* cli/cli-decode.c (do_cfunc, set_cmd_cfunc): New functions.
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_assert.h"
25 #include <ctype.h>
26 #include "gdb_string.h"
27 #include "event-top.h"
28
29 #ifdef HAVE_CURSES_H
30 #include <curses.h>
31 #endif
32 #ifdef HAVE_TERM_H
33 #include <term.h>
34 #endif
35
36 #ifdef __GO32__
37 #include <pc.h>
38 #endif
39
40 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41 #ifdef reg
42 #undef reg
43 #endif
44
45 #include <signal.h>
46 #include "gdbcmd.h"
47 #include "serial.h"
48 #include "bfd.h"
49 #include "target.h"
50 #include "demangle.h"
51 #include "expression.h"
52 #include "language.h"
53 #include "annotate.h"
54
55 #include "inferior.h" /* for signed_pointer_to_address */
56
57 #include <sys/param.h> /* For MAXPATHLEN */
58
59 #include <readline/readline.h>
60
61 #ifdef USE_MMALLOC
62 #include "mmalloc.h"
63 #endif
64
65 #ifdef NEED_DECLARATION_MALLOC
66 extern PTR malloc ();
67 #endif
68 #ifdef NEED_DECLARATION_REALLOC
69 extern PTR realloc ();
70 #endif
71 #ifdef NEED_DECLARATION_FREE
72 extern void free ();
73 #endif
74
75 #undef XMALLOC
76 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
77
78 /* readline defines this. */
79 #undef savestring
80
81 void (*error_begin_hook) (void);
82
83 /* Holds the last error message issued by gdb */
84
85 static struct ui_file *gdb_lasterr;
86
87 /* Prototypes for local functions */
88
89 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
90 va_list, int);
91
92 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
93
94 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
95 static void malloc_botch (void);
96 #endif
97
98 static void prompt_for_continue (void);
99
100 static void set_width_command (char *, int, struct cmd_list_element *);
101
102 static void set_width (void);
103
104 /* Chain of cleanup actions established with make_cleanup,
105 to be executed if an error happens. */
106
107 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
108 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
109 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
110 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
111 /* cleaned up on each error from within an execution command */
112 static struct cleanup *exec_error_cleanup_chain;
113
114 /* Pointer to what is left to do for an execution command after the
115 target stops. Used only in asynchronous mode, by targets that
116 support async execution. The finish and until commands use it. So
117 does the target extended-remote command. */
118 struct continuation *cmd_continuation;
119 struct continuation *intermediate_continuation;
120
121 /* Nonzero if we have job control. */
122
123 int job_control;
124
125 /* Nonzero means a quit has been requested. */
126
127 int quit_flag;
128
129 /* Nonzero means quit immediately if Control-C is typed now, rather
130 than waiting until QUIT is executed. Be careful in setting this;
131 code which executes with immediate_quit set has to be very careful
132 about being able to deal with being interrupted at any time. It is
133 almost always better to use QUIT; the only exception I can think of
134 is being able to quit out of a system call (using EINTR loses if
135 the SIGINT happens between the previous QUIT and the system call).
136 To immediately quit in the case in which a SIGINT happens between
137 the previous QUIT and setting immediate_quit (desirable anytime we
138 expect to block), call QUIT after setting immediate_quit. */
139
140 int immediate_quit;
141
142 /* Nonzero means that encoded C++ names should be printed out in their
143 C++ form rather than raw. */
144
145 int demangle = 1;
146
147 /* Nonzero means that encoded C++ names should be printed out in their
148 C++ form even in assembler language displays. If this is set, but
149 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
150
151 int asm_demangle = 0;
152
153 /* Nonzero means that strings with character values >0x7F should be printed
154 as octal escapes. Zero means just print the value (e.g. it's an
155 international character, and the terminal or window can cope.) */
156
157 int sevenbit_strings = 0;
158
159 /* String to be printed before error messages, if any. */
160
161 char *error_pre_print;
162
163 /* String to be printed before quit messages, if any. */
164
165 char *quit_pre_print;
166
167 /* String to be printed before warning messages, if any. */
168
169 char *warning_pre_print = "\nwarning: ";
170
171 int pagination_enabled = 1;
172 \f
173
174 /* Add a new cleanup to the cleanup_chain,
175 and return the previous chain pointer
176 to be passed later to do_cleanups or discard_cleanups.
177 Args are FUNCTION to clean up with, and ARG to pass to it. */
178
179 struct cleanup *
180 make_cleanup (make_cleanup_ftype *function, void *arg)
181 {
182 return make_my_cleanup (&cleanup_chain, function, arg);
183 }
184
185 struct cleanup *
186 make_final_cleanup (make_cleanup_ftype *function, void *arg)
187 {
188 return make_my_cleanup (&final_cleanup_chain, function, arg);
189 }
190
191 struct cleanup *
192 make_run_cleanup (make_cleanup_ftype *function, void *arg)
193 {
194 return make_my_cleanup (&run_cleanup_chain, function, arg);
195 }
196
197 struct cleanup *
198 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
199 {
200 return make_my_cleanup (&exec_cleanup_chain, function, arg);
201 }
202
203 struct cleanup *
204 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
205 {
206 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
207 }
208
209 static void
210 do_freeargv (void *arg)
211 {
212 freeargv ((char **) arg);
213 }
214
215 struct cleanup *
216 make_cleanup_freeargv (char **arg)
217 {
218 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
219 }
220
221 static void
222 do_bfd_close_cleanup (void *arg)
223 {
224 bfd_close (arg);
225 }
226
227 struct cleanup *
228 make_cleanup_bfd_close (bfd *abfd)
229 {
230 return make_cleanup (do_bfd_close_cleanup, abfd);
231 }
232
233 static void
234 do_close_cleanup (void *arg)
235 {
236 int *fd = arg;
237 close (*fd);
238 xfree (fd);
239 }
240
241 struct cleanup *
242 make_cleanup_close (int fd)
243 {
244 int *saved_fd = xmalloc (sizeof (fd));
245 *saved_fd = fd;
246 return make_cleanup (do_close_cleanup, saved_fd);
247 }
248
249 static void
250 do_ui_file_delete (void *arg)
251 {
252 ui_file_delete (arg);
253 }
254
255 struct cleanup *
256 make_cleanup_ui_file_delete (struct ui_file *arg)
257 {
258 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
259 }
260
261 struct cleanup *
262 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
263 void *arg)
264 {
265 register struct cleanup *new
266 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
267 register struct cleanup *old_chain = *pmy_chain;
268
269 new->next = *pmy_chain;
270 new->function = function;
271 new->arg = arg;
272 *pmy_chain = new;
273
274 return old_chain;
275 }
276
277 /* Discard cleanups and do the actions they describe
278 until we get back to the point OLD_CHAIN in the cleanup_chain. */
279
280 void
281 do_cleanups (register struct cleanup *old_chain)
282 {
283 do_my_cleanups (&cleanup_chain, old_chain);
284 }
285
286 void
287 do_final_cleanups (register struct cleanup *old_chain)
288 {
289 do_my_cleanups (&final_cleanup_chain, old_chain);
290 }
291
292 void
293 do_run_cleanups (register struct cleanup *old_chain)
294 {
295 do_my_cleanups (&run_cleanup_chain, old_chain);
296 }
297
298 void
299 do_exec_cleanups (register struct cleanup *old_chain)
300 {
301 do_my_cleanups (&exec_cleanup_chain, old_chain);
302 }
303
304 void
305 do_exec_error_cleanups (register struct cleanup *old_chain)
306 {
307 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
308 }
309
310 void
311 do_my_cleanups (register struct cleanup **pmy_chain,
312 register struct cleanup *old_chain)
313 {
314 register struct cleanup *ptr;
315 while ((ptr = *pmy_chain) != old_chain)
316 {
317 *pmy_chain = ptr->next; /* Do this first incase recursion */
318 (*ptr->function) (ptr->arg);
319 xfree (ptr);
320 }
321 }
322
323 /* Discard cleanups, not doing the actions they describe,
324 until we get back to the point OLD_CHAIN in the cleanup_chain. */
325
326 void
327 discard_cleanups (register struct cleanup *old_chain)
328 {
329 discard_my_cleanups (&cleanup_chain, old_chain);
330 }
331
332 void
333 discard_final_cleanups (register struct cleanup *old_chain)
334 {
335 discard_my_cleanups (&final_cleanup_chain, old_chain);
336 }
337
338 void
339 discard_exec_error_cleanups (register struct cleanup *old_chain)
340 {
341 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
342 }
343
344 void
345 discard_my_cleanups (register struct cleanup **pmy_chain,
346 register struct cleanup *old_chain)
347 {
348 register struct cleanup *ptr;
349 while ((ptr = *pmy_chain) != old_chain)
350 {
351 *pmy_chain = ptr->next;
352 xfree (ptr);
353 }
354 }
355
356 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
357 struct cleanup *
358 save_cleanups (void)
359 {
360 return save_my_cleanups (&cleanup_chain);
361 }
362
363 struct cleanup *
364 save_final_cleanups (void)
365 {
366 return save_my_cleanups (&final_cleanup_chain);
367 }
368
369 struct cleanup *
370 save_my_cleanups (struct cleanup **pmy_chain)
371 {
372 struct cleanup *old_chain = *pmy_chain;
373
374 *pmy_chain = 0;
375 return old_chain;
376 }
377
378 /* Restore the cleanup chain from a previously saved chain. */
379 void
380 restore_cleanups (struct cleanup *chain)
381 {
382 restore_my_cleanups (&cleanup_chain, chain);
383 }
384
385 void
386 restore_final_cleanups (struct cleanup *chain)
387 {
388 restore_my_cleanups (&final_cleanup_chain, chain);
389 }
390
391 void
392 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
393 {
394 *pmy_chain = chain;
395 }
396
397 /* This function is useful for cleanups.
398 Do
399
400 foo = xmalloc (...);
401 old_chain = make_cleanup (free_current_contents, &foo);
402
403 to arrange to free the object thus allocated. */
404
405 void
406 free_current_contents (void *ptr)
407 {
408 void **location = ptr;
409 if (location == NULL)
410 internal_error (__FILE__, __LINE__,
411 "free_current_contents: NULL pointer");
412 if (*location != NULL)
413 {
414 xfree (*location);
415 *location = NULL;
416 }
417 }
418
419 /* Provide a known function that does nothing, to use as a base for
420 for a possibly long chain of cleanups. This is useful where we
421 use the cleanup chain for handling normal cleanups as well as dealing
422 with cleanups that need to be done as a result of a call to error().
423 In such cases, we may not be certain where the first cleanup is, unless
424 we have a do-nothing one to always use as the base. */
425
426 /* ARGSUSED */
427 void
428 null_cleanup (void *arg)
429 {
430 }
431
432 /* Add a continuation to the continuation list, the global list
433 cmd_continuation. The new continuation will be added at the front.*/
434 void
435 add_continuation (void (*continuation_hook) (struct continuation_arg *),
436 struct continuation_arg *arg_list)
437 {
438 struct continuation *continuation_ptr;
439
440 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
441 continuation_ptr->continuation_hook = continuation_hook;
442 continuation_ptr->arg_list = arg_list;
443 continuation_ptr->next = cmd_continuation;
444 cmd_continuation = continuation_ptr;
445 }
446
447 /* Walk down the cmd_continuation list, and execute all the
448 continuations. There is a problem though. In some cases new
449 continuations may be added while we are in the middle of this
450 loop. If this happens they will be added in the front, and done
451 before we have a chance of exhausting those that were already
452 there. We need to then save the beginning of the list in a pointer
453 and do the continuations from there on, instead of using the
454 global beginning of list as our iteration pointer.*/
455 void
456 do_all_continuations (void)
457 {
458 struct continuation *continuation_ptr;
459 struct continuation *saved_continuation;
460
461 /* Copy the list header into another pointer, and set the global
462 list header to null, so that the global list can change as a side
463 effect of invoking the continuations and the processing of
464 the preexisting continuations will not be affected. */
465 continuation_ptr = cmd_continuation;
466 cmd_continuation = NULL;
467
468 /* Work now on the list we have set aside. */
469 while (continuation_ptr)
470 {
471 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
472 saved_continuation = continuation_ptr;
473 continuation_ptr = continuation_ptr->next;
474 xfree (saved_continuation);
475 }
476 }
477
478 /* Walk down the cmd_continuation list, and get rid of all the
479 continuations. */
480 void
481 discard_all_continuations (void)
482 {
483 struct continuation *continuation_ptr;
484
485 while (cmd_continuation)
486 {
487 continuation_ptr = cmd_continuation;
488 cmd_continuation = continuation_ptr->next;
489 xfree (continuation_ptr);
490 }
491 }
492
493 /* Add a continuation to the continuation list, the global list
494 intermediate_continuation. The new continuation will be added at the front.*/
495 void
496 add_intermediate_continuation (void (*continuation_hook)
497 (struct continuation_arg *),
498 struct continuation_arg *arg_list)
499 {
500 struct continuation *continuation_ptr;
501
502 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
503 continuation_ptr->continuation_hook = continuation_hook;
504 continuation_ptr->arg_list = arg_list;
505 continuation_ptr->next = intermediate_continuation;
506 intermediate_continuation = continuation_ptr;
507 }
508
509 /* Walk down the cmd_continuation list, and execute all the
510 continuations. There is a problem though. In some cases new
511 continuations may be added while we are in the middle of this
512 loop. If this happens they will be added in the front, and done
513 before we have a chance of exhausting those that were already
514 there. We need to then save the beginning of the list in a pointer
515 and do the continuations from there on, instead of using the
516 global beginning of list as our iteration pointer.*/
517 void
518 do_all_intermediate_continuations (void)
519 {
520 struct continuation *continuation_ptr;
521 struct continuation *saved_continuation;
522
523 /* Copy the list header into another pointer, and set the global
524 list header to null, so that the global list can change as a side
525 effect of invoking the continuations and the processing of
526 the preexisting continuations will not be affected. */
527 continuation_ptr = intermediate_continuation;
528 intermediate_continuation = NULL;
529
530 /* Work now on the list we have set aside. */
531 while (continuation_ptr)
532 {
533 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
534 saved_continuation = continuation_ptr;
535 continuation_ptr = continuation_ptr->next;
536 xfree (saved_continuation);
537 }
538 }
539
540 /* Walk down the cmd_continuation list, and get rid of all the
541 continuations. */
542 void
543 discard_all_intermediate_continuations (void)
544 {
545 struct continuation *continuation_ptr;
546
547 while (intermediate_continuation)
548 {
549 continuation_ptr = intermediate_continuation;
550 intermediate_continuation = continuation_ptr->next;
551 xfree (continuation_ptr);
552 }
553 }
554
555 \f
556
557 /* Print a warning message. The first argument STRING is the warning
558 message, used as an fprintf format string, the second is the
559 va_list of arguments for that string. A warning is unfiltered (not
560 paginated) so that the user does not need to page through each
561 screen full of warnings when there are lots of them. */
562
563 void
564 vwarning (const char *string, va_list args)
565 {
566 if (warning_hook)
567 (*warning_hook) (string, args);
568 else
569 {
570 target_terminal_ours ();
571 wrap_here (""); /* Force out any buffered output */
572 gdb_flush (gdb_stdout);
573 if (warning_pre_print)
574 fprintf_unfiltered (gdb_stderr, warning_pre_print);
575 vfprintf_unfiltered (gdb_stderr, string, args);
576 fprintf_unfiltered (gdb_stderr, "\n");
577 va_end (args);
578 }
579 }
580
581 /* Print a warning message.
582 The first argument STRING is the warning message, used as a fprintf string,
583 and the remaining args are passed as arguments to it.
584 The primary difference between warnings and errors is that a warning
585 does not force the return to command level. */
586
587 void
588 warning (const char *string,...)
589 {
590 va_list args;
591 va_start (args, string);
592 vwarning (string, args);
593 va_end (args);
594 }
595
596 /* Print an error message and return to command level.
597 The first argument STRING is the error message, used as a fprintf string,
598 and the remaining args are passed as arguments to it. */
599
600 NORETURN void
601 verror (const char *string, va_list args)
602 {
603 struct ui_file *tmp_stream = mem_fileopen ();
604 make_cleanup_ui_file_delete (tmp_stream);
605 vfprintf_unfiltered (tmp_stream, string, args);
606 error_stream (tmp_stream);
607 }
608
609 NORETURN void
610 error (const char *string,...)
611 {
612 va_list args;
613 va_start (args, string);
614 verror (string, args);
615 va_end (args);
616 }
617
618 static void
619 do_write (void *data, const char *buffer, long length_buffer)
620 {
621 ui_file_write (data, buffer, length_buffer);
622 }
623
624 NORETURN void
625 error_stream (struct ui_file *stream)
626 {
627 if (error_begin_hook)
628 error_begin_hook ();
629
630 /* Copy the stream into the GDB_LASTERR buffer. */
631 ui_file_rewind (gdb_lasterr);
632 ui_file_put (stream, do_write, gdb_lasterr);
633
634 /* Write the message plus any error_pre_print to gdb_stderr. */
635 target_terminal_ours ();
636 wrap_here (""); /* Force out any buffered output */
637 gdb_flush (gdb_stdout);
638 annotate_error_begin ();
639 if (error_pre_print)
640 fprintf_filtered (gdb_stderr, error_pre_print);
641 ui_file_put (stream, do_write, gdb_stderr);
642 fprintf_filtered (gdb_stderr, "\n");
643
644 return_to_top_level (RETURN_ERROR);
645 }
646
647 /* Get the last error message issued by gdb */
648
649 char *
650 error_last_message (void)
651 {
652 long len;
653 return ui_file_xstrdup (gdb_lasterr, &len);
654 }
655
656 /* This is to be called by main() at the very beginning */
657
658 void
659 error_init (void)
660 {
661 gdb_lasterr = mem_fileopen ();
662 }
663
664 /* Print a message reporting an internal error. Ask the user if they
665 want to continue, dump core, or just exit. */
666
667 NORETURN void
668 internal_verror (const char *file, int line,
669 const char *fmt, va_list ap)
670 {
671 static char msg[] = "Internal GDB error: recursive internal error.\n";
672 static int dejavu = 0;
673 int quit_p;
674 int dump_core_p;
675
676 /* don't allow infinite error recursion. */
677 switch (dejavu)
678 {
679 case 0:
680 dejavu = 1;
681 break;
682 case 1:
683 dejavu = 2;
684 fputs_unfiltered (msg, gdb_stderr);
685 abort (); /* NOTE: GDB has only three calls to abort(). */
686 default:
687 dejavu = 3;
688 write (STDERR_FILENO, msg, sizeof (msg));
689 exit (1);
690 }
691
692 /* Try to get the message out */
693 target_terminal_ours ();
694 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
695 vfprintf_unfiltered (gdb_stderr, fmt, ap);
696 fputs_unfiltered ("\n", gdb_stderr);
697
698 /* Default (yes/batch case) is to quit GDB. When in batch mode this
699 lessens the likelhood of GDB going into an infinate loop. */
700 quit_p = query ("\
701 An internal GDB error was detected. This may make further\n\
702 debugging unreliable. Quit this debugging session? ");
703
704 /* Default (yes/batch case) is to dump core. This leaves a GDB
705 dropping so that it is easier to see that something went wrong to
706 GDB. */
707 dump_core_p = query ("\
708 Create a core file containing the current state of GDB? ");
709
710 if (quit_p)
711 {
712 if (dump_core_p)
713 abort (); /* NOTE: GDB has only three calls to abort(). */
714 else
715 exit (1);
716 }
717 else
718 {
719 if (dump_core_p)
720 {
721 if (fork () == 0)
722 abort (); /* NOTE: GDB has only three calls to abort(). */
723 }
724 }
725
726 dejavu = 0;
727 return_to_top_level (RETURN_ERROR);
728 }
729
730 NORETURN void
731 internal_error (const char *file, int line, const char *string, ...)
732 {
733 va_list ap;
734 va_start (ap, string);
735
736 internal_verror (file, line, string, ap);
737 va_end (ap);
738 }
739
740 /* The strerror() function can return NULL for errno values that are
741 out of range. Provide a "safe" version that always returns a
742 printable string. */
743
744 char *
745 safe_strerror (int errnum)
746 {
747 char *msg;
748 static char buf[32];
749
750 if ((msg = strerror (errnum)) == NULL)
751 {
752 sprintf (buf, "(undocumented errno %d)", errnum);
753 msg = buf;
754 }
755 return (msg);
756 }
757
758 /* Print the system error message for errno, and also mention STRING
759 as the file name for which the error was encountered.
760 Then return to command level. */
761
762 NORETURN void
763 perror_with_name (char *string)
764 {
765 char *err;
766 char *combined;
767
768 err = safe_strerror (errno);
769 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
770 strcpy (combined, string);
771 strcat (combined, ": ");
772 strcat (combined, err);
773
774 /* I understand setting these is a matter of taste. Still, some people
775 may clear errno but not know about bfd_error. Doing this here is not
776 unreasonable. */
777 bfd_set_error (bfd_error_no_error);
778 errno = 0;
779
780 error ("%s.", combined);
781 }
782
783 /* Print the system error message for ERRCODE, and also mention STRING
784 as the file name for which the error was encountered. */
785
786 void
787 print_sys_errmsg (char *string, int errcode)
788 {
789 char *err;
790 char *combined;
791
792 err = safe_strerror (errcode);
793 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
794 strcpy (combined, string);
795 strcat (combined, ": ");
796 strcat (combined, err);
797
798 /* We want anything which was printed on stdout to come out first, before
799 this message. */
800 gdb_flush (gdb_stdout);
801 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
802 }
803
804 /* Control C eventually causes this to be called, at a convenient time. */
805
806 void
807 quit (void)
808 {
809 struct serial *gdb_stdout_serial = serial_fdopen (1);
810
811 target_terminal_ours ();
812
813 /* We want all output to appear now, before we print "Quit". We
814 have 3 levels of buffering we have to flush (it's possible that
815 some of these should be changed to flush the lower-level ones
816 too): */
817
818 /* 1. The _filtered buffer. */
819 wrap_here ((char *) 0);
820
821 /* 2. The stdio buffer. */
822 gdb_flush (gdb_stdout);
823 gdb_flush (gdb_stderr);
824
825 /* 3. The system-level buffer. */
826 serial_drain_output (gdb_stdout_serial);
827 serial_un_fdopen (gdb_stdout_serial);
828
829 annotate_error_begin ();
830
831 /* Don't use *_filtered; we don't want to prompt the user to continue. */
832 if (quit_pre_print)
833 fprintf_unfiltered (gdb_stderr, quit_pre_print);
834
835 #ifdef __MSDOS__
836 /* No steenking SIGINT will ever be coming our way when the
837 program is resumed. Don't lie. */
838 fprintf_unfiltered (gdb_stderr, "Quit\n");
839 #else
840 if (job_control
841 /* If there is no terminal switching for this target, then we can't
842 possibly get screwed by the lack of job control. */
843 || current_target.to_terminal_ours == NULL)
844 fprintf_unfiltered (gdb_stderr, "Quit\n");
845 else
846 fprintf_unfiltered (gdb_stderr,
847 "Quit (expect signal SIGINT when the program is resumed)\n");
848 #endif
849 return_to_top_level (RETURN_QUIT);
850 }
851
852 /* Control C comes here */
853 void
854 request_quit (int signo)
855 {
856 quit_flag = 1;
857 /* Restore the signal handler. Harmless with BSD-style signals, needed
858 for System V-style signals. So just always do it, rather than worrying
859 about USG defines and stuff like that. */
860 signal (signo, request_quit);
861
862 #ifdef REQUEST_QUIT
863 REQUEST_QUIT;
864 #else
865 if (immediate_quit)
866 quit ();
867 #endif
868 }
869 \f
870 /* Memory management stuff (malloc friends). */
871
872 #if !defined (USE_MMALLOC)
873
874 /* NOTE: These must use PTR so that their definition matches the
875 declaration found in "mmalloc.h". */
876
877 static void *
878 mmalloc (void *md, size_t size)
879 {
880 return malloc (size); /* NOTE: GDB's only call to malloc() */
881 }
882
883 static void *
884 mrealloc (void *md, void *ptr, size_t size)
885 {
886 if (ptr == 0) /* Guard against old realloc's */
887 return mmalloc (md, size);
888 else
889 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
890 }
891
892 static void *
893 mcalloc (void *md, size_t number, size_t size)
894 {
895 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
896 }
897
898 static void
899 mfree (void *md, void *ptr)
900 {
901 free (ptr); /* NOTE: GDB's only call to free() */
902 }
903
904 #endif /* USE_MMALLOC */
905
906 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
907
908 void
909 init_malloc (void *md)
910 {
911 }
912
913 #else /* Have mmalloc and want corruption checking */
914
915 static void
916 malloc_botch (void)
917 {
918 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
919 internal_error (__FILE__, __LINE__, "failed internal consistency check");
920 }
921
922 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
923 by MD, to detect memory corruption. Note that MD may be NULL to specify
924 the default heap that grows via sbrk.
925
926 Note that for freshly created regions, we must call mmcheckf prior to any
927 mallocs in the region. Otherwise, any region which was allocated prior to
928 installing the checking hooks, which is later reallocated or freed, will
929 fail the checks! The mmcheck function only allows initial hooks to be
930 installed before the first mmalloc. However, anytime after we have called
931 mmcheck the first time to install the checking hooks, we can call it again
932 to update the function pointer to the memory corruption handler.
933
934 Returns zero on failure, non-zero on success. */
935
936 #ifndef MMCHECK_FORCE
937 #define MMCHECK_FORCE 0
938 #endif
939
940 void
941 init_malloc (void *md)
942 {
943 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
944 {
945 /* Don't use warning(), which relies on current_target being set
946 to something other than dummy_target, until after
947 initialize_all_files(). */
948
949 fprintf_unfiltered
950 (gdb_stderr, "warning: failed to install memory consistency checks; ");
951 fprintf_unfiltered
952 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
953 }
954
955 mmtrace ();
956 }
957
958 #endif /* Have mmalloc and want corruption checking */
959
960 /* Called when a memory allocation fails, with the number of bytes of
961 memory requested in SIZE. */
962
963 NORETURN void
964 nomem (long size)
965 {
966 if (size > 0)
967 {
968 internal_error (__FILE__, __LINE__,
969 "virtual memory exhausted: can't allocate %ld bytes.", size);
970 }
971 else
972 {
973 internal_error (__FILE__, __LINE__,
974 "virtual memory exhausted.");
975 }
976 }
977
978 /* The xmmalloc() family of memory management routines.
979
980 These are are like the mmalloc() family except that they implement
981 consistent semantics and guard against typical memory management
982 problems: if a malloc fails, an internal error is thrown; if
983 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
984 is returned.
985
986 All these routines are implemented using the mmalloc() family. */
987
988 void *
989 xmmalloc (void *md, size_t size)
990 {
991 void *val;
992
993 if (size == 0)
994 {
995 val = NULL;
996 }
997 else
998 {
999 val = mmalloc (md, size);
1000 if (val == NULL)
1001 nomem (size);
1002 }
1003 return (val);
1004 }
1005
1006 void *
1007 xmrealloc (void *md, void *ptr, size_t size)
1008 {
1009 void *val;
1010
1011 if (size == 0)
1012 {
1013 if (ptr != NULL)
1014 mfree (md, ptr);
1015 val = NULL;
1016 }
1017 else
1018 {
1019 if (ptr != NULL)
1020 {
1021 val = mrealloc (md, ptr, size);
1022 }
1023 else
1024 {
1025 val = mmalloc (md, size);
1026 }
1027 if (val == NULL)
1028 {
1029 nomem (size);
1030 }
1031 }
1032 return (val);
1033 }
1034
1035 void *
1036 xmcalloc (void *md, size_t number, size_t size)
1037 {
1038 void *mem;
1039 if (number == 0 || size == 0)
1040 mem = NULL;
1041 else
1042 {
1043 mem = mcalloc (md, number, size);
1044 if (mem == NULL)
1045 nomem (number * size);
1046 }
1047 return mem;
1048 }
1049
1050 void
1051 xmfree (void *md, void *ptr)
1052 {
1053 if (ptr != NULL)
1054 mfree (md, ptr);
1055 }
1056
1057 /* The xmalloc() (libiberty.h) family of memory management routines.
1058
1059 These are like the ISO-C malloc() family except that they implement
1060 consistent semantics and guard against typical memory management
1061 problems. See xmmalloc() above for further information.
1062
1063 All these routines are wrappers to the xmmalloc() family. */
1064
1065 /* NOTE: These are declared using PTR to ensure consistency with
1066 "libiberty.h". xfree() is GDB local. */
1067
1068 PTR
1069 xmalloc (size_t size)
1070 {
1071 return xmmalloc (NULL, size);
1072 }
1073
1074 PTR
1075 xrealloc (PTR ptr, size_t size)
1076 {
1077 return xmrealloc (NULL, ptr, size);
1078 }
1079
1080 PTR
1081 xcalloc (size_t number, size_t size)
1082 {
1083 return xmcalloc (NULL, number, size);
1084 }
1085
1086 void
1087 xfree (void *ptr)
1088 {
1089 xmfree (NULL, ptr);
1090 }
1091 \f
1092
1093 /* Like asprintf/vasprintf but get an internal_error if the call
1094 fails. */
1095
1096 void
1097 xasprintf (char **ret, const char *format, ...)
1098 {
1099 va_list args;
1100 va_start (args, format);
1101 xvasprintf (ret, format, args);
1102 va_end (args);
1103 }
1104
1105 void
1106 xvasprintf (char **ret, const char *format, va_list ap)
1107 {
1108 int status = vasprintf (ret, format, ap);
1109 /* NULL could be returned due to a memory allocation problem; a
1110 badly format string; or something else. */
1111 if ((*ret) == NULL)
1112 internal_error (__FILE__, __LINE__,
1113 "vasprintf returned NULL buffer (errno %d)",
1114 errno);
1115 /* A negative status with a non-NULL buffer shouldn't never
1116 happen. But to be sure. */
1117 if (status < 0)
1118 internal_error (__FILE__, __LINE__,
1119 "vasprintf call failed (errno %d)",
1120 errno);
1121 }
1122
1123
1124 /* My replacement for the read system call.
1125 Used like `read' but keeps going if `read' returns too soon. */
1126
1127 int
1128 myread (int desc, char *addr, int len)
1129 {
1130 register int val;
1131 int orglen = len;
1132
1133 while (len > 0)
1134 {
1135 val = read (desc, addr, len);
1136 if (val < 0)
1137 return val;
1138 if (val == 0)
1139 return orglen - len;
1140 len -= val;
1141 addr += val;
1142 }
1143 return orglen;
1144 }
1145 \f
1146 /* Make a copy of the string at PTR with SIZE characters
1147 (and add a null character at the end in the copy).
1148 Uses malloc to get the space. Returns the address of the copy. */
1149
1150 char *
1151 savestring (const char *ptr, size_t size)
1152 {
1153 register char *p = (char *) xmalloc (size + 1);
1154 memcpy (p, ptr, size);
1155 p[size] = 0;
1156 return p;
1157 }
1158
1159 char *
1160 msavestring (void *md, const char *ptr, size_t size)
1161 {
1162 register char *p = (char *) xmmalloc (md, size + 1);
1163 memcpy (p, ptr, size);
1164 p[size] = 0;
1165 return p;
1166 }
1167
1168 char *
1169 mstrsave (void *md, const char *ptr)
1170 {
1171 return (msavestring (md, ptr, strlen (ptr)));
1172 }
1173
1174 void
1175 print_spaces (register int n, register struct ui_file *file)
1176 {
1177 fputs_unfiltered (n_spaces (n), file);
1178 }
1179
1180 /* Print a host address. */
1181
1182 void
1183 gdb_print_host_address (void *addr, struct ui_file *stream)
1184 {
1185
1186 /* We could use the %p conversion specifier to fprintf if we had any
1187 way of knowing whether this host supports it. But the following
1188 should work on the Alpha and on 32 bit machines. */
1189
1190 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1191 }
1192
1193 /* Ask user a y-or-n question and return 1 iff answer is yes.
1194 Takes three args which are given to printf to print the question.
1195 The first, a control string, should end in "? ".
1196 It should not say how to answer, because we do that. */
1197
1198 /* VARARGS */
1199 int
1200 query (char *ctlstr,...)
1201 {
1202 va_list args;
1203 register int answer;
1204 register int ans2;
1205 int retval;
1206
1207 va_start (args, ctlstr);
1208
1209 if (query_hook)
1210 {
1211 return query_hook (ctlstr, args);
1212 }
1213
1214 /* Automatically answer "yes" if input is not from a terminal. */
1215 if (!input_from_terminal_p ())
1216 return 1;
1217
1218 while (1)
1219 {
1220 wrap_here (""); /* Flush any buffered output */
1221 gdb_flush (gdb_stdout);
1222
1223 if (annotation_level > 1)
1224 printf_filtered ("\n\032\032pre-query\n");
1225
1226 vfprintf_filtered (gdb_stdout, ctlstr, args);
1227 printf_filtered ("(y or n) ");
1228
1229 if (annotation_level > 1)
1230 printf_filtered ("\n\032\032query\n");
1231
1232 wrap_here ("");
1233 gdb_flush (gdb_stdout);
1234
1235 answer = fgetc (stdin);
1236 clearerr (stdin); /* in case of C-d */
1237 if (answer == EOF) /* C-d */
1238 {
1239 retval = 1;
1240 break;
1241 }
1242 /* Eat rest of input line, to EOF or newline */
1243 if (answer != '\n')
1244 do
1245 {
1246 ans2 = fgetc (stdin);
1247 clearerr (stdin);
1248 }
1249 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1250
1251 if (answer >= 'a')
1252 answer -= 040;
1253 if (answer == 'Y')
1254 {
1255 retval = 1;
1256 break;
1257 }
1258 if (answer == 'N')
1259 {
1260 retval = 0;
1261 break;
1262 }
1263 printf_filtered ("Please answer y or n.\n");
1264 }
1265
1266 if (annotation_level > 1)
1267 printf_filtered ("\n\032\032post-query\n");
1268 return retval;
1269 }
1270 \f
1271
1272 /* Parse a C escape sequence. STRING_PTR points to a variable
1273 containing a pointer to the string to parse. That pointer
1274 should point to the character after the \. That pointer
1275 is updated past the characters we use. The value of the
1276 escape sequence is returned.
1277
1278 A negative value means the sequence \ newline was seen,
1279 which is supposed to be equivalent to nothing at all.
1280
1281 If \ is followed by a null character, we return a negative
1282 value and leave the string pointer pointing at the null character.
1283
1284 If \ is followed by 000, we return 0 and leave the string pointer
1285 after the zeros. A value of 0 does not mean end of string. */
1286
1287 int
1288 parse_escape (char **string_ptr)
1289 {
1290 register int c = *(*string_ptr)++;
1291 switch (c)
1292 {
1293 case 'a':
1294 return 007; /* Bell (alert) char */
1295 case 'b':
1296 return '\b';
1297 case 'e': /* Escape character */
1298 return 033;
1299 case 'f':
1300 return '\f';
1301 case 'n':
1302 return '\n';
1303 case 'r':
1304 return '\r';
1305 case 't':
1306 return '\t';
1307 case 'v':
1308 return '\v';
1309 case '\n':
1310 return -2;
1311 case 0:
1312 (*string_ptr)--;
1313 return 0;
1314 case '^':
1315 c = *(*string_ptr)++;
1316 if (c == '\\')
1317 c = parse_escape (string_ptr);
1318 if (c == '?')
1319 return 0177;
1320 return (c & 0200) | (c & 037);
1321
1322 case '0':
1323 case '1':
1324 case '2':
1325 case '3':
1326 case '4':
1327 case '5':
1328 case '6':
1329 case '7':
1330 {
1331 register int i = c - '0';
1332 register int count = 0;
1333 while (++count < 3)
1334 {
1335 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1336 {
1337 i *= 8;
1338 i += c - '0';
1339 }
1340 else
1341 {
1342 (*string_ptr)--;
1343 break;
1344 }
1345 }
1346 return i;
1347 }
1348 default:
1349 return c;
1350 }
1351 }
1352 \f
1353 /* Print the character C on STREAM as part of the contents of a literal
1354 string whose delimiter is QUOTER. Note that this routine should only
1355 be call for printing things which are independent of the language
1356 of the program being debugged. */
1357
1358 static void
1359 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1360 void (*do_fprintf) (struct ui_file *, const char *, ...),
1361 struct ui_file *stream, int quoter)
1362 {
1363
1364 c &= 0xFF; /* Avoid sign bit follies */
1365
1366 if (c < 0x20 || /* Low control chars */
1367 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1368 (sevenbit_strings && c >= 0x80))
1369 { /* high order bit set */
1370 switch (c)
1371 {
1372 case '\n':
1373 do_fputs ("\\n", stream);
1374 break;
1375 case '\b':
1376 do_fputs ("\\b", stream);
1377 break;
1378 case '\t':
1379 do_fputs ("\\t", stream);
1380 break;
1381 case '\f':
1382 do_fputs ("\\f", stream);
1383 break;
1384 case '\r':
1385 do_fputs ("\\r", stream);
1386 break;
1387 case '\033':
1388 do_fputs ("\\e", stream);
1389 break;
1390 case '\007':
1391 do_fputs ("\\a", stream);
1392 break;
1393 default:
1394 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1395 break;
1396 }
1397 }
1398 else
1399 {
1400 if (c == '\\' || c == quoter)
1401 do_fputs ("\\", stream);
1402 do_fprintf (stream, "%c", c);
1403 }
1404 }
1405
1406 /* Print the character C on STREAM as part of the contents of a
1407 literal string whose delimiter is QUOTER. Note that these routines
1408 should only be call for printing things which are independent of
1409 the language of the program being debugged. */
1410
1411 void
1412 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1413 {
1414 while (*str)
1415 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1416 }
1417
1418 void
1419 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1420 {
1421 while (*str)
1422 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1423 }
1424
1425 void
1426 fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
1427 {
1428 int i;
1429 for (i = 0; i < n; i++)
1430 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1431 }
1432
1433 \f
1434
1435 /* Number of lines per page or UINT_MAX if paging is disabled. */
1436 static unsigned int lines_per_page;
1437 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1438 static unsigned int chars_per_line;
1439 /* Current count of lines printed on this page, chars on this line. */
1440 static unsigned int lines_printed, chars_printed;
1441
1442 /* Buffer and start column of buffered text, for doing smarter word-
1443 wrapping. When someone calls wrap_here(), we start buffering output
1444 that comes through fputs_filtered(). If we see a newline, we just
1445 spit it out and forget about the wrap_here(). If we see another
1446 wrap_here(), we spit it out and remember the newer one. If we see
1447 the end of the line, we spit out a newline, the indent, and then
1448 the buffered output. */
1449
1450 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1451 are waiting to be output (they have already been counted in chars_printed).
1452 When wrap_buffer[0] is null, the buffer is empty. */
1453 static char *wrap_buffer;
1454
1455 /* Pointer in wrap_buffer to the next character to fill. */
1456 static char *wrap_pointer;
1457
1458 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1459 is non-zero. */
1460 static char *wrap_indent;
1461
1462 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1463 is not in effect. */
1464 static int wrap_column;
1465 \f
1466
1467 /* Inialize the lines and chars per page */
1468 void
1469 init_page_info (void)
1470 {
1471 #if defined(TUI)
1472 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1473 #endif
1474 {
1475 /* These defaults will be used if we are unable to get the correct
1476 values from termcap. */
1477 #if defined(__GO32__)
1478 lines_per_page = ScreenRows ();
1479 chars_per_line = ScreenCols ();
1480 #else
1481 lines_per_page = 24;
1482 chars_per_line = 80;
1483
1484 #if !defined (_WIN32)
1485 /* No termcap under MPW, although might be cool to do something
1486 by looking at worksheet or console window sizes. */
1487 /* Initialize the screen height and width from termcap. */
1488 {
1489 char *termtype = getenv ("TERM");
1490
1491 /* Positive means success, nonpositive means failure. */
1492 int status;
1493
1494 /* 2048 is large enough for all known terminals, according to the
1495 GNU termcap manual. */
1496 char term_buffer[2048];
1497
1498 if (termtype)
1499 {
1500 status = tgetent (term_buffer, termtype);
1501 if (status > 0)
1502 {
1503 int val;
1504 int running_in_emacs = getenv ("EMACS") != NULL;
1505
1506 val = tgetnum ("li");
1507 if (val >= 0 && !running_in_emacs)
1508 lines_per_page = val;
1509 else
1510 /* The number of lines per page is not mentioned
1511 in the terminal description. This probably means
1512 that paging is not useful (e.g. emacs shell window),
1513 so disable paging. */
1514 lines_per_page = UINT_MAX;
1515
1516 val = tgetnum ("co");
1517 if (val >= 0)
1518 chars_per_line = val;
1519 }
1520 }
1521 }
1522 #endif /* MPW */
1523
1524 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1525
1526 /* If there is a better way to determine the window size, use it. */
1527 SIGWINCH_HANDLER (SIGWINCH);
1528 #endif
1529 #endif
1530 /* If the output is not a terminal, don't paginate it. */
1531 if (!ui_file_isatty (gdb_stdout))
1532 lines_per_page = UINT_MAX;
1533 } /* the command_line_version */
1534 set_width ();
1535 }
1536
1537 static void
1538 set_width (void)
1539 {
1540 if (chars_per_line == 0)
1541 init_page_info ();
1542
1543 if (!wrap_buffer)
1544 {
1545 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1546 wrap_buffer[0] = '\0';
1547 }
1548 else
1549 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1550 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1551 }
1552
1553 /* ARGSUSED */
1554 static void
1555 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1556 {
1557 set_width ();
1558 }
1559
1560 /* Wait, so the user can read what's on the screen. Prompt the user
1561 to continue by pressing RETURN. */
1562
1563 static void
1564 prompt_for_continue (void)
1565 {
1566 char *ignore;
1567 char cont_prompt[120];
1568
1569 if (annotation_level > 1)
1570 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1571
1572 strcpy (cont_prompt,
1573 "---Type <return> to continue, or q <return> to quit---");
1574 if (annotation_level > 1)
1575 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1576
1577 /* We must do this *before* we call gdb_readline, else it will eventually
1578 call us -- thinking that we're trying to print beyond the end of the
1579 screen. */
1580 reinitialize_more_filter ();
1581
1582 immediate_quit++;
1583 /* On a real operating system, the user can quit with SIGINT.
1584 But not on GO32.
1585
1586 'q' is provided on all systems so users don't have to change habits
1587 from system to system, and because telling them what to do in
1588 the prompt is more user-friendly than expecting them to think of
1589 SIGINT. */
1590 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1591 whereas control-C to gdb_readline will cause the user to get dumped
1592 out to DOS. */
1593 ignore = readline (cont_prompt);
1594
1595 if (annotation_level > 1)
1596 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1597
1598 if (ignore)
1599 {
1600 char *p = ignore;
1601 while (*p == ' ' || *p == '\t')
1602 ++p;
1603 if (p[0] == 'q')
1604 {
1605 if (!event_loop_p)
1606 request_quit (SIGINT);
1607 else
1608 async_request_quit (0);
1609 }
1610 xfree (ignore);
1611 }
1612 immediate_quit--;
1613
1614 /* Now we have to do this again, so that GDB will know that it doesn't
1615 need to save the ---Type <return>--- line at the top of the screen. */
1616 reinitialize_more_filter ();
1617
1618 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1619 }
1620
1621 /* Reinitialize filter; ie. tell it to reset to original values. */
1622
1623 void
1624 reinitialize_more_filter (void)
1625 {
1626 lines_printed = 0;
1627 chars_printed = 0;
1628 }
1629
1630 /* Indicate that if the next sequence of characters overflows the line,
1631 a newline should be inserted here rather than when it hits the end.
1632 If INDENT is non-null, it is a string to be printed to indent the
1633 wrapped part on the next line. INDENT must remain accessible until
1634 the next call to wrap_here() or until a newline is printed through
1635 fputs_filtered().
1636
1637 If the line is already overfull, we immediately print a newline and
1638 the indentation, and disable further wrapping.
1639
1640 If we don't know the width of lines, but we know the page height,
1641 we must not wrap words, but should still keep track of newlines
1642 that were explicitly printed.
1643
1644 INDENT should not contain tabs, as that will mess up the char count
1645 on the next line. FIXME.
1646
1647 This routine is guaranteed to force out any output which has been
1648 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1649 used to force out output from the wrap_buffer. */
1650
1651 void
1652 wrap_here (char *indent)
1653 {
1654 /* This should have been allocated, but be paranoid anyway. */
1655 if (!wrap_buffer)
1656 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1657
1658 if (wrap_buffer[0])
1659 {
1660 *wrap_pointer = '\0';
1661 fputs_unfiltered (wrap_buffer, gdb_stdout);
1662 }
1663 wrap_pointer = wrap_buffer;
1664 wrap_buffer[0] = '\0';
1665 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1666 {
1667 wrap_column = 0;
1668 }
1669 else if (chars_printed >= chars_per_line)
1670 {
1671 puts_filtered ("\n");
1672 if (indent != NULL)
1673 puts_filtered (indent);
1674 wrap_column = 0;
1675 }
1676 else
1677 {
1678 wrap_column = chars_printed;
1679 if (indent == NULL)
1680 wrap_indent = "";
1681 else
1682 wrap_indent = indent;
1683 }
1684 }
1685
1686 /* Ensure that whatever gets printed next, using the filtered output
1687 commands, starts at the beginning of the line. I.E. if there is
1688 any pending output for the current line, flush it and start a new
1689 line. Otherwise do nothing. */
1690
1691 void
1692 begin_line (void)
1693 {
1694 if (chars_printed > 0)
1695 {
1696 puts_filtered ("\n");
1697 }
1698 }
1699
1700
1701 /* Like fputs but if FILTER is true, pause after every screenful.
1702
1703 Regardless of FILTER can wrap at points other than the final
1704 character of a line.
1705
1706 Unlike fputs, fputs_maybe_filtered does not return a value.
1707 It is OK for LINEBUFFER to be NULL, in which case just don't print
1708 anything.
1709
1710 Note that a longjmp to top level may occur in this routine (only if
1711 FILTER is true) (since prompt_for_continue may do so) so this
1712 routine should not be called when cleanups are not in place. */
1713
1714 static void
1715 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1716 int filter)
1717 {
1718 const char *lineptr;
1719
1720 if (linebuffer == 0)
1721 return;
1722
1723 /* Don't do any filtering if it is disabled. */
1724 if ((stream != gdb_stdout) || !pagination_enabled
1725 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1726 {
1727 fputs_unfiltered (linebuffer, stream);
1728 return;
1729 }
1730
1731 /* Go through and output each character. Show line extension
1732 when this is necessary; prompt user for new page when this is
1733 necessary. */
1734
1735 lineptr = linebuffer;
1736 while (*lineptr)
1737 {
1738 /* Possible new page. */
1739 if (filter &&
1740 (lines_printed >= lines_per_page - 1))
1741 prompt_for_continue ();
1742
1743 while (*lineptr && *lineptr != '\n')
1744 {
1745 /* Print a single line. */
1746 if (*lineptr == '\t')
1747 {
1748 if (wrap_column)
1749 *wrap_pointer++ = '\t';
1750 else
1751 fputc_unfiltered ('\t', stream);
1752 /* Shifting right by 3 produces the number of tab stops
1753 we have already passed, and then adding one and
1754 shifting left 3 advances to the next tab stop. */
1755 chars_printed = ((chars_printed >> 3) + 1) << 3;
1756 lineptr++;
1757 }
1758 else
1759 {
1760 if (wrap_column)
1761 *wrap_pointer++ = *lineptr;
1762 else
1763 fputc_unfiltered (*lineptr, stream);
1764 chars_printed++;
1765 lineptr++;
1766 }
1767
1768 if (chars_printed >= chars_per_line)
1769 {
1770 unsigned int save_chars = chars_printed;
1771
1772 chars_printed = 0;
1773 lines_printed++;
1774 /* If we aren't actually wrapping, don't output newline --
1775 if chars_per_line is right, we probably just overflowed
1776 anyway; if it's wrong, let us keep going. */
1777 if (wrap_column)
1778 fputc_unfiltered ('\n', stream);
1779
1780 /* Possible new page. */
1781 if (lines_printed >= lines_per_page - 1)
1782 prompt_for_continue ();
1783
1784 /* Now output indentation and wrapped string */
1785 if (wrap_column)
1786 {
1787 fputs_unfiltered (wrap_indent, stream);
1788 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1789 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1790 /* FIXME, this strlen is what prevents wrap_indent from
1791 containing tabs. However, if we recurse to print it
1792 and count its chars, we risk trouble if wrap_indent is
1793 longer than (the user settable) chars_per_line.
1794 Note also that this can set chars_printed > chars_per_line
1795 if we are printing a long string. */
1796 chars_printed = strlen (wrap_indent)
1797 + (save_chars - wrap_column);
1798 wrap_pointer = wrap_buffer; /* Reset buffer */
1799 wrap_buffer[0] = '\0';
1800 wrap_column = 0; /* And disable fancy wrap */
1801 }
1802 }
1803 }
1804
1805 if (*lineptr == '\n')
1806 {
1807 chars_printed = 0;
1808 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1809 lines_printed++;
1810 fputc_unfiltered ('\n', stream);
1811 lineptr++;
1812 }
1813 }
1814 }
1815
1816 void
1817 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1818 {
1819 fputs_maybe_filtered (linebuffer, stream, 1);
1820 }
1821
1822 int
1823 putchar_unfiltered (int c)
1824 {
1825 char buf = c;
1826 ui_file_write (gdb_stdout, &buf, 1);
1827 return c;
1828 }
1829
1830 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1831 May return nonlocally. */
1832
1833 int
1834 putchar_filtered (int c)
1835 {
1836 return fputc_filtered (c, gdb_stdout);
1837 }
1838
1839 int
1840 fputc_unfiltered (int c, struct ui_file *stream)
1841 {
1842 char buf = c;
1843 ui_file_write (stream, &buf, 1);
1844 return c;
1845 }
1846
1847 int
1848 fputc_filtered (int c, struct ui_file *stream)
1849 {
1850 char buf[2];
1851
1852 buf[0] = c;
1853 buf[1] = 0;
1854 fputs_filtered (buf, stream);
1855 return c;
1856 }
1857
1858 /* puts_debug is like fputs_unfiltered, except it prints special
1859 characters in printable fashion. */
1860
1861 void
1862 puts_debug (char *prefix, char *string, char *suffix)
1863 {
1864 int ch;
1865
1866 /* Print prefix and suffix after each line. */
1867 static int new_line = 1;
1868 static int return_p = 0;
1869 static char *prev_prefix = "";
1870 static char *prev_suffix = "";
1871
1872 if (*string == '\n')
1873 return_p = 0;
1874
1875 /* If the prefix is changing, print the previous suffix, a new line,
1876 and the new prefix. */
1877 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1878 {
1879 fputs_unfiltered (prev_suffix, gdb_stdlog);
1880 fputs_unfiltered ("\n", gdb_stdlog);
1881 fputs_unfiltered (prefix, gdb_stdlog);
1882 }
1883
1884 /* Print prefix if we printed a newline during the previous call. */
1885 if (new_line)
1886 {
1887 new_line = 0;
1888 fputs_unfiltered (prefix, gdb_stdlog);
1889 }
1890
1891 prev_prefix = prefix;
1892 prev_suffix = suffix;
1893
1894 /* Output characters in a printable format. */
1895 while ((ch = *string++) != '\0')
1896 {
1897 switch (ch)
1898 {
1899 default:
1900 if (isprint (ch))
1901 fputc_unfiltered (ch, gdb_stdlog);
1902
1903 else
1904 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1905 break;
1906
1907 case '\\':
1908 fputs_unfiltered ("\\\\", gdb_stdlog);
1909 break;
1910 case '\b':
1911 fputs_unfiltered ("\\b", gdb_stdlog);
1912 break;
1913 case '\f':
1914 fputs_unfiltered ("\\f", gdb_stdlog);
1915 break;
1916 case '\n':
1917 new_line = 1;
1918 fputs_unfiltered ("\\n", gdb_stdlog);
1919 break;
1920 case '\r':
1921 fputs_unfiltered ("\\r", gdb_stdlog);
1922 break;
1923 case '\t':
1924 fputs_unfiltered ("\\t", gdb_stdlog);
1925 break;
1926 case '\v':
1927 fputs_unfiltered ("\\v", gdb_stdlog);
1928 break;
1929 }
1930
1931 return_p = ch == '\r';
1932 }
1933
1934 /* Print suffix if we printed a newline. */
1935 if (new_line)
1936 {
1937 fputs_unfiltered (suffix, gdb_stdlog);
1938 fputs_unfiltered ("\n", gdb_stdlog);
1939 }
1940 }
1941
1942
1943 /* Print a variable number of ARGS using format FORMAT. If this
1944 information is going to put the amount written (since the last call
1945 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1946 call prompt_for_continue to get the users permision to continue.
1947
1948 Unlike fprintf, this function does not return a value.
1949
1950 We implement three variants, vfprintf (takes a vararg list and stream),
1951 fprintf (takes a stream to write on), and printf (the usual).
1952
1953 Note also that a longjmp to top level may occur in this routine
1954 (since prompt_for_continue may do so) so this routine should not be
1955 called when cleanups are not in place. */
1956
1957 static void
1958 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
1959 va_list args, int filter)
1960 {
1961 char *linebuffer;
1962 struct cleanup *old_cleanups;
1963
1964 xvasprintf (&linebuffer, format, args);
1965 old_cleanups = make_cleanup (xfree, linebuffer);
1966 fputs_maybe_filtered (linebuffer, stream, filter);
1967 do_cleanups (old_cleanups);
1968 }
1969
1970
1971 void
1972 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
1973 {
1974 vfprintf_maybe_filtered (stream, format, args, 1);
1975 }
1976
1977 void
1978 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
1979 {
1980 char *linebuffer;
1981 struct cleanup *old_cleanups;
1982
1983 xvasprintf (&linebuffer, format, args);
1984 old_cleanups = make_cleanup (xfree, linebuffer);
1985 fputs_unfiltered (linebuffer, stream);
1986 do_cleanups (old_cleanups);
1987 }
1988
1989 void
1990 vprintf_filtered (const char *format, va_list args)
1991 {
1992 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
1993 }
1994
1995 void
1996 vprintf_unfiltered (const char *format, va_list args)
1997 {
1998 vfprintf_unfiltered (gdb_stdout, format, args);
1999 }
2000
2001 void
2002 fprintf_filtered (struct ui_file * stream, const char *format,...)
2003 {
2004 va_list args;
2005 va_start (args, format);
2006 vfprintf_filtered (stream, format, args);
2007 va_end (args);
2008 }
2009
2010 void
2011 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2012 {
2013 va_list args;
2014 va_start (args, format);
2015 vfprintf_unfiltered (stream, format, args);
2016 va_end (args);
2017 }
2018
2019 /* Like fprintf_filtered, but prints its result indented.
2020 Called as fprintfi_filtered (spaces, stream, format, ...); */
2021
2022 void
2023 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2024 {
2025 va_list args;
2026 va_start (args, format);
2027 print_spaces_filtered (spaces, stream);
2028
2029 vfprintf_filtered (stream, format, args);
2030 va_end (args);
2031 }
2032
2033
2034 void
2035 printf_filtered (const char *format,...)
2036 {
2037 va_list args;
2038 va_start (args, format);
2039 vfprintf_filtered (gdb_stdout, format, args);
2040 va_end (args);
2041 }
2042
2043
2044 void
2045 printf_unfiltered (const char *format,...)
2046 {
2047 va_list args;
2048 va_start (args, format);
2049 vfprintf_unfiltered (gdb_stdout, format, args);
2050 va_end (args);
2051 }
2052
2053 /* Like printf_filtered, but prints it's result indented.
2054 Called as printfi_filtered (spaces, format, ...); */
2055
2056 void
2057 printfi_filtered (int spaces, const char *format,...)
2058 {
2059 va_list args;
2060 va_start (args, format);
2061 print_spaces_filtered (spaces, gdb_stdout);
2062 vfprintf_filtered (gdb_stdout, format, args);
2063 va_end (args);
2064 }
2065
2066 /* Easy -- but watch out!
2067
2068 This routine is *not* a replacement for puts()! puts() appends a newline.
2069 This one doesn't, and had better not! */
2070
2071 void
2072 puts_filtered (const char *string)
2073 {
2074 fputs_filtered (string, gdb_stdout);
2075 }
2076
2077 void
2078 puts_unfiltered (const char *string)
2079 {
2080 fputs_unfiltered (string, gdb_stdout);
2081 }
2082
2083 /* Return a pointer to N spaces and a null. The pointer is good
2084 until the next call to here. */
2085 char *
2086 n_spaces (int n)
2087 {
2088 char *t;
2089 static char *spaces = 0;
2090 static int max_spaces = -1;
2091
2092 if (n > max_spaces)
2093 {
2094 if (spaces)
2095 xfree (spaces);
2096 spaces = (char *) xmalloc (n + 1);
2097 for (t = spaces + n; t != spaces;)
2098 *--t = ' ';
2099 spaces[n] = '\0';
2100 max_spaces = n;
2101 }
2102
2103 return spaces + max_spaces - n;
2104 }
2105
2106 /* Print N spaces. */
2107 void
2108 print_spaces_filtered (int n, struct ui_file *stream)
2109 {
2110 fputs_filtered (n_spaces (n), stream);
2111 }
2112 \f
2113 /* C++ demangler stuff. */
2114
2115 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2116 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2117 If the name is not mangled, or the language for the name is unknown, or
2118 demangling is off, the name is printed in its "raw" form. */
2119
2120 void
2121 fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2122 int arg_mode)
2123 {
2124 char *demangled;
2125
2126 if (name != NULL)
2127 {
2128 /* If user wants to see raw output, no problem. */
2129 if (!demangle)
2130 {
2131 fputs_filtered (name, stream);
2132 }
2133 else
2134 {
2135 switch (lang)
2136 {
2137 case language_cplus:
2138 demangled = cplus_demangle (name, arg_mode);
2139 break;
2140 case language_java:
2141 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2142 break;
2143 case language_chill:
2144 demangled = chill_demangle (name);
2145 break;
2146 default:
2147 demangled = NULL;
2148 break;
2149 }
2150 fputs_filtered (demangled ? demangled : name, stream);
2151 if (demangled != NULL)
2152 {
2153 xfree (demangled);
2154 }
2155 }
2156 }
2157 }
2158
2159 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2160 differences in whitespace. Returns 0 if they match, non-zero if they
2161 don't (slightly different than strcmp()'s range of return values).
2162
2163 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2164 This "feature" is useful when searching for matching C++ function names
2165 (such as if the user types 'break FOO', where FOO is a mangled C++
2166 function). */
2167
2168 int
2169 strcmp_iw (const char *string1, const char *string2)
2170 {
2171 while ((*string1 != '\0') && (*string2 != '\0'))
2172 {
2173 while (isspace (*string1))
2174 {
2175 string1++;
2176 }
2177 while (isspace (*string2))
2178 {
2179 string2++;
2180 }
2181 if (*string1 != *string2)
2182 {
2183 break;
2184 }
2185 if (*string1 != '\0')
2186 {
2187 string1++;
2188 string2++;
2189 }
2190 }
2191 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2192 }
2193 \f
2194
2195 /*
2196 ** subset_compare()
2197 ** Answer whether string_to_compare is a full or partial match to
2198 ** template_string. The partial match must be in sequence starting
2199 ** at index 0.
2200 */
2201 int
2202 subset_compare (char *string_to_compare, char *template_string)
2203 {
2204 int match;
2205 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2206 strlen (string_to_compare) <= strlen (template_string))
2207 match = (strncmp (template_string,
2208 string_to_compare,
2209 strlen (string_to_compare)) == 0);
2210 else
2211 match = 0;
2212 return match;
2213 }
2214
2215
2216 static void pagination_on_command (char *arg, int from_tty);
2217 static void
2218 pagination_on_command (char *arg, int from_tty)
2219 {
2220 pagination_enabled = 1;
2221 }
2222
2223 static void pagination_on_command (char *arg, int from_tty);
2224 static void
2225 pagination_off_command (char *arg, int from_tty)
2226 {
2227 pagination_enabled = 0;
2228 }
2229 \f
2230
2231 void
2232 initialize_utils (void)
2233 {
2234 struct cmd_list_element *c;
2235
2236 c = add_set_cmd ("width", class_support, var_uinteger,
2237 (char *) &chars_per_line,
2238 "Set number of characters gdb thinks are in a line.",
2239 &setlist);
2240 add_show_from_set (c, &showlist);
2241 set_cmd_sfunc (c, set_width_command);
2242
2243 add_show_from_set
2244 (add_set_cmd ("height", class_support,
2245 var_uinteger, (char *) &lines_per_page,
2246 "Set number of lines gdb thinks are in a page.", &setlist),
2247 &showlist);
2248
2249 init_page_info ();
2250
2251 /* If the output is not a terminal, don't paginate it. */
2252 if (!ui_file_isatty (gdb_stdout))
2253 lines_per_page = UINT_MAX;
2254
2255 set_width_command ((char *) NULL, 0, c);
2256
2257 add_show_from_set
2258 (add_set_cmd ("demangle", class_support, var_boolean,
2259 (char *) &demangle,
2260 "Set demangling of encoded C++ names when displaying symbols.",
2261 &setprintlist),
2262 &showprintlist);
2263
2264 add_show_from_set
2265 (add_set_cmd ("pagination", class_support,
2266 var_boolean, (char *) &pagination_enabled,
2267 "Set state of pagination.", &setlist),
2268 &showlist);
2269
2270 if (xdb_commands)
2271 {
2272 add_com ("am", class_support, pagination_on_command,
2273 "Enable pagination");
2274 add_com ("sm", class_support, pagination_off_command,
2275 "Disable pagination");
2276 }
2277
2278 add_show_from_set
2279 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2280 (char *) &sevenbit_strings,
2281 "Set printing of 8-bit characters in strings as \\nnn.",
2282 &setprintlist),
2283 &showprintlist);
2284
2285 add_show_from_set
2286 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2287 (char *) &asm_demangle,
2288 "Set demangling of C++ names in disassembly listings.",
2289 &setprintlist),
2290 &showprintlist);
2291 }
2292
2293 /* Machine specific function to handle SIGWINCH signal. */
2294
2295 #ifdef SIGWINCH_HANDLER_BODY
2296 SIGWINCH_HANDLER_BODY
2297 #endif
2298
2299 /* print routines to handle variable size regs, etc. */
2300
2301 /* temporary storage using circular buffer */
2302 #define NUMCELLS 16
2303 #define CELLSIZE 32
2304 static char *
2305 get_cell (void)
2306 {
2307 static char buf[NUMCELLS][CELLSIZE];
2308 static int cell = 0;
2309 if (++cell >= NUMCELLS)
2310 cell = 0;
2311 return buf[cell];
2312 }
2313
2314 int
2315 strlen_paddr (void)
2316 {
2317 return (TARGET_ADDR_BIT / 8 * 2);
2318 }
2319
2320 char *
2321 paddr (CORE_ADDR addr)
2322 {
2323 return phex (addr, TARGET_ADDR_BIT / 8);
2324 }
2325
2326 char *
2327 paddr_nz (CORE_ADDR addr)
2328 {
2329 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2330 }
2331
2332 static void
2333 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2334 {
2335 /* steal code from valprint.c:print_decimal(). Should this worry
2336 about the real size of addr as the above does? */
2337 unsigned long temp[3];
2338 int i = 0;
2339 do
2340 {
2341 temp[i] = addr % (1000 * 1000 * 1000);
2342 addr /= (1000 * 1000 * 1000);
2343 i++;
2344 }
2345 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2346 switch (i)
2347 {
2348 case 1:
2349 sprintf (paddr_str, "%s%lu",
2350 sign, temp[0]);
2351 break;
2352 case 2:
2353 sprintf (paddr_str, "%s%lu%09lu",
2354 sign, temp[1], temp[0]);
2355 break;
2356 case 3:
2357 sprintf (paddr_str, "%s%lu%09lu%09lu",
2358 sign, temp[2], temp[1], temp[0]);
2359 break;
2360 default:
2361 internal_error (__FILE__, __LINE__, "failed internal consistency check");
2362 }
2363 }
2364
2365 char *
2366 paddr_u (CORE_ADDR addr)
2367 {
2368 char *paddr_str = get_cell ();
2369 decimal2str (paddr_str, "", addr);
2370 return paddr_str;
2371 }
2372
2373 char *
2374 paddr_d (LONGEST addr)
2375 {
2376 char *paddr_str = get_cell ();
2377 if (addr < 0)
2378 decimal2str (paddr_str, "-", -addr);
2379 else
2380 decimal2str (paddr_str, "", addr);
2381 return paddr_str;
2382 }
2383
2384 /* eliminate warning from compiler on 32-bit systems */
2385 static int thirty_two = 32;
2386
2387 char *
2388 phex (ULONGEST l, int sizeof_l)
2389 {
2390 char *str;
2391 switch (sizeof_l)
2392 {
2393 case 8:
2394 str = get_cell ();
2395 sprintf (str, "%08lx%08lx",
2396 (unsigned long) (l >> thirty_two),
2397 (unsigned long) (l & 0xffffffff));
2398 break;
2399 case 4:
2400 str = get_cell ();
2401 sprintf (str, "%08lx", (unsigned long) l);
2402 break;
2403 case 2:
2404 str = get_cell ();
2405 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2406 break;
2407 default:
2408 str = phex (l, sizeof (l));
2409 break;
2410 }
2411 return str;
2412 }
2413
2414 char *
2415 phex_nz (ULONGEST l, int sizeof_l)
2416 {
2417 char *str;
2418 switch (sizeof_l)
2419 {
2420 case 8:
2421 {
2422 unsigned long high = (unsigned long) (l >> thirty_two);
2423 str = get_cell ();
2424 if (high == 0)
2425 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2426 else
2427 sprintf (str, "%lx%08lx",
2428 high, (unsigned long) (l & 0xffffffff));
2429 break;
2430 }
2431 case 4:
2432 str = get_cell ();
2433 sprintf (str, "%lx", (unsigned long) l);
2434 break;
2435 case 2:
2436 str = get_cell ();
2437 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2438 break;
2439 default:
2440 str = phex_nz (l, sizeof (l));
2441 break;
2442 }
2443 return str;
2444 }
2445
2446
2447 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2448 using the target's conversion routines. */
2449 CORE_ADDR
2450 host_pointer_to_address (void *ptr)
2451 {
2452 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
2453 internal_error (__FILE__, __LINE__,
2454 "core_addr_to_void_ptr: bad cast");
2455 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2456 }
2457
2458 void *
2459 address_to_host_pointer (CORE_ADDR addr)
2460 {
2461 void *ptr;
2462 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
2463 internal_error (__FILE__, __LINE__,
2464 "core_addr_to_void_ptr: bad cast");
2465 ADDRESS_TO_POINTER (builtin_type_void_data_ptr, &ptr, addr);
2466 return ptr;
2467 }
2468
2469 /* Convert a CORE_ADDR into a string. */
2470 const char *
2471 core_addr_to_string (const CORE_ADDR addr)
2472 {
2473 char *str = get_cell ();
2474 strcpy (str, "0x");
2475 strcat (str, phex_nz (addr, sizeof (addr)));
2476 return str;
2477 }
2478
2479 /* Convert a string back into a CORE_ADDR. */
2480 CORE_ADDR
2481 string_to_core_addr (const char *my_string)
2482 {
2483 CORE_ADDR addr = 0;
2484 if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
2485 {
2486 /* Assume that it is in decimal. */
2487 int i;
2488 for (i = 2; my_string[i] != '\0'; i++)
2489 {
2490 if (isdigit (my_string[i]))
2491 addr = (my_string[i] - '0') + (addr * 16);
2492 else if (isxdigit (my_string[i]))
2493 addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
2494 else
2495 internal_error (__FILE__, __LINE__, "invalid hex");
2496 }
2497 }
2498 else
2499 {
2500 /* Assume that it is in decimal. */
2501 int i;
2502 for (i = 0; my_string[i] != '\0'; i++)
2503 {
2504 if (isdigit (my_string[i]))
2505 addr = (my_string[i] - '0') + (addr * 10);
2506 else
2507 internal_error (__FILE__, __LINE__, "invalid decimal");
2508 }
2509 }
2510 return addr;
2511 }
2512
2513 char *
2514 gdb_realpath (const char *filename)
2515 {
2516 #ifdef HAVE_REALPATH
2517 #if defined (PATH_MAX)
2518 char buf[PATH_MAX];
2519 #elif defined (MAXPATHLEN)
2520 char buf[MAXPATHLEN];
2521 #else
2522 #error "Neither PATH_MAX nor MAXPATHLEN defined"
2523 #endif
2524 char *rp = realpath (filename, buf);
2525 return xstrdup (rp ? rp : filename);
2526 #else
2527 return xstrdup (filename);
2528 #endif
2529 }
This page took 0.132393 seconds and 5 git commands to generate.