* ia64-tdep.c (fetch_instruction): Warn about slot numbers greater
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_assert.h"
25 #include <ctype.h>
26 #include "gdb_string.h"
27 #include "event-top.h"
28
29 #ifdef HAVE_CURSES_H
30 #include <curses.h>
31 #endif
32 #ifdef HAVE_TERM_H
33 #include <term.h>
34 #endif
35
36 #ifdef __GO32__
37 #include <pc.h>
38 #endif
39
40 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41 #ifdef reg
42 #undef reg
43 #endif
44
45 #include <signal.h>
46 #include "gdbcmd.h"
47 #include "serial.h"
48 #include "bfd.h"
49 #include "target.h"
50 #include "demangle.h"
51 #include "expression.h"
52 #include "language.h"
53 #include "annotate.h"
54
55 #include "inferior.h" /* for signed_pointer_to_address */
56
57 #include <readline/readline.h>
58
59 #ifndef MALLOC_INCOMPATIBLE
60 #ifdef NEED_DECLARATION_MALLOC
61 extern PTR malloc ();
62 #endif
63 #ifdef NEED_DECLARATION_REALLOC
64 extern PTR realloc ();
65 #endif
66 #ifdef NEED_DECLARATION_FREE
67 extern void free ();
68 #endif
69 #endif
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 /* readline defines this. */
75 #undef savestring
76
77 void (*error_begin_hook) (void);
78
79 /* Holds the last error message issued by gdb */
80
81 static struct ui_file *gdb_lasterr;
82
83 /* Prototypes for local functions */
84
85 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
87
88 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
89
90 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
91 static void malloc_botch (void);
92 #endif
93
94 static void prompt_for_continue (void);
95
96 static void set_width_command (char *, int, struct cmd_list_element *);
97
98 static void set_width (void);
99
100 /* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
103 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
107 /* cleaned up on each error from within an execution command */
108 static struct cleanup *exec_error_cleanup_chain;
109
110 /* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114 struct continuation *cmd_continuation;
115 struct continuation *intermediate_continuation;
116
117 /* Nonzero if we have job control. */
118
119 int job_control;
120
121 /* Nonzero means a quit has been requested. */
122
123 int quit_flag;
124
125 /* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136 int immediate_quit;
137
138 /* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141 int demangle = 1;
142
143 /* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147 int asm_demangle = 0;
148
149 /* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153 int sevenbit_strings = 0;
154
155 /* String to be printed before error messages, if any. */
156
157 char *error_pre_print;
158
159 /* String to be printed before quit messages, if any. */
160
161 char *quit_pre_print;
162
163 /* String to be printed before warning messages, if any. */
164
165 char *warning_pre_print = "\nwarning: ";
166
167 int pagination_enabled = 1;
168 \f
169
170 /* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175 struct cleanup *
176 make_cleanup (make_cleanup_ftype *function, void *arg)
177 {
178 return make_my_cleanup (&cleanup_chain, function, arg);
179 }
180
181 struct cleanup *
182 make_final_cleanup (make_cleanup_ftype *function, void *arg)
183 {
184 return make_my_cleanup (&final_cleanup_chain, function, arg);
185 }
186
187 struct cleanup *
188 make_run_cleanup (make_cleanup_ftype *function, void *arg)
189 {
190 return make_my_cleanup (&run_cleanup_chain, function, arg);
191 }
192
193 struct cleanup *
194 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
195 {
196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
197 }
198
199 struct cleanup *
200 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
201 {
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203 }
204
205 static void
206 do_freeargv (void *arg)
207 {
208 freeargv ((char **) arg);
209 }
210
211 struct cleanup *
212 make_cleanup_freeargv (char **arg)
213 {
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215 }
216
217 static void
218 do_bfd_close_cleanup (void *arg)
219 {
220 bfd_close (arg);
221 }
222
223 struct cleanup *
224 make_cleanup_bfd_close (bfd *abfd)
225 {
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227 }
228
229 static void
230 do_close_cleanup (void *arg)
231 {
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
235 }
236
237 struct cleanup *
238 make_cleanup_close (int fd)
239 {
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
243 }
244
245 static void
246 do_ui_file_delete (void *arg)
247 {
248 ui_file_delete (arg);
249 }
250
251 struct cleanup *
252 make_cleanup_ui_file_delete (struct ui_file *arg)
253 {
254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
255 }
256
257 struct cleanup *
258 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
260 {
261 register struct cleanup *new
262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271 }
272
273 /* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276 void
277 do_cleanups (register struct cleanup *old_chain)
278 {
279 do_my_cleanups (&cleanup_chain, old_chain);
280 }
281
282 void
283 do_final_cleanups (register struct cleanup *old_chain)
284 {
285 do_my_cleanups (&final_cleanup_chain, old_chain);
286 }
287
288 void
289 do_run_cleanups (register struct cleanup *old_chain)
290 {
291 do_my_cleanups (&run_cleanup_chain, old_chain);
292 }
293
294 void
295 do_exec_cleanups (register struct cleanup *old_chain)
296 {
297 do_my_cleanups (&exec_cleanup_chain, old_chain);
298 }
299
300 void
301 do_exec_error_cleanups (register struct cleanup *old_chain)
302 {
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304 }
305
306 void
307 do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
309 {
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
315 xfree (ptr);
316 }
317 }
318
319 /* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322 void
323 discard_cleanups (register struct cleanup *old_chain)
324 {
325 discard_my_cleanups (&cleanup_chain, old_chain);
326 }
327
328 void
329 discard_final_cleanups (register struct cleanup *old_chain)
330 {
331 discard_my_cleanups (&final_cleanup_chain, old_chain);
332 }
333
334 void
335 discard_exec_error_cleanups (register struct cleanup *old_chain)
336 {
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338 }
339
340 void
341 discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
343 {
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
348 xfree (ptr);
349 }
350 }
351
352 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
353 struct cleanup *
354 save_cleanups (void)
355 {
356 return save_my_cleanups (&cleanup_chain);
357 }
358
359 struct cleanup *
360 save_final_cleanups (void)
361 {
362 return save_my_cleanups (&final_cleanup_chain);
363 }
364
365 struct cleanup *
366 save_my_cleanups (struct cleanup **pmy_chain)
367 {
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372 }
373
374 /* Restore the cleanup chain from a previously saved chain. */
375 void
376 restore_cleanups (struct cleanup *chain)
377 {
378 restore_my_cleanups (&cleanup_chain, chain);
379 }
380
381 void
382 restore_final_cleanups (struct cleanup *chain)
383 {
384 restore_my_cleanups (&final_cleanup_chain, chain);
385 }
386
387 void
388 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
389 {
390 *pmy_chain = chain;
391 }
392
393 /* This function is useful for cleanups.
394 Do
395
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
398
399 to arrange to free the object thus allocated. */
400
401 void
402 free_current_contents (void *ptr)
403 {
404 void **location = ptr;
405 if (location == NULL)
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
408 if (*location != NULL)
409 {
410 xfree (*location);
411 *location = NULL;
412 }
413 }
414
415 /* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422 /* ARGSUSED */
423 void
424 null_cleanup (void *arg)
425 {
426 }
427
428 /* Add a continuation to the continuation list, the global list
429 cmd_continuation. The new continuation will be added at the front.*/
430 void
431 add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
433 {
434 struct continuation *continuation_ptr;
435
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
441 }
442
443 /* Walk down the cmd_continuation list, and execute all the
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
451 void
452 do_all_continuations (void)
453 {
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
470 xfree (saved_continuation);
471 }
472 }
473
474 /* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476 void
477 discard_all_continuations (void)
478 {
479 struct continuation *continuation_ptr;
480
481 while (cmd_continuation)
482 {
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
485 xfree (continuation_ptr);
486 }
487 }
488
489 /* Add a continuation to the continuation list, the global list
490 intermediate_continuation. The new continuation will be added at the front.*/
491 void
492 add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
495 {
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503 }
504
505 /* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513 void
514 do_all_intermediate_continuations (void)
515 {
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
532 xfree (saved_continuation);
533 }
534 }
535
536 /* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538 void
539 discard_all_intermediate_continuations (void)
540 {
541 struct continuation *continuation_ptr;
542
543 while (intermediate_continuation)
544 {
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
547 xfree (continuation_ptr);
548 }
549 }
550
551 \f
552
553 /* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562 void
563 warning_begin (void)
564 {
565 target_terminal_ours ();
566 wrap_here (""); /* Force out any buffered output */
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570 }
571
572 /* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
578 void
579 warning (const char *string,...)
580 {
581 va_list args;
582 va_start (args, string);
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
592 }
593
594 /* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601 void
602 error_begin (void)
603 {
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
608 wrap_here (""); /* Force out any buffered output */
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615 }
616
617 /* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
621 NORETURN void
622 verror (const char *string, va_list args)
623 {
624 char *err_string;
625 struct cleanup *err_string_cleanup;
626 /* FIXME: cagney/1999-11-10: All error calls should come here.
627 Unfortunately some code uses the sequence: error_begin(); print
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
638 ui_file_rewind (gdb_lasterr);
639 vfprintf_filtered (gdb_lasterr, string, args);
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
642 err_string_cleanup = make_cleanup (xfree, err_string);
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
646 return_to_top_level (RETURN_ERROR);
647 }
648
649 NORETURN void
650 error (const char *string,...)
651 {
652 va_list args;
653 va_start (args, string);
654 verror (string, args);
655 va_end (args);
656 }
657
658 NORETURN void
659 error_stream (struct ui_file *stream)
660 {
661 long size;
662 char *msg = ui_file_xstrdup (stream, &size);
663 make_cleanup (xfree, msg);
664 error ("%s", msg);
665 }
666
667 /* Get the last error message issued by gdb */
668
669 char *
670 error_last_message (void)
671 {
672 long len;
673 return ui_file_xstrdup (gdb_lasterr, &len);
674 }
675
676 /* This is to be called by main() at the very beginning */
677
678 void
679 error_init (void)
680 {
681 gdb_lasterr = mem_fileopen ();
682 }
683
684 /* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
686
687 NORETURN void
688 internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
690 {
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
693 int continue_p;
694 int dump_core_p;
695
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
711
712 /* Try to get the message out */
713 target_terminal_ours ();
714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
716 fputs_unfiltered ("\n", gdb_stderr);
717
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
721 An internal GDB error was detected. This may make further\n\
722 debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727 Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
735 }
736 }
737 else
738 {
739 if (dump_core_p)
740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
741 else
742 exit (1);
743 }
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
747 }
748
749 NORETURN void
750 internal_error (const char *file, int line, const char *string, ...)
751 {
752 va_list ap;
753 va_start (ap, string);
754
755 internal_verror (file, line, string, ap);
756 va_end (ap);
757 }
758
759 /* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763 char *
764 safe_strerror (int errnum)
765 {
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775 }
776
777 /* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781 NORETURN void
782 perror_with_name (char *string)
783 {
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
799 error ("%s.", combined);
800 }
801
802 /* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805 void
806 print_sys_errmsg (char *string, int errcode)
807 {
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821 }
822
823 /* Control C eventually causes this to be called, at a convenient time. */
824
825 void
826 quit (void)
827 {
828 serial_t gdb_stdout_serial = serial_fdopen (1);
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
838 wrap_here ((char *) 0);
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
845 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
846 SERIAL_UN_FDOPEN (gdb_stdout_serial);
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
854 #ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858 #else
859 if (job_control
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
866 "Quit (expect signal SIGINT when the program is resumed)\n");
867 #endif
868 return_to_top_level (RETURN_QUIT);
869 }
870
871
872 #if defined(_MSC_VER) /* should test for wingdb instead? */
873
874 /*
875 * Windows translates all keyboard and mouse events
876 * into a message which is appended to the message
877 * queue for the process.
878 */
879
880 void
881 notice_quit (void)
882 {
883 int k = win32pollquit ();
884 if (k == 1)
885 quit_flag = 1;
886 else if (k == 2)
887 immediate_quit = 1;
888 }
889
890 #else /* !defined(_MSC_VER) */
891
892 void
893 notice_quit (void)
894 {
895 /* Done by signals */
896 }
897
898 #endif /* !defined(_MSC_VER) */
899
900 /* Control C comes here */
901 void
902 request_quit (int signo)
903 {
904 quit_flag = 1;
905 /* Restore the signal handler. Harmless with BSD-style signals, needed
906 for System V-style signals. So just always do it, rather than worrying
907 about USG defines and stuff like that. */
908 signal (signo, request_quit);
909
910 #ifdef REQUEST_QUIT
911 REQUEST_QUIT;
912 #else
913 if (immediate_quit)
914 quit ();
915 #endif
916 }
917 \f
918 /* Memory management stuff (malloc friends). */
919
920 /* Make a substitute size_t for non-ANSI compilers. */
921
922 #ifndef HAVE_STDDEF_H
923 #ifndef size_t
924 #define size_t unsigned int
925 #endif
926 #endif
927
928 #if !defined (USE_MMALLOC)
929
930 PTR
931 mcalloc (PTR md, size_t number, size_t size)
932 {
933 return calloc (number, size);
934 }
935
936 PTR
937 mmalloc (PTR md, size_t size)
938 {
939 return malloc (size);
940 }
941
942 PTR
943 mrealloc (PTR md, PTR ptr, size_t size)
944 {
945 if (ptr == 0) /* Guard against old realloc's */
946 return malloc (size);
947 else
948 return realloc (ptr, size);
949 }
950
951 void
952 mfree (PTR md, PTR ptr)
953 {
954 xfree (ptr);
955 }
956
957 #endif /* USE_MMALLOC */
958
959 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
960
961 void
962 init_malloc (void *md)
963 {
964 }
965
966 #else /* Have mmalloc and want corruption checking */
967
968 static void
969 malloc_botch (void)
970 {
971 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
972 internal_error (__FILE__, __LINE__, "failed internal consistency check");
973 }
974
975 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
976 by MD, to detect memory corruption. Note that MD may be NULL to specify
977 the default heap that grows via sbrk.
978
979 Note that for freshly created regions, we must call mmcheckf prior to any
980 mallocs in the region. Otherwise, any region which was allocated prior to
981 installing the checking hooks, which is later reallocated or freed, will
982 fail the checks! The mmcheck function only allows initial hooks to be
983 installed before the first mmalloc. However, anytime after we have called
984 mmcheck the first time to install the checking hooks, we can call it again
985 to update the function pointer to the memory corruption handler.
986
987 Returns zero on failure, non-zero on success. */
988
989 #ifndef MMCHECK_FORCE
990 #define MMCHECK_FORCE 0
991 #endif
992
993 void
994 init_malloc (void *md)
995 {
996 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
997 {
998 /* Don't use warning(), which relies on current_target being set
999 to something other than dummy_target, until after
1000 initialize_all_files(). */
1001
1002 fprintf_unfiltered
1003 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1004 fprintf_unfiltered
1005 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1006 }
1007
1008 mmtrace ();
1009 }
1010
1011 #endif /* Have mmalloc and want corruption checking */
1012
1013 /* Called when a memory allocation fails, with the number of bytes of
1014 memory requested in SIZE. */
1015
1016 NORETURN void
1017 nomem (long size)
1018 {
1019 if (size > 0)
1020 {
1021 internal_error (__FILE__, __LINE__,
1022 "virtual memory exhausted: can't allocate %ld bytes.", size);
1023 }
1024 else
1025 {
1026 internal_error (__FILE__, __LINE__,
1027 "virtual memory exhausted.");
1028 }
1029 }
1030
1031 /* Like mmalloc but get error if no storage available, and protect against
1032 the caller wanting to allocate zero bytes. Whether to return NULL for
1033 a zero byte request, or translate the request into a request for one
1034 byte of zero'd storage, is a religious issue. */
1035
1036 PTR
1037 xmmalloc (PTR md, long size)
1038 {
1039 register PTR val;
1040
1041 if (size == 0)
1042 {
1043 val = NULL;
1044 }
1045 else if ((val = mmalloc (md, size)) == NULL)
1046 {
1047 nomem (size);
1048 }
1049 return (val);
1050 }
1051
1052 /* Like mrealloc but get error if no storage available. */
1053
1054 PTR
1055 xmrealloc (PTR md, PTR ptr, long size)
1056 {
1057 register PTR val;
1058
1059 if (size == 0)
1060 {
1061 if (ptr != NULL)
1062 mfree (md, ptr);
1063 val = NULL;
1064 }
1065 else
1066 {
1067 if (ptr != NULL)
1068 {
1069 val = mrealloc (md, ptr, size);
1070 }
1071 else
1072 {
1073 val = mmalloc (md, size);
1074 }
1075 if (val == NULL)
1076 {
1077 nomem (size);
1078 }
1079 }
1080 return (val);
1081 }
1082
1083 /* Like malloc but get error if no storage available, and protect against
1084 the caller wanting to allocate zero bytes. */
1085
1086 PTR
1087 xmalloc (size_t size)
1088 {
1089 return (xmmalloc ((PTR) NULL, size));
1090 }
1091
1092 /* Like calloc but get error if no storage available */
1093
1094 PTR
1095 xcalloc (size_t number, size_t size)
1096 {
1097 void *mem;
1098
1099 if (number == 0 || size == 0)
1100 mem = NULL;
1101 else
1102 {
1103 mem = mcalloc (NULL, number, size);
1104 if (mem == NULL)
1105 nomem (number * size);
1106 }
1107 return mem;
1108 }
1109
1110 /* Like mrealloc but get error if no storage available. */
1111
1112 PTR
1113 xrealloc (PTR ptr, size_t size)
1114 {
1115 return (xmrealloc ((PTR) NULL, ptr, size));
1116 }
1117
1118 /* Free up space allocated by one of xmalloc(), xcalloc(), or
1119 xrealloc(). */
1120
1121 void
1122 xfree (void *ptr)
1123 {
1124 if (ptr != NULL)
1125 free (ptr); /* NOTE: GDB's only call to free() */
1126 }
1127 \f
1128
1129 /* Like asprintf/vasprintf but get an internal_error if the call
1130 fails. */
1131
1132 void
1133 xasprintf (char **ret, const char *format, ...)
1134 {
1135 va_list args;
1136 va_start (args, format);
1137 xvasprintf (ret, format, args);
1138 va_end (args);
1139 }
1140
1141 void
1142 xvasprintf (char **ret, const char *format, va_list ap)
1143 {
1144 int status = vasprintf (ret, format, ap);
1145 /* NULL could be returned due to a memory allocation problem; a
1146 badly format string; or something else. */
1147 if ((*ret) == NULL)
1148 internal_error (__FILE__, __LINE__,
1149 "vasprintf returned NULL buffer (errno %d)",
1150 errno);
1151 /* A negative status with a non-NULL buffer shouldn't never
1152 happen. But to be sure. */
1153 if (status < 0)
1154 internal_error (__FILE__, __LINE__,
1155 "vasprintf call failed (errno %d)",
1156 errno);
1157 }
1158
1159
1160 /* My replacement for the read system call.
1161 Used like `read' but keeps going if `read' returns too soon. */
1162
1163 int
1164 myread (int desc, char *addr, int len)
1165 {
1166 register int val;
1167 int orglen = len;
1168
1169 while (len > 0)
1170 {
1171 val = read (desc, addr, len);
1172 if (val < 0)
1173 return val;
1174 if (val == 0)
1175 return orglen - len;
1176 len -= val;
1177 addr += val;
1178 }
1179 return orglen;
1180 }
1181 \f
1182 /* Make a copy of the string at PTR with SIZE characters
1183 (and add a null character at the end in the copy).
1184 Uses malloc to get the space. Returns the address of the copy. */
1185
1186 char *
1187 savestring (const char *ptr, size_t size)
1188 {
1189 register char *p = (char *) xmalloc (size + 1);
1190 memcpy (p, ptr, size);
1191 p[size] = 0;
1192 return p;
1193 }
1194
1195 char *
1196 msavestring (void *md, const char *ptr, size_t size)
1197 {
1198 register char *p = (char *) xmmalloc (md, size + 1);
1199 memcpy (p, ptr, size);
1200 p[size] = 0;
1201 return p;
1202 }
1203
1204 char *
1205 mstrsave (void *md, const char *ptr)
1206 {
1207 return (msavestring (md, ptr, strlen (ptr)));
1208 }
1209
1210 void
1211 print_spaces (register int n, register struct ui_file *file)
1212 {
1213 fputs_unfiltered (n_spaces (n), file);
1214 }
1215
1216 /* Print a host address. */
1217
1218 void
1219 gdb_print_host_address (void *addr, struct ui_file *stream)
1220 {
1221
1222 /* We could use the %p conversion specifier to fprintf if we had any
1223 way of knowing whether this host supports it. But the following
1224 should work on the Alpha and on 32 bit machines. */
1225
1226 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1227 }
1228
1229 /* Ask user a y-or-n question and return 1 iff answer is yes.
1230 Takes three args which are given to printf to print the question.
1231 The first, a control string, should end in "? ".
1232 It should not say how to answer, because we do that. */
1233
1234 /* VARARGS */
1235 int
1236 query (char *ctlstr,...)
1237 {
1238 va_list args;
1239 register int answer;
1240 register int ans2;
1241 int retval;
1242
1243 va_start (args, ctlstr);
1244
1245 if (query_hook)
1246 {
1247 return query_hook (ctlstr, args);
1248 }
1249
1250 /* Automatically answer "yes" if input is not from a terminal. */
1251 if (!input_from_terminal_p ())
1252 return 1;
1253 #ifdef MPW
1254 /* FIXME Automatically answer "yes" if called from MacGDB. */
1255 if (mac_app)
1256 return 1;
1257 #endif /* MPW */
1258
1259 while (1)
1260 {
1261 wrap_here (""); /* Flush any buffered output */
1262 gdb_flush (gdb_stdout);
1263
1264 if (annotation_level > 1)
1265 printf_filtered ("\n\032\032pre-query\n");
1266
1267 vfprintf_filtered (gdb_stdout, ctlstr, args);
1268 printf_filtered ("(y or n) ");
1269
1270 if (annotation_level > 1)
1271 printf_filtered ("\n\032\032query\n");
1272
1273 #ifdef MPW
1274 /* If not in MacGDB, move to a new line so the entered line doesn't
1275 have a prompt on the front of it. */
1276 if (!mac_app)
1277 fputs_unfiltered ("\n", gdb_stdout);
1278 #endif /* MPW */
1279
1280 wrap_here ("");
1281 gdb_flush (gdb_stdout);
1282
1283 #if defined(TUI)
1284 if (!tui_version || cmdWin == tuiWinWithFocus ())
1285 #endif
1286 answer = fgetc (stdin);
1287 #if defined(TUI)
1288 else
1289 answer = (unsigned char) tuiBufferGetc ();
1290
1291 #endif
1292 clearerr (stdin); /* in case of C-d */
1293 if (answer == EOF) /* C-d */
1294 {
1295 retval = 1;
1296 break;
1297 }
1298 /* Eat rest of input line, to EOF or newline */
1299 if ((answer != '\n') || (tui_version && answer != '\r'))
1300 do
1301 {
1302 #if defined(TUI)
1303 if (!tui_version || cmdWin == tuiWinWithFocus ())
1304 #endif
1305 ans2 = fgetc (stdin);
1306 #if defined(TUI)
1307 else
1308 ans2 = (unsigned char) tuiBufferGetc ();
1309 #endif
1310 clearerr (stdin);
1311 }
1312 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1313 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1314
1315 if (answer >= 'a')
1316 answer -= 040;
1317 if (answer == 'Y')
1318 {
1319 retval = 1;
1320 break;
1321 }
1322 if (answer == 'N')
1323 {
1324 retval = 0;
1325 break;
1326 }
1327 printf_filtered ("Please answer y or n.\n");
1328 }
1329
1330 if (annotation_level > 1)
1331 printf_filtered ("\n\032\032post-query\n");
1332 return retval;
1333 }
1334 \f
1335
1336 /* Parse a C escape sequence. STRING_PTR points to a variable
1337 containing a pointer to the string to parse. That pointer
1338 should point to the character after the \. That pointer
1339 is updated past the characters we use. The value of the
1340 escape sequence is returned.
1341
1342 A negative value means the sequence \ newline was seen,
1343 which is supposed to be equivalent to nothing at all.
1344
1345 If \ is followed by a null character, we return a negative
1346 value and leave the string pointer pointing at the null character.
1347
1348 If \ is followed by 000, we return 0 and leave the string pointer
1349 after the zeros. A value of 0 does not mean end of string. */
1350
1351 int
1352 parse_escape (char **string_ptr)
1353 {
1354 register int c = *(*string_ptr)++;
1355 switch (c)
1356 {
1357 case 'a':
1358 return 007; /* Bell (alert) char */
1359 case 'b':
1360 return '\b';
1361 case 'e': /* Escape character */
1362 return 033;
1363 case 'f':
1364 return '\f';
1365 case 'n':
1366 return '\n';
1367 case 'r':
1368 return '\r';
1369 case 't':
1370 return '\t';
1371 case 'v':
1372 return '\v';
1373 case '\n':
1374 return -2;
1375 case 0:
1376 (*string_ptr)--;
1377 return 0;
1378 case '^':
1379 c = *(*string_ptr)++;
1380 if (c == '\\')
1381 c = parse_escape (string_ptr);
1382 if (c == '?')
1383 return 0177;
1384 return (c & 0200) | (c & 037);
1385
1386 case '0':
1387 case '1':
1388 case '2':
1389 case '3':
1390 case '4':
1391 case '5':
1392 case '6':
1393 case '7':
1394 {
1395 register int i = c - '0';
1396 register int count = 0;
1397 while (++count < 3)
1398 {
1399 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1400 {
1401 i *= 8;
1402 i += c - '0';
1403 }
1404 else
1405 {
1406 (*string_ptr)--;
1407 break;
1408 }
1409 }
1410 return i;
1411 }
1412 default:
1413 return c;
1414 }
1415 }
1416 \f
1417 /* Print the character C on STREAM as part of the contents of a literal
1418 string whose delimiter is QUOTER. Note that this routine should only
1419 be call for printing things which are independent of the language
1420 of the program being debugged. */
1421
1422 static void
1423 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1424 void (*do_fprintf) (struct ui_file *, const char *, ...),
1425 struct ui_file *stream, int quoter)
1426 {
1427
1428 c &= 0xFF; /* Avoid sign bit follies */
1429
1430 if (c < 0x20 || /* Low control chars */
1431 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1432 (sevenbit_strings && c >= 0x80))
1433 { /* high order bit set */
1434 switch (c)
1435 {
1436 case '\n':
1437 do_fputs ("\\n", stream);
1438 break;
1439 case '\b':
1440 do_fputs ("\\b", stream);
1441 break;
1442 case '\t':
1443 do_fputs ("\\t", stream);
1444 break;
1445 case '\f':
1446 do_fputs ("\\f", stream);
1447 break;
1448 case '\r':
1449 do_fputs ("\\r", stream);
1450 break;
1451 case '\033':
1452 do_fputs ("\\e", stream);
1453 break;
1454 case '\007':
1455 do_fputs ("\\a", stream);
1456 break;
1457 default:
1458 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1459 break;
1460 }
1461 }
1462 else
1463 {
1464 if (c == '\\' || c == quoter)
1465 do_fputs ("\\", stream);
1466 do_fprintf (stream, "%c", c);
1467 }
1468 }
1469
1470 /* Print the character C on STREAM as part of the contents of a
1471 literal string whose delimiter is QUOTER. Note that these routines
1472 should only be call for printing things which are independent of
1473 the language of the program being debugged. */
1474
1475 void
1476 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1477 {
1478 while (*str)
1479 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1480 }
1481
1482 void
1483 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1484 {
1485 while (*str)
1486 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1487 }
1488
1489 void
1490 fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
1491 {
1492 int i;
1493 for (i = 0; i < n; i++)
1494 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1495 }
1496
1497 \f
1498
1499 /* Number of lines per page or UINT_MAX if paging is disabled. */
1500 static unsigned int lines_per_page;
1501 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1502 static unsigned int chars_per_line;
1503 /* Current count of lines printed on this page, chars on this line. */
1504 static unsigned int lines_printed, chars_printed;
1505
1506 /* Buffer and start column of buffered text, for doing smarter word-
1507 wrapping. When someone calls wrap_here(), we start buffering output
1508 that comes through fputs_filtered(). If we see a newline, we just
1509 spit it out and forget about the wrap_here(). If we see another
1510 wrap_here(), we spit it out and remember the newer one. If we see
1511 the end of the line, we spit out a newline, the indent, and then
1512 the buffered output. */
1513
1514 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1515 are waiting to be output (they have already been counted in chars_printed).
1516 When wrap_buffer[0] is null, the buffer is empty. */
1517 static char *wrap_buffer;
1518
1519 /* Pointer in wrap_buffer to the next character to fill. */
1520 static char *wrap_pointer;
1521
1522 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1523 is non-zero. */
1524 static char *wrap_indent;
1525
1526 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1527 is not in effect. */
1528 static int wrap_column;
1529 \f
1530
1531 /* Inialize the lines and chars per page */
1532 void
1533 init_page_info (void)
1534 {
1535 #if defined(TUI)
1536 if (tui_version && m_winPtrNotNull (cmdWin))
1537 {
1538 lines_per_page = cmdWin->generic.height;
1539 chars_per_line = cmdWin->generic.width;
1540 }
1541 else
1542 #endif
1543 {
1544 /* These defaults will be used if we are unable to get the correct
1545 values from termcap. */
1546 #if defined(__GO32__)
1547 lines_per_page = ScreenRows ();
1548 chars_per_line = ScreenCols ();
1549 #else
1550 lines_per_page = 24;
1551 chars_per_line = 80;
1552
1553 #if !defined (MPW) && !defined (_WIN32)
1554 /* No termcap under MPW, although might be cool to do something
1555 by looking at worksheet or console window sizes. */
1556 /* Initialize the screen height and width from termcap. */
1557 {
1558 char *termtype = getenv ("TERM");
1559
1560 /* Positive means success, nonpositive means failure. */
1561 int status;
1562
1563 /* 2048 is large enough for all known terminals, according to the
1564 GNU termcap manual. */
1565 char term_buffer[2048];
1566
1567 if (termtype)
1568 {
1569 status = tgetent (term_buffer, termtype);
1570 if (status > 0)
1571 {
1572 int val;
1573 int running_in_emacs = getenv ("EMACS") != NULL;
1574
1575 val = tgetnum ("li");
1576 if (val >= 0 && !running_in_emacs)
1577 lines_per_page = val;
1578 else
1579 /* The number of lines per page is not mentioned
1580 in the terminal description. This probably means
1581 that paging is not useful (e.g. emacs shell window),
1582 so disable paging. */
1583 lines_per_page = UINT_MAX;
1584
1585 val = tgetnum ("co");
1586 if (val >= 0)
1587 chars_per_line = val;
1588 }
1589 }
1590 }
1591 #endif /* MPW */
1592
1593 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1594
1595 /* If there is a better way to determine the window size, use it. */
1596 SIGWINCH_HANDLER (SIGWINCH);
1597 #endif
1598 #endif
1599 /* If the output is not a terminal, don't paginate it. */
1600 if (!ui_file_isatty (gdb_stdout))
1601 lines_per_page = UINT_MAX;
1602 } /* the command_line_version */
1603 set_width ();
1604 }
1605
1606 static void
1607 set_width (void)
1608 {
1609 if (chars_per_line == 0)
1610 init_page_info ();
1611
1612 if (!wrap_buffer)
1613 {
1614 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1615 wrap_buffer[0] = '\0';
1616 }
1617 else
1618 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1619 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1620 }
1621
1622 /* ARGSUSED */
1623 static void
1624 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1625 {
1626 set_width ();
1627 }
1628
1629 /* Wait, so the user can read what's on the screen. Prompt the user
1630 to continue by pressing RETURN. */
1631
1632 static void
1633 prompt_for_continue (void)
1634 {
1635 char *ignore;
1636 char cont_prompt[120];
1637
1638 if (annotation_level > 1)
1639 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1640
1641 strcpy (cont_prompt,
1642 "---Type <return> to continue, or q <return> to quit---");
1643 if (annotation_level > 1)
1644 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1645
1646 /* We must do this *before* we call gdb_readline, else it will eventually
1647 call us -- thinking that we're trying to print beyond the end of the
1648 screen. */
1649 reinitialize_more_filter ();
1650
1651 immediate_quit++;
1652 /* On a real operating system, the user can quit with SIGINT.
1653 But not on GO32.
1654
1655 'q' is provided on all systems so users don't have to change habits
1656 from system to system, and because telling them what to do in
1657 the prompt is more user-friendly than expecting them to think of
1658 SIGINT. */
1659 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1660 whereas control-C to gdb_readline will cause the user to get dumped
1661 out to DOS. */
1662 ignore = readline (cont_prompt);
1663
1664 if (annotation_level > 1)
1665 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1666
1667 if (ignore)
1668 {
1669 char *p = ignore;
1670 while (*p == ' ' || *p == '\t')
1671 ++p;
1672 if (p[0] == 'q')
1673 {
1674 if (!event_loop_p)
1675 request_quit (SIGINT);
1676 else
1677 async_request_quit (0);
1678 }
1679 xfree (ignore);
1680 }
1681 immediate_quit--;
1682
1683 /* Now we have to do this again, so that GDB will know that it doesn't
1684 need to save the ---Type <return>--- line at the top of the screen. */
1685 reinitialize_more_filter ();
1686
1687 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1688 }
1689
1690 /* Reinitialize filter; ie. tell it to reset to original values. */
1691
1692 void
1693 reinitialize_more_filter (void)
1694 {
1695 lines_printed = 0;
1696 chars_printed = 0;
1697 }
1698
1699 /* Indicate that if the next sequence of characters overflows the line,
1700 a newline should be inserted here rather than when it hits the end.
1701 If INDENT is non-null, it is a string to be printed to indent the
1702 wrapped part on the next line. INDENT must remain accessible until
1703 the next call to wrap_here() or until a newline is printed through
1704 fputs_filtered().
1705
1706 If the line is already overfull, we immediately print a newline and
1707 the indentation, and disable further wrapping.
1708
1709 If we don't know the width of lines, but we know the page height,
1710 we must not wrap words, but should still keep track of newlines
1711 that were explicitly printed.
1712
1713 INDENT should not contain tabs, as that will mess up the char count
1714 on the next line. FIXME.
1715
1716 This routine is guaranteed to force out any output which has been
1717 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1718 used to force out output from the wrap_buffer. */
1719
1720 void
1721 wrap_here (char *indent)
1722 {
1723 /* This should have been allocated, but be paranoid anyway. */
1724 if (!wrap_buffer)
1725 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1726
1727 if (wrap_buffer[0])
1728 {
1729 *wrap_pointer = '\0';
1730 fputs_unfiltered (wrap_buffer, gdb_stdout);
1731 }
1732 wrap_pointer = wrap_buffer;
1733 wrap_buffer[0] = '\0';
1734 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1735 {
1736 wrap_column = 0;
1737 }
1738 else if (chars_printed >= chars_per_line)
1739 {
1740 puts_filtered ("\n");
1741 if (indent != NULL)
1742 puts_filtered (indent);
1743 wrap_column = 0;
1744 }
1745 else
1746 {
1747 wrap_column = chars_printed;
1748 if (indent == NULL)
1749 wrap_indent = "";
1750 else
1751 wrap_indent = indent;
1752 }
1753 }
1754
1755 /* Ensure that whatever gets printed next, using the filtered output
1756 commands, starts at the beginning of the line. I.E. if there is
1757 any pending output for the current line, flush it and start a new
1758 line. Otherwise do nothing. */
1759
1760 void
1761 begin_line (void)
1762 {
1763 if (chars_printed > 0)
1764 {
1765 puts_filtered ("\n");
1766 }
1767 }
1768
1769
1770 /* Like fputs but if FILTER is true, pause after every screenful.
1771
1772 Regardless of FILTER can wrap at points other than the final
1773 character of a line.
1774
1775 Unlike fputs, fputs_maybe_filtered does not return a value.
1776 It is OK for LINEBUFFER to be NULL, in which case just don't print
1777 anything.
1778
1779 Note that a longjmp to top level may occur in this routine (only if
1780 FILTER is true) (since prompt_for_continue may do so) so this
1781 routine should not be called when cleanups are not in place. */
1782
1783 static void
1784 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1785 int filter)
1786 {
1787 const char *lineptr;
1788
1789 if (linebuffer == 0)
1790 return;
1791
1792 /* Don't do any filtering if it is disabled. */
1793 if ((stream != gdb_stdout) || !pagination_enabled
1794 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1795 {
1796 fputs_unfiltered (linebuffer, stream);
1797 return;
1798 }
1799
1800 /* Go through and output each character. Show line extension
1801 when this is necessary; prompt user for new page when this is
1802 necessary. */
1803
1804 lineptr = linebuffer;
1805 while (*lineptr)
1806 {
1807 /* Possible new page. */
1808 if (filter &&
1809 (lines_printed >= lines_per_page - 1))
1810 prompt_for_continue ();
1811
1812 while (*lineptr && *lineptr != '\n')
1813 {
1814 /* Print a single line. */
1815 if (*lineptr == '\t')
1816 {
1817 if (wrap_column)
1818 *wrap_pointer++ = '\t';
1819 else
1820 fputc_unfiltered ('\t', stream);
1821 /* Shifting right by 3 produces the number of tab stops
1822 we have already passed, and then adding one and
1823 shifting left 3 advances to the next tab stop. */
1824 chars_printed = ((chars_printed >> 3) + 1) << 3;
1825 lineptr++;
1826 }
1827 else
1828 {
1829 if (wrap_column)
1830 *wrap_pointer++ = *lineptr;
1831 else
1832 fputc_unfiltered (*lineptr, stream);
1833 chars_printed++;
1834 lineptr++;
1835 }
1836
1837 if (chars_printed >= chars_per_line)
1838 {
1839 unsigned int save_chars = chars_printed;
1840
1841 chars_printed = 0;
1842 lines_printed++;
1843 /* If we aren't actually wrapping, don't output newline --
1844 if chars_per_line is right, we probably just overflowed
1845 anyway; if it's wrong, let us keep going. */
1846 if (wrap_column)
1847 fputc_unfiltered ('\n', stream);
1848
1849 /* Possible new page. */
1850 if (lines_printed >= lines_per_page - 1)
1851 prompt_for_continue ();
1852
1853 /* Now output indentation and wrapped string */
1854 if (wrap_column)
1855 {
1856 fputs_unfiltered (wrap_indent, stream);
1857 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1858 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1859 /* FIXME, this strlen is what prevents wrap_indent from
1860 containing tabs. However, if we recurse to print it
1861 and count its chars, we risk trouble if wrap_indent is
1862 longer than (the user settable) chars_per_line.
1863 Note also that this can set chars_printed > chars_per_line
1864 if we are printing a long string. */
1865 chars_printed = strlen (wrap_indent)
1866 + (save_chars - wrap_column);
1867 wrap_pointer = wrap_buffer; /* Reset buffer */
1868 wrap_buffer[0] = '\0';
1869 wrap_column = 0; /* And disable fancy wrap */
1870 }
1871 }
1872 }
1873
1874 if (*lineptr == '\n')
1875 {
1876 chars_printed = 0;
1877 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1878 lines_printed++;
1879 fputc_unfiltered ('\n', stream);
1880 lineptr++;
1881 }
1882 }
1883 }
1884
1885 void
1886 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1887 {
1888 fputs_maybe_filtered (linebuffer, stream, 1);
1889 }
1890
1891 int
1892 putchar_unfiltered (int c)
1893 {
1894 char buf = c;
1895 ui_file_write (gdb_stdout, &buf, 1);
1896 return c;
1897 }
1898
1899 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1900 May return nonlocally. */
1901
1902 int
1903 putchar_filtered (int c)
1904 {
1905 return fputc_filtered (c, gdb_stdout);
1906 }
1907
1908 int
1909 fputc_unfiltered (int c, struct ui_file *stream)
1910 {
1911 char buf = c;
1912 ui_file_write (stream, &buf, 1);
1913 return c;
1914 }
1915
1916 int
1917 fputc_filtered (int c, struct ui_file *stream)
1918 {
1919 char buf[2];
1920
1921 buf[0] = c;
1922 buf[1] = 0;
1923 fputs_filtered (buf, stream);
1924 return c;
1925 }
1926
1927 /* puts_debug is like fputs_unfiltered, except it prints special
1928 characters in printable fashion. */
1929
1930 void
1931 puts_debug (char *prefix, char *string, char *suffix)
1932 {
1933 int ch;
1934
1935 /* Print prefix and suffix after each line. */
1936 static int new_line = 1;
1937 static int return_p = 0;
1938 static char *prev_prefix = "";
1939 static char *prev_suffix = "";
1940
1941 if (*string == '\n')
1942 return_p = 0;
1943
1944 /* If the prefix is changing, print the previous suffix, a new line,
1945 and the new prefix. */
1946 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1947 {
1948 fputs_unfiltered (prev_suffix, gdb_stdlog);
1949 fputs_unfiltered ("\n", gdb_stdlog);
1950 fputs_unfiltered (prefix, gdb_stdlog);
1951 }
1952
1953 /* Print prefix if we printed a newline during the previous call. */
1954 if (new_line)
1955 {
1956 new_line = 0;
1957 fputs_unfiltered (prefix, gdb_stdlog);
1958 }
1959
1960 prev_prefix = prefix;
1961 prev_suffix = suffix;
1962
1963 /* Output characters in a printable format. */
1964 while ((ch = *string++) != '\0')
1965 {
1966 switch (ch)
1967 {
1968 default:
1969 if (isprint (ch))
1970 fputc_unfiltered (ch, gdb_stdlog);
1971
1972 else
1973 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1974 break;
1975
1976 case '\\':
1977 fputs_unfiltered ("\\\\", gdb_stdlog);
1978 break;
1979 case '\b':
1980 fputs_unfiltered ("\\b", gdb_stdlog);
1981 break;
1982 case '\f':
1983 fputs_unfiltered ("\\f", gdb_stdlog);
1984 break;
1985 case '\n':
1986 new_line = 1;
1987 fputs_unfiltered ("\\n", gdb_stdlog);
1988 break;
1989 case '\r':
1990 fputs_unfiltered ("\\r", gdb_stdlog);
1991 break;
1992 case '\t':
1993 fputs_unfiltered ("\\t", gdb_stdlog);
1994 break;
1995 case '\v':
1996 fputs_unfiltered ("\\v", gdb_stdlog);
1997 break;
1998 }
1999
2000 return_p = ch == '\r';
2001 }
2002
2003 /* Print suffix if we printed a newline. */
2004 if (new_line)
2005 {
2006 fputs_unfiltered (suffix, gdb_stdlog);
2007 fputs_unfiltered ("\n", gdb_stdlog);
2008 }
2009 }
2010
2011
2012 /* Print a variable number of ARGS using format FORMAT. If this
2013 information is going to put the amount written (since the last call
2014 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2015 call prompt_for_continue to get the users permision to continue.
2016
2017 Unlike fprintf, this function does not return a value.
2018
2019 We implement three variants, vfprintf (takes a vararg list and stream),
2020 fprintf (takes a stream to write on), and printf (the usual).
2021
2022 Note also that a longjmp to top level may occur in this routine
2023 (since prompt_for_continue may do so) so this routine should not be
2024 called when cleanups are not in place. */
2025
2026 static void
2027 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2028 va_list args, int filter)
2029 {
2030 char *linebuffer;
2031 struct cleanup *old_cleanups;
2032
2033 xvasprintf (&linebuffer, format, args);
2034 old_cleanups = make_cleanup (xfree, linebuffer);
2035 fputs_maybe_filtered (linebuffer, stream, filter);
2036 do_cleanups (old_cleanups);
2037 }
2038
2039
2040 void
2041 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2042 {
2043 vfprintf_maybe_filtered (stream, format, args, 1);
2044 }
2045
2046 void
2047 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2048 {
2049 char *linebuffer;
2050 struct cleanup *old_cleanups;
2051
2052 xvasprintf (&linebuffer, format, args);
2053 old_cleanups = make_cleanup (xfree, linebuffer);
2054 fputs_unfiltered (linebuffer, stream);
2055 do_cleanups (old_cleanups);
2056 }
2057
2058 void
2059 vprintf_filtered (const char *format, va_list args)
2060 {
2061 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2062 }
2063
2064 void
2065 vprintf_unfiltered (const char *format, va_list args)
2066 {
2067 vfprintf_unfiltered (gdb_stdout, format, args);
2068 }
2069
2070 void
2071 fprintf_filtered (struct ui_file * stream, const char *format,...)
2072 {
2073 va_list args;
2074 va_start (args, format);
2075 vfprintf_filtered (stream, format, args);
2076 va_end (args);
2077 }
2078
2079 void
2080 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2081 {
2082 va_list args;
2083 va_start (args, format);
2084 vfprintf_unfiltered (stream, format, args);
2085 va_end (args);
2086 }
2087
2088 /* Like fprintf_filtered, but prints its result indented.
2089 Called as fprintfi_filtered (spaces, stream, format, ...); */
2090
2091 void
2092 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2093 {
2094 va_list args;
2095 va_start (args, format);
2096 print_spaces_filtered (spaces, stream);
2097
2098 vfprintf_filtered (stream, format, args);
2099 va_end (args);
2100 }
2101
2102
2103 void
2104 printf_filtered (const char *format,...)
2105 {
2106 va_list args;
2107 va_start (args, format);
2108 vfprintf_filtered (gdb_stdout, format, args);
2109 va_end (args);
2110 }
2111
2112
2113 void
2114 printf_unfiltered (const char *format,...)
2115 {
2116 va_list args;
2117 va_start (args, format);
2118 vfprintf_unfiltered (gdb_stdout, format, args);
2119 va_end (args);
2120 }
2121
2122 /* Like printf_filtered, but prints it's result indented.
2123 Called as printfi_filtered (spaces, format, ...); */
2124
2125 void
2126 printfi_filtered (int spaces, const char *format,...)
2127 {
2128 va_list args;
2129 va_start (args, format);
2130 print_spaces_filtered (spaces, gdb_stdout);
2131 vfprintf_filtered (gdb_stdout, format, args);
2132 va_end (args);
2133 }
2134
2135 /* Easy -- but watch out!
2136
2137 This routine is *not* a replacement for puts()! puts() appends a newline.
2138 This one doesn't, and had better not! */
2139
2140 void
2141 puts_filtered (const char *string)
2142 {
2143 fputs_filtered (string, gdb_stdout);
2144 }
2145
2146 void
2147 puts_unfiltered (const char *string)
2148 {
2149 fputs_unfiltered (string, gdb_stdout);
2150 }
2151
2152 /* Return a pointer to N spaces and a null. The pointer is good
2153 until the next call to here. */
2154 char *
2155 n_spaces (int n)
2156 {
2157 char *t;
2158 static char *spaces = 0;
2159 static int max_spaces = -1;
2160
2161 if (n > max_spaces)
2162 {
2163 if (spaces)
2164 xfree (spaces);
2165 spaces = (char *) xmalloc (n + 1);
2166 for (t = spaces + n; t != spaces;)
2167 *--t = ' ';
2168 spaces[n] = '\0';
2169 max_spaces = n;
2170 }
2171
2172 return spaces + max_spaces - n;
2173 }
2174
2175 /* Print N spaces. */
2176 void
2177 print_spaces_filtered (int n, struct ui_file *stream)
2178 {
2179 fputs_filtered (n_spaces (n), stream);
2180 }
2181 \f
2182 /* C++ demangler stuff. */
2183
2184 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2185 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2186 If the name is not mangled, or the language for the name is unknown, or
2187 demangling is off, the name is printed in its "raw" form. */
2188
2189 void
2190 fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2191 int arg_mode)
2192 {
2193 char *demangled;
2194
2195 if (name != NULL)
2196 {
2197 /* If user wants to see raw output, no problem. */
2198 if (!demangle)
2199 {
2200 fputs_filtered (name, stream);
2201 }
2202 else
2203 {
2204 switch (lang)
2205 {
2206 case language_cplus:
2207 demangled = cplus_demangle (name, arg_mode);
2208 break;
2209 case language_java:
2210 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2211 break;
2212 case language_chill:
2213 demangled = chill_demangle (name);
2214 break;
2215 default:
2216 demangled = NULL;
2217 break;
2218 }
2219 fputs_filtered (demangled ? demangled : name, stream);
2220 if (demangled != NULL)
2221 {
2222 xfree (demangled);
2223 }
2224 }
2225 }
2226 }
2227
2228 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2229 differences in whitespace. Returns 0 if they match, non-zero if they
2230 don't (slightly different than strcmp()'s range of return values).
2231
2232 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2233 This "feature" is useful when searching for matching C++ function names
2234 (such as if the user types 'break FOO', where FOO is a mangled C++
2235 function). */
2236
2237 int
2238 strcmp_iw (const char *string1, const char *string2)
2239 {
2240 while ((*string1 != '\0') && (*string2 != '\0'))
2241 {
2242 while (isspace (*string1))
2243 {
2244 string1++;
2245 }
2246 while (isspace (*string2))
2247 {
2248 string2++;
2249 }
2250 if (*string1 != *string2)
2251 {
2252 break;
2253 }
2254 if (*string1 != '\0')
2255 {
2256 string1++;
2257 string2++;
2258 }
2259 }
2260 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2261 }
2262 \f
2263
2264 /*
2265 ** subset_compare()
2266 ** Answer whether string_to_compare is a full or partial match to
2267 ** template_string. The partial match must be in sequence starting
2268 ** at index 0.
2269 */
2270 int
2271 subset_compare (char *string_to_compare, char *template_string)
2272 {
2273 int match;
2274 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2275 strlen (string_to_compare) <= strlen (template_string))
2276 match = (strncmp (template_string,
2277 string_to_compare,
2278 strlen (string_to_compare)) == 0);
2279 else
2280 match = 0;
2281 return match;
2282 }
2283
2284
2285 static void pagination_on_command (char *arg, int from_tty);
2286 static void
2287 pagination_on_command (char *arg, int from_tty)
2288 {
2289 pagination_enabled = 1;
2290 }
2291
2292 static void pagination_on_command (char *arg, int from_tty);
2293 static void
2294 pagination_off_command (char *arg, int from_tty)
2295 {
2296 pagination_enabled = 0;
2297 }
2298 \f
2299
2300 void
2301 initialize_utils (void)
2302 {
2303 struct cmd_list_element *c;
2304
2305 c = add_set_cmd ("width", class_support, var_uinteger,
2306 (char *) &chars_per_line,
2307 "Set number of characters gdb thinks are in a line.",
2308 &setlist);
2309 add_show_from_set (c, &showlist);
2310 c->function.sfunc = set_width_command;
2311
2312 add_show_from_set
2313 (add_set_cmd ("height", class_support,
2314 var_uinteger, (char *) &lines_per_page,
2315 "Set number of lines gdb thinks are in a page.", &setlist),
2316 &showlist);
2317
2318 init_page_info ();
2319
2320 /* If the output is not a terminal, don't paginate it. */
2321 if (!ui_file_isatty (gdb_stdout))
2322 lines_per_page = UINT_MAX;
2323
2324 set_width_command ((char *) NULL, 0, c);
2325
2326 add_show_from_set
2327 (add_set_cmd ("demangle", class_support, var_boolean,
2328 (char *) &demangle,
2329 "Set demangling of encoded C++ names when displaying symbols.",
2330 &setprintlist),
2331 &showprintlist);
2332
2333 add_show_from_set
2334 (add_set_cmd ("pagination", class_support,
2335 var_boolean, (char *) &pagination_enabled,
2336 "Set state of pagination.", &setlist),
2337 &showlist);
2338
2339 if (xdb_commands)
2340 {
2341 add_com ("am", class_support, pagination_on_command,
2342 "Enable pagination");
2343 add_com ("sm", class_support, pagination_off_command,
2344 "Disable pagination");
2345 }
2346
2347 add_show_from_set
2348 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2349 (char *) &sevenbit_strings,
2350 "Set printing of 8-bit characters in strings as \\nnn.",
2351 &setprintlist),
2352 &showprintlist);
2353
2354 add_show_from_set
2355 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2356 (char *) &asm_demangle,
2357 "Set demangling of C++ names in disassembly listings.",
2358 &setprintlist),
2359 &showprintlist);
2360 }
2361
2362 /* Machine specific function to handle SIGWINCH signal. */
2363
2364 #ifdef SIGWINCH_HANDLER_BODY
2365 SIGWINCH_HANDLER_BODY
2366 #endif
2367 \f
2368 /* Support for converting target fp numbers into host DOUBLEST format. */
2369
2370 /* XXX - This code should really be in libiberty/floatformat.c, however
2371 configuration issues with libiberty made this very difficult to do in the
2372 available time. */
2373
2374 #include "floatformat.h"
2375 #include <math.h> /* ldexp */
2376
2377 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2378 going to bother with trying to muck around with whether it is defined in
2379 a system header, what we do if not, etc. */
2380 #define FLOATFORMAT_CHAR_BIT 8
2381
2382 static unsigned long get_field (unsigned char *,
2383 enum floatformat_byteorders,
2384 unsigned int, unsigned int, unsigned int);
2385
2386 /* Extract a field which starts at START and is LEN bytes long. DATA and
2387 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2388 static unsigned long
2389 get_field (unsigned char *data, enum floatformat_byteorders order,
2390 unsigned int total_len, unsigned int start, unsigned int len)
2391 {
2392 unsigned long result;
2393 unsigned int cur_byte;
2394 int cur_bitshift;
2395
2396 /* Start at the least significant part of the field. */
2397 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2398 {
2399 /* We start counting from the other end (i.e, from the high bytes
2400 rather than the low bytes). As such, we need to be concerned
2401 with what happens if bit 0 doesn't start on a byte boundary.
2402 I.e, we need to properly handle the case where total_len is
2403 not evenly divisible by 8. So we compute ``excess'' which
2404 represents the number of bits from the end of our starting
2405 byte needed to get to bit 0. */
2406 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2407 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2408 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2409 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2410 - FLOATFORMAT_CHAR_BIT;
2411 }
2412 else
2413 {
2414 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2415 cur_bitshift =
2416 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2417 }
2418 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2419 result = *(data + cur_byte) >> (-cur_bitshift);
2420 else
2421 result = 0;
2422 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2423 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2424 ++cur_byte;
2425 else
2426 --cur_byte;
2427
2428 /* Move towards the most significant part of the field. */
2429 while (cur_bitshift < len)
2430 {
2431 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2432 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2433 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2434 ++cur_byte;
2435 else
2436 --cur_byte;
2437 }
2438 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2439 /* Mask out bits which are not part of the field */
2440 result &= ((1UL << len) - 1);
2441 return result;
2442 }
2443
2444 /* Convert from FMT to a DOUBLEST.
2445 FROM is the address of the extended float.
2446 Store the DOUBLEST in *TO. */
2447
2448 void
2449 floatformat_to_doublest (const struct floatformat *fmt, char *from,
2450 DOUBLEST *to)
2451 {
2452 unsigned char *ufrom = (unsigned char *) from;
2453 DOUBLEST dto;
2454 long exponent;
2455 unsigned long mant;
2456 unsigned int mant_bits, mant_off;
2457 int mant_bits_left;
2458 int special_exponent; /* It's a NaN, denorm or zero */
2459
2460 /* If the mantissa bits are not contiguous from one end of the
2461 mantissa to the other, we need to make a private copy of the
2462 source bytes that is in the right order since the unpacking
2463 algorithm assumes that the bits are contiguous.
2464
2465 Swap the bytes individually rather than accessing them through
2466 "long *" since we have no guarantee that they start on a long
2467 alignment, and also sizeof(long) for the host could be different
2468 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2469 for the target is 4. */
2470
2471 if (fmt->byteorder == floatformat_littlebyte_bigword)
2472 {
2473 static unsigned char *newfrom;
2474 unsigned char *swapin, *swapout;
2475 int longswaps;
2476
2477 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2478 longswaps >>= 3;
2479
2480 if (newfrom == NULL)
2481 {
2482 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2483 }
2484 swapout = newfrom;
2485 swapin = ufrom;
2486 ufrom = newfrom;
2487 while (longswaps-- > 0)
2488 {
2489 /* This is ugly, but efficient */
2490 *swapout++ = swapin[4];
2491 *swapout++ = swapin[5];
2492 *swapout++ = swapin[6];
2493 *swapout++ = swapin[7];
2494 *swapout++ = swapin[0];
2495 *swapout++ = swapin[1];
2496 *swapout++ = swapin[2];
2497 *swapout++ = swapin[3];
2498 swapin += 8;
2499 }
2500 }
2501
2502 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2503 fmt->exp_start, fmt->exp_len);
2504 /* Note that if exponent indicates a NaN, we can't really do anything useful
2505 (not knowing if the host has NaN's, or how to build one). So it will
2506 end up as an infinity or something close; that is OK. */
2507
2508 mant_bits_left = fmt->man_len;
2509 mant_off = fmt->man_start;
2510 dto = 0.0;
2511
2512 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2513
2514 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2515 we don't check for zero as the exponent doesn't matter. */
2516 if (!special_exponent)
2517 exponent -= fmt->exp_bias;
2518 else if (exponent == 0)
2519 exponent = 1 - fmt->exp_bias;
2520
2521 /* Build the result algebraically. Might go infinite, underflow, etc;
2522 who cares. */
2523
2524 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2525 increment the exponent by one to account for the integer bit. */
2526
2527 if (!special_exponent)
2528 {
2529 if (fmt->intbit == floatformat_intbit_no)
2530 dto = ldexp (1.0, exponent);
2531 else
2532 exponent++;
2533 }
2534
2535 while (mant_bits_left > 0)
2536 {
2537 mant_bits = min (mant_bits_left, 32);
2538
2539 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2540 mant_off, mant_bits);
2541
2542 dto += ldexp ((double) mant, exponent - mant_bits);
2543 exponent -= mant_bits;
2544 mant_off += mant_bits;
2545 mant_bits_left -= mant_bits;
2546 }
2547
2548 /* Negate it if negative. */
2549 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2550 dto = -dto;
2551 *to = dto;
2552 }
2553 \f
2554 static void put_field (unsigned char *, enum floatformat_byteorders,
2555 unsigned int,
2556 unsigned int, unsigned int, unsigned long);
2557
2558 /* Set a field which starts at START and is LEN bytes long. DATA and
2559 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2560 static void
2561 put_field (unsigned char *data, enum floatformat_byteorders order,
2562 unsigned int total_len, unsigned int start, unsigned int len,
2563 unsigned long stuff_to_put)
2564 {
2565 unsigned int cur_byte;
2566 int cur_bitshift;
2567
2568 /* Start at the least significant part of the field. */
2569 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2570 {
2571 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2572 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2573 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2574 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2575 - FLOATFORMAT_CHAR_BIT;
2576 }
2577 else
2578 {
2579 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2580 cur_bitshift =
2581 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2582 }
2583 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2584 {
2585 *(data + cur_byte) &=
2586 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2587 << (-cur_bitshift));
2588 *(data + cur_byte) |=
2589 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2590 }
2591 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2592 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2593 ++cur_byte;
2594 else
2595 --cur_byte;
2596
2597 /* Move towards the most significant part of the field. */
2598 while (cur_bitshift < len)
2599 {
2600 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2601 {
2602 /* This is the last byte. */
2603 *(data + cur_byte) &=
2604 ~((1 << (len - cur_bitshift)) - 1);
2605 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2606 }
2607 else
2608 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2609 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2610 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2611 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2612 ++cur_byte;
2613 else
2614 --cur_byte;
2615 }
2616 }
2617
2618 #ifdef HAVE_LONG_DOUBLE
2619 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2620 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2621 frexp, but operates on the long double data type. */
2622
2623 static long double ldfrexp (long double value, int *eptr);
2624
2625 static long double
2626 ldfrexp (long double value, int *eptr)
2627 {
2628 long double tmp;
2629 int exp;
2630
2631 /* Unfortunately, there are no portable functions for extracting the exponent
2632 of a long double, so we have to do it iteratively by multiplying or dividing
2633 by two until the fraction is between 0.5 and 1.0. */
2634
2635 if (value < 0.0l)
2636 value = -value;
2637
2638 tmp = 1.0l;
2639 exp = 0;
2640
2641 if (value >= tmp) /* Value >= 1.0 */
2642 while (value >= tmp)
2643 {
2644 tmp *= 2.0l;
2645 exp++;
2646 }
2647 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2648 {
2649 while (value < tmp)
2650 {
2651 tmp /= 2.0l;
2652 exp--;
2653 }
2654 tmp *= 2.0l;
2655 exp++;
2656 }
2657
2658 *eptr = exp;
2659 return value / tmp;
2660 }
2661 #endif /* HAVE_LONG_DOUBLE */
2662
2663
2664 /* The converse: convert the DOUBLEST *FROM to an extended float
2665 and store where TO points. Neither FROM nor TO have any alignment
2666 restrictions. */
2667
2668 void
2669 floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2670 char *to)
2671 {
2672 DOUBLEST dfrom;
2673 int exponent;
2674 DOUBLEST mant;
2675 unsigned int mant_bits, mant_off;
2676 int mant_bits_left;
2677 unsigned char *uto = (unsigned char *) to;
2678
2679 memcpy (&dfrom, from, sizeof (dfrom));
2680 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2681 / FLOATFORMAT_CHAR_BIT);
2682 if (dfrom == 0)
2683 return; /* Result is zero */
2684 if (dfrom != dfrom) /* Result is NaN */
2685 {
2686 /* From is NaN */
2687 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2688 fmt->exp_len, fmt->exp_nan);
2689 /* Be sure it's not infinity, but NaN value is irrel */
2690 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2691 32, 1);
2692 return;
2693 }
2694
2695 /* If negative, set the sign bit. */
2696 if (dfrom < 0)
2697 {
2698 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2699 dfrom = -dfrom;
2700 }
2701
2702 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2703 {
2704 /* Infinity exponent is same as NaN's. */
2705 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2706 fmt->exp_len, fmt->exp_nan);
2707 /* Infinity mantissa is all zeroes. */
2708 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2709 fmt->man_len, 0);
2710 return;
2711 }
2712
2713 #ifdef HAVE_LONG_DOUBLE
2714 mant = ldfrexp (dfrom, &exponent);
2715 #else
2716 mant = frexp (dfrom, &exponent);
2717 #endif
2718
2719 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2720 exponent + fmt->exp_bias - 1);
2721
2722 mant_bits_left = fmt->man_len;
2723 mant_off = fmt->man_start;
2724 while (mant_bits_left > 0)
2725 {
2726 unsigned long mant_long;
2727 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2728
2729 mant *= 4294967296.0;
2730 mant_long = ((unsigned long) mant) & 0xffffffffL;
2731 mant -= mant_long;
2732
2733 /* If the integer bit is implicit, then we need to discard it.
2734 If we are discarding a zero, we should be (but are not) creating
2735 a denormalized number which means adjusting the exponent
2736 (I think). */
2737 if (mant_bits_left == fmt->man_len
2738 && fmt->intbit == floatformat_intbit_no)
2739 {
2740 mant_long <<= 1;
2741 mant_long &= 0xffffffffL;
2742 mant_bits -= 1;
2743 }
2744
2745 if (mant_bits < 32)
2746 {
2747 /* The bits we want are in the most significant MANT_BITS bits of
2748 mant_long. Move them to the least significant. */
2749 mant_long >>= 32 - mant_bits;
2750 }
2751
2752 put_field (uto, fmt->byteorder, fmt->totalsize,
2753 mant_off, mant_bits, mant_long);
2754 mant_off += mant_bits;
2755 mant_bits_left -= mant_bits;
2756 }
2757 if (fmt->byteorder == floatformat_littlebyte_bigword)
2758 {
2759 int count;
2760 unsigned char *swaplow = uto;
2761 unsigned char *swaphigh = uto + 4;
2762 unsigned char tmp;
2763
2764 for (count = 0; count < 4; count++)
2765 {
2766 tmp = *swaplow;
2767 *swaplow++ = *swaphigh;
2768 *swaphigh++ = tmp;
2769 }
2770 }
2771 }
2772
2773 /* Check if VAL (which is assumed to be a floating point number whose
2774 format is described by FMT) is negative. */
2775
2776 int
2777 floatformat_is_negative (const struct floatformat *fmt, char *val)
2778 {
2779 unsigned char *uval = (unsigned char *) val;
2780
2781 return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
2782 }
2783
2784 /* Check if VAL is "not a number" (NaN) for FMT. */
2785
2786 int
2787 floatformat_is_nan (const struct floatformat *fmt, char *val)
2788 {
2789 unsigned char *uval = (unsigned char *) val;
2790 long exponent;
2791 unsigned long mant;
2792 unsigned int mant_bits, mant_off;
2793 int mant_bits_left;
2794
2795 if (! fmt->exp_nan)
2796 return 0;
2797
2798 exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
2799 fmt->exp_start, fmt->exp_len);
2800
2801 if (exponent != fmt->exp_nan)
2802 return 0;
2803
2804 mant_bits_left = fmt->man_len;
2805 mant_off = fmt->man_start;
2806
2807 while (mant_bits_left > 0)
2808 {
2809 mant_bits = min (mant_bits_left, 32);
2810
2811 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2812 mant_off, mant_bits);
2813
2814 /* If there is an explicit integer bit, mask it off. */
2815 if (mant_off == fmt->man_start
2816 && fmt->intbit == floatformat_intbit_yes)
2817 mant &= ~(1 << (mant_bits - 1));
2818
2819 if (mant)
2820 return 1;
2821
2822 mant_off += mant_bits;
2823 mant_bits_left -= mant_bits;
2824 }
2825
2826 return 0;
2827 }
2828
2829 /* Convert the mantissa of VAL (which is assumed to be a floating
2830 point number whose format is described by FMT) into a hexadecimal
2831 and store it in a static string. Return a pointer to that string. */
2832
2833 char *
2834 floatformat_mantissa (const struct floatformat *fmt, char *val)
2835 {
2836 unsigned char *uval = (unsigned char *) val;
2837 unsigned long mant;
2838 unsigned int mant_bits, mant_off;
2839 int mant_bits_left;
2840 static char res[50];
2841 char buf[9];
2842
2843 /* Make sure we have enough room to store the mantissa. */
2844 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
2845
2846 mant_off = fmt->man_start;
2847 mant_bits_left = fmt->man_len;
2848 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
2849
2850 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2851 mant_off, mant_bits);
2852
2853 sprintf (res, "%lx", mant);
2854
2855 mant_off += mant_bits;
2856 mant_bits_left -= mant_bits;
2857
2858 while (mant_bits_left > 0)
2859 {
2860 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2861 mant_off, 32);
2862
2863 sprintf (buf, "%08lx", mant);
2864 strcat (res, buf);
2865
2866 mant_off += 32;
2867 mant_bits_left -= 32;
2868 }
2869
2870 return res;
2871 }
2872
2873 /* print routines to handle variable size regs, etc. */
2874
2875 /* temporary storage using circular buffer */
2876 #define NUMCELLS 16
2877 #define CELLSIZE 32
2878 static char *
2879 get_cell (void)
2880 {
2881 static char buf[NUMCELLS][CELLSIZE];
2882 static int cell = 0;
2883 if (++cell >= NUMCELLS)
2884 cell = 0;
2885 return buf[cell];
2886 }
2887
2888 int
2889 strlen_paddr (void)
2890 {
2891 return (TARGET_ADDR_BIT / 8 * 2);
2892 }
2893
2894 char *
2895 paddr (CORE_ADDR addr)
2896 {
2897 return phex (addr, TARGET_ADDR_BIT / 8);
2898 }
2899
2900 char *
2901 paddr_nz (CORE_ADDR addr)
2902 {
2903 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2904 }
2905
2906 static void
2907 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2908 {
2909 /* steal code from valprint.c:print_decimal(). Should this worry
2910 about the real size of addr as the above does? */
2911 unsigned long temp[3];
2912 int i = 0;
2913 do
2914 {
2915 temp[i] = addr % (1000 * 1000 * 1000);
2916 addr /= (1000 * 1000 * 1000);
2917 i++;
2918 }
2919 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2920 switch (i)
2921 {
2922 case 1:
2923 sprintf (paddr_str, "%s%lu",
2924 sign, temp[0]);
2925 break;
2926 case 2:
2927 sprintf (paddr_str, "%s%lu%09lu",
2928 sign, temp[1], temp[0]);
2929 break;
2930 case 3:
2931 sprintf (paddr_str, "%s%lu%09lu%09lu",
2932 sign, temp[2], temp[1], temp[0]);
2933 break;
2934 default:
2935 internal_error (__FILE__, __LINE__, "failed internal consistency check");
2936 }
2937 }
2938
2939 char *
2940 paddr_u (CORE_ADDR addr)
2941 {
2942 char *paddr_str = get_cell ();
2943 decimal2str (paddr_str, "", addr);
2944 return paddr_str;
2945 }
2946
2947 char *
2948 paddr_d (LONGEST addr)
2949 {
2950 char *paddr_str = get_cell ();
2951 if (addr < 0)
2952 decimal2str (paddr_str, "-", -addr);
2953 else
2954 decimal2str (paddr_str, "", addr);
2955 return paddr_str;
2956 }
2957
2958 /* eliminate warning from compiler on 32-bit systems */
2959 static int thirty_two = 32;
2960
2961 char *
2962 phex (ULONGEST l, int sizeof_l)
2963 {
2964 char *str = get_cell ();
2965 switch (sizeof_l)
2966 {
2967 case 8:
2968 sprintf (str, "%08lx%08lx",
2969 (unsigned long) (l >> thirty_two),
2970 (unsigned long) (l & 0xffffffff));
2971 break;
2972 case 4:
2973 sprintf (str, "%08lx", (unsigned long) l);
2974 break;
2975 case 2:
2976 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2977 break;
2978 default:
2979 phex (l, sizeof (l));
2980 break;
2981 }
2982 return str;
2983 }
2984
2985 char *
2986 phex_nz (ULONGEST l, int sizeof_l)
2987 {
2988 char *str = get_cell ();
2989 switch (sizeof_l)
2990 {
2991 case 8:
2992 {
2993 unsigned long high = (unsigned long) (l >> thirty_two);
2994 if (high == 0)
2995 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2996 else
2997 sprintf (str, "%lx%08lx",
2998 high, (unsigned long) (l & 0xffffffff));
2999 break;
3000 }
3001 case 4:
3002 sprintf (str, "%lx", (unsigned long) l);
3003 break;
3004 case 2:
3005 sprintf (str, "%x", (unsigned short) (l & 0xffff));
3006 break;
3007 default:
3008 phex_nz (l, sizeof (l));
3009 break;
3010 }
3011 return str;
3012 }
3013
3014
3015 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
3016 using the target's conversion routines. */
3017 CORE_ADDR
3018 host_pointer_to_address (void *ptr)
3019 {
3020 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
3021 internal_error (__FILE__, __LINE__,
3022 "core_addr_to_void_ptr: bad cast");
3023 return POINTER_TO_ADDRESS (builtin_type_ptr, &ptr);
3024 }
3025
3026 void *
3027 address_to_host_pointer (CORE_ADDR addr)
3028 {
3029 void *ptr;
3030 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
3031 internal_error (__FILE__, __LINE__,
3032 "core_addr_to_void_ptr: bad cast");
3033 ADDRESS_TO_POINTER (builtin_type_ptr, &ptr, addr);
3034 return ptr;
3035 }
This page took 0.093362 seconds and 4 git commands to generate.