revert 1.9. Not approved.
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include "gdb_string.h"
25 #include "event-top.h"
26
27 #ifdef HAVE_CURSES_H
28 #include <curses.h>
29 #endif
30 #ifdef HAVE_TERM_H
31 #include <term.h>
32 #endif
33
34 #ifdef __GO32__
35 #include <pc.h>
36 #endif
37
38 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39 #ifdef reg
40 #undef reg
41 #endif
42
43 #include "signals.h"
44 #include "gdbcmd.h"
45 #include "serial.h"
46 #include "bfd.h"
47 #include "target.h"
48 #include "demangle.h"
49 #include "expression.h"
50 #include "language.h"
51 #include "annotate.h"
52
53 #include <readline/readline.h>
54
55 #undef XMALLOC
56 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
57
58 /* readline defines this. */
59 #undef savestring
60
61 void (*error_begin_hook) PARAMS ((void));
62
63 /* Holds the last error message issued by gdb */
64
65 static struct ui_file *gdb_lasterr;
66
67 /* Prototypes for local functions */
68
69 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
70 va_list, int);
71
72 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
73
74 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75 static void malloc_botch PARAMS ((void));
76 #endif
77
78 static void
79 prompt_for_continue PARAMS ((void));
80
81 static void
82 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
83
84 static void
85 set_width PARAMS ((void));
86
87 /* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
89
90 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
94 /* cleaned up on each error from within an execution command */
95 static struct cleanup *exec_error_cleanup_chain;
96
97 /* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101 struct continuation *cmd_continuation;
102 struct continuation *intermediate_continuation;
103
104 /* Nonzero if we have job control. */
105
106 int job_control;
107
108 /* Nonzero means a quit has been requested. */
109
110 int quit_flag;
111
112 /* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
122
123 int immediate_quit;
124
125 /* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
127
128 int demangle = 1;
129
130 /* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
133
134 int asm_demangle = 0;
135
136 /* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
139
140 int sevenbit_strings = 0;
141
142 /* String to be printed before error messages, if any. */
143
144 char *error_pre_print;
145
146 /* String to be printed before quit messages, if any. */
147
148 char *quit_pre_print;
149
150 /* String to be printed before warning messages, if any. */
151
152 char *warning_pre_print = "\nwarning: ";
153
154 int pagination_enabled = 1;
155 \f
156
157 /* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
161
162 struct cleanup *
163 make_cleanup (make_cleanup_ftype *function, void *arg)
164 {
165 return make_my_cleanup (&cleanup_chain, function, arg);
166 }
167
168 struct cleanup *
169 make_final_cleanup (make_cleanup_ftype *function, void *arg)
170 {
171 return make_my_cleanup (&final_cleanup_chain, function, arg);
172 }
173
174 struct cleanup *
175 make_run_cleanup (make_cleanup_ftype *function, void *arg)
176 {
177 return make_my_cleanup (&run_cleanup_chain, function, arg);
178 }
179
180 struct cleanup *
181 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
182 {
183 return make_my_cleanup (&exec_cleanup_chain, function, arg);
184 }
185
186 struct cleanup *
187 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
188 {
189 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
190 }
191
192 static void
193 do_freeargv (arg)
194 void *arg;
195 {
196 freeargv ((char **) arg);
197 }
198
199 struct cleanup *
200 make_cleanup_freeargv (arg)
201 char **arg;
202 {
203 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
204 }
205
206 static void
207 do_ui_file_delete (void *arg)
208 {
209 ui_file_delete (arg);
210 }
211
212 struct cleanup *
213 make_cleanup_ui_file_delete (struct ui_file *arg)
214 {
215 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
216 }
217
218 struct cleanup *
219 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
220 void *arg)
221 {
222 register struct cleanup *new
223 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
224 register struct cleanup *old_chain = *pmy_chain;
225
226 new->next = *pmy_chain;
227 new->function = function;
228 new->arg = arg;
229 *pmy_chain = new;
230
231 return old_chain;
232 }
233
234 /* Discard cleanups and do the actions they describe
235 until we get back to the point OLD_CHAIN in the cleanup_chain. */
236
237 void
238 do_cleanups (old_chain)
239 register struct cleanup *old_chain;
240 {
241 do_my_cleanups (&cleanup_chain, old_chain);
242 }
243
244 void
245 do_final_cleanups (old_chain)
246 register struct cleanup *old_chain;
247 {
248 do_my_cleanups (&final_cleanup_chain, old_chain);
249 }
250
251 void
252 do_run_cleanups (old_chain)
253 register struct cleanup *old_chain;
254 {
255 do_my_cleanups (&run_cleanup_chain, old_chain);
256 }
257
258 void
259 do_exec_cleanups (old_chain)
260 register struct cleanup *old_chain;
261 {
262 do_my_cleanups (&exec_cleanup_chain, old_chain);
263 }
264
265 void
266 do_exec_error_cleanups (old_chain)
267 register struct cleanup *old_chain;
268 {
269 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
270 }
271
272 void
273 do_my_cleanups (pmy_chain, old_chain)
274 register struct cleanup **pmy_chain;
275 register struct cleanup *old_chain;
276 {
277 register struct cleanup *ptr;
278 while ((ptr = *pmy_chain) != old_chain)
279 {
280 *pmy_chain = ptr->next; /* Do this first incase recursion */
281 (*ptr->function) (ptr->arg);
282 free (ptr);
283 }
284 }
285
286 /* Discard cleanups, not doing the actions they describe,
287 until we get back to the point OLD_CHAIN in the cleanup_chain. */
288
289 void
290 discard_cleanups (old_chain)
291 register struct cleanup *old_chain;
292 {
293 discard_my_cleanups (&cleanup_chain, old_chain);
294 }
295
296 void
297 discard_final_cleanups (old_chain)
298 register struct cleanup *old_chain;
299 {
300 discard_my_cleanups (&final_cleanup_chain, old_chain);
301 }
302
303 void
304 discard_exec_error_cleanups (old_chain)
305 register struct cleanup *old_chain;
306 {
307 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
308 }
309
310 void
311 discard_my_cleanups (pmy_chain, old_chain)
312 register struct cleanup **pmy_chain;
313 register struct cleanup *old_chain;
314 {
315 register struct cleanup *ptr;
316 while ((ptr = *pmy_chain) != old_chain)
317 {
318 *pmy_chain = ptr->next;
319 free (ptr);
320 }
321 }
322
323 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
324 struct cleanup *
325 save_cleanups ()
326 {
327 return save_my_cleanups (&cleanup_chain);
328 }
329
330 struct cleanup *
331 save_final_cleanups ()
332 {
333 return save_my_cleanups (&final_cleanup_chain);
334 }
335
336 struct cleanup *
337 save_my_cleanups (pmy_chain)
338 struct cleanup **pmy_chain;
339 {
340 struct cleanup *old_chain = *pmy_chain;
341
342 *pmy_chain = 0;
343 return old_chain;
344 }
345
346 /* Restore the cleanup chain from a previously saved chain. */
347 void
348 restore_cleanups (chain)
349 struct cleanup *chain;
350 {
351 restore_my_cleanups (&cleanup_chain, chain);
352 }
353
354 void
355 restore_final_cleanups (chain)
356 struct cleanup *chain;
357 {
358 restore_my_cleanups (&final_cleanup_chain, chain);
359 }
360
361 void
362 restore_my_cleanups (pmy_chain, chain)
363 struct cleanup **pmy_chain;
364 struct cleanup *chain;
365 {
366 *pmy_chain = chain;
367 }
368
369 /* This function is useful for cleanups.
370 Do
371
372 foo = xmalloc (...);
373 old_chain = make_cleanup (free_current_contents, &foo);
374
375 to arrange to free the object thus allocated. */
376
377 void
378 free_current_contents (void *ptr)
379 {
380 void **location = ptr;
381 if (*location != NULL)
382 free (*location);
383 }
384
385 /* Provide a known function that does nothing, to use as a base for
386 for a possibly long chain of cleanups. This is useful where we
387 use the cleanup chain for handling normal cleanups as well as dealing
388 with cleanups that need to be done as a result of a call to error().
389 In such cases, we may not be certain where the first cleanup is, unless
390 we have a do-nothing one to always use as the base. */
391
392 /* ARGSUSED */
393 void
394 null_cleanup (void *arg)
395 {
396 }
397
398 /* Add a continuation to the continuation list, the gloabl list
399 cmd_continuation. The new continuation will be added at the front.*/
400 void
401 add_continuation (continuation_hook, arg_list)
402 void (*continuation_hook) PARAMS ((struct continuation_arg *));
403 struct continuation_arg *arg_list;
404 {
405 struct continuation *continuation_ptr;
406
407 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
408 continuation_ptr->continuation_hook = continuation_hook;
409 continuation_ptr->arg_list = arg_list;
410 continuation_ptr->next = cmd_continuation;
411 cmd_continuation = continuation_ptr;
412 }
413
414 /* Walk down the cmd_continuation list, and execute all the
415 continuations. There is a problem though. In some cases new
416 continuations may be added while we are in the middle of this
417 loop. If this happens they will be added in the front, and done
418 before we have a chance of exhausting those that were already
419 there. We need to then save the beginning of the list in a pointer
420 and do the continuations from there on, instead of using the
421 global beginning of list as our iteration pointer.*/
422 void
423 do_all_continuations ()
424 {
425 struct continuation *continuation_ptr;
426 struct continuation *saved_continuation;
427
428 /* Copy the list header into another pointer, and set the global
429 list header to null, so that the global list can change as a side
430 effect of invoking the continuations and the processing of
431 the preexisting continuations will not be affected. */
432 continuation_ptr = cmd_continuation;
433 cmd_continuation = NULL;
434
435 /* Work now on the list we have set aside. */
436 while (continuation_ptr)
437 {
438 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
439 saved_continuation = continuation_ptr;
440 continuation_ptr = continuation_ptr->next;
441 free (saved_continuation);
442 }
443 }
444
445 /* Walk down the cmd_continuation list, and get rid of all the
446 continuations. */
447 void
448 discard_all_continuations ()
449 {
450 struct continuation *continuation_ptr;
451
452 while (cmd_continuation)
453 {
454 continuation_ptr = cmd_continuation;
455 cmd_continuation = continuation_ptr->next;
456 free (continuation_ptr);
457 }
458 }
459
460 /* Add a continuation to the continuation list, the global list
461 intermediate_continuation. The new continuation will be added at the front.*/
462 void
463 add_intermediate_continuation (continuation_hook, arg_list)
464 void (*continuation_hook) PARAMS ((struct continuation_arg *));
465 struct continuation_arg *arg_list;
466 {
467 struct continuation *continuation_ptr;
468
469 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
470 continuation_ptr->continuation_hook = continuation_hook;
471 continuation_ptr->arg_list = arg_list;
472 continuation_ptr->next = intermediate_continuation;
473 intermediate_continuation = continuation_ptr;
474 }
475
476 /* Walk down the cmd_continuation list, and execute all the
477 continuations. There is a problem though. In some cases new
478 continuations may be added while we are in the middle of this
479 loop. If this happens they will be added in the front, and done
480 before we have a chance of exhausting those that were already
481 there. We need to then save the beginning of the list in a pointer
482 and do the continuations from there on, instead of using the
483 global beginning of list as our iteration pointer.*/
484 void
485 do_all_intermediate_continuations ()
486 {
487 struct continuation *continuation_ptr;
488 struct continuation *saved_continuation;
489
490 /* Copy the list header into another pointer, and set the global
491 list header to null, so that the global list can change as a side
492 effect of invoking the continuations and the processing of
493 the preexisting continuations will not be affected. */
494 continuation_ptr = intermediate_continuation;
495 intermediate_continuation = NULL;
496
497 /* Work now on the list we have set aside. */
498 while (continuation_ptr)
499 {
500 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
501 saved_continuation = continuation_ptr;
502 continuation_ptr = continuation_ptr->next;
503 free (saved_continuation);
504 }
505 }
506
507 /* Walk down the cmd_continuation list, and get rid of all the
508 continuations. */
509 void
510 discard_all_intermediate_continuations ()
511 {
512 struct continuation *continuation_ptr;
513
514 while (intermediate_continuation)
515 {
516 continuation_ptr = intermediate_continuation;
517 intermediate_continuation = continuation_ptr->next;
518 free (continuation_ptr);
519 }
520 }
521
522 \f
523
524 /* Print a warning message. Way to use this is to call warning_begin,
525 output the warning message (use unfiltered output to gdb_stderr),
526 ending in a newline. There is not currently a warning_end that you
527 call afterwards, but such a thing might be added if it is useful
528 for a GUI to separate warning messages from other output.
529
530 FIXME: Why do warnings use unfiltered output and errors filtered?
531 Is this anything other than a historical accident? */
532
533 void
534 warning_begin ()
535 {
536 target_terminal_ours ();
537 wrap_here (""); /* Force out any buffered output */
538 gdb_flush (gdb_stdout);
539 if (warning_pre_print)
540 fprintf_unfiltered (gdb_stderr, warning_pre_print);
541 }
542
543 /* Print a warning message.
544 The first argument STRING is the warning message, used as a fprintf string,
545 and the remaining args are passed as arguments to it.
546 The primary difference between warnings and errors is that a warning
547 does not force the return to command level. */
548
549 void
550 warning (const char *string,...)
551 {
552 va_list args;
553 va_start (args, string);
554 if (warning_hook)
555 (*warning_hook) (string, args);
556 else
557 {
558 warning_begin ();
559 vfprintf_unfiltered (gdb_stderr, string, args);
560 fprintf_unfiltered (gdb_stderr, "\n");
561 va_end (args);
562 }
563 }
564
565 /* Start the printing of an error message. Way to use this is to call
566 this, output the error message (use filtered output to gdb_stderr
567 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
568 in a newline, and then call return_to_top_level (RETURN_ERROR).
569 error() provides a convenient way to do this for the special case
570 that the error message can be formatted with a single printf call,
571 but this is more general. */
572 void
573 error_begin ()
574 {
575 if (error_begin_hook)
576 error_begin_hook ();
577
578 target_terminal_ours ();
579 wrap_here (""); /* Force out any buffered output */
580 gdb_flush (gdb_stdout);
581
582 annotate_error_begin ();
583
584 if (error_pre_print)
585 fprintf_filtered (gdb_stderr, error_pre_print);
586 }
587
588 /* Print an error message and return to command level.
589 The first argument STRING is the error message, used as a fprintf string,
590 and the remaining args are passed as arguments to it. */
591
592 NORETURN void
593 verror (const char *string, va_list args)
594 {
595 char *err_string;
596 struct cleanup *err_string_cleanup;
597 /* FIXME: cagney/1999-11-10: All error calls should come here.
598 Unfortunatly some code uses the sequence: error_begin(); print
599 error message; return_to_top_level. That code should be
600 flushed. */
601 error_begin ();
602 /* NOTE: It's tempting to just do the following...
603 vfprintf_filtered (gdb_stderr, string, args);
604 and then follow with a similar looking statement to cause the message
605 to also go to gdb_lasterr. But if we do this, we'll be traversing the
606 va_list twice which works on some platforms and fails miserably on
607 others. */
608 /* Save it as the last error */
609 ui_file_rewind (gdb_lasterr);
610 vfprintf_filtered (gdb_lasterr, string, args);
611 /* Retrieve the last error and print it to gdb_stderr */
612 err_string = error_last_message ();
613 err_string_cleanup = make_cleanup (free, err_string);
614 fputs_filtered (err_string, gdb_stderr);
615 fprintf_filtered (gdb_stderr, "\n");
616 do_cleanups (err_string_cleanup);
617 return_to_top_level (RETURN_ERROR);
618 }
619
620 NORETURN void
621 error (const char *string,...)
622 {
623 va_list args;
624 va_start (args, string);
625 verror (string, args);
626 va_end (args);
627 }
628
629 NORETURN void
630 error_stream (struct ui_file *stream)
631 {
632 long size;
633 char *msg = ui_file_xstrdup (stream, &size);
634 make_cleanup (free, msg);
635 error ("%s", msg);
636 }
637
638 /* Get the last error message issued by gdb */
639
640 char *
641 error_last_message (void)
642 {
643 long len;
644 return ui_file_xstrdup (gdb_lasterr, &len);
645 }
646
647 /* This is to be called by main() at the very beginning */
648
649 void
650 error_init (void)
651 {
652 gdb_lasterr = mem_fileopen ();
653 }
654
655 /* Print a message reporting an internal error. Ask the user if they
656 want to continue, dump core, or just exit. */
657
658 NORETURN void
659 internal_verror (const char *fmt, va_list ap)
660 {
661 static char msg[] = "Internal GDB error: recursive internal error.\n";
662 static int dejavu = 0;
663 int continue_p;
664 int dump_core_p;
665
666 /* don't allow infinite error recursion. */
667 switch (dejavu)
668 {
669 case 0:
670 dejavu = 1;
671 break;
672 case 1:
673 dejavu = 2;
674 fputs_unfiltered (msg, gdb_stderr);
675 abort ();
676 default:
677 dejavu = 3;
678 write (STDERR_FILENO, msg, sizeof (msg));
679 exit (1);
680 }
681
682 /* Try to get the message out */
683 target_terminal_ours ();
684 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
685 vfprintf_unfiltered (gdb_stderr, fmt, ap);
686 fputs_unfiltered ("\n", gdb_stderr);
687
688 /* Default (no case) is to quit GDB. When in batch mode this
689 lessens the likelhood of GDB going into an infinate loop. */
690 continue_p = query ("\
691 An internal GDB error was detected. This may make make further\n\
692 debugging unreliable. Continue this debugging session? ");
693
694 /* Default (no case) is to not dump core. Lessen the chance of GDB
695 leaving random core files around. */
696 dump_core_p = query ("\
697 Create a core file containing the current state of GDB? ");
698
699 if (continue_p)
700 {
701 if (dump_core_p)
702 {
703 if (fork () == 0)
704 abort ();
705 }
706 }
707 else
708 {
709 if (dump_core_p)
710 abort ();
711 else
712 exit (1);
713 }
714
715 dejavu = 0;
716 return_to_top_level (RETURN_ERROR);
717 }
718
719 NORETURN void
720 internal_error (char *string, ...)
721 {
722 va_list ap;
723 va_start (ap, string);
724
725 internal_verror (string, ap);
726 va_end (ap);
727 }
728
729 /* The strerror() function can return NULL for errno values that are
730 out of range. Provide a "safe" version that always returns a
731 printable string. */
732
733 char *
734 safe_strerror (errnum)
735 int errnum;
736 {
737 char *msg;
738 static char buf[32];
739
740 if ((msg = strerror (errnum)) == NULL)
741 {
742 sprintf (buf, "(undocumented errno %d)", errnum);
743 msg = buf;
744 }
745 return (msg);
746 }
747
748 /* The strsignal() function can return NULL for signal values that are
749 out of range. Provide a "safe" version that always returns a
750 printable string. */
751
752 char *
753 safe_strsignal (signo)
754 int signo;
755 {
756 char *msg;
757 static char buf[32];
758
759 if ((msg = strsignal (signo)) == NULL)
760 {
761 sprintf (buf, "(undocumented signal %d)", signo);
762 msg = buf;
763 }
764 return (msg);
765 }
766
767
768 /* Print the system error message for errno, and also mention STRING
769 as the file name for which the error was encountered.
770 Then return to command level. */
771
772 NORETURN void
773 perror_with_name (string)
774 char *string;
775 {
776 char *err;
777 char *combined;
778
779 err = safe_strerror (errno);
780 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
781 strcpy (combined, string);
782 strcat (combined, ": ");
783 strcat (combined, err);
784
785 /* I understand setting these is a matter of taste. Still, some people
786 may clear errno but not know about bfd_error. Doing this here is not
787 unreasonable. */
788 bfd_set_error (bfd_error_no_error);
789 errno = 0;
790
791 error ("%s.", combined);
792 }
793
794 /* Print the system error message for ERRCODE, and also mention STRING
795 as the file name for which the error was encountered. */
796
797 void
798 print_sys_errmsg (string, errcode)
799 char *string;
800 int errcode;
801 {
802 char *err;
803 char *combined;
804
805 err = safe_strerror (errcode);
806 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
807 strcpy (combined, string);
808 strcat (combined, ": ");
809 strcat (combined, err);
810
811 /* We want anything which was printed on stdout to come out first, before
812 this message. */
813 gdb_flush (gdb_stdout);
814 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
815 }
816
817 /* Control C eventually causes this to be called, at a convenient time. */
818
819 void
820 quit ()
821 {
822 serial_t gdb_stdout_serial = serial_fdopen (1);
823
824 target_terminal_ours ();
825
826 /* We want all output to appear now, before we print "Quit". We
827 have 3 levels of buffering we have to flush (it's possible that
828 some of these should be changed to flush the lower-level ones
829 too): */
830
831 /* 1. The _filtered buffer. */
832 wrap_here ((char *) 0);
833
834 /* 2. The stdio buffer. */
835 gdb_flush (gdb_stdout);
836 gdb_flush (gdb_stderr);
837
838 /* 3. The system-level buffer. */
839 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
840 SERIAL_UN_FDOPEN (gdb_stdout_serial);
841
842 annotate_error_begin ();
843
844 /* Don't use *_filtered; we don't want to prompt the user to continue. */
845 if (quit_pre_print)
846 fprintf_unfiltered (gdb_stderr, quit_pre_print);
847
848 #ifdef __MSDOS__
849 /* No steenking SIGINT will ever be coming our way when the
850 program is resumed. Don't lie. */
851 fprintf_unfiltered (gdb_stderr, "Quit\n");
852 #else
853 if (job_control
854 /* If there is no terminal switching for this target, then we can't
855 possibly get screwed by the lack of job control. */
856 || current_target.to_terminal_ours == NULL)
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858 else
859 fprintf_unfiltered (gdb_stderr,
860 "Quit (expect signal SIGINT when the program is resumed)\n");
861 #endif
862 return_to_top_level (RETURN_QUIT);
863 }
864
865
866 #if defined(_MSC_VER) /* should test for wingdb instead? */
867
868 /*
869 * Windows translates all keyboard and mouse events
870 * into a message which is appended to the message
871 * queue for the process.
872 */
873
874 void
875 notice_quit ()
876 {
877 int k = win32pollquit ();
878 if (k == 1)
879 quit_flag = 1;
880 else if (k == 2)
881 immediate_quit = 1;
882 }
883
884 #else /* !defined(_MSC_VER) */
885
886 void
887 notice_quit ()
888 {
889 /* Done by signals */
890 }
891
892 #endif /* !defined(_MSC_VER) */
893
894 /* Control C comes here */
895 void
896 request_quit (signo)
897 int signo;
898 {
899 quit_flag = 1;
900 /* Restore the signal handler. Harmless with BSD-style signals, needed
901 for System V-style signals. So just always do it, rather than worrying
902 about USG defines and stuff like that. */
903 signal (signo, request_quit);
904
905 #ifdef REQUEST_QUIT
906 REQUEST_QUIT;
907 #else
908 if (immediate_quit)
909 quit ();
910 #endif
911 }
912 \f
913 /* Memory management stuff (malloc friends). */
914
915 /* Make a substitute size_t for non-ANSI compilers. */
916
917 #ifndef HAVE_STDDEF_H
918 #ifndef size_t
919 #define size_t unsigned int
920 #endif
921 #endif
922
923 #if !defined (USE_MMALLOC)
924
925 PTR
926 mcalloc (PTR md, size_t number, size_t size)
927 {
928 return calloc (number, size);
929 }
930
931 PTR
932 mmalloc (md, size)
933 PTR md;
934 size_t size;
935 {
936 return malloc (size);
937 }
938
939 PTR
940 mrealloc (md, ptr, size)
941 PTR md;
942 PTR ptr;
943 size_t size;
944 {
945 if (ptr == 0) /* Guard against old realloc's */
946 return malloc (size);
947 else
948 return realloc (ptr, size);
949 }
950
951 void
952 mfree (md, ptr)
953 PTR md;
954 PTR ptr;
955 {
956 free (ptr);
957 }
958
959 #endif /* USE_MMALLOC */
960
961 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
962
963 void
964 init_malloc (void *md)
965 {
966 }
967
968 #else /* Have mmalloc and want corruption checking */
969
970 static void
971 malloc_botch ()
972 {
973 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
974 abort ();
975 }
976
977 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
978 by MD, to detect memory corruption. Note that MD may be NULL to specify
979 the default heap that grows via sbrk.
980
981 Note that for freshly created regions, we must call mmcheckf prior to any
982 mallocs in the region. Otherwise, any region which was allocated prior to
983 installing the checking hooks, which is later reallocated or freed, will
984 fail the checks! The mmcheck function only allows initial hooks to be
985 installed before the first mmalloc. However, anytime after we have called
986 mmcheck the first time to install the checking hooks, we can call it again
987 to update the function pointer to the memory corruption handler.
988
989 Returns zero on failure, non-zero on success. */
990
991 #ifndef MMCHECK_FORCE
992 #define MMCHECK_FORCE 0
993 #endif
994
995 void
996 init_malloc (void *md)
997 {
998 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
999 {
1000 /* Don't use warning(), which relies on current_target being set
1001 to something other than dummy_target, until after
1002 initialize_all_files(). */
1003
1004 fprintf_unfiltered
1005 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1006 fprintf_unfiltered
1007 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1008 }
1009
1010 mmtrace ();
1011 }
1012
1013 #endif /* Have mmalloc and want corruption checking */
1014
1015 /* Called when a memory allocation fails, with the number of bytes of
1016 memory requested in SIZE. */
1017
1018 NORETURN void
1019 nomem (size)
1020 long size;
1021 {
1022 if (size > 0)
1023 {
1024 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1025 }
1026 else
1027 {
1028 internal_error ("virtual memory exhausted.");
1029 }
1030 }
1031
1032 /* Like mmalloc but get error if no storage available, and protect against
1033 the caller wanting to allocate zero bytes. Whether to return NULL for
1034 a zero byte request, or translate the request into a request for one
1035 byte of zero'd storage, is a religious issue. */
1036
1037 PTR
1038 xmmalloc (md, size)
1039 PTR md;
1040 long size;
1041 {
1042 register PTR val;
1043
1044 if (size == 0)
1045 {
1046 val = NULL;
1047 }
1048 else if ((val = mmalloc (md, size)) == NULL)
1049 {
1050 nomem (size);
1051 }
1052 return (val);
1053 }
1054
1055 /* Like mrealloc but get error if no storage available. */
1056
1057 PTR
1058 xmrealloc (md, ptr, size)
1059 PTR md;
1060 PTR ptr;
1061 long size;
1062 {
1063 register PTR val;
1064
1065 if (ptr != NULL)
1066 {
1067 val = mrealloc (md, ptr, size);
1068 }
1069 else
1070 {
1071 val = mmalloc (md, size);
1072 }
1073 if (val == NULL)
1074 {
1075 nomem (size);
1076 }
1077 return (val);
1078 }
1079
1080 /* Like malloc but get error if no storage available, and protect against
1081 the caller wanting to allocate zero bytes. */
1082
1083 PTR
1084 xmalloc (size)
1085 size_t size;
1086 {
1087 return (xmmalloc ((PTR) NULL, size));
1088 }
1089
1090 /* Like calloc but get error if no storage available */
1091
1092 PTR
1093 xcalloc (size_t number, size_t size)
1094 {
1095 void *mem = mcalloc (NULL, number, size);
1096 if (mem == NULL)
1097 nomem (number * size);
1098 return mem;
1099 }
1100
1101 /* Like mrealloc but get error if no storage available. */
1102
1103 PTR
1104 xrealloc (ptr, size)
1105 PTR ptr;
1106 size_t size;
1107 {
1108 return (xmrealloc ((PTR) NULL, ptr, size));
1109 }
1110 \f
1111
1112 /* My replacement for the read system call.
1113 Used like `read' but keeps going if `read' returns too soon. */
1114
1115 int
1116 myread (desc, addr, len)
1117 int desc;
1118 char *addr;
1119 int len;
1120 {
1121 register int val;
1122 int orglen = len;
1123
1124 while (len > 0)
1125 {
1126 val = read (desc, addr, len);
1127 if (val < 0)
1128 return val;
1129 if (val == 0)
1130 return orglen - len;
1131 len -= val;
1132 addr += val;
1133 }
1134 return orglen;
1135 }
1136 \f
1137 /* Make a copy of the string at PTR with SIZE characters
1138 (and add a null character at the end in the copy).
1139 Uses malloc to get the space. Returns the address of the copy. */
1140
1141 char *
1142 savestring (ptr, size)
1143 const char *ptr;
1144 int size;
1145 {
1146 register char *p = (char *) xmalloc (size + 1);
1147 memcpy (p, ptr, size);
1148 p[size] = 0;
1149 return p;
1150 }
1151
1152 char *
1153 msavestring (void *md, const char *ptr, int size)
1154 {
1155 register char *p = (char *) xmmalloc (md, size + 1);
1156 memcpy (p, ptr, size);
1157 p[size] = 0;
1158 return p;
1159 }
1160
1161 /* The "const" is so it compiles under DGUX (which prototypes strsave
1162 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1163 Doesn't real strsave return NULL if out of memory? */
1164 char *
1165 strsave (ptr)
1166 const char *ptr;
1167 {
1168 return savestring (ptr, strlen (ptr));
1169 }
1170
1171 char *
1172 mstrsave (void *md, const char *ptr)
1173 {
1174 return (msavestring (md, ptr, strlen (ptr)));
1175 }
1176
1177 void
1178 print_spaces (n, file)
1179 register int n;
1180 register struct ui_file *file;
1181 {
1182 fputs_unfiltered (n_spaces (n), file);
1183 }
1184
1185 /* Print a host address. */
1186
1187 void
1188 gdb_print_host_address (void *addr, struct ui_file *stream)
1189 {
1190
1191 /* We could use the %p conversion specifier to fprintf if we had any
1192 way of knowing whether this host supports it. But the following
1193 should work on the Alpha and on 32 bit machines. */
1194
1195 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1196 }
1197
1198 /* Ask user a y-or-n question and return 1 iff answer is yes.
1199 Takes three args which are given to printf to print the question.
1200 The first, a control string, should end in "? ".
1201 It should not say how to answer, because we do that. */
1202
1203 /* VARARGS */
1204 int
1205 query (char *ctlstr,...)
1206 {
1207 va_list args;
1208 register int answer;
1209 register int ans2;
1210 int retval;
1211
1212 va_start (args, ctlstr);
1213
1214 if (query_hook)
1215 {
1216 return query_hook (ctlstr, args);
1217 }
1218
1219 /* Automatically answer "yes" if input is not from a terminal. */
1220 if (!input_from_terminal_p ())
1221 return 1;
1222 #ifdef MPW
1223 /* FIXME Automatically answer "yes" if called from MacGDB. */
1224 if (mac_app)
1225 return 1;
1226 #endif /* MPW */
1227
1228 while (1)
1229 {
1230 wrap_here (""); /* Flush any buffered output */
1231 gdb_flush (gdb_stdout);
1232
1233 if (annotation_level > 1)
1234 printf_filtered ("\n\032\032pre-query\n");
1235
1236 vfprintf_filtered (gdb_stdout, ctlstr, args);
1237 printf_filtered ("(y or n) ");
1238
1239 if (annotation_level > 1)
1240 printf_filtered ("\n\032\032query\n");
1241
1242 #ifdef MPW
1243 /* If not in MacGDB, move to a new line so the entered line doesn't
1244 have a prompt on the front of it. */
1245 if (!mac_app)
1246 fputs_unfiltered ("\n", gdb_stdout);
1247 #endif /* MPW */
1248
1249 wrap_here ("");
1250 gdb_flush (gdb_stdout);
1251
1252 #if defined(TUI)
1253 if (!tui_version || cmdWin == tuiWinWithFocus ())
1254 #endif
1255 answer = fgetc (stdin);
1256 #if defined(TUI)
1257 else
1258 answer = (unsigned char) tuiBufferGetc ();
1259
1260 #endif
1261 clearerr (stdin); /* in case of C-d */
1262 if (answer == EOF) /* C-d */
1263 {
1264 retval = 1;
1265 break;
1266 }
1267 /* Eat rest of input line, to EOF or newline */
1268 if ((answer != '\n') || (tui_version && answer != '\r'))
1269 do
1270 {
1271 #if defined(TUI)
1272 if (!tui_version || cmdWin == tuiWinWithFocus ())
1273 #endif
1274 ans2 = fgetc (stdin);
1275 #if defined(TUI)
1276 else
1277 ans2 = (unsigned char) tuiBufferGetc ();
1278 #endif
1279 clearerr (stdin);
1280 }
1281 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1282 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1283
1284 if (answer >= 'a')
1285 answer -= 040;
1286 if (answer == 'Y')
1287 {
1288 retval = 1;
1289 break;
1290 }
1291 if (answer == 'N')
1292 {
1293 retval = 0;
1294 break;
1295 }
1296 printf_filtered ("Please answer y or n.\n");
1297 }
1298
1299 if (annotation_level > 1)
1300 printf_filtered ("\n\032\032post-query\n");
1301 return retval;
1302 }
1303 \f
1304
1305 /* Parse a C escape sequence. STRING_PTR points to a variable
1306 containing a pointer to the string to parse. That pointer
1307 should point to the character after the \. That pointer
1308 is updated past the characters we use. The value of the
1309 escape sequence is returned.
1310
1311 A negative value means the sequence \ newline was seen,
1312 which is supposed to be equivalent to nothing at all.
1313
1314 If \ is followed by a null character, we return a negative
1315 value and leave the string pointer pointing at the null character.
1316
1317 If \ is followed by 000, we return 0 and leave the string pointer
1318 after the zeros. A value of 0 does not mean end of string. */
1319
1320 int
1321 parse_escape (string_ptr)
1322 char **string_ptr;
1323 {
1324 register int c = *(*string_ptr)++;
1325 switch (c)
1326 {
1327 case 'a':
1328 return 007; /* Bell (alert) char */
1329 case 'b':
1330 return '\b';
1331 case 'e': /* Escape character */
1332 return 033;
1333 case 'f':
1334 return '\f';
1335 case 'n':
1336 return '\n';
1337 case 'r':
1338 return '\r';
1339 case 't':
1340 return '\t';
1341 case 'v':
1342 return '\v';
1343 case '\n':
1344 return -2;
1345 case 0:
1346 (*string_ptr)--;
1347 return 0;
1348 case '^':
1349 c = *(*string_ptr)++;
1350 if (c == '\\')
1351 c = parse_escape (string_ptr);
1352 if (c == '?')
1353 return 0177;
1354 return (c & 0200) | (c & 037);
1355
1356 case '0':
1357 case '1':
1358 case '2':
1359 case '3':
1360 case '4':
1361 case '5':
1362 case '6':
1363 case '7':
1364 {
1365 register int i = c - '0';
1366 register int count = 0;
1367 while (++count < 3)
1368 {
1369 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1370 {
1371 i *= 8;
1372 i += c - '0';
1373 }
1374 else
1375 {
1376 (*string_ptr)--;
1377 break;
1378 }
1379 }
1380 return i;
1381 }
1382 default:
1383 return c;
1384 }
1385 }
1386 \f
1387 /* Print the character C on STREAM as part of the contents of a literal
1388 string whose delimiter is QUOTER. Note that this routine should only
1389 be call for printing things which are independent of the language
1390 of the program being debugged. */
1391
1392 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1393
1394 static void
1395 printchar (c, do_fputs, do_fprintf, stream, quoter)
1396 int c;
1397 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1398 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1399 struct ui_file *stream;
1400 int quoter;
1401 {
1402
1403 c &= 0xFF; /* Avoid sign bit follies */
1404
1405 if (c < 0x20 || /* Low control chars */
1406 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1407 (sevenbit_strings && c >= 0x80))
1408 { /* high order bit set */
1409 switch (c)
1410 {
1411 case '\n':
1412 do_fputs ("\\n", stream);
1413 break;
1414 case '\b':
1415 do_fputs ("\\b", stream);
1416 break;
1417 case '\t':
1418 do_fputs ("\\t", stream);
1419 break;
1420 case '\f':
1421 do_fputs ("\\f", stream);
1422 break;
1423 case '\r':
1424 do_fputs ("\\r", stream);
1425 break;
1426 case '\033':
1427 do_fputs ("\\e", stream);
1428 break;
1429 case '\007':
1430 do_fputs ("\\a", stream);
1431 break;
1432 default:
1433 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1434 break;
1435 }
1436 }
1437 else
1438 {
1439 if (c == '\\' || c == quoter)
1440 do_fputs ("\\", stream);
1441 do_fprintf (stream, "%c", c);
1442 }
1443 }
1444
1445 /* Print the character C on STREAM as part of the contents of a
1446 literal string whose delimiter is QUOTER. Note that these routines
1447 should only be call for printing things which are independent of
1448 the language of the program being debugged. */
1449
1450 void
1451 fputstr_filtered (str, quoter, stream)
1452 const char *str;
1453 int quoter;
1454 struct ui_file *stream;
1455 {
1456 while (*str)
1457 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1458 }
1459
1460 void
1461 fputstr_unfiltered (str, quoter, stream)
1462 const char *str;
1463 int quoter;
1464 struct ui_file *stream;
1465 {
1466 while (*str)
1467 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1468 }
1469
1470 void
1471 fputstrn_unfiltered (str, n, quoter, stream)
1472 const char *str;
1473 int n;
1474 int quoter;
1475 struct ui_file *stream;
1476 {
1477 int i;
1478 for (i = 0; i < n; i++)
1479 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1480 }
1481
1482 \f
1483
1484 /* Number of lines per page or UINT_MAX if paging is disabled. */
1485 static unsigned int lines_per_page;
1486 /* Number of chars per line or UNIT_MAX if line folding is disabled. */
1487 static unsigned int chars_per_line;
1488 /* Current count of lines printed on this page, chars on this line. */
1489 static unsigned int lines_printed, chars_printed;
1490
1491 /* Buffer and start column of buffered text, for doing smarter word-
1492 wrapping. When someone calls wrap_here(), we start buffering output
1493 that comes through fputs_filtered(). If we see a newline, we just
1494 spit it out and forget about the wrap_here(). If we see another
1495 wrap_here(), we spit it out and remember the newer one. If we see
1496 the end of the line, we spit out a newline, the indent, and then
1497 the buffered output. */
1498
1499 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1500 are waiting to be output (they have already been counted in chars_printed).
1501 When wrap_buffer[0] is null, the buffer is empty. */
1502 static char *wrap_buffer;
1503
1504 /* Pointer in wrap_buffer to the next character to fill. */
1505 static char *wrap_pointer;
1506
1507 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1508 is non-zero. */
1509 static char *wrap_indent;
1510
1511 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1512 is not in effect. */
1513 static int wrap_column;
1514 \f
1515
1516 /* Inialize the lines and chars per page */
1517 void
1518 init_page_info ()
1519 {
1520 #if defined(TUI)
1521 if (tui_version && m_winPtrNotNull (cmdWin))
1522 {
1523 lines_per_page = cmdWin->generic.height;
1524 chars_per_line = cmdWin->generic.width;
1525 }
1526 else
1527 #endif
1528 {
1529 /* These defaults will be used if we are unable to get the correct
1530 values from termcap. */
1531 #if defined(__GO32__)
1532 lines_per_page = ScreenRows ();
1533 chars_per_line = ScreenCols ();
1534 #else
1535 lines_per_page = 24;
1536 chars_per_line = 80;
1537
1538 #if !defined (MPW) && !defined (_WIN32)
1539 /* No termcap under MPW, although might be cool to do something
1540 by looking at worksheet or console window sizes. */
1541 /* Initialize the screen height and width from termcap. */
1542 {
1543 char *termtype = getenv ("TERM");
1544
1545 /* Positive means success, nonpositive means failure. */
1546 int status;
1547
1548 /* 2048 is large enough for all known terminals, according to the
1549 GNU termcap manual. */
1550 char term_buffer[2048];
1551
1552 if (termtype)
1553 {
1554 status = tgetent (term_buffer, termtype);
1555 if (status > 0)
1556 {
1557 int val;
1558 int running_in_emacs = getenv ("EMACS") != NULL;
1559
1560 val = tgetnum ("li");
1561 if (val >= 0 && !running_in_emacs)
1562 lines_per_page = val;
1563 else
1564 /* The number of lines per page is not mentioned
1565 in the terminal description. This probably means
1566 that paging is not useful (e.g. emacs shell window),
1567 so disable paging. */
1568 lines_per_page = UINT_MAX;
1569
1570 val = tgetnum ("co");
1571 if (val >= 0)
1572 chars_per_line = val;
1573 }
1574 }
1575 }
1576 #endif /* MPW */
1577
1578 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1579
1580 /* If there is a better way to determine the window size, use it. */
1581 SIGWINCH_HANDLER (SIGWINCH);
1582 #endif
1583 #endif
1584 /* If the output is not a terminal, don't paginate it. */
1585 if (!ui_file_isatty (gdb_stdout))
1586 lines_per_page = UINT_MAX;
1587 } /* the command_line_version */
1588 set_width ();
1589 }
1590
1591 static void
1592 set_width ()
1593 {
1594 if (chars_per_line == 0)
1595 init_page_info ();
1596
1597 if (!wrap_buffer)
1598 {
1599 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1600 wrap_buffer[0] = '\0';
1601 }
1602 else
1603 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1604 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1605 }
1606
1607 /* ARGSUSED */
1608 static void
1609 set_width_command (args, from_tty, c)
1610 char *args;
1611 int from_tty;
1612 struct cmd_list_element *c;
1613 {
1614 set_width ();
1615 }
1616
1617 /* Wait, so the user can read what's on the screen. Prompt the user
1618 to continue by pressing RETURN. */
1619
1620 static void
1621 prompt_for_continue ()
1622 {
1623 char *ignore;
1624 char cont_prompt[120];
1625
1626 if (annotation_level > 1)
1627 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1628
1629 strcpy (cont_prompt,
1630 "---Type <return> to continue, or q <return> to quit---");
1631 if (annotation_level > 1)
1632 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1633
1634 /* We must do this *before* we call gdb_readline, else it will eventually
1635 call us -- thinking that we're trying to print beyond the end of the
1636 screen. */
1637 reinitialize_more_filter ();
1638
1639 immediate_quit++;
1640 /* On a real operating system, the user can quit with SIGINT.
1641 But not on GO32.
1642
1643 'q' is provided on all systems so users don't have to change habits
1644 from system to system, and because telling them what to do in
1645 the prompt is more user-friendly than expecting them to think of
1646 SIGINT. */
1647 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1648 whereas control-C to gdb_readline will cause the user to get dumped
1649 out to DOS. */
1650 ignore = readline (cont_prompt);
1651
1652 if (annotation_level > 1)
1653 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1654
1655 if (ignore)
1656 {
1657 char *p = ignore;
1658 while (*p == ' ' || *p == '\t')
1659 ++p;
1660 if (p[0] == 'q')
1661 {
1662 if (!event_loop_p)
1663 request_quit (SIGINT);
1664 else
1665 async_request_quit (0);
1666 }
1667 free (ignore);
1668 }
1669 immediate_quit--;
1670
1671 /* Now we have to do this again, so that GDB will know that it doesn't
1672 need to save the ---Type <return>--- line at the top of the screen. */
1673 reinitialize_more_filter ();
1674
1675 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1676 }
1677
1678 /* Reinitialize filter; ie. tell it to reset to original values. */
1679
1680 void
1681 reinitialize_more_filter ()
1682 {
1683 lines_printed = 0;
1684 chars_printed = 0;
1685 }
1686
1687 /* Indicate that if the next sequence of characters overflows the line,
1688 a newline should be inserted here rather than when it hits the end.
1689 If INDENT is non-null, it is a string to be printed to indent the
1690 wrapped part on the next line. INDENT must remain accessible until
1691 the next call to wrap_here() or until a newline is printed through
1692 fputs_filtered().
1693
1694 If the line is already overfull, we immediately print a newline and
1695 the indentation, and disable further wrapping.
1696
1697 If we don't know the width of lines, but we know the page height,
1698 we must not wrap words, but should still keep track of newlines
1699 that were explicitly printed.
1700
1701 INDENT should not contain tabs, as that will mess up the char count
1702 on the next line. FIXME.
1703
1704 This routine is guaranteed to force out any output which has been
1705 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1706 used to force out output from the wrap_buffer. */
1707
1708 void
1709 wrap_here (indent)
1710 char *indent;
1711 {
1712 /* This should have been allocated, but be paranoid anyway. */
1713 if (!wrap_buffer)
1714 abort ();
1715
1716 if (wrap_buffer[0])
1717 {
1718 *wrap_pointer = '\0';
1719 fputs_unfiltered (wrap_buffer, gdb_stdout);
1720 }
1721 wrap_pointer = wrap_buffer;
1722 wrap_buffer[0] = '\0';
1723 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1724 {
1725 wrap_column = 0;
1726 }
1727 else if (chars_printed >= chars_per_line)
1728 {
1729 puts_filtered ("\n");
1730 if (indent != NULL)
1731 puts_filtered (indent);
1732 wrap_column = 0;
1733 }
1734 else
1735 {
1736 wrap_column = chars_printed;
1737 if (indent == NULL)
1738 wrap_indent = "";
1739 else
1740 wrap_indent = indent;
1741 }
1742 }
1743
1744 /* Ensure that whatever gets printed next, using the filtered output
1745 commands, starts at the beginning of the line. I.E. if there is
1746 any pending output for the current line, flush it and start a new
1747 line. Otherwise do nothing. */
1748
1749 void
1750 begin_line ()
1751 {
1752 if (chars_printed > 0)
1753 {
1754 puts_filtered ("\n");
1755 }
1756 }
1757
1758
1759 /* Like fputs but if FILTER is true, pause after every screenful.
1760
1761 Regardless of FILTER can wrap at points other than the final
1762 character of a line.
1763
1764 Unlike fputs, fputs_maybe_filtered does not return a value.
1765 It is OK for LINEBUFFER to be NULL, in which case just don't print
1766 anything.
1767
1768 Note that a longjmp to top level may occur in this routine (only if
1769 FILTER is true) (since prompt_for_continue may do so) so this
1770 routine should not be called when cleanups are not in place. */
1771
1772 static void
1773 fputs_maybe_filtered (linebuffer, stream, filter)
1774 const char *linebuffer;
1775 struct ui_file *stream;
1776 int filter;
1777 {
1778 const char *lineptr;
1779
1780 if (linebuffer == 0)
1781 return;
1782
1783 /* Don't do any filtering if it is disabled. */
1784 if ((stream != gdb_stdout) || !pagination_enabled
1785 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1786 {
1787 fputs_unfiltered (linebuffer, stream);
1788 return;
1789 }
1790
1791 /* Go through and output each character. Show line extension
1792 when this is necessary; prompt user for new page when this is
1793 necessary. */
1794
1795 lineptr = linebuffer;
1796 while (*lineptr)
1797 {
1798 /* Possible new page. */
1799 if (filter &&
1800 (lines_printed >= lines_per_page - 1))
1801 prompt_for_continue ();
1802
1803 while (*lineptr && *lineptr != '\n')
1804 {
1805 /* Print a single line. */
1806 if (*lineptr == '\t')
1807 {
1808 if (wrap_column)
1809 *wrap_pointer++ = '\t';
1810 else
1811 fputc_unfiltered ('\t', stream);
1812 /* Shifting right by 3 produces the number of tab stops
1813 we have already passed, and then adding one and
1814 shifting left 3 advances to the next tab stop. */
1815 chars_printed = ((chars_printed >> 3) + 1) << 3;
1816 lineptr++;
1817 }
1818 else
1819 {
1820 if (wrap_column)
1821 *wrap_pointer++ = *lineptr;
1822 else
1823 fputc_unfiltered (*lineptr, stream);
1824 chars_printed++;
1825 lineptr++;
1826 }
1827
1828 if (chars_printed >= chars_per_line)
1829 {
1830 unsigned int save_chars = chars_printed;
1831
1832 chars_printed = 0;
1833 lines_printed++;
1834 /* If we aren't actually wrapping, don't output newline --
1835 if chars_per_line is right, we probably just overflowed
1836 anyway; if it's wrong, let us keep going. */
1837 if (wrap_column)
1838 fputc_unfiltered ('\n', stream);
1839
1840 /* Possible new page. */
1841 if (lines_printed >= lines_per_page - 1)
1842 prompt_for_continue ();
1843
1844 /* Now output indentation and wrapped string */
1845 if (wrap_column)
1846 {
1847 fputs_unfiltered (wrap_indent, stream);
1848 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1849 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1850 /* FIXME, this strlen is what prevents wrap_indent from
1851 containing tabs. However, if we recurse to print it
1852 and count its chars, we risk trouble if wrap_indent is
1853 longer than (the user settable) chars_per_line.
1854 Note also that this can set chars_printed > chars_per_line
1855 if we are printing a long string. */
1856 chars_printed = strlen (wrap_indent)
1857 + (save_chars - wrap_column);
1858 wrap_pointer = wrap_buffer; /* Reset buffer */
1859 wrap_buffer[0] = '\0';
1860 wrap_column = 0; /* And disable fancy wrap */
1861 }
1862 }
1863 }
1864
1865 if (*lineptr == '\n')
1866 {
1867 chars_printed = 0;
1868 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1869 lines_printed++;
1870 fputc_unfiltered ('\n', stream);
1871 lineptr++;
1872 }
1873 }
1874 }
1875
1876 void
1877 fputs_filtered (linebuffer, stream)
1878 const char *linebuffer;
1879 struct ui_file *stream;
1880 {
1881 fputs_maybe_filtered (linebuffer, stream, 1);
1882 }
1883
1884 int
1885 putchar_unfiltered (c)
1886 int c;
1887 {
1888 char buf = c;
1889 ui_file_write (gdb_stdout, &buf, 1);
1890 return c;
1891 }
1892
1893 int
1894 fputc_unfiltered (c, stream)
1895 int c;
1896 struct ui_file *stream;
1897 {
1898 char buf = c;
1899 ui_file_write (stream, &buf, 1);
1900 return c;
1901 }
1902
1903 int
1904 fputc_filtered (c, stream)
1905 int c;
1906 struct ui_file *stream;
1907 {
1908 char buf[2];
1909
1910 buf[0] = c;
1911 buf[1] = 0;
1912 fputs_filtered (buf, stream);
1913 return c;
1914 }
1915
1916 /* puts_debug is like fputs_unfiltered, except it prints special
1917 characters in printable fashion. */
1918
1919 void
1920 puts_debug (prefix, string, suffix)
1921 char *prefix;
1922 char *string;
1923 char *suffix;
1924 {
1925 int ch;
1926
1927 /* Print prefix and suffix after each line. */
1928 static int new_line = 1;
1929 static int return_p = 0;
1930 static char *prev_prefix = "";
1931 static char *prev_suffix = "";
1932
1933 if (*string == '\n')
1934 return_p = 0;
1935
1936 /* If the prefix is changing, print the previous suffix, a new line,
1937 and the new prefix. */
1938 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1939 {
1940 fputs_unfiltered (prev_suffix, gdb_stdlog);
1941 fputs_unfiltered ("\n", gdb_stdlog);
1942 fputs_unfiltered (prefix, gdb_stdlog);
1943 }
1944
1945 /* Print prefix if we printed a newline during the previous call. */
1946 if (new_line)
1947 {
1948 new_line = 0;
1949 fputs_unfiltered (prefix, gdb_stdlog);
1950 }
1951
1952 prev_prefix = prefix;
1953 prev_suffix = suffix;
1954
1955 /* Output characters in a printable format. */
1956 while ((ch = *string++) != '\0')
1957 {
1958 switch (ch)
1959 {
1960 default:
1961 if (isprint (ch))
1962 fputc_unfiltered (ch, gdb_stdlog);
1963
1964 else
1965 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1966 break;
1967
1968 case '\\':
1969 fputs_unfiltered ("\\\\", gdb_stdlog);
1970 break;
1971 case '\b':
1972 fputs_unfiltered ("\\b", gdb_stdlog);
1973 break;
1974 case '\f':
1975 fputs_unfiltered ("\\f", gdb_stdlog);
1976 break;
1977 case '\n':
1978 new_line = 1;
1979 fputs_unfiltered ("\\n", gdb_stdlog);
1980 break;
1981 case '\r':
1982 fputs_unfiltered ("\\r", gdb_stdlog);
1983 break;
1984 case '\t':
1985 fputs_unfiltered ("\\t", gdb_stdlog);
1986 break;
1987 case '\v':
1988 fputs_unfiltered ("\\v", gdb_stdlog);
1989 break;
1990 }
1991
1992 return_p = ch == '\r';
1993 }
1994
1995 /* Print suffix if we printed a newline. */
1996 if (new_line)
1997 {
1998 fputs_unfiltered (suffix, gdb_stdlog);
1999 fputs_unfiltered ("\n", gdb_stdlog);
2000 }
2001 }
2002
2003
2004 /* Print a variable number of ARGS using format FORMAT. If this
2005 information is going to put the amount written (since the last call
2006 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2007 call prompt_for_continue to get the users permision to continue.
2008
2009 Unlike fprintf, this function does not return a value.
2010
2011 We implement three variants, vfprintf (takes a vararg list and stream),
2012 fprintf (takes a stream to write on), and printf (the usual).
2013
2014 Note also that a longjmp to top level may occur in this routine
2015 (since prompt_for_continue may do so) so this routine should not be
2016 called when cleanups are not in place. */
2017
2018 static void
2019 vfprintf_maybe_filtered (stream, format, args, filter)
2020 struct ui_file *stream;
2021 const char *format;
2022 va_list args;
2023 int filter;
2024 {
2025 char *linebuffer;
2026 struct cleanup *old_cleanups;
2027
2028 vasprintf (&linebuffer, format, args);
2029 if (linebuffer == NULL)
2030 {
2031 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2032 exit (1);
2033 }
2034 old_cleanups = make_cleanup (free, linebuffer);
2035 fputs_maybe_filtered (linebuffer, stream, filter);
2036 do_cleanups (old_cleanups);
2037 }
2038
2039
2040 void
2041 vfprintf_filtered (stream, format, args)
2042 struct ui_file *stream;
2043 const char *format;
2044 va_list args;
2045 {
2046 vfprintf_maybe_filtered (stream, format, args, 1);
2047 }
2048
2049 void
2050 vfprintf_unfiltered (stream, format, args)
2051 struct ui_file *stream;
2052 const char *format;
2053 va_list args;
2054 {
2055 char *linebuffer;
2056 struct cleanup *old_cleanups;
2057
2058 vasprintf (&linebuffer, format, args);
2059 if (linebuffer == NULL)
2060 {
2061 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2062 exit (1);
2063 }
2064 old_cleanups = make_cleanup (free, linebuffer);
2065 fputs_unfiltered (linebuffer, stream);
2066 do_cleanups (old_cleanups);
2067 }
2068
2069 void
2070 vprintf_filtered (format, args)
2071 const char *format;
2072 va_list args;
2073 {
2074 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2075 }
2076
2077 void
2078 vprintf_unfiltered (format, args)
2079 const char *format;
2080 va_list args;
2081 {
2082 vfprintf_unfiltered (gdb_stdout, format, args);
2083 }
2084
2085 void
2086 fprintf_filtered (struct ui_file * stream, const char *format,...)
2087 {
2088 va_list args;
2089 va_start (args, format);
2090 vfprintf_filtered (stream, format, args);
2091 va_end (args);
2092 }
2093
2094 void
2095 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2096 {
2097 va_list args;
2098 va_start (args, format);
2099 vfprintf_unfiltered (stream, format, args);
2100 va_end (args);
2101 }
2102
2103 /* Like fprintf_filtered, but prints its result indented.
2104 Called as fprintfi_filtered (spaces, stream, format, ...); */
2105
2106 void
2107 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2108 {
2109 va_list args;
2110 va_start (args, format);
2111 print_spaces_filtered (spaces, stream);
2112
2113 vfprintf_filtered (stream, format, args);
2114 va_end (args);
2115 }
2116
2117
2118 void
2119 printf_filtered (const char *format,...)
2120 {
2121 va_list args;
2122 va_start (args, format);
2123 vfprintf_filtered (gdb_stdout, format, args);
2124 va_end (args);
2125 }
2126
2127
2128 void
2129 printf_unfiltered (const char *format,...)
2130 {
2131 va_list args;
2132 va_start (args, format);
2133 vfprintf_unfiltered (gdb_stdout, format, args);
2134 va_end (args);
2135 }
2136
2137 /* Like printf_filtered, but prints it's result indented.
2138 Called as printfi_filtered (spaces, format, ...); */
2139
2140 void
2141 printfi_filtered (int spaces, const char *format,...)
2142 {
2143 va_list args;
2144 va_start (args, format);
2145 print_spaces_filtered (spaces, gdb_stdout);
2146 vfprintf_filtered (gdb_stdout, format, args);
2147 va_end (args);
2148 }
2149
2150 /* Easy -- but watch out!
2151
2152 This routine is *not* a replacement for puts()! puts() appends a newline.
2153 This one doesn't, and had better not! */
2154
2155 void
2156 puts_filtered (string)
2157 const char *string;
2158 {
2159 fputs_filtered (string, gdb_stdout);
2160 }
2161
2162 void
2163 puts_unfiltered (string)
2164 const char *string;
2165 {
2166 fputs_unfiltered (string, gdb_stdout);
2167 }
2168
2169 /* Return a pointer to N spaces and a null. The pointer is good
2170 until the next call to here. */
2171 char *
2172 n_spaces (n)
2173 int n;
2174 {
2175 char *t;
2176 static char *spaces = 0;
2177 static int max_spaces = -1;
2178
2179 if (n > max_spaces)
2180 {
2181 if (spaces)
2182 free (spaces);
2183 spaces = (char *) xmalloc (n + 1);
2184 for (t = spaces + n; t != spaces;)
2185 *--t = ' ';
2186 spaces[n] = '\0';
2187 max_spaces = n;
2188 }
2189
2190 return spaces + max_spaces - n;
2191 }
2192
2193 /* Print N spaces. */
2194 void
2195 print_spaces_filtered (n, stream)
2196 int n;
2197 struct ui_file *stream;
2198 {
2199 fputs_filtered (n_spaces (n), stream);
2200 }
2201 \f
2202 /* C++ demangler stuff. */
2203
2204 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2205 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2206 If the name is not mangled, or the language for the name is unknown, or
2207 demangling is off, the name is printed in its "raw" form. */
2208
2209 void
2210 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2211 struct ui_file *stream;
2212 char *name;
2213 enum language lang;
2214 int arg_mode;
2215 {
2216 char *demangled;
2217
2218 if (name != NULL)
2219 {
2220 /* If user wants to see raw output, no problem. */
2221 if (!demangle)
2222 {
2223 fputs_filtered (name, stream);
2224 }
2225 else
2226 {
2227 switch (lang)
2228 {
2229 case language_cplus:
2230 demangled = cplus_demangle (name, arg_mode);
2231 break;
2232 case language_java:
2233 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2234 break;
2235 case language_chill:
2236 demangled = chill_demangle (name);
2237 break;
2238 default:
2239 demangled = NULL;
2240 break;
2241 }
2242 fputs_filtered (demangled ? demangled : name, stream);
2243 if (demangled != NULL)
2244 {
2245 free (demangled);
2246 }
2247 }
2248 }
2249 }
2250
2251 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2252 differences in whitespace. Returns 0 if they match, non-zero if they
2253 don't (slightly different than strcmp()'s range of return values).
2254
2255 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2256 This "feature" is useful when searching for matching C++ function names
2257 (such as if the user types 'break FOO', where FOO is a mangled C++
2258 function). */
2259
2260 int
2261 strcmp_iw (string1, string2)
2262 const char *string1;
2263 const char *string2;
2264 {
2265 while ((*string1 != '\0') && (*string2 != '\0'))
2266 {
2267 while (isspace (*string1))
2268 {
2269 string1++;
2270 }
2271 while (isspace (*string2))
2272 {
2273 string2++;
2274 }
2275 if (*string1 != *string2)
2276 {
2277 break;
2278 }
2279 if (*string1 != '\0')
2280 {
2281 string1++;
2282 string2++;
2283 }
2284 }
2285 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2286 }
2287 \f
2288
2289 /*
2290 ** subset_compare()
2291 ** Answer whether string_to_compare is a full or partial match to
2292 ** template_string. The partial match must be in sequence starting
2293 ** at index 0.
2294 */
2295 int
2296 subset_compare (string_to_compare, template_string)
2297 char *string_to_compare;
2298 char *template_string;
2299 {
2300 int match;
2301 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2302 strlen (string_to_compare) <= strlen (template_string))
2303 match = (strncmp (template_string,
2304 string_to_compare,
2305 strlen (string_to_compare)) == 0);
2306 else
2307 match = 0;
2308 return match;
2309 }
2310
2311
2312 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2313 static void
2314 pagination_on_command (arg, from_tty)
2315 char *arg;
2316 int from_tty;
2317 {
2318 pagination_enabled = 1;
2319 }
2320
2321 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2322 static void
2323 pagination_off_command (arg, from_tty)
2324 char *arg;
2325 int from_tty;
2326 {
2327 pagination_enabled = 0;
2328 }
2329 \f
2330
2331 void
2332 initialize_utils ()
2333 {
2334 struct cmd_list_element *c;
2335
2336 c = add_set_cmd ("width", class_support, var_uinteger,
2337 (char *) &chars_per_line,
2338 "Set number of characters gdb thinks are in a line.",
2339 &setlist);
2340 add_show_from_set (c, &showlist);
2341 c->function.sfunc = set_width_command;
2342
2343 add_show_from_set
2344 (add_set_cmd ("height", class_support,
2345 var_uinteger, (char *) &lines_per_page,
2346 "Set number of lines gdb thinks are in a page.", &setlist),
2347 &showlist);
2348
2349 init_page_info ();
2350
2351 /* If the output is not a terminal, don't paginate it. */
2352 if (!ui_file_isatty (gdb_stdout))
2353 lines_per_page = UINT_MAX;
2354
2355 set_width_command ((char *) NULL, 0, c);
2356
2357 add_show_from_set
2358 (add_set_cmd ("demangle", class_support, var_boolean,
2359 (char *) &demangle,
2360 "Set demangling of encoded C++ names when displaying symbols.",
2361 &setprintlist),
2362 &showprintlist);
2363
2364 add_show_from_set
2365 (add_set_cmd ("pagination", class_support,
2366 var_boolean, (char *) &pagination_enabled,
2367 "Set state of pagination.", &setlist),
2368 &showlist);
2369
2370 if (xdb_commands)
2371 {
2372 add_com ("am", class_support, pagination_on_command,
2373 "Enable pagination");
2374 add_com ("sm", class_support, pagination_off_command,
2375 "Disable pagination");
2376 }
2377
2378 add_show_from_set
2379 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2380 (char *) &sevenbit_strings,
2381 "Set printing of 8-bit characters in strings as \\nnn.",
2382 &setprintlist),
2383 &showprintlist);
2384
2385 add_show_from_set
2386 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2387 (char *) &asm_demangle,
2388 "Set demangling of C++ names in disassembly listings.",
2389 &setprintlist),
2390 &showprintlist);
2391 }
2392
2393 /* Machine specific function to handle SIGWINCH signal. */
2394
2395 #ifdef SIGWINCH_HANDLER_BODY
2396 SIGWINCH_HANDLER_BODY
2397 #endif
2398 \f
2399 /* Support for converting target fp numbers into host DOUBLEST format. */
2400
2401 /* XXX - This code should really be in libiberty/floatformat.c, however
2402 configuration issues with libiberty made this very difficult to do in the
2403 available time. */
2404
2405 #include "floatformat.h"
2406 #include <math.h> /* ldexp */
2407
2408 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2409 going to bother with trying to muck around with whether it is defined in
2410 a system header, what we do if not, etc. */
2411 #define FLOATFORMAT_CHAR_BIT 8
2412
2413 static unsigned long get_field PARAMS ((unsigned char *,
2414 enum floatformat_byteorders,
2415 unsigned int,
2416 unsigned int,
2417 unsigned int));
2418
2419 /* Extract a field which starts at START and is LEN bytes long. DATA and
2420 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2421 static unsigned long
2422 get_field (data, order, total_len, start, len)
2423 unsigned char *data;
2424 enum floatformat_byteorders order;
2425 unsigned int total_len;
2426 unsigned int start;
2427 unsigned int len;
2428 {
2429 unsigned long result;
2430 unsigned int cur_byte;
2431 int cur_bitshift;
2432
2433 /* Start at the least significant part of the field. */
2434 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2435 {
2436 /* We start counting from the other end (i.e, from the high bytes
2437 rather than the low bytes). As such, we need to be concerned
2438 with what happens if bit 0 doesn't start on a byte boundary.
2439 I.e, we need to properly handle the case where total_len is
2440 not evenly divisible by 8. So we compute ``excess'' which
2441 represents the number of bits from the end of our starting
2442 byte needed to get to bit 0. */
2443 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2444 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2445 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2446 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2447 - FLOATFORMAT_CHAR_BIT;
2448 }
2449 else
2450 {
2451 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2452 cur_bitshift =
2453 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2454 }
2455 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2456 result = *(data + cur_byte) >> (-cur_bitshift);
2457 else
2458 result = 0;
2459 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2460 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2461 ++cur_byte;
2462 else
2463 --cur_byte;
2464
2465 /* Move towards the most significant part of the field. */
2466 while (cur_bitshift < len)
2467 {
2468 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2469 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2470 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2471 ++cur_byte;
2472 else
2473 --cur_byte;
2474 }
2475 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2476 /* Mask out bits which are not part of the field */
2477 result &= ((1UL << len) - 1);
2478 return result;
2479 }
2480
2481 /* Convert from FMT to a DOUBLEST.
2482 FROM is the address of the extended float.
2483 Store the DOUBLEST in *TO. */
2484
2485 void
2486 floatformat_to_doublest (fmt, from, to)
2487 const struct floatformat *fmt;
2488 char *from;
2489 DOUBLEST *to;
2490 {
2491 unsigned char *ufrom = (unsigned char *) from;
2492 DOUBLEST dto;
2493 long exponent;
2494 unsigned long mant;
2495 unsigned int mant_bits, mant_off;
2496 int mant_bits_left;
2497 int special_exponent; /* It's a NaN, denorm or zero */
2498
2499 /* If the mantissa bits are not contiguous from one end of the
2500 mantissa to the other, we need to make a private copy of the
2501 source bytes that is in the right order since the unpacking
2502 algorithm assumes that the bits are contiguous.
2503
2504 Swap the bytes individually rather than accessing them through
2505 "long *" since we have no guarantee that they start on a long
2506 alignment, and also sizeof(long) for the host could be different
2507 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2508 for the target is 4. */
2509
2510 if (fmt->byteorder == floatformat_littlebyte_bigword)
2511 {
2512 static unsigned char *newfrom;
2513 unsigned char *swapin, *swapout;
2514 int longswaps;
2515
2516 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2517 longswaps >>= 3;
2518
2519 if (newfrom == NULL)
2520 {
2521 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2522 }
2523 swapout = newfrom;
2524 swapin = ufrom;
2525 ufrom = newfrom;
2526 while (longswaps-- > 0)
2527 {
2528 /* This is ugly, but efficient */
2529 *swapout++ = swapin[4];
2530 *swapout++ = swapin[5];
2531 *swapout++ = swapin[6];
2532 *swapout++ = swapin[7];
2533 *swapout++ = swapin[0];
2534 *swapout++ = swapin[1];
2535 *swapout++ = swapin[2];
2536 *swapout++ = swapin[3];
2537 swapin += 8;
2538 }
2539 }
2540
2541 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2542 fmt->exp_start, fmt->exp_len);
2543 /* Note that if exponent indicates a NaN, we can't really do anything useful
2544 (not knowing if the host has NaN's, or how to build one). So it will
2545 end up as an infinity or something close; that is OK. */
2546
2547 mant_bits_left = fmt->man_len;
2548 mant_off = fmt->man_start;
2549 dto = 0.0;
2550
2551 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2552
2553 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2554 we don't check for zero as the exponent doesn't matter. */
2555 if (!special_exponent)
2556 exponent -= fmt->exp_bias;
2557 else if (exponent == 0)
2558 exponent = 1 - fmt->exp_bias;
2559
2560 /* Build the result algebraically. Might go infinite, underflow, etc;
2561 who cares. */
2562
2563 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2564 increment the exponent by one to account for the integer bit. */
2565
2566 if (!special_exponent)
2567 {
2568 if (fmt->intbit == floatformat_intbit_no)
2569 dto = ldexp (1.0, exponent);
2570 else
2571 exponent++;
2572 }
2573
2574 while (mant_bits_left > 0)
2575 {
2576 mant_bits = min (mant_bits_left, 32);
2577
2578 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2579 mant_off, mant_bits);
2580
2581 dto += ldexp ((double) mant, exponent - mant_bits);
2582 exponent -= mant_bits;
2583 mant_off += mant_bits;
2584 mant_bits_left -= mant_bits;
2585 }
2586
2587 /* Negate it if negative. */
2588 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2589 dto = -dto;
2590 *to = dto;
2591 }
2592 \f
2593 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2594 unsigned int,
2595 unsigned int,
2596 unsigned int,
2597 unsigned long));
2598
2599 /* Set a field which starts at START and is LEN bytes long. DATA and
2600 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2601 static void
2602 put_field (data, order, total_len, start, len, stuff_to_put)
2603 unsigned char *data;
2604 enum floatformat_byteorders order;
2605 unsigned int total_len;
2606 unsigned int start;
2607 unsigned int len;
2608 unsigned long stuff_to_put;
2609 {
2610 unsigned int cur_byte;
2611 int cur_bitshift;
2612
2613 /* Start at the least significant part of the field. */
2614 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2615 {
2616 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2617 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2618 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2619 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2620 - FLOATFORMAT_CHAR_BIT;
2621 }
2622 else
2623 {
2624 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2625 cur_bitshift =
2626 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2627 }
2628 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2629 {
2630 *(data + cur_byte) &=
2631 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2632 << (-cur_bitshift));
2633 *(data + cur_byte) |=
2634 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2635 }
2636 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2637 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2638 ++cur_byte;
2639 else
2640 --cur_byte;
2641
2642 /* Move towards the most significant part of the field. */
2643 while (cur_bitshift < len)
2644 {
2645 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2646 {
2647 /* This is the last byte. */
2648 *(data + cur_byte) &=
2649 ~((1 << (len - cur_bitshift)) - 1);
2650 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2651 }
2652 else
2653 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2654 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2655 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2656 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2657 ++cur_byte;
2658 else
2659 --cur_byte;
2660 }
2661 }
2662
2663 #ifdef HAVE_LONG_DOUBLE
2664 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2665 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2666 frexp, but operates on the long double data type. */
2667
2668 static long double ldfrexp PARAMS ((long double value, int *eptr));
2669
2670 static long double
2671 ldfrexp (value, eptr)
2672 long double value;
2673 int *eptr;
2674 {
2675 long double tmp;
2676 int exp;
2677
2678 /* Unfortunately, there are no portable functions for extracting the exponent
2679 of a long double, so we have to do it iteratively by multiplying or dividing
2680 by two until the fraction is between 0.5 and 1.0. */
2681
2682 if (value < 0.0l)
2683 value = -value;
2684
2685 tmp = 1.0l;
2686 exp = 0;
2687
2688 if (value >= tmp) /* Value >= 1.0 */
2689 while (value >= tmp)
2690 {
2691 tmp *= 2.0l;
2692 exp++;
2693 }
2694 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2695 {
2696 while (value < tmp)
2697 {
2698 tmp /= 2.0l;
2699 exp--;
2700 }
2701 tmp *= 2.0l;
2702 exp++;
2703 }
2704
2705 *eptr = exp;
2706 return value / tmp;
2707 }
2708 #endif /* HAVE_LONG_DOUBLE */
2709
2710
2711 /* The converse: convert the DOUBLEST *FROM to an extended float
2712 and store where TO points. Neither FROM nor TO have any alignment
2713 restrictions. */
2714
2715 void
2716 floatformat_from_doublest (fmt, from, to)
2717 CONST struct floatformat *fmt;
2718 DOUBLEST *from;
2719 char *to;
2720 {
2721 DOUBLEST dfrom;
2722 int exponent;
2723 DOUBLEST mant;
2724 unsigned int mant_bits, mant_off;
2725 int mant_bits_left;
2726 unsigned char *uto = (unsigned char *) to;
2727
2728 memcpy (&dfrom, from, sizeof (dfrom));
2729 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2730 / FLOATFORMAT_CHAR_BIT);
2731 if (dfrom == 0)
2732 return; /* Result is zero */
2733 if (dfrom != dfrom) /* Result is NaN */
2734 {
2735 /* From is NaN */
2736 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2737 fmt->exp_len, fmt->exp_nan);
2738 /* Be sure it's not infinity, but NaN value is irrel */
2739 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2740 32, 1);
2741 return;
2742 }
2743
2744 /* If negative, set the sign bit. */
2745 if (dfrom < 0)
2746 {
2747 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2748 dfrom = -dfrom;
2749 }
2750
2751 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2752 {
2753 /* Infinity exponent is same as NaN's. */
2754 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2755 fmt->exp_len, fmt->exp_nan);
2756 /* Infinity mantissa is all zeroes. */
2757 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2758 fmt->man_len, 0);
2759 return;
2760 }
2761
2762 #ifdef HAVE_LONG_DOUBLE
2763 mant = ldfrexp (dfrom, &exponent);
2764 #else
2765 mant = frexp (dfrom, &exponent);
2766 #endif
2767
2768 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2769 exponent + fmt->exp_bias - 1);
2770
2771 mant_bits_left = fmt->man_len;
2772 mant_off = fmt->man_start;
2773 while (mant_bits_left > 0)
2774 {
2775 unsigned long mant_long;
2776 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2777
2778 mant *= 4294967296.0;
2779 mant_long = ((unsigned long) mant) & 0xffffffffL;
2780 mant -= mant_long;
2781
2782 /* If the integer bit is implicit, then we need to discard it.
2783 If we are discarding a zero, we should be (but are not) creating
2784 a denormalized number which means adjusting the exponent
2785 (I think). */
2786 if (mant_bits_left == fmt->man_len
2787 && fmt->intbit == floatformat_intbit_no)
2788 {
2789 mant_long <<= 1;
2790 mant_long &= 0xffffffffL;
2791 mant_bits -= 1;
2792 }
2793
2794 if (mant_bits < 32)
2795 {
2796 /* The bits we want are in the most significant MANT_BITS bits of
2797 mant_long. Move them to the least significant. */
2798 mant_long >>= 32 - mant_bits;
2799 }
2800
2801 put_field (uto, fmt->byteorder, fmt->totalsize,
2802 mant_off, mant_bits, mant_long);
2803 mant_off += mant_bits;
2804 mant_bits_left -= mant_bits;
2805 }
2806 if (fmt->byteorder == floatformat_littlebyte_bigword)
2807 {
2808 int count;
2809 unsigned char *swaplow = uto;
2810 unsigned char *swaphigh = uto + 4;
2811 unsigned char tmp;
2812
2813 for (count = 0; count < 4; count++)
2814 {
2815 tmp = *swaplow;
2816 *swaplow++ = *swaphigh;
2817 *swaphigh++ = tmp;
2818 }
2819 }
2820 }
2821
2822 /* temporary storage using circular buffer */
2823 #define NUMCELLS 16
2824 #define CELLSIZE 32
2825 static char *
2826 get_cell ()
2827 {
2828 static char buf[NUMCELLS][CELLSIZE];
2829 static int cell = 0;
2830 if (++cell >= NUMCELLS)
2831 cell = 0;
2832 return buf[cell];
2833 }
2834
2835 /* print routines to handle variable size regs, etc.
2836
2837 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2838 unsigned long or unsigned long long, determined at configure time.
2839 If t_addr is an unsigned long long and sizeof (unsigned long long)
2840 is greater than sizeof (unsigned long), then I believe this code will
2841 probably lose, at least for little endian machines. I believe that
2842 it would also be better to eliminate the switch on the absolute size
2843 of t_addr and replace it with a sequence of if statements that compare
2844 sizeof t_addr with sizeof the various types and do the right thing,
2845 which includes knowing whether or not the host supports long long.
2846 -fnf
2847
2848 */
2849
2850 int
2851 strlen_paddr (void)
2852 {
2853 return (TARGET_PTR_BIT / 8 * 2);
2854 }
2855
2856
2857 /* eliminate warning from compiler on 32-bit systems */
2858 static int thirty_two = 32;
2859
2860 char *
2861 paddr (CORE_ADDR addr)
2862 {
2863 char *paddr_str = get_cell ();
2864 switch (TARGET_PTR_BIT / 8)
2865 {
2866 case 8:
2867 sprintf (paddr_str, "%08lx%08lx",
2868 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2869 break;
2870 case 4:
2871 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2872 break;
2873 case 2:
2874 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2875 break;
2876 default:
2877 sprintf (paddr_str, "%lx", (unsigned long) addr);
2878 }
2879 return paddr_str;
2880 }
2881
2882 char *
2883 paddr_nz (CORE_ADDR addr)
2884 {
2885 char *paddr_str = get_cell ();
2886 switch (TARGET_PTR_BIT / 8)
2887 {
2888 case 8:
2889 {
2890 unsigned long high = (unsigned long) (addr >> thirty_two);
2891 if (high == 0)
2892 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2893 else
2894 sprintf (paddr_str, "%lx%08lx",
2895 high, (unsigned long) (addr & 0xffffffff));
2896 break;
2897 }
2898 case 4:
2899 sprintf (paddr_str, "%lx", (unsigned long) addr);
2900 break;
2901 case 2:
2902 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2903 break;
2904 default:
2905 sprintf (paddr_str, "%lx", (unsigned long) addr);
2906 }
2907 return paddr_str;
2908 }
2909
2910 static void
2911 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2912 {
2913 /* steal code from valprint.c:print_decimal(). Should this worry
2914 about the real size of addr as the above does? */
2915 unsigned long temp[3];
2916 int i = 0;
2917 do
2918 {
2919 temp[i] = addr % (1000 * 1000 * 1000);
2920 addr /= (1000 * 1000 * 1000);
2921 i++;
2922 }
2923 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2924 switch (i)
2925 {
2926 case 1:
2927 sprintf (paddr_str, "%s%lu",
2928 sign, temp[0]);
2929 break;
2930 case 2:
2931 sprintf (paddr_str, "%s%lu%09lu",
2932 sign, temp[1], temp[0]);
2933 break;
2934 case 3:
2935 sprintf (paddr_str, "%s%lu%09lu%09lu",
2936 sign, temp[2], temp[1], temp[0]);
2937 break;
2938 default:
2939 abort ();
2940 }
2941 }
2942
2943 char *
2944 paddr_u (CORE_ADDR addr)
2945 {
2946 char *paddr_str = get_cell ();
2947 decimal2str (paddr_str, "", addr);
2948 return paddr_str;
2949 }
2950
2951 char *
2952 paddr_d (LONGEST addr)
2953 {
2954 char *paddr_str = get_cell ();
2955 if (addr < 0)
2956 decimal2str (paddr_str, "-", -addr);
2957 else
2958 decimal2str (paddr_str, "", addr);
2959 return paddr_str;
2960 }
2961
2962 char *
2963 preg (reg)
2964 t_reg reg;
2965 {
2966 char *preg_str = get_cell ();
2967 switch (sizeof (t_reg))
2968 {
2969 case 8:
2970 sprintf (preg_str, "%08lx%08lx",
2971 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2972 break;
2973 case 4:
2974 sprintf (preg_str, "%08lx", (unsigned long) reg);
2975 break;
2976 case 2:
2977 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2978 break;
2979 default:
2980 sprintf (preg_str, "%lx", (unsigned long) reg);
2981 }
2982 return preg_str;
2983 }
2984
2985 char *
2986 preg_nz (reg)
2987 t_reg reg;
2988 {
2989 char *preg_str = get_cell ();
2990 switch (sizeof (t_reg))
2991 {
2992 case 8:
2993 {
2994 unsigned long high = (unsigned long) (reg >> thirty_two);
2995 if (high == 0)
2996 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
2997 else
2998 sprintf (preg_str, "%lx%08lx",
2999 high, (unsigned long) (reg & 0xffffffff));
3000 break;
3001 }
3002 case 4:
3003 sprintf (preg_str, "%lx", (unsigned long) reg);
3004 break;
3005 case 2:
3006 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3007 break;
3008 default:
3009 sprintf (preg_str, "%lx", (unsigned long) reg);
3010 }
3011 return preg_str;
3012 }
3013
3014 /* Helper functions for INNER_THAN */
3015 int
3016 core_addr_lessthan (lhs, rhs)
3017 CORE_ADDR lhs;
3018 CORE_ADDR rhs;
3019 {
3020 return (lhs < rhs);
3021 }
3022
3023 int
3024 core_addr_greaterthan (lhs, rhs)
3025 CORE_ADDR lhs;
3026 CORE_ADDR rhs;
3027 {
3028 return (lhs > rhs);
3029 }
This page took 0.089647 seconds and 4 git commands to generate.