s/struct _serial_t/struct serial/
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_assert.h"
25 #include <ctype.h>
26 #include "gdb_string.h"
27 #include "event-top.h"
28
29 #ifdef HAVE_CURSES_H
30 #include <curses.h>
31 #endif
32 #ifdef HAVE_TERM_H
33 #include <term.h>
34 #endif
35
36 #ifdef __GO32__
37 #include <pc.h>
38 #endif
39
40 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41 #ifdef reg
42 #undef reg
43 #endif
44
45 #include <signal.h>
46 #include "gdbcmd.h"
47 #include "serial.h"
48 #include "bfd.h"
49 #include "target.h"
50 #include "demangle.h"
51 #include "expression.h"
52 #include "language.h"
53 #include "annotate.h"
54
55 #include "inferior.h" /* for signed_pointer_to_address */
56
57 #include <readline/readline.h>
58
59 #ifndef MALLOC_INCOMPATIBLE
60 #ifdef NEED_DECLARATION_MALLOC
61 extern PTR malloc ();
62 #endif
63 #ifdef NEED_DECLARATION_REALLOC
64 extern PTR realloc ();
65 #endif
66 #ifdef NEED_DECLARATION_FREE
67 extern void free ();
68 #endif
69 #endif
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 /* readline defines this. */
75 #undef savestring
76
77 void (*error_begin_hook) (void);
78
79 /* Holds the last error message issued by gdb */
80
81 static struct ui_file *gdb_lasterr;
82
83 /* Prototypes for local functions */
84
85 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
87
88 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
89
90 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
91 static void malloc_botch (void);
92 #endif
93
94 static void prompt_for_continue (void);
95
96 static void set_width_command (char *, int, struct cmd_list_element *);
97
98 static void set_width (void);
99
100 /* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
103 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
107 /* cleaned up on each error from within an execution command */
108 static struct cleanup *exec_error_cleanup_chain;
109
110 /* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114 struct continuation *cmd_continuation;
115 struct continuation *intermediate_continuation;
116
117 /* Nonzero if we have job control. */
118
119 int job_control;
120
121 /* Nonzero means a quit has been requested. */
122
123 int quit_flag;
124
125 /* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136 int immediate_quit;
137
138 /* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141 int demangle = 1;
142
143 /* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147 int asm_demangle = 0;
148
149 /* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153 int sevenbit_strings = 0;
154
155 /* String to be printed before error messages, if any. */
156
157 char *error_pre_print;
158
159 /* String to be printed before quit messages, if any. */
160
161 char *quit_pre_print;
162
163 /* String to be printed before warning messages, if any. */
164
165 char *warning_pre_print = "\nwarning: ";
166
167 int pagination_enabled = 1;
168 \f
169
170 /* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175 struct cleanup *
176 make_cleanup (make_cleanup_ftype *function, void *arg)
177 {
178 return make_my_cleanup (&cleanup_chain, function, arg);
179 }
180
181 struct cleanup *
182 make_final_cleanup (make_cleanup_ftype *function, void *arg)
183 {
184 return make_my_cleanup (&final_cleanup_chain, function, arg);
185 }
186
187 struct cleanup *
188 make_run_cleanup (make_cleanup_ftype *function, void *arg)
189 {
190 return make_my_cleanup (&run_cleanup_chain, function, arg);
191 }
192
193 struct cleanup *
194 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
195 {
196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
197 }
198
199 struct cleanup *
200 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
201 {
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203 }
204
205 static void
206 do_freeargv (void *arg)
207 {
208 freeargv ((char **) arg);
209 }
210
211 struct cleanup *
212 make_cleanup_freeargv (char **arg)
213 {
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215 }
216
217 static void
218 do_bfd_close_cleanup (void *arg)
219 {
220 bfd_close (arg);
221 }
222
223 struct cleanup *
224 make_cleanup_bfd_close (bfd *abfd)
225 {
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227 }
228
229 static void
230 do_close_cleanup (void *arg)
231 {
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
235 }
236
237 struct cleanup *
238 make_cleanup_close (int fd)
239 {
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
243 }
244
245 static void
246 do_ui_file_delete (void *arg)
247 {
248 ui_file_delete (arg);
249 }
250
251 struct cleanup *
252 make_cleanup_ui_file_delete (struct ui_file *arg)
253 {
254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
255 }
256
257 struct cleanup *
258 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
260 {
261 register struct cleanup *new
262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271 }
272
273 /* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276 void
277 do_cleanups (register struct cleanup *old_chain)
278 {
279 do_my_cleanups (&cleanup_chain, old_chain);
280 }
281
282 void
283 do_final_cleanups (register struct cleanup *old_chain)
284 {
285 do_my_cleanups (&final_cleanup_chain, old_chain);
286 }
287
288 void
289 do_run_cleanups (register struct cleanup *old_chain)
290 {
291 do_my_cleanups (&run_cleanup_chain, old_chain);
292 }
293
294 void
295 do_exec_cleanups (register struct cleanup *old_chain)
296 {
297 do_my_cleanups (&exec_cleanup_chain, old_chain);
298 }
299
300 void
301 do_exec_error_cleanups (register struct cleanup *old_chain)
302 {
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304 }
305
306 void
307 do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
309 {
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
315 xfree (ptr);
316 }
317 }
318
319 /* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322 void
323 discard_cleanups (register struct cleanup *old_chain)
324 {
325 discard_my_cleanups (&cleanup_chain, old_chain);
326 }
327
328 void
329 discard_final_cleanups (register struct cleanup *old_chain)
330 {
331 discard_my_cleanups (&final_cleanup_chain, old_chain);
332 }
333
334 void
335 discard_exec_error_cleanups (register struct cleanup *old_chain)
336 {
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338 }
339
340 void
341 discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
343 {
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
348 xfree (ptr);
349 }
350 }
351
352 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
353 struct cleanup *
354 save_cleanups (void)
355 {
356 return save_my_cleanups (&cleanup_chain);
357 }
358
359 struct cleanup *
360 save_final_cleanups (void)
361 {
362 return save_my_cleanups (&final_cleanup_chain);
363 }
364
365 struct cleanup *
366 save_my_cleanups (struct cleanup **pmy_chain)
367 {
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372 }
373
374 /* Restore the cleanup chain from a previously saved chain. */
375 void
376 restore_cleanups (struct cleanup *chain)
377 {
378 restore_my_cleanups (&cleanup_chain, chain);
379 }
380
381 void
382 restore_final_cleanups (struct cleanup *chain)
383 {
384 restore_my_cleanups (&final_cleanup_chain, chain);
385 }
386
387 void
388 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
389 {
390 *pmy_chain = chain;
391 }
392
393 /* This function is useful for cleanups.
394 Do
395
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
398
399 to arrange to free the object thus allocated. */
400
401 void
402 free_current_contents (void *ptr)
403 {
404 void **location = ptr;
405 if (location == NULL)
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
408 if (*location != NULL)
409 {
410 xfree (*location);
411 *location = NULL;
412 }
413 }
414
415 /* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422 /* ARGSUSED */
423 void
424 null_cleanup (void *arg)
425 {
426 }
427
428 /* Add a continuation to the continuation list, the global list
429 cmd_continuation. The new continuation will be added at the front.*/
430 void
431 add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
433 {
434 struct continuation *continuation_ptr;
435
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
441 }
442
443 /* Walk down the cmd_continuation list, and execute all the
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
451 void
452 do_all_continuations (void)
453 {
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
470 xfree (saved_continuation);
471 }
472 }
473
474 /* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476 void
477 discard_all_continuations (void)
478 {
479 struct continuation *continuation_ptr;
480
481 while (cmd_continuation)
482 {
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
485 xfree (continuation_ptr);
486 }
487 }
488
489 /* Add a continuation to the continuation list, the global list
490 intermediate_continuation. The new continuation will be added at the front.*/
491 void
492 add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
495 {
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503 }
504
505 /* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513 void
514 do_all_intermediate_continuations (void)
515 {
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
532 xfree (saved_continuation);
533 }
534 }
535
536 /* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538 void
539 discard_all_intermediate_continuations (void)
540 {
541 struct continuation *continuation_ptr;
542
543 while (intermediate_continuation)
544 {
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
547 xfree (continuation_ptr);
548 }
549 }
550
551 \f
552
553 /* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562 void
563 warning_begin (void)
564 {
565 target_terminal_ours ();
566 wrap_here (""); /* Force out any buffered output */
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570 }
571
572 /* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
578 void
579 warning (const char *string,...)
580 {
581 va_list args;
582 va_start (args, string);
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
592 }
593
594 /* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601 void
602 error_begin (void)
603 {
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
608 wrap_here (""); /* Force out any buffered output */
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615 }
616
617 /* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
621 NORETURN void
622 verror (const char *string, va_list args)
623 {
624 char *err_string;
625 struct cleanup *err_string_cleanup;
626 /* FIXME: cagney/1999-11-10: All error calls should come here.
627 Unfortunately some code uses the sequence: error_begin(); print
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
638 ui_file_rewind (gdb_lasterr);
639 vfprintf_filtered (gdb_lasterr, string, args);
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
642 err_string_cleanup = make_cleanup (xfree, err_string);
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
646 return_to_top_level (RETURN_ERROR);
647 }
648
649 NORETURN void
650 error (const char *string,...)
651 {
652 va_list args;
653 va_start (args, string);
654 verror (string, args);
655 va_end (args);
656 }
657
658 NORETURN void
659 error_stream (struct ui_file *stream)
660 {
661 long size;
662 char *msg = ui_file_xstrdup (stream, &size);
663 make_cleanup (xfree, msg);
664 error ("%s", msg);
665 }
666
667 /* Get the last error message issued by gdb */
668
669 char *
670 error_last_message (void)
671 {
672 long len;
673 return ui_file_xstrdup (gdb_lasterr, &len);
674 }
675
676 /* This is to be called by main() at the very beginning */
677
678 void
679 error_init (void)
680 {
681 gdb_lasterr = mem_fileopen ();
682 }
683
684 /* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
686
687 NORETURN void
688 internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
690 {
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
693 int continue_p;
694 int dump_core_p;
695
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
711
712 /* Try to get the message out */
713 target_terminal_ours ();
714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
716 fputs_unfiltered ("\n", gdb_stderr);
717
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
721 An internal GDB error was detected. This may make further\n\
722 debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727 Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
735 }
736 }
737 else
738 {
739 if (dump_core_p)
740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
741 else
742 exit (1);
743 }
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
747 }
748
749 NORETURN void
750 internal_error (const char *file, int line, const char *string, ...)
751 {
752 va_list ap;
753 va_start (ap, string);
754
755 internal_verror (file, line, string, ap);
756 va_end (ap);
757 }
758
759 /* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763 char *
764 safe_strerror (int errnum)
765 {
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775 }
776
777 /* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781 NORETURN void
782 perror_with_name (char *string)
783 {
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
799 error ("%s.", combined);
800 }
801
802 /* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805 void
806 print_sys_errmsg (char *string, int errcode)
807 {
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821 }
822
823 /* Control C eventually causes this to be called, at a convenient time. */
824
825 void
826 quit (void)
827 {
828 serial_t gdb_stdout_serial = serial_fdopen (1);
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
838 wrap_here ((char *) 0);
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
845 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
846 SERIAL_UN_FDOPEN (gdb_stdout_serial);
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
854 #ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858 #else
859 if (job_control
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
866 "Quit (expect signal SIGINT when the program is resumed)\n");
867 #endif
868 return_to_top_level (RETURN_QUIT);
869 }
870
871 /* Control C comes here */
872 void
873 request_quit (int signo)
874 {
875 quit_flag = 1;
876 /* Restore the signal handler. Harmless with BSD-style signals, needed
877 for System V-style signals. So just always do it, rather than worrying
878 about USG defines and stuff like that. */
879 signal (signo, request_quit);
880
881 #ifdef REQUEST_QUIT
882 REQUEST_QUIT;
883 #else
884 if (immediate_quit)
885 quit ();
886 #endif
887 }
888 \f
889 /* Memory management stuff (malloc friends). */
890
891 #if !defined (USE_MMALLOC)
892
893 /* NOTE: These must use PTR so that their definition matches the
894 declaration found in "mmalloc.h". */
895
896 PTR
897 mmalloc (PTR md, size_t size)
898 {
899 return malloc (size); /* NOTE: GDB's only call to malloc() */
900 }
901
902 PTR
903 mrealloc (PTR md, PTR ptr, size_t size)
904 {
905 if (ptr == 0) /* Guard against old realloc's */
906 return mmalloc (md, size);
907 else
908 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
909 }
910
911 PTR
912 mcalloc (PTR md, size_t number, size_t size)
913 {
914 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
915 }
916
917 void
918 mfree (PTR md, PTR ptr)
919 {
920 free (ptr); /* NOTE: GDB's only call to free() */
921 }
922
923 #endif /* USE_MMALLOC */
924
925 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
926
927 void
928 init_malloc (void *md)
929 {
930 }
931
932 #else /* Have mmalloc and want corruption checking */
933
934 static void
935 malloc_botch (void)
936 {
937 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
938 internal_error (__FILE__, __LINE__, "failed internal consistency check");
939 }
940
941 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
942 by MD, to detect memory corruption. Note that MD may be NULL to specify
943 the default heap that grows via sbrk.
944
945 Note that for freshly created regions, we must call mmcheckf prior to any
946 mallocs in the region. Otherwise, any region which was allocated prior to
947 installing the checking hooks, which is later reallocated or freed, will
948 fail the checks! The mmcheck function only allows initial hooks to be
949 installed before the first mmalloc. However, anytime after we have called
950 mmcheck the first time to install the checking hooks, we can call it again
951 to update the function pointer to the memory corruption handler.
952
953 Returns zero on failure, non-zero on success. */
954
955 #ifndef MMCHECK_FORCE
956 #define MMCHECK_FORCE 0
957 #endif
958
959 void
960 init_malloc (void *md)
961 {
962 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
963 {
964 /* Don't use warning(), which relies on current_target being set
965 to something other than dummy_target, until after
966 initialize_all_files(). */
967
968 fprintf_unfiltered
969 (gdb_stderr, "warning: failed to install memory consistency checks; ");
970 fprintf_unfiltered
971 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
972 }
973
974 mmtrace ();
975 }
976
977 #endif /* Have mmalloc and want corruption checking */
978
979 /* Called when a memory allocation fails, with the number of bytes of
980 memory requested in SIZE. */
981
982 NORETURN void
983 nomem (long size)
984 {
985 if (size > 0)
986 {
987 internal_error (__FILE__, __LINE__,
988 "virtual memory exhausted: can't allocate %ld bytes.", size);
989 }
990 else
991 {
992 internal_error (__FILE__, __LINE__,
993 "virtual memory exhausted.");
994 }
995 }
996
997 /* The xmmalloc() family of memory management routines.
998
999 These are are like the mmalloc() family except that they implement
1000 consistent semantics and guard against typical memory management
1001 problems: if a malloc fails, an internal error is thrown; if
1002 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1003 is returned.
1004
1005 All these routines are implemented using the mmalloc() family. */
1006
1007 void *
1008 xmmalloc (void *md, size_t size)
1009 {
1010 void *val;
1011
1012 if (size == 0)
1013 {
1014 val = NULL;
1015 }
1016 else
1017 {
1018 val = mmalloc (md, size);
1019 if (val == NULL)
1020 nomem (size);
1021 }
1022 return (val);
1023 }
1024
1025 void *
1026 xmrealloc (void *md, void *ptr, size_t size)
1027 {
1028 void *val;
1029
1030 if (size == 0)
1031 {
1032 if (ptr != NULL)
1033 mfree (md, ptr);
1034 val = NULL;
1035 }
1036 else
1037 {
1038 if (ptr != NULL)
1039 {
1040 val = mrealloc (md, ptr, size);
1041 }
1042 else
1043 {
1044 val = mmalloc (md, size);
1045 }
1046 if (val == NULL)
1047 {
1048 nomem (size);
1049 }
1050 }
1051 return (val);
1052 }
1053
1054 void *
1055 xmcalloc (void *md, size_t number, size_t size)
1056 {
1057 void *mem;
1058 if (number == 0 || size == 0)
1059 mem = NULL;
1060 else
1061 {
1062 mem = mcalloc (md, number, size);
1063 if (mem == NULL)
1064 nomem (number * size);
1065 }
1066 return mem;
1067 }
1068
1069 void
1070 xmfree (void *md, void *ptr)
1071 {
1072 if (ptr != NULL)
1073 mfree (md, ptr);
1074 }
1075
1076 /* The xmalloc() (libiberty.h) family of memory management routines.
1077
1078 These are like the ISO-C malloc() family except that they implement
1079 consistent semantics and guard against typical memory management
1080 problems. See xmmalloc() above for further information.
1081
1082 All these routines are wrappers to the xmmalloc() family. */
1083
1084 /* NOTE: These are declared using PTR to ensure consistency with
1085 "libiberty.h". xfree() is GDB local. */
1086
1087 PTR
1088 xmalloc (size_t size)
1089 {
1090 return xmmalloc (NULL, size);
1091 }
1092
1093 PTR
1094 xrealloc (PTR ptr, size_t size)
1095 {
1096 return xmrealloc (NULL, ptr, size);
1097 }
1098
1099 PTR
1100 xcalloc (size_t number, size_t size)
1101 {
1102 return xmcalloc (NULL, number, size);
1103 }
1104
1105 void
1106 xfree (void *ptr)
1107 {
1108 xmfree (NULL, ptr);
1109 }
1110 \f
1111
1112 /* Like asprintf/vasprintf but get an internal_error if the call
1113 fails. */
1114
1115 void
1116 xasprintf (char **ret, const char *format, ...)
1117 {
1118 va_list args;
1119 va_start (args, format);
1120 xvasprintf (ret, format, args);
1121 va_end (args);
1122 }
1123
1124 void
1125 xvasprintf (char **ret, const char *format, va_list ap)
1126 {
1127 int status = vasprintf (ret, format, ap);
1128 /* NULL could be returned due to a memory allocation problem; a
1129 badly format string; or something else. */
1130 if ((*ret) == NULL)
1131 internal_error (__FILE__, __LINE__,
1132 "vasprintf returned NULL buffer (errno %d)",
1133 errno);
1134 /* A negative status with a non-NULL buffer shouldn't never
1135 happen. But to be sure. */
1136 if (status < 0)
1137 internal_error (__FILE__, __LINE__,
1138 "vasprintf call failed (errno %d)",
1139 errno);
1140 }
1141
1142
1143 /* My replacement for the read system call.
1144 Used like `read' but keeps going if `read' returns too soon. */
1145
1146 int
1147 myread (int desc, char *addr, int len)
1148 {
1149 register int val;
1150 int orglen = len;
1151
1152 while (len > 0)
1153 {
1154 val = read (desc, addr, len);
1155 if (val < 0)
1156 return val;
1157 if (val == 0)
1158 return orglen - len;
1159 len -= val;
1160 addr += val;
1161 }
1162 return orglen;
1163 }
1164 \f
1165 /* Make a copy of the string at PTR with SIZE characters
1166 (and add a null character at the end in the copy).
1167 Uses malloc to get the space. Returns the address of the copy. */
1168
1169 char *
1170 savestring (const char *ptr, size_t size)
1171 {
1172 register char *p = (char *) xmalloc (size + 1);
1173 memcpy (p, ptr, size);
1174 p[size] = 0;
1175 return p;
1176 }
1177
1178 char *
1179 msavestring (void *md, const char *ptr, size_t size)
1180 {
1181 register char *p = (char *) xmmalloc (md, size + 1);
1182 memcpy (p, ptr, size);
1183 p[size] = 0;
1184 return p;
1185 }
1186
1187 char *
1188 mstrsave (void *md, const char *ptr)
1189 {
1190 return (msavestring (md, ptr, strlen (ptr)));
1191 }
1192
1193 void
1194 print_spaces (register int n, register struct ui_file *file)
1195 {
1196 fputs_unfiltered (n_spaces (n), file);
1197 }
1198
1199 /* Print a host address. */
1200
1201 void
1202 gdb_print_host_address (void *addr, struct ui_file *stream)
1203 {
1204
1205 /* We could use the %p conversion specifier to fprintf if we had any
1206 way of knowing whether this host supports it. But the following
1207 should work on the Alpha and on 32 bit machines. */
1208
1209 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1210 }
1211
1212 /* Ask user a y-or-n question and return 1 iff answer is yes.
1213 Takes three args which are given to printf to print the question.
1214 The first, a control string, should end in "? ".
1215 It should not say how to answer, because we do that. */
1216
1217 /* VARARGS */
1218 int
1219 query (char *ctlstr,...)
1220 {
1221 va_list args;
1222 register int answer;
1223 register int ans2;
1224 int retval;
1225
1226 va_start (args, ctlstr);
1227
1228 if (query_hook)
1229 {
1230 return query_hook (ctlstr, args);
1231 }
1232
1233 /* Automatically answer "yes" if input is not from a terminal. */
1234 if (!input_from_terminal_p ())
1235 return 1;
1236 /* OBSOLETE #ifdef MPW */
1237 /* OBSOLETE *//* FIXME Automatically answer "yes" if called from MacGDB. */
1238 /* OBSOLETE if (mac_app) */
1239 /* OBSOLETE return 1; */
1240 /* OBSOLETE #endif *//* MPW */
1241
1242 while (1)
1243 {
1244 wrap_here (""); /* Flush any buffered output */
1245 gdb_flush (gdb_stdout);
1246
1247 if (annotation_level > 1)
1248 printf_filtered ("\n\032\032pre-query\n");
1249
1250 vfprintf_filtered (gdb_stdout, ctlstr, args);
1251 printf_filtered ("(y or n) ");
1252
1253 if (annotation_level > 1)
1254 printf_filtered ("\n\032\032query\n");
1255
1256 /* OBSOLETE #ifdef MPW */
1257 /* OBSOLETE *//* If not in MacGDB, move to a new line so the entered line doesn't */
1258 /* OBSOLETE have a prompt on the front of it. */
1259 /* OBSOLETE if (!mac_app) */
1260 /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */
1261 /* OBSOLETE #endif *//* MPW */
1262
1263 wrap_here ("");
1264 gdb_flush (gdb_stdout);
1265
1266 #if defined(TUI)
1267 if (!tui_version || cmdWin == tuiWinWithFocus ())
1268 #endif
1269 answer = fgetc (stdin);
1270 #if defined(TUI)
1271 else
1272 answer = (unsigned char) tuiBufferGetc ();
1273
1274 #endif
1275 clearerr (stdin); /* in case of C-d */
1276 if (answer == EOF) /* C-d */
1277 {
1278 retval = 1;
1279 break;
1280 }
1281 /* Eat rest of input line, to EOF or newline */
1282 if ((answer != '\n') || (tui_version && answer != '\r'))
1283 do
1284 {
1285 #if defined(TUI)
1286 if (!tui_version || cmdWin == tuiWinWithFocus ())
1287 #endif
1288 ans2 = fgetc (stdin);
1289 #if defined(TUI)
1290 else
1291 ans2 = (unsigned char) tuiBufferGetc ();
1292 #endif
1293 clearerr (stdin);
1294 }
1295 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1296 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1297
1298 if (answer >= 'a')
1299 answer -= 040;
1300 if (answer == 'Y')
1301 {
1302 retval = 1;
1303 break;
1304 }
1305 if (answer == 'N')
1306 {
1307 retval = 0;
1308 break;
1309 }
1310 printf_filtered ("Please answer y or n.\n");
1311 }
1312
1313 if (annotation_level > 1)
1314 printf_filtered ("\n\032\032post-query\n");
1315 return retval;
1316 }
1317 \f
1318
1319 /* Parse a C escape sequence. STRING_PTR points to a variable
1320 containing a pointer to the string to parse. That pointer
1321 should point to the character after the \. That pointer
1322 is updated past the characters we use. The value of the
1323 escape sequence is returned.
1324
1325 A negative value means the sequence \ newline was seen,
1326 which is supposed to be equivalent to nothing at all.
1327
1328 If \ is followed by a null character, we return a negative
1329 value and leave the string pointer pointing at the null character.
1330
1331 If \ is followed by 000, we return 0 and leave the string pointer
1332 after the zeros. A value of 0 does not mean end of string. */
1333
1334 int
1335 parse_escape (char **string_ptr)
1336 {
1337 register int c = *(*string_ptr)++;
1338 switch (c)
1339 {
1340 case 'a':
1341 return 007; /* Bell (alert) char */
1342 case 'b':
1343 return '\b';
1344 case 'e': /* Escape character */
1345 return 033;
1346 case 'f':
1347 return '\f';
1348 case 'n':
1349 return '\n';
1350 case 'r':
1351 return '\r';
1352 case 't':
1353 return '\t';
1354 case 'v':
1355 return '\v';
1356 case '\n':
1357 return -2;
1358 case 0:
1359 (*string_ptr)--;
1360 return 0;
1361 case '^':
1362 c = *(*string_ptr)++;
1363 if (c == '\\')
1364 c = parse_escape (string_ptr);
1365 if (c == '?')
1366 return 0177;
1367 return (c & 0200) | (c & 037);
1368
1369 case '0':
1370 case '1':
1371 case '2':
1372 case '3':
1373 case '4':
1374 case '5':
1375 case '6':
1376 case '7':
1377 {
1378 register int i = c - '0';
1379 register int count = 0;
1380 while (++count < 3)
1381 {
1382 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1383 {
1384 i *= 8;
1385 i += c - '0';
1386 }
1387 else
1388 {
1389 (*string_ptr)--;
1390 break;
1391 }
1392 }
1393 return i;
1394 }
1395 default:
1396 return c;
1397 }
1398 }
1399 \f
1400 /* Print the character C on STREAM as part of the contents of a literal
1401 string whose delimiter is QUOTER. Note that this routine should only
1402 be call for printing things which are independent of the language
1403 of the program being debugged. */
1404
1405 static void
1406 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1407 void (*do_fprintf) (struct ui_file *, const char *, ...),
1408 struct ui_file *stream, int quoter)
1409 {
1410
1411 c &= 0xFF; /* Avoid sign bit follies */
1412
1413 if (c < 0x20 || /* Low control chars */
1414 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1415 (sevenbit_strings && c >= 0x80))
1416 { /* high order bit set */
1417 switch (c)
1418 {
1419 case '\n':
1420 do_fputs ("\\n", stream);
1421 break;
1422 case '\b':
1423 do_fputs ("\\b", stream);
1424 break;
1425 case '\t':
1426 do_fputs ("\\t", stream);
1427 break;
1428 case '\f':
1429 do_fputs ("\\f", stream);
1430 break;
1431 case '\r':
1432 do_fputs ("\\r", stream);
1433 break;
1434 case '\033':
1435 do_fputs ("\\e", stream);
1436 break;
1437 case '\007':
1438 do_fputs ("\\a", stream);
1439 break;
1440 default:
1441 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1442 break;
1443 }
1444 }
1445 else
1446 {
1447 if (c == '\\' || c == quoter)
1448 do_fputs ("\\", stream);
1449 do_fprintf (stream, "%c", c);
1450 }
1451 }
1452
1453 /* Print the character C on STREAM as part of the contents of a
1454 literal string whose delimiter is QUOTER. Note that these routines
1455 should only be call for printing things which are independent of
1456 the language of the program being debugged. */
1457
1458 void
1459 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1460 {
1461 while (*str)
1462 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1463 }
1464
1465 void
1466 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1467 {
1468 while (*str)
1469 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1470 }
1471
1472 void
1473 fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
1474 {
1475 int i;
1476 for (i = 0; i < n; i++)
1477 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1478 }
1479
1480 \f
1481
1482 /* Number of lines per page or UINT_MAX if paging is disabled. */
1483 static unsigned int lines_per_page;
1484 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1485 static unsigned int chars_per_line;
1486 /* Current count of lines printed on this page, chars on this line. */
1487 static unsigned int lines_printed, chars_printed;
1488
1489 /* Buffer and start column of buffered text, for doing smarter word-
1490 wrapping. When someone calls wrap_here(), we start buffering output
1491 that comes through fputs_filtered(). If we see a newline, we just
1492 spit it out and forget about the wrap_here(). If we see another
1493 wrap_here(), we spit it out and remember the newer one. If we see
1494 the end of the line, we spit out a newline, the indent, and then
1495 the buffered output. */
1496
1497 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1498 are waiting to be output (they have already been counted in chars_printed).
1499 When wrap_buffer[0] is null, the buffer is empty. */
1500 static char *wrap_buffer;
1501
1502 /* Pointer in wrap_buffer to the next character to fill. */
1503 static char *wrap_pointer;
1504
1505 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1506 is non-zero. */
1507 static char *wrap_indent;
1508
1509 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1510 is not in effect. */
1511 static int wrap_column;
1512 \f
1513
1514 /* Inialize the lines and chars per page */
1515 void
1516 init_page_info (void)
1517 {
1518 #if defined(TUI)
1519 if (tui_version && m_winPtrNotNull (cmdWin))
1520 {
1521 lines_per_page = cmdWin->generic.height;
1522 chars_per_line = cmdWin->generic.width;
1523 }
1524 else
1525 #endif
1526 {
1527 /* These defaults will be used if we are unable to get the correct
1528 values from termcap. */
1529 #if defined(__GO32__)
1530 lines_per_page = ScreenRows ();
1531 chars_per_line = ScreenCols ();
1532 #else
1533 lines_per_page = 24;
1534 chars_per_line = 80;
1535
1536 #if !defined (_WIN32)
1537 /* No termcap under MPW, although might be cool to do something
1538 by looking at worksheet or console window sizes. */
1539 /* Initialize the screen height and width from termcap. */
1540 {
1541 char *termtype = getenv ("TERM");
1542
1543 /* Positive means success, nonpositive means failure. */
1544 int status;
1545
1546 /* 2048 is large enough for all known terminals, according to the
1547 GNU termcap manual. */
1548 char term_buffer[2048];
1549
1550 if (termtype)
1551 {
1552 status = tgetent (term_buffer, termtype);
1553 if (status > 0)
1554 {
1555 int val;
1556 int running_in_emacs = getenv ("EMACS") != NULL;
1557
1558 val = tgetnum ("li");
1559 if (val >= 0 && !running_in_emacs)
1560 lines_per_page = val;
1561 else
1562 /* The number of lines per page is not mentioned
1563 in the terminal description. This probably means
1564 that paging is not useful (e.g. emacs shell window),
1565 so disable paging. */
1566 lines_per_page = UINT_MAX;
1567
1568 val = tgetnum ("co");
1569 if (val >= 0)
1570 chars_per_line = val;
1571 }
1572 }
1573 }
1574 #endif /* MPW */
1575
1576 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1577
1578 /* If there is a better way to determine the window size, use it. */
1579 SIGWINCH_HANDLER (SIGWINCH);
1580 #endif
1581 #endif
1582 /* If the output is not a terminal, don't paginate it. */
1583 if (!ui_file_isatty (gdb_stdout))
1584 lines_per_page = UINT_MAX;
1585 } /* the command_line_version */
1586 set_width ();
1587 }
1588
1589 static void
1590 set_width (void)
1591 {
1592 if (chars_per_line == 0)
1593 init_page_info ();
1594
1595 if (!wrap_buffer)
1596 {
1597 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1598 wrap_buffer[0] = '\0';
1599 }
1600 else
1601 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1602 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1603 }
1604
1605 /* ARGSUSED */
1606 static void
1607 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1608 {
1609 set_width ();
1610 }
1611
1612 /* Wait, so the user can read what's on the screen. Prompt the user
1613 to continue by pressing RETURN. */
1614
1615 static void
1616 prompt_for_continue (void)
1617 {
1618 char *ignore;
1619 char cont_prompt[120];
1620
1621 if (annotation_level > 1)
1622 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1623
1624 strcpy (cont_prompt,
1625 "---Type <return> to continue, or q <return> to quit---");
1626 if (annotation_level > 1)
1627 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1628
1629 /* We must do this *before* we call gdb_readline, else it will eventually
1630 call us -- thinking that we're trying to print beyond the end of the
1631 screen. */
1632 reinitialize_more_filter ();
1633
1634 immediate_quit++;
1635 /* On a real operating system, the user can quit with SIGINT.
1636 But not on GO32.
1637
1638 'q' is provided on all systems so users don't have to change habits
1639 from system to system, and because telling them what to do in
1640 the prompt is more user-friendly than expecting them to think of
1641 SIGINT. */
1642 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1643 whereas control-C to gdb_readline will cause the user to get dumped
1644 out to DOS. */
1645 ignore = readline (cont_prompt);
1646
1647 if (annotation_level > 1)
1648 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1649
1650 if (ignore)
1651 {
1652 char *p = ignore;
1653 while (*p == ' ' || *p == '\t')
1654 ++p;
1655 if (p[0] == 'q')
1656 {
1657 if (!event_loop_p)
1658 request_quit (SIGINT);
1659 else
1660 async_request_quit (0);
1661 }
1662 xfree (ignore);
1663 }
1664 immediate_quit--;
1665
1666 /* Now we have to do this again, so that GDB will know that it doesn't
1667 need to save the ---Type <return>--- line at the top of the screen. */
1668 reinitialize_more_filter ();
1669
1670 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1671 }
1672
1673 /* Reinitialize filter; ie. tell it to reset to original values. */
1674
1675 void
1676 reinitialize_more_filter (void)
1677 {
1678 lines_printed = 0;
1679 chars_printed = 0;
1680 }
1681
1682 /* Indicate that if the next sequence of characters overflows the line,
1683 a newline should be inserted here rather than when it hits the end.
1684 If INDENT is non-null, it is a string to be printed to indent the
1685 wrapped part on the next line. INDENT must remain accessible until
1686 the next call to wrap_here() or until a newline is printed through
1687 fputs_filtered().
1688
1689 If the line is already overfull, we immediately print a newline and
1690 the indentation, and disable further wrapping.
1691
1692 If we don't know the width of lines, but we know the page height,
1693 we must not wrap words, but should still keep track of newlines
1694 that were explicitly printed.
1695
1696 INDENT should not contain tabs, as that will mess up the char count
1697 on the next line. FIXME.
1698
1699 This routine is guaranteed to force out any output which has been
1700 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1701 used to force out output from the wrap_buffer. */
1702
1703 void
1704 wrap_here (char *indent)
1705 {
1706 /* This should have been allocated, but be paranoid anyway. */
1707 if (!wrap_buffer)
1708 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1709
1710 if (wrap_buffer[0])
1711 {
1712 *wrap_pointer = '\0';
1713 fputs_unfiltered (wrap_buffer, gdb_stdout);
1714 }
1715 wrap_pointer = wrap_buffer;
1716 wrap_buffer[0] = '\0';
1717 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1718 {
1719 wrap_column = 0;
1720 }
1721 else if (chars_printed >= chars_per_line)
1722 {
1723 puts_filtered ("\n");
1724 if (indent != NULL)
1725 puts_filtered (indent);
1726 wrap_column = 0;
1727 }
1728 else
1729 {
1730 wrap_column = chars_printed;
1731 if (indent == NULL)
1732 wrap_indent = "";
1733 else
1734 wrap_indent = indent;
1735 }
1736 }
1737
1738 /* Ensure that whatever gets printed next, using the filtered output
1739 commands, starts at the beginning of the line. I.E. if there is
1740 any pending output for the current line, flush it and start a new
1741 line. Otherwise do nothing. */
1742
1743 void
1744 begin_line (void)
1745 {
1746 if (chars_printed > 0)
1747 {
1748 puts_filtered ("\n");
1749 }
1750 }
1751
1752
1753 /* Like fputs but if FILTER is true, pause after every screenful.
1754
1755 Regardless of FILTER can wrap at points other than the final
1756 character of a line.
1757
1758 Unlike fputs, fputs_maybe_filtered does not return a value.
1759 It is OK for LINEBUFFER to be NULL, in which case just don't print
1760 anything.
1761
1762 Note that a longjmp to top level may occur in this routine (only if
1763 FILTER is true) (since prompt_for_continue may do so) so this
1764 routine should not be called when cleanups are not in place. */
1765
1766 static void
1767 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1768 int filter)
1769 {
1770 const char *lineptr;
1771
1772 if (linebuffer == 0)
1773 return;
1774
1775 /* Don't do any filtering if it is disabled. */
1776 if ((stream != gdb_stdout) || !pagination_enabled
1777 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1778 {
1779 fputs_unfiltered (linebuffer, stream);
1780 return;
1781 }
1782
1783 /* Go through and output each character. Show line extension
1784 when this is necessary; prompt user for new page when this is
1785 necessary. */
1786
1787 lineptr = linebuffer;
1788 while (*lineptr)
1789 {
1790 /* Possible new page. */
1791 if (filter &&
1792 (lines_printed >= lines_per_page - 1))
1793 prompt_for_continue ();
1794
1795 while (*lineptr && *lineptr != '\n')
1796 {
1797 /* Print a single line. */
1798 if (*lineptr == '\t')
1799 {
1800 if (wrap_column)
1801 *wrap_pointer++ = '\t';
1802 else
1803 fputc_unfiltered ('\t', stream);
1804 /* Shifting right by 3 produces the number of tab stops
1805 we have already passed, and then adding one and
1806 shifting left 3 advances to the next tab stop. */
1807 chars_printed = ((chars_printed >> 3) + 1) << 3;
1808 lineptr++;
1809 }
1810 else
1811 {
1812 if (wrap_column)
1813 *wrap_pointer++ = *lineptr;
1814 else
1815 fputc_unfiltered (*lineptr, stream);
1816 chars_printed++;
1817 lineptr++;
1818 }
1819
1820 if (chars_printed >= chars_per_line)
1821 {
1822 unsigned int save_chars = chars_printed;
1823
1824 chars_printed = 0;
1825 lines_printed++;
1826 /* If we aren't actually wrapping, don't output newline --
1827 if chars_per_line is right, we probably just overflowed
1828 anyway; if it's wrong, let us keep going. */
1829 if (wrap_column)
1830 fputc_unfiltered ('\n', stream);
1831
1832 /* Possible new page. */
1833 if (lines_printed >= lines_per_page - 1)
1834 prompt_for_continue ();
1835
1836 /* Now output indentation and wrapped string */
1837 if (wrap_column)
1838 {
1839 fputs_unfiltered (wrap_indent, stream);
1840 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1841 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1842 /* FIXME, this strlen is what prevents wrap_indent from
1843 containing tabs. However, if we recurse to print it
1844 and count its chars, we risk trouble if wrap_indent is
1845 longer than (the user settable) chars_per_line.
1846 Note also that this can set chars_printed > chars_per_line
1847 if we are printing a long string. */
1848 chars_printed = strlen (wrap_indent)
1849 + (save_chars - wrap_column);
1850 wrap_pointer = wrap_buffer; /* Reset buffer */
1851 wrap_buffer[0] = '\0';
1852 wrap_column = 0; /* And disable fancy wrap */
1853 }
1854 }
1855 }
1856
1857 if (*lineptr == '\n')
1858 {
1859 chars_printed = 0;
1860 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1861 lines_printed++;
1862 fputc_unfiltered ('\n', stream);
1863 lineptr++;
1864 }
1865 }
1866 }
1867
1868 void
1869 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1870 {
1871 fputs_maybe_filtered (linebuffer, stream, 1);
1872 }
1873
1874 int
1875 putchar_unfiltered (int c)
1876 {
1877 char buf = c;
1878 ui_file_write (gdb_stdout, &buf, 1);
1879 return c;
1880 }
1881
1882 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1883 May return nonlocally. */
1884
1885 int
1886 putchar_filtered (int c)
1887 {
1888 return fputc_filtered (c, gdb_stdout);
1889 }
1890
1891 int
1892 fputc_unfiltered (int c, struct ui_file *stream)
1893 {
1894 char buf = c;
1895 ui_file_write (stream, &buf, 1);
1896 return c;
1897 }
1898
1899 int
1900 fputc_filtered (int c, struct ui_file *stream)
1901 {
1902 char buf[2];
1903
1904 buf[0] = c;
1905 buf[1] = 0;
1906 fputs_filtered (buf, stream);
1907 return c;
1908 }
1909
1910 /* puts_debug is like fputs_unfiltered, except it prints special
1911 characters in printable fashion. */
1912
1913 void
1914 puts_debug (char *prefix, char *string, char *suffix)
1915 {
1916 int ch;
1917
1918 /* Print prefix and suffix after each line. */
1919 static int new_line = 1;
1920 static int return_p = 0;
1921 static char *prev_prefix = "";
1922 static char *prev_suffix = "";
1923
1924 if (*string == '\n')
1925 return_p = 0;
1926
1927 /* If the prefix is changing, print the previous suffix, a new line,
1928 and the new prefix. */
1929 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1930 {
1931 fputs_unfiltered (prev_suffix, gdb_stdlog);
1932 fputs_unfiltered ("\n", gdb_stdlog);
1933 fputs_unfiltered (prefix, gdb_stdlog);
1934 }
1935
1936 /* Print prefix if we printed a newline during the previous call. */
1937 if (new_line)
1938 {
1939 new_line = 0;
1940 fputs_unfiltered (prefix, gdb_stdlog);
1941 }
1942
1943 prev_prefix = prefix;
1944 prev_suffix = suffix;
1945
1946 /* Output characters in a printable format. */
1947 while ((ch = *string++) != '\0')
1948 {
1949 switch (ch)
1950 {
1951 default:
1952 if (isprint (ch))
1953 fputc_unfiltered (ch, gdb_stdlog);
1954
1955 else
1956 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1957 break;
1958
1959 case '\\':
1960 fputs_unfiltered ("\\\\", gdb_stdlog);
1961 break;
1962 case '\b':
1963 fputs_unfiltered ("\\b", gdb_stdlog);
1964 break;
1965 case '\f':
1966 fputs_unfiltered ("\\f", gdb_stdlog);
1967 break;
1968 case '\n':
1969 new_line = 1;
1970 fputs_unfiltered ("\\n", gdb_stdlog);
1971 break;
1972 case '\r':
1973 fputs_unfiltered ("\\r", gdb_stdlog);
1974 break;
1975 case '\t':
1976 fputs_unfiltered ("\\t", gdb_stdlog);
1977 break;
1978 case '\v':
1979 fputs_unfiltered ("\\v", gdb_stdlog);
1980 break;
1981 }
1982
1983 return_p = ch == '\r';
1984 }
1985
1986 /* Print suffix if we printed a newline. */
1987 if (new_line)
1988 {
1989 fputs_unfiltered (suffix, gdb_stdlog);
1990 fputs_unfiltered ("\n", gdb_stdlog);
1991 }
1992 }
1993
1994
1995 /* Print a variable number of ARGS using format FORMAT. If this
1996 information is going to put the amount written (since the last call
1997 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1998 call prompt_for_continue to get the users permision to continue.
1999
2000 Unlike fprintf, this function does not return a value.
2001
2002 We implement three variants, vfprintf (takes a vararg list and stream),
2003 fprintf (takes a stream to write on), and printf (the usual).
2004
2005 Note also that a longjmp to top level may occur in this routine
2006 (since prompt_for_continue may do so) so this routine should not be
2007 called when cleanups are not in place. */
2008
2009 static void
2010 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2011 va_list args, int filter)
2012 {
2013 char *linebuffer;
2014 struct cleanup *old_cleanups;
2015
2016 xvasprintf (&linebuffer, format, args);
2017 old_cleanups = make_cleanup (xfree, linebuffer);
2018 fputs_maybe_filtered (linebuffer, stream, filter);
2019 do_cleanups (old_cleanups);
2020 }
2021
2022
2023 void
2024 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2025 {
2026 vfprintf_maybe_filtered (stream, format, args, 1);
2027 }
2028
2029 void
2030 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2031 {
2032 char *linebuffer;
2033 struct cleanup *old_cleanups;
2034
2035 xvasprintf (&linebuffer, format, args);
2036 old_cleanups = make_cleanup (xfree, linebuffer);
2037 fputs_unfiltered (linebuffer, stream);
2038 do_cleanups (old_cleanups);
2039 }
2040
2041 void
2042 vprintf_filtered (const char *format, va_list args)
2043 {
2044 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2045 }
2046
2047 void
2048 vprintf_unfiltered (const char *format, va_list args)
2049 {
2050 vfprintf_unfiltered (gdb_stdout, format, args);
2051 }
2052
2053 void
2054 fprintf_filtered (struct ui_file * stream, const char *format,...)
2055 {
2056 va_list args;
2057 va_start (args, format);
2058 vfprintf_filtered (stream, format, args);
2059 va_end (args);
2060 }
2061
2062 void
2063 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2064 {
2065 va_list args;
2066 va_start (args, format);
2067 vfprintf_unfiltered (stream, format, args);
2068 va_end (args);
2069 }
2070
2071 /* Like fprintf_filtered, but prints its result indented.
2072 Called as fprintfi_filtered (spaces, stream, format, ...); */
2073
2074 void
2075 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2076 {
2077 va_list args;
2078 va_start (args, format);
2079 print_spaces_filtered (spaces, stream);
2080
2081 vfprintf_filtered (stream, format, args);
2082 va_end (args);
2083 }
2084
2085
2086 void
2087 printf_filtered (const char *format,...)
2088 {
2089 va_list args;
2090 va_start (args, format);
2091 vfprintf_filtered (gdb_stdout, format, args);
2092 va_end (args);
2093 }
2094
2095
2096 void
2097 printf_unfiltered (const char *format,...)
2098 {
2099 va_list args;
2100 va_start (args, format);
2101 vfprintf_unfiltered (gdb_stdout, format, args);
2102 va_end (args);
2103 }
2104
2105 /* Like printf_filtered, but prints it's result indented.
2106 Called as printfi_filtered (spaces, format, ...); */
2107
2108 void
2109 printfi_filtered (int spaces, const char *format,...)
2110 {
2111 va_list args;
2112 va_start (args, format);
2113 print_spaces_filtered (spaces, gdb_stdout);
2114 vfprintf_filtered (gdb_stdout, format, args);
2115 va_end (args);
2116 }
2117
2118 /* Easy -- but watch out!
2119
2120 This routine is *not* a replacement for puts()! puts() appends a newline.
2121 This one doesn't, and had better not! */
2122
2123 void
2124 puts_filtered (const char *string)
2125 {
2126 fputs_filtered (string, gdb_stdout);
2127 }
2128
2129 void
2130 puts_unfiltered (const char *string)
2131 {
2132 fputs_unfiltered (string, gdb_stdout);
2133 }
2134
2135 /* Return a pointer to N spaces and a null. The pointer is good
2136 until the next call to here. */
2137 char *
2138 n_spaces (int n)
2139 {
2140 char *t;
2141 static char *spaces = 0;
2142 static int max_spaces = -1;
2143
2144 if (n > max_spaces)
2145 {
2146 if (spaces)
2147 xfree (spaces);
2148 spaces = (char *) xmalloc (n + 1);
2149 for (t = spaces + n; t != spaces;)
2150 *--t = ' ';
2151 spaces[n] = '\0';
2152 max_spaces = n;
2153 }
2154
2155 return spaces + max_spaces - n;
2156 }
2157
2158 /* Print N spaces. */
2159 void
2160 print_spaces_filtered (int n, struct ui_file *stream)
2161 {
2162 fputs_filtered (n_spaces (n), stream);
2163 }
2164 \f
2165 /* C++ demangler stuff. */
2166
2167 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2168 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2169 If the name is not mangled, or the language for the name is unknown, or
2170 demangling is off, the name is printed in its "raw" form. */
2171
2172 void
2173 fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2174 int arg_mode)
2175 {
2176 char *demangled;
2177
2178 if (name != NULL)
2179 {
2180 /* If user wants to see raw output, no problem. */
2181 if (!demangle)
2182 {
2183 fputs_filtered (name, stream);
2184 }
2185 else
2186 {
2187 switch (lang)
2188 {
2189 case language_cplus:
2190 demangled = cplus_demangle (name, arg_mode);
2191 break;
2192 case language_java:
2193 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2194 break;
2195 case language_chill:
2196 demangled = chill_demangle (name);
2197 break;
2198 default:
2199 demangled = NULL;
2200 break;
2201 }
2202 fputs_filtered (demangled ? demangled : name, stream);
2203 if (demangled != NULL)
2204 {
2205 xfree (demangled);
2206 }
2207 }
2208 }
2209 }
2210
2211 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2212 differences in whitespace. Returns 0 if they match, non-zero if they
2213 don't (slightly different than strcmp()'s range of return values).
2214
2215 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2216 This "feature" is useful when searching for matching C++ function names
2217 (such as if the user types 'break FOO', where FOO is a mangled C++
2218 function). */
2219
2220 int
2221 strcmp_iw (const char *string1, const char *string2)
2222 {
2223 while ((*string1 != '\0') && (*string2 != '\0'))
2224 {
2225 while (isspace (*string1))
2226 {
2227 string1++;
2228 }
2229 while (isspace (*string2))
2230 {
2231 string2++;
2232 }
2233 if (*string1 != *string2)
2234 {
2235 break;
2236 }
2237 if (*string1 != '\0')
2238 {
2239 string1++;
2240 string2++;
2241 }
2242 }
2243 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2244 }
2245 \f
2246
2247 /*
2248 ** subset_compare()
2249 ** Answer whether string_to_compare is a full or partial match to
2250 ** template_string. The partial match must be in sequence starting
2251 ** at index 0.
2252 */
2253 int
2254 subset_compare (char *string_to_compare, char *template_string)
2255 {
2256 int match;
2257 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2258 strlen (string_to_compare) <= strlen (template_string))
2259 match = (strncmp (template_string,
2260 string_to_compare,
2261 strlen (string_to_compare)) == 0);
2262 else
2263 match = 0;
2264 return match;
2265 }
2266
2267
2268 static void pagination_on_command (char *arg, int from_tty);
2269 static void
2270 pagination_on_command (char *arg, int from_tty)
2271 {
2272 pagination_enabled = 1;
2273 }
2274
2275 static void pagination_on_command (char *arg, int from_tty);
2276 static void
2277 pagination_off_command (char *arg, int from_tty)
2278 {
2279 pagination_enabled = 0;
2280 }
2281 \f
2282
2283 void
2284 initialize_utils (void)
2285 {
2286 struct cmd_list_element *c;
2287
2288 c = add_set_cmd ("width", class_support, var_uinteger,
2289 (char *) &chars_per_line,
2290 "Set number of characters gdb thinks are in a line.",
2291 &setlist);
2292 add_show_from_set (c, &showlist);
2293 c->function.sfunc = set_width_command;
2294
2295 add_show_from_set
2296 (add_set_cmd ("height", class_support,
2297 var_uinteger, (char *) &lines_per_page,
2298 "Set number of lines gdb thinks are in a page.", &setlist),
2299 &showlist);
2300
2301 init_page_info ();
2302
2303 /* If the output is not a terminal, don't paginate it. */
2304 if (!ui_file_isatty (gdb_stdout))
2305 lines_per_page = UINT_MAX;
2306
2307 set_width_command ((char *) NULL, 0, c);
2308
2309 add_show_from_set
2310 (add_set_cmd ("demangle", class_support, var_boolean,
2311 (char *) &demangle,
2312 "Set demangling of encoded C++ names when displaying symbols.",
2313 &setprintlist),
2314 &showprintlist);
2315
2316 add_show_from_set
2317 (add_set_cmd ("pagination", class_support,
2318 var_boolean, (char *) &pagination_enabled,
2319 "Set state of pagination.", &setlist),
2320 &showlist);
2321
2322 if (xdb_commands)
2323 {
2324 add_com ("am", class_support, pagination_on_command,
2325 "Enable pagination");
2326 add_com ("sm", class_support, pagination_off_command,
2327 "Disable pagination");
2328 }
2329
2330 add_show_from_set
2331 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2332 (char *) &sevenbit_strings,
2333 "Set printing of 8-bit characters in strings as \\nnn.",
2334 &setprintlist),
2335 &showprintlist);
2336
2337 add_show_from_set
2338 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2339 (char *) &asm_demangle,
2340 "Set demangling of C++ names in disassembly listings.",
2341 &setprintlist),
2342 &showprintlist);
2343 }
2344
2345 /* Machine specific function to handle SIGWINCH signal. */
2346
2347 #ifdef SIGWINCH_HANDLER_BODY
2348 SIGWINCH_HANDLER_BODY
2349 #endif
2350 \f
2351 /* Support for converting target fp numbers into host DOUBLEST format. */
2352
2353 /* XXX - This code should really be in libiberty/floatformat.c, however
2354 configuration issues with libiberty made this very difficult to do in the
2355 available time. */
2356
2357 #include "floatformat.h"
2358 #include <math.h> /* ldexp */
2359
2360 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2361 going to bother with trying to muck around with whether it is defined in
2362 a system header, what we do if not, etc. */
2363 #define FLOATFORMAT_CHAR_BIT 8
2364
2365 static unsigned long get_field (unsigned char *,
2366 enum floatformat_byteorders,
2367 unsigned int, unsigned int, unsigned int);
2368
2369 /* Extract a field which starts at START and is LEN bytes long. DATA and
2370 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2371 static unsigned long
2372 get_field (unsigned char *data, enum floatformat_byteorders order,
2373 unsigned int total_len, unsigned int start, unsigned int len)
2374 {
2375 unsigned long result;
2376 unsigned int cur_byte;
2377 int cur_bitshift;
2378
2379 /* Start at the least significant part of the field. */
2380 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2381 {
2382 /* We start counting from the other end (i.e, from the high bytes
2383 rather than the low bytes). As such, we need to be concerned
2384 with what happens if bit 0 doesn't start on a byte boundary.
2385 I.e, we need to properly handle the case where total_len is
2386 not evenly divisible by 8. So we compute ``excess'' which
2387 represents the number of bits from the end of our starting
2388 byte needed to get to bit 0. */
2389 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2390 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2391 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2392 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2393 - FLOATFORMAT_CHAR_BIT;
2394 }
2395 else
2396 {
2397 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2398 cur_bitshift =
2399 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2400 }
2401 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2402 result = *(data + cur_byte) >> (-cur_bitshift);
2403 else
2404 result = 0;
2405 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2406 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2407 ++cur_byte;
2408 else
2409 --cur_byte;
2410
2411 /* Move towards the most significant part of the field. */
2412 while (cur_bitshift < len)
2413 {
2414 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2415 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2416 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2417 ++cur_byte;
2418 else
2419 --cur_byte;
2420 }
2421 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2422 /* Mask out bits which are not part of the field */
2423 result &= ((1UL << len) - 1);
2424 return result;
2425 }
2426
2427 /* Convert from FMT to a DOUBLEST.
2428 FROM is the address of the extended float.
2429 Store the DOUBLEST in *TO. */
2430
2431 void
2432 floatformat_to_doublest (const struct floatformat *fmt, char *from,
2433 DOUBLEST *to)
2434 {
2435 unsigned char *ufrom = (unsigned char *) from;
2436 DOUBLEST dto;
2437 long exponent;
2438 unsigned long mant;
2439 unsigned int mant_bits, mant_off;
2440 int mant_bits_left;
2441 int special_exponent; /* It's a NaN, denorm or zero */
2442
2443 /* If the mantissa bits are not contiguous from one end of the
2444 mantissa to the other, we need to make a private copy of the
2445 source bytes that is in the right order since the unpacking
2446 algorithm assumes that the bits are contiguous.
2447
2448 Swap the bytes individually rather than accessing them through
2449 "long *" since we have no guarantee that they start on a long
2450 alignment, and also sizeof(long) for the host could be different
2451 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2452 for the target is 4. */
2453
2454 if (fmt->byteorder == floatformat_littlebyte_bigword)
2455 {
2456 static unsigned char *newfrom;
2457 unsigned char *swapin, *swapout;
2458 int longswaps;
2459
2460 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2461 longswaps >>= 3;
2462
2463 if (newfrom == NULL)
2464 {
2465 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2466 }
2467 swapout = newfrom;
2468 swapin = ufrom;
2469 ufrom = newfrom;
2470 while (longswaps-- > 0)
2471 {
2472 /* This is ugly, but efficient */
2473 *swapout++ = swapin[4];
2474 *swapout++ = swapin[5];
2475 *swapout++ = swapin[6];
2476 *swapout++ = swapin[7];
2477 *swapout++ = swapin[0];
2478 *swapout++ = swapin[1];
2479 *swapout++ = swapin[2];
2480 *swapout++ = swapin[3];
2481 swapin += 8;
2482 }
2483 }
2484
2485 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2486 fmt->exp_start, fmt->exp_len);
2487 /* Note that if exponent indicates a NaN, we can't really do anything useful
2488 (not knowing if the host has NaN's, or how to build one). So it will
2489 end up as an infinity or something close; that is OK. */
2490
2491 mant_bits_left = fmt->man_len;
2492 mant_off = fmt->man_start;
2493 dto = 0.0;
2494
2495 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2496
2497 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2498 we don't check for zero as the exponent doesn't matter. */
2499 if (!special_exponent)
2500 exponent -= fmt->exp_bias;
2501 else if (exponent == 0)
2502 exponent = 1 - fmt->exp_bias;
2503
2504 /* Build the result algebraically. Might go infinite, underflow, etc;
2505 who cares. */
2506
2507 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2508 increment the exponent by one to account for the integer bit. */
2509
2510 if (!special_exponent)
2511 {
2512 if (fmt->intbit == floatformat_intbit_no)
2513 dto = ldexp (1.0, exponent);
2514 else
2515 exponent++;
2516 }
2517
2518 while (mant_bits_left > 0)
2519 {
2520 mant_bits = min (mant_bits_left, 32);
2521
2522 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2523 mant_off, mant_bits);
2524
2525 dto += ldexp ((double) mant, exponent - mant_bits);
2526 exponent -= mant_bits;
2527 mant_off += mant_bits;
2528 mant_bits_left -= mant_bits;
2529 }
2530
2531 /* Negate it if negative. */
2532 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2533 dto = -dto;
2534 *to = dto;
2535 }
2536 \f
2537 static void put_field (unsigned char *, enum floatformat_byteorders,
2538 unsigned int,
2539 unsigned int, unsigned int, unsigned long);
2540
2541 /* Set a field which starts at START and is LEN bytes long. DATA and
2542 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2543 static void
2544 put_field (unsigned char *data, enum floatformat_byteorders order,
2545 unsigned int total_len, unsigned int start, unsigned int len,
2546 unsigned long stuff_to_put)
2547 {
2548 unsigned int cur_byte;
2549 int cur_bitshift;
2550
2551 /* Start at the least significant part of the field. */
2552 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2553 {
2554 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2555 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2556 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2557 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2558 - FLOATFORMAT_CHAR_BIT;
2559 }
2560 else
2561 {
2562 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2563 cur_bitshift =
2564 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2565 }
2566 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2567 {
2568 *(data + cur_byte) &=
2569 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2570 << (-cur_bitshift));
2571 *(data + cur_byte) |=
2572 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2573 }
2574 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2575 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2576 ++cur_byte;
2577 else
2578 --cur_byte;
2579
2580 /* Move towards the most significant part of the field. */
2581 while (cur_bitshift < len)
2582 {
2583 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2584 {
2585 /* This is the last byte. */
2586 *(data + cur_byte) &=
2587 ~((1 << (len - cur_bitshift)) - 1);
2588 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2589 }
2590 else
2591 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2592 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2593 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2594 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2595 ++cur_byte;
2596 else
2597 --cur_byte;
2598 }
2599 }
2600
2601 #ifdef HAVE_LONG_DOUBLE
2602 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2603 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2604 frexp, but operates on the long double data type. */
2605
2606 static long double ldfrexp (long double value, int *eptr);
2607
2608 static long double
2609 ldfrexp (long double value, int *eptr)
2610 {
2611 long double tmp;
2612 int exp;
2613
2614 /* Unfortunately, there are no portable functions for extracting the exponent
2615 of a long double, so we have to do it iteratively by multiplying or dividing
2616 by two until the fraction is between 0.5 and 1.0. */
2617
2618 if (value < 0.0l)
2619 value = -value;
2620
2621 tmp = 1.0l;
2622 exp = 0;
2623
2624 if (value >= tmp) /* Value >= 1.0 */
2625 while (value >= tmp)
2626 {
2627 tmp *= 2.0l;
2628 exp++;
2629 }
2630 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2631 {
2632 while (value < tmp)
2633 {
2634 tmp /= 2.0l;
2635 exp--;
2636 }
2637 tmp *= 2.0l;
2638 exp++;
2639 }
2640
2641 *eptr = exp;
2642 return value / tmp;
2643 }
2644 #endif /* HAVE_LONG_DOUBLE */
2645
2646
2647 /* The converse: convert the DOUBLEST *FROM to an extended float
2648 and store where TO points. Neither FROM nor TO have any alignment
2649 restrictions. */
2650
2651 void
2652 floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2653 char *to)
2654 {
2655 DOUBLEST dfrom;
2656 int exponent;
2657 DOUBLEST mant;
2658 unsigned int mant_bits, mant_off;
2659 int mant_bits_left;
2660 unsigned char *uto = (unsigned char *) to;
2661
2662 memcpy (&dfrom, from, sizeof (dfrom));
2663 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2664 / FLOATFORMAT_CHAR_BIT);
2665 if (dfrom == 0)
2666 return; /* Result is zero */
2667 if (dfrom != dfrom) /* Result is NaN */
2668 {
2669 /* From is NaN */
2670 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2671 fmt->exp_len, fmt->exp_nan);
2672 /* Be sure it's not infinity, but NaN value is irrel */
2673 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2674 32, 1);
2675 return;
2676 }
2677
2678 /* If negative, set the sign bit. */
2679 if (dfrom < 0)
2680 {
2681 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2682 dfrom = -dfrom;
2683 }
2684
2685 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2686 {
2687 /* Infinity exponent is same as NaN's. */
2688 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2689 fmt->exp_len, fmt->exp_nan);
2690 /* Infinity mantissa is all zeroes. */
2691 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2692 fmt->man_len, 0);
2693 return;
2694 }
2695
2696 #ifdef HAVE_LONG_DOUBLE
2697 mant = ldfrexp (dfrom, &exponent);
2698 #else
2699 mant = frexp (dfrom, &exponent);
2700 #endif
2701
2702 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2703 exponent + fmt->exp_bias - 1);
2704
2705 mant_bits_left = fmt->man_len;
2706 mant_off = fmt->man_start;
2707 while (mant_bits_left > 0)
2708 {
2709 unsigned long mant_long;
2710 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2711
2712 mant *= 4294967296.0;
2713 mant_long = ((unsigned long) mant) & 0xffffffffL;
2714 mant -= mant_long;
2715
2716 /* If the integer bit is implicit, then we need to discard it.
2717 If we are discarding a zero, we should be (but are not) creating
2718 a denormalized number which means adjusting the exponent
2719 (I think). */
2720 if (mant_bits_left == fmt->man_len
2721 && fmt->intbit == floatformat_intbit_no)
2722 {
2723 mant_long <<= 1;
2724 mant_long &= 0xffffffffL;
2725 mant_bits -= 1;
2726 }
2727
2728 if (mant_bits < 32)
2729 {
2730 /* The bits we want are in the most significant MANT_BITS bits of
2731 mant_long. Move them to the least significant. */
2732 mant_long >>= 32 - mant_bits;
2733 }
2734
2735 put_field (uto, fmt->byteorder, fmt->totalsize,
2736 mant_off, mant_bits, mant_long);
2737 mant_off += mant_bits;
2738 mant_bits_left -= mant_bits;
2739 }
2740 if (fmt->byteorder == floatformat_littlebyte_bigword)
2741 {
2742 int count;
2743 unsigned char *swaplow = uto;
2744 unsigned char *swaphigh = uto + 4;
2745 unsigned char tmp;
2746
2747 for (count = 0; count < 4; count++)
2748 {
2749 tmp = *swaplow;
2750 *swaplow++ = *swaphigh;
2751 *swaphigh++ = tmp;
2752 }
2753 }
2754 }
2755
2756 /* Check if VAL (which is assumed to be a floating point number whose
2757 format is described by FMT) is negative. */
2758
2759 int
2760 floatformat_is_negative (const struct floatformat *fmt, char *val)
2761 {
2762 unsigned char *uval = (unsigned char *) val;
2763
2764 return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
2765 }
2766
2767 /* Check if VAL is "not a number" (NaN) for FMT. */
2768
2769 int
2770 floatformat_is_nan (const struct floatformat *fmt, char *val)
2771 {
2772 unsigned char *uval = (unsigned char *) val;
2773 long exponent;
2774 unsigned long mant;
2775 unsigned int mant_bits, mant_off;
2776 int mant_bits_left;
2777
2778 if (! fmt->exp_nan)
2779 return 0;
2780
2781 exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
2782 fmt->exp_start, fmt->exp_len);
2783
2784 if (exponent != fmt->exp_nan)
2785 return 0;
2786
2787 mant_bits_left = fmt->man_len;
2788 mant_off = fmt->man_start;
2789
2790 while (mant_bits_left > 0)
2791 {
2792 mant_bits = min (mant_bits_left, 32);
2793
2794 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2795 mant_off, mant_bits);
2796
2797 /* If there is an explicit integer bit, mask it off. */
2798 if (mant_off == fmt->man_start
2799 && fmt->intbit == floatformat_intbit_yes)
2800 mant &= ~(1 << (mant_bits - 1));
2801
2802 if (mant)
2803 return 1;
2804
2805 mant_off += mant_bits;
2806 mant_bits_left -= mant_bits;
2807 }
2808
2809 return 0;
2810 }
2811
2812 /* Convert the mantissa of VAL (which is assumed to be a floating
2813 point number whose format is described by FMT) into a hexadecimal
2814 and store it in a static string. Return a pointer to that string. */
2815
2816 char *
2817 floatformat_mantissa (const struct floatformat *fmt, char *val)
2818 {
2819 unsigned char *uval = (unsigned char *) val;
2820 unsigned long mant;
2821 unsigned int mant_bits, mant_off;
2822 int mant_bits_left;
2823 static char res[50];
2824 char buf[9];
2825
2826 /* Make sure we have enough room to store the mantissa. */
2827 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
2828
2829 mant_off = fmt->man_start;
2830 mant_bits_left = fmt->man_len;
2831 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
2832
2833 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2834 mant_off, mant_bits);
2835
2836 sprintf (res, "%lx", mant);
2837
2838 mant_off += mant_bits;
2839 mant_bits_left -= mant_bits;
2840
2841 while (mant_bits_left > 0)
2842 {
2843 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2844 mant_off, 32);
2845
2846 sprintf (buf, "%08lx", mant);
2847 strcat (res, buf);
2848
2849 mant_off += 32;
2850 mant_bits_left -= 32;
2851 }
2852
2853 return res;
2854 }
2855
2856 /* print routines to handle variable size regs, etc. */
2857
2858 /* temporary storage using circular buffer */
2859 #define NUMCELLS 16
2860 #define CELLSIZE 32
2861 static char *
2862 get_cell (void)
2863 {
2864 static char buf[NUMCELLS][CELLSIZE];
2865 static int cell = 0;
2866 if (++cell >= NUMCELLS)
2867 cell = 0;
2868 return buf[cell];
2869 }
2870
2871 int
2872 strlen_paddr (void)
2873 {
2874 return (TARGET_ADDR_BIT / 8 * 2);
2875 }
2876
2877 char *
2878 paddr (CORE_ADDR addr)
2879 {
2880 return phex (addr, TARGET_ADDR_BIT / 8);
2881 }
2882
2883 char *
2884 paddr_nz (CORE_ADDR addr)
2885 {
2886 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2887 }
2888
2889 static void
2890 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2891 {
2892 /* steal code from valprint.c:print_decimal(). Should this worry
2893 about the real size of addr as the above does? */
2894 unsigned long temp[3];
2895 int i = 0;
2896 do
2897 {
2898 temp[i] = addr % (1000 * 1000 * 1000);
2899 addr /= (1000 * 1000 * 1000);
2900 i++;
2901 }
2902 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2903 switch (i)
2904 {
2905 case 1:
2906 sprintf (paddr_str, "%s%lu",
2907 sign, temp[0]);
2908 break;
2909 case 2:
2910 sprintf (paddr_str, "%s%lu%09lu",
2911 sign, temp[1], temp[0]);
2912 break;
2913 case 3:
2914 sprintf (paddr_str, "%s%lu%09lu%09lu",
2915 sign, temp[2], temp[1], temp[0]);
2916 break;
2917 default:
2918 internal_error (__FILE__, __LINE__, "failed internal consistency check");
2919 }
2920 }
2921
2922 char *
2923 paddr_u (CORE_ADDR addr)
2924 {
2925 char *paddr_str = get_cell ();
2926 decimal2str (paddr_str, "", addr);
2927 return paddr_str;
2928 }
2929
2930 char *
2931 paddr_d (LONGEST addr)
2932 {
2933 char *paddr_str = get_cell ();
2934 if (addr < 0)
2935 decimal2str (paddr_str, "-", -addr);
2936 else
2937 decimal2str (paddr_str, "", addr);
2938 return paddr_str;
2939 }
2940
2941 /* eliminate warning from compiler on 32-bit systems */
2942 static int thirty_two = 32;
2943
2944 char *
2945 phex (ULONGEST l, int sizeof_l)
2946 {
2947 char *str = get_cell ();
2948 switch (sizeof_l)
2949 {
2950 case 8:
2951 sprintf (str, "%08lx%08lx",
2952 (unsigned long) (l >> thirty_two),
2953 (unsigned long) (l & 0xffffffff));
2954 break;
2955 case 4:
2956 sprintf (str, "%08lx", (unsigned long) l);
2957 break;
2958 case 2:
2959 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2960 break;
2961 default:
2962 phex (l, sizeof (l));
2963 break;
2964 }
2965 return str;
2966 }
2967
2968 char *
2969 phex_nz (ULONGEST l, int sizeof_l)
2970 {
2971 char *str = get_cell ();
2972 switch (sizeof_l)
2973 {
2974 case 8:
2975 {
2976 unsigned long high = (unsigned long) (l >> thirty_two);
2977 if (high == 0)
2978 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2979 else
2980 sprintf (str, "%lx%08lx",
2981 high, (unsigned long) (l & 0xffffffff));
2982 break;
2983 }
2984 case 4:
2985 sprintf (str, "%lx", (unsigned long) l);
2986 break;
2987 case 2:
2988 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2989 break;
2990 default:
2991 phex_nz (l, sizeof (l));
2992 break;
2993 }
2994 return str;
2995 }
2996
2997
2998 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2999 using the target's conversion routines. */
3000 CORE_ADDR
3001 host_pointer_to_address (void *ptr)
3002 {
3003 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
3004 internal_error (__FILE__, __LINE__,
3005 "core_addr_to_void_ptr: bad cast");
3006 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
3007 }
3008
3009 void *
3010 address_to_host_pointer (CORE_ADDR addr)
3011 {
3012 void *ptr;
3013 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
3014 internal_error (__FILE__, __LINE__,
3015 "core_addr_to_void_ptr: bad cast");
3016 ADDRESS_TO_POINTER (builtin_type_void_data_ptr, &ptr, addr);
3017 return ptr;
3018 }
This page took 0.091327 seconds and 4 git commands to generate.