925 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2926 {
2927 /* steal code from valprint.c:print_decimal(). Should this worry
2928 about the real size of addr as the above does? */
2929 unsigned long temp[3];
2930 int i = 0;
2931 do
2932 {
2933 temp[i] = addr % (1000 * 1000 * 1000);
2934 addr /= (1000 * 1000 * 1000);
2935 i++;
2936 }
2937 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2938 switch (i)
2939 {
2940 case 1:
2941 sprintf (paddr_str, "%s%lu",
2942 sign, temp[0]);
2943 break;
2944 case 2:
2945 sprintf (paddr_str, "%s%lu%09lu",
2946 sign, temp[1], temp[0]);
2947 break;
2948 case 3:
2949 sprintf (paddr_str, "%s%lu%09lu%09lu",
2950 sign, temp[2], temp[1], temp[0]);
2951 break;
2952 default:
2953 abort ();
2954 }
2955 }
2956
2957 char *
2958 paddr_u (CORE_ADDR addr)
2959 {
2960 char *paddr_str = get_cell ();
2961 decimal2str (paddr_str, "", addr);
2962 return paddr_str;
2963 }
2964
2965 char *
2966 paddr_d (LONGEST addr)
2967 {
2968 char *paddr_str = get_cell ();
2969 if (addr < 0)
2970 decimal2str (paddr_str, "-", -addr);
2971 else
2972 decimal2str (paddr_str, "", addr);
2973 return paddr_str;
2974 }
2975
2976 char *
2977 preg (reg)
2978 t_reg reg;
2979 {
2980 char *preg_str = get_cell ();
2981 switch (sizeof (t_reg))
2982 {
2983 case 8:
2984 sprintf (preg_str, "%08lx%08lx",
2985 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2986 break;
2987 case 4:
2988 sprintf (preg_str, "%08lx", (unsigned long) reg);
2989 break;
2990 case 2:
2991 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2992 break;
2993 default:
2994 sprintf (preg_str, "%lx", (unsigned long) reg);
2995 }
2996 return preg_str;
2997 }
2998
2999 char *
3000 preg_nz (reg)
3001 t_reg reg;
3002 {
3003 char *preg_str = get_cell ();
3004 switch (sizeof (t_reg))
3005 {
3006 case 8:
3007 {
3008 unsigned long high = (unsigned long) (reg >> thirty_two);
3009 if (high == 0)
3010 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
3011 else
3012 sprintf (preg_str, "%lx%08lx",
3013 high, (unsigned long) (reg & 0xffffffff));
3014 break;
3015 }
3016 case 4:
3017 sprintf (preg_str, "%lx", (unsigned long) reg);
3018 break;
3019 case 2:
3020 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3021 break;
3022 default:
3023 sprintf (preg_str, "%lx", (unsigned long) reg);
3024 }
3025 return preg_str;
3026 }
3027
3028 /* Helper functions for INNER_THAN */
3029 int
3030 core_addr_lessthan (lhs, rhs)
3031 CORE_ADDR lhs;
3032 CORE_ADDR rhs;
3033 {
3034 return (lhs < rhs);
3035 }
3036
3037 int
3038 core_addr_greaterthan (lhs, rhs)
3039 CORE_ADDR lhs;
3040 CORE_ADDR rhs;
3041 {
3042 return (lhs > rhs);
3043 }
This page took 0.09665 seconds and 4 git commands to generate.