* i387-tdep.c (print_i387_value): Cast &value to (char *) in
[deliverable/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include "gdb_string.h"
25 #include "event-top.h"
26
27 #ifdef HAVE_CURSES_H
28 #include <curses.h>
29 #endif
30 #ifdef HAVE_TERM_H
31 #include <term.h>
32 #endif
33
34 #ifdef __GO32__
35 #include <pc.h>
36 #endif
37
38 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39 #ifdef reg
40 #undef reg
41 #endif
42
43 #include "signals.h"
44 #include "gdbcmd.h"
45 #include "serial.h"
46 #include "bfd.h"
47 #include "target.h"
48 #include "demangle.h"
49 #include "expression.h"
50 #include "language.h"
51 #include "annotate.h"
52
53 #include <readline/readline.h>
54
55 #undef XMALLOC
56 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
57
58 /* readline defines this. */
59 #undef savestring
60
61 void (*error_begin_hook) PARAMS ((void));
62
63 /* Holds the last error message issued by gdb */
64
65 static struct ui_file *gdb_lasterr;
66
67 /* Prototypes for local functions */
68
69 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
70 va_list, int);
71
72 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
73
74 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75 static void malloc_botch PARAMS ((void));
76 #endif
77
78 static void
79 prompt_for_continue PARAMS ((void));
80
81 static void
82 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
83
84 static void
85 set_width PARAMS ((void));
86
87 /* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
89
90 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
94 /* cleaned up on each error from within an execution command */
95 static struct cleanup *exec_error_cleanup_chain;
96
97 /* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101 struct continuation *cmd_continuation;
102 struct continuation *intermediate_continuation;
103
104 /* Nonzero if we have job control. */
105
106 int job_control;
107
108 /* Nonzero means a quit has been requested. */
109
110 int quit_flag;
111
112 /* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
122
123 int immediate_quit;
124
125 /* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
127
128 int demangle = 1;
129
130 /* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
133
134 int asm_demangle = 0;
135
136 /* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
139
140 int sevenbit_strings = 0;
141
142 /* String to be printed before error messages, if any. */
143
144 char *error_pre_print;
145
146 /* String to be printed before quit messages, if any. */
147
148 char *quit_pre_print;
149
150 /* String to be printed before warning messages, if any. */
151
152 char *warning_pre_print = "\nwarning: ";
153
154 int pagination_enabled = 1;
155 \f
156
157 /* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
161
162 struct cleanup *
163 make_cleanup (make_cleanup_ftype *function, void *arg)
164 {
165 return make_my_cleanup (&cleanup_chain, function, arg);
166 }
167
168 struct cleanup *
169 make_final_cleanup (make_cleanup_ftype *function, void *arg)
170 {
171 return make_my_cleanup (&final_cleanup_chain, function, arg);
172 }
173
174 struct cleanup *
175 make_run_cleanup (make_cleanup_ftype *function, void *arg)
176 {
177 return make_my_cleanup (&run_cleanup_chain, function, arg);
178 }
179
180 struct cleanup *
181 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
182 {
183 return make_my_cleanup (&exec_cleanup_chain, function, arg);
184 }
185
186 struct cleanup *
187 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
188 {
189 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
190 }
191
192 static void
193 do_freeargv (arg)
194 void *arg;
195 {
196 freeargv ((char **) arg);
197 }
198
199 struct cleanup *
200 make_cleanup_freeargv (arg)
201 char **arg;
202 {
203 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
204 }
205
206 static void
207 do_bfd_close_cleanup (void *arg)
208 {
209 bfd_close (arg);
210 }
211
212 struct cleanup *
213 make_cleanup_bfd_close (bfd *abfd)
214 {
215 return make_cleanup (do_bfd_close_cleanup, abfd);
216 }
217
218 static void
219 do_ui_file_delete (void *arg)
220 {
221 ui_file_delete (arg);
222 }
223
224 struct cleanup *
225 make_cleanup_ui_file_delete (struct ui_file *arg)
226 {
227 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
228 }
229
230 struct cleanup *
231 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
232 void *arg)
233 {
234 register struct cleanup *new
235 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
236 register struct cleanup *old_chain = *pmy_chain;
237
238 new->next = *pmy_chain;
239 new->function = function;
240 new->arg = arg;
241 *pmy_chain = new;
242
243 return old_chain;
244 }
245
246 /* Discard cleanups and do the actions they describe
247 until we get back to the point OLD_CHAIN in the cleanup_chain. */
248
249 void
250 do_cleanups (old_chain)
251 register struct cleanup *old_chain;
252 {
253 do_my_cleanups (&cleanup_chain, old_chain);
254 }
255
256 void
257 do_final_cleanups (old_chain)
258 register struct cleanup *old_chain;
259 {
260 do_my_cleanups (&final_cleanup_chain, old_chain);
261 }
262
263 void
264 do_run_cleanups (old_chain)
265 register struct cleanup *old_chain;
266 {
267 do_my_cleanups (&run_cleanup_chain, old_chain);
268 }
269
270 void
271 do_exec_cleanups (old_chain)
272 register struct cleanup *old_chain;
273 {
274 do_my_cleanups (&exec_cleanup_chain, old_chain);
275 }
276
277 void
278 do_exec_error_cleanups (old_chain)
279 register struct cleanup *old_chain;
280 {
281 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
282 }
283
284 void
285 do_my_cleanups (pmy_chain, old_chain)
286 register struct cleanup **pmy_chain;
287 register struct cleanup *old_chain;
288 {
289 register struct cleanup *ptr;
290 while ((ptr = *pmy_chain) != old_chain)
291 {
292 *pmy_chain = ptr->next; /* Do this first incase recursion */
293 (*ptr->function) (ptr->arg);
294 free (ptr);
295 }
296 }
297
298 /* Discard cleanups, not doing the actions they describe,
299 until we get back to the point OLD_CHAIN in the cleanup_chain. */
300
301 void
302 discard_cleanups (old_chain)
303 register struct cleanup *old_chain;
304 {
305 discard_my_cleanups (&cleanup_chain, old_chain);
306 }
307
308 void
309 discard_final_cleanups (old_chain)
310 register struct cleanup *old_chain;
311 {
312 discard_my_cleanups (&final_cleanup_chain, old_chain);
313 }
314
315 void
316 discard_exec_error_cleanups (old_chain)
317 register struct cleanup *old_chain;
318 {
319 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
320 }
321
322 void
323 discard_my_cleanups (pmy_chain, old_chain)
324 register struct cleanup **pmy_chain;
325 register struct cleanup *old_chain;
326 {
327 register struct cleanup *ptr;
328 while ((ptr = *pmy_chain) != old_chain)
329 {
330 *pmy_chain = ptr->next;
331 free (ptr);
332 }
333 }
334
335 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
336 struct cleanup *
337 save_cleanups ()
338 {
339 return save_my_cleanups (&cleanup_chain);
340 }
341
342 struct cleanup *
343 save_final_cleanups ()
344 {
345 return save_my_cleanups (&final_cleanup_chain);
346 }
347
348 struct cleanup *
349 save_my_cleanups (pmy_chain)
350 struct cleanup **pmy_chain;
351 {
352 struct cleanup *old_chain = *pmy_chain;
353
354 *pmy_chain = 0;
355 return old_chain;
356 }
357
358 /* Restore the cleanup chain from a previously saved chain. */
359 void
360 restore_cleanups (chain)
361 struct cleanup *chain;
362 {
363 restore_my_cleanups (&cleanup_chain, chain);
364 }
365
366 void
367 restore_final_cleanups (chain)
368 struct cleanup *chain;
369 {
370 restore_my_cleanups (&final_cleanup_chain, chain);
371 }
372
373 void
374 restore_my_cleanups (pmy_chain, chain)
375 struct cleanup **pmy_chain;
376 struct cleanup *chain;
377 {
378 *pmy_chain = chain;
379 }
380
381 /* This function is useful for cleanups.
382 Do
383
384 foo = xmalloc (...);
385 old_chain = make_cleanup (free_current_contents, &foo);
386
387 to arrange to free the object thus allocated. */
388
389 void
390 free_current_contents (void *ptr)
391 {
392 void **location = ptr;
393 if (location == NULL)
394 internal_error ("free_current_contents: NULL pointer");
395 if (*location != NULL)
396 {
397 free (*location);
398 *location = NULL;
399 }
400 }
401
402 /* Provide a known function that does nothing, to use as a base for
403 for a possibly long chain of cleanups. This is useful where we
404 use the cleanup chain for handling normal cleanups as well as dealing
405 with cleanups that need to be done as a result of a call to error().
406 In such cases, we may not be certain where the first cleanup is, unless
407 we have a do-nothing one to always use as the base. */
408
409 /* ARGSUSED */
410 void
411 null_cleanup (void *arg)
412 {
413 }
414
415 /* Add a continuation to the continuation list, the gloabl list
416 cmd_continuation. The new continuation will be added at the front.*/
417 void
418 add_continuation (continuation_hook, arg_list)
419 void (*continuation_hook) PARAMS ((struct continuation_arg *));
420 struct continuation_arg *arg_list;
421 {
422 struct continuation *continuation_ptr;
423
424 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
425 continuation_ptr->continuation_hook = continuation_hook;
426 continuation_ptr->arg_list = arg_list;
427 continuation_ptr->next = cmd_continuation;
428 cmd_continuation = continuation_ptr;
429 }
430
431 /* Walk down the cmd_continuation list, and execute all the
432 continuations. There is a problem though. In some cases new
433 continuations may be added while we are in the middle of this
434 loop. If this happens they will be added in the front, and done
435 before we have a chance of exhausting those that were already
436 there. We need to then save the beginning of the list in a pointer
437 and do the continuations from there on, instead of using the
438 global beginning of list as our iteration pointer.*/
439 void
440 do_all_continuations ()
441 {
442 struct continuation *continuation_ptr;
443 struct continuation *saved_continuation;
444
445 /* Copy the list header into another pointer, and set the global
446 list header to null, so that the global list can change as a side
447 effect of invoking the continuations and the processing of
448 the preexisting continuations will not be affected. */
449 continuation_ptr = cmd_continuation;
450 cmd_continuation = NULL;
451
452 /* Work now on the list we have set aside. */
453 while (continuation_ptr)
454 {
455 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
456 saved_continuation = continuation_ptr;
457 continuation_ptr = continuation_ptr->next;
458 free (saved_continuation);
459 }
460 }
461
462 /* Walk down the cmd_continuation list, and get rid of all the
463 continuations. */
464 void
465 discard_all_continuations ()
466 {
467 struct continuation *continuation_ptr;
468
469 while (cmd_continuation)
470 {
471 continuation_ptr = cmd_continuation;
472 cmd_continuation = continuation_ptr->next;
473 free (continuation_ptr);
474 }
475 }
476
477 /* Add a continuation to the continuation list, the global list
478 intermediate_continuation. The new continuation will be added at the front.*/
479 void
480 add_intermediate_continuation (continuation_hook, arg_list)
481 void (*continuation_hook) PARAMS ((struct continuation_arg *));
482 struct continuation_arg *arg_list;
483 {
484 struct continuation *continuation_ptr;
485
486 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
487 continuation_ptr->continuation_hook = continuation_hook;
488 continuation_ptr->arg_list = arg_list;
489 continuation_ptr->next = intermediate_continuation;
490 intermediate_continuation = continuation_ptr;
491 }
492
493 /* Walk down the cmd_continuation list, and execute all the
494 continuations. There is a problem though. In some cases new
495 continuations may be added while we are in the middle of this
496 loop. If this happens they will be added in the front, and done
497 before we have a chance of exhausting those that were already
498 there. We need to then save the beginning of the list in a pointer
499 and do the continuations from there on, instead of using the
500 global beginning of list as our iteration pointer.*/
501 void
502 do_all_intermediate_continuations ()
503 {
504 struct continuation *continuation_ptr;
505 struct continuation *saved_continuation;
506
507 /* Copy the list header into another pointer, and set the global
508 list header to null, so that the global list can change as a side
509 effect of invoking the continuations and the processing of
510 the preexisting continuations will not be affected. */
511 continuation_ptr = intermediate_continuation;
512 intermediate_continuation = NULL;
513
514 /* Work now on the list we have set aside. */
515 while (continuation_ptr)
516 {
517 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
518 saved_continuation = continuation_ptr;
519 continuation_ptr = continuation_ptr->next;
520 free (saved_continuation);
521 }
522 }
523
524 /* Walk down the cmd_continuation list, and get rid of all the
525 continuations. */
526 void
527 discard_all_intermediate_continuations ()
528 {
529 struct continuation *continuation_ptr;
530
531 while (intermediate_continuation)
532 {
533 continuation_ptr = intermediate_continuation;
534 intermediate_continuation = continuation_ptr->next;
535 free (continuation_ptr);
536 }
537 }
538
539 \f
540
541 /* Print a warning message. Way to use this is to call warning_begin,
542 output the warning message (use unfiltered output to gdb_stderr),
543 ending in a newline. There is not currently a warning_end that you
544 call afterwards, but such a thing might be added if it is useful
545 for a GUI to separate warning messages from other output.
546
547 FIXME: Why do warnings use unfiltered output and errors filtered?
548 Is this anything other than a historical accident? */
549
550 void
551 warning_begin ()
552 {
553 target_terminal_ours ();
554 wrap_here (""); /* Force out any buffered output */
555 gdb_flush (gdb_stdout);
556 if (warning_pre_print)
557 fprintf_unfiltered (gdb_stderr, warning_pre_print);
558 }
559
560 /* Print a warning message.
561 The first argument STRING is the warning message, used as a fprintf string,
562 and the remaining args are passed as arguments to it.
563 The primary difference between warnings and errors is that a warning
564 does not force the return to command level. */
565
566 void
567 warning (const char *string,...)
568 {
569 va_list args;
570 va_start (args, string);
571 if (warning_hook)
572 (*warning_hook) (string, args);
573 else
574 {
575 warning_begin ();
576 vfprintf_unfiltered (gdb_stderr, string, args);
577 fprintf_unfiltered (gdb_stderr, "\n");
578 va_end (args);
579 }
580 }
581
582 /* Start the printing of an error message. Way to use this is to call
583 this, output the error message (use filtered output to gdb_stderr
584 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
585 in a newline, and then call return_to_top_level (RETURN_ERROR).
586 error() provides a convenient way to do this for the special case
587 that the error message can be formatted with a single printf call,
588 but this is more general. */
589 void
590 error_begin ()
591 {
592 if (error_begin_hook)
593 error_begin_hook ();
594
595 target_terminal_ours ();
596 wrap_here (""); /* Force out any buffered output */
597 gdb_flush (gdb_stdout);
598
599 annotate_error_begin ();
600
601 if (error_pre_print)
602 fprintf_filtered (gdb_stderr, error_pre_print);
603 }
604
605 /* Print an error message and return to command level.
606 The first argument STRING is the error message, used as a fprintf string,
607 and the remaining args are passed as arguments to it. */
608
609 NORETURN void
610 verror (const char *string, va_list args)
611 {
612 char *err_string;
613 struct cleanup *err_string_cleanup;
614 /* FIXME: cagney/1999-11-10: All error calls should come here.
615 Unfortunatly some code uses the sequence: error_begin(); print
616 error message; return_to_top_level. That code should be
617 flushed. */
618 error_begin ();
619 /* NOTE: It's tempting to just do the following...
620 vfprintf_filtered (gdb_stderr, string, args);
621 and then follow with a similar looking statement to cause the message
622 to also go to gdb_lasterr. But if we do this, we'll be traversing the
623 va_list twice which works on some platforms and fails miserably on
624 others. */
625 /* Save it as the last error */
626 ui_file_rewind (gdb_lasterr);
627 vfprintf_filtered (gdb_lasterr, string, args);
628 /* Retrieve the last error and print it to gdb_stderr */
629 err_string = error_last_message ();
630 err_string_cleanup = make_cleanup (free, err_string);
631 fputs_filtered (err_string, gdb_stderr);
632 fprintf_filtered (gdb_stderr, "\n");
633 do_cleanups (err_string_cleanup);
634 return_to_top_level (RETURN_ERROR);
635 }
636
637 NORETURN void
638 error (const char *string,...)
639 {
640 va_list args;
641 va_start (args, string);
642 verror (string, args);
643 va_end (args);
644 }
645
646 NORETURN void
647 error_stream (struct ui_file *stream)
648 {
649 long size;
650 char *msg = ui_file_xstrdup (stream, &size);
651 make_cleanup (free, msg);
652 error ("%s", msg);
653 }
654
655 /* Get the last error message issued by gdb */
656
657 char *
658 error_last_message (void)
659 {
660 long len;
661 return ui_file_xstrdup (gdb_lasterr, &len);
662 }
663
664 /* This is to be called by main() at the very beginning */
665
666 void
667 error_init (void)
668 {
669 gdb_lasterr = mem_fileopen ();
670 }
671
672 /* Print a message reporting an internal error. Ask the user if they
673 want to continue, dump core, or just exit. */
674
675 NORETURN void
676 internal_verror (const char *fmt, va_list ap)
677 {
678 static char msg[] = "Internal GDB error: recursive internal error.\n";
679 static int dejavu = 0;
680 int continue_p;
681 int dump_core_p;
682
683 /* don't allow infinite error recursion. */
684 switch (dejavu)
685 {
686 case 0:
687 dejavu = 1;
688 break;
689 case 1:
690 dejavu = 2;
691 fputs_unfiltered (msg, gdb_stderr);
692 abort ();
693 default:
694 dejavu = 3;
695 write (STDERR_FILENO, msg, sizeof (msg));
696 exit (1);
697 }
698
699 /* Try to get the message out */
700 target_terminal_ours ();
701 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
702 vfprintf_unfiltered (gdb_stderr, fmt, ap);
703 fputs_unfiltered ("\n", gdb_stderr);
704
705 /* Default (no case) is to quit GDB. When in batch mode this
706 lessens the likelhood of GDB going into an infinate loop. */
707 continue_p = query ("\
708 An internal GDB error was detected. This may make make further\n\
709 debugging unreliable. Continue this debugging session? ");
710
711 /* Default (no case) is to not dump core. Lessen the chance of GDB
712 leaving random core files around. */
713 dump_core_p = query ("\
714 Create a core file containing the current state of GDB? ");
715
716 if (continue_p)
717 {
718 if (dump_core_p)
719 {
720 if (fork () == 0)
721 abort ();
722 }
723 }
724 else
725 {
726 if (dump_core_p)
727 abort ();
728 else
729 exit (1);
730 }
731
732 dejavu = 0;
733 return_to_top_level (RETURN_ERROR);
734 }
735
736 NORETURN void
737 internal_error (char *string, ...)
738 {
739 va_list ap;
740 va_start (ap, string);
741
742 internal_verror (string, ap);
743 va_end (ap);
744 }
745
746 /* The strerror() function can return NULL for errno values that are
747 out of range. Provide a "safe" version that always returns a
748 printable string. */
749
750 char *
751 safe_strerror (errnum)
752 int errnum;
753 {
754 char *msg;
755 static char buf[32];
756
757 if ((msg = strerror (errnum)) == NULL)
758 {
759 sprintf (buf, "(undocumented errno %d)", errnum);
760 msg = buf;
761 }
762 return (msg);
763 }
764
765 /* The strsignal() function can return NULL for signal values that are
766 out of range. Provide a "safe" version that always returns a
767 printable string. */
768
769 char *
770 safe_strsignal (signo)
771 int signo;
772 {
773 char *msg;
774 static char buf[32];
775
776 if ((msg = strsignal (signo)) == NULL)
777 {
778 sprintf (buf, "(undocumented signal %d)", signo);
779 msg = buf;
780 }
781 return (msg);
782 }
783
784
785 /* Print the system error message for errno, and also mention STRING
786 as the file name for which the error was encountered.
787 Then return to command level. */
788
789 NORETURN void
790 perror_with_name (string)
791 char *string;
792 {
793 char *err;
794 char *combined;
795
796 err = safe_strerror (errno);
797 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
798 strcpy (combined, string);
799 strcat (combined, ": ");
800 strcat (combined, err);
801
802 /* I understand setting these is a matter of taste. Still, some people
803 may clear errno but not know about bfd_error. Doing this here is not
804 unreasonable. */
805 bfd_set_error (bfd_error_no_error);
806 errno = 0;
807
808 error ("%s.", combined);
809 }
810
811 /* Print the system error message for ERRCODE, and also mention STRING
812 as the file name for which the error was encountered. */
813
814 void
815 print_sys_errmsg (string, errcode)
816 char *string;
817 int errcode;
818 {
819 char *err;
820 char *combined;
821
822 err = safe_strerror (errcode);
823 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
824 strcpy (combined, string);
825 strcat (combined, ": ");
826 strcat (combined, err);
827
828 /* We want anything which was printed on stdout to come out first, before
829 this message. */
830 gdb_flush (gdb_stdout);
831 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
832 }
833
834 /* Control C eventually causes this to be called, at a convenient time. */
835
836 void
837 quit ()
838 {
839 serial_t gdb_stdout_serial = serial_fdopen (1);
840
841 target_terminal_ours ();
842
843 /* We want all output to appear now, before we print "Quit". We
844 have 3 levels of buffering we have to flush (it's possible that
845 some of these should be changed to flush the lower-level ones
846 too): */
847
848 /* 1. The _filtered buffer. */
849 wrap_here ((char *) 0);
850
851 /* 2. The stdio buffer. */
852 gdb_flush (gdb_stdout);
853 gdb_flush (gdb_stderr);
854
855 /* 3. The system-level buffer. */
856 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
857 SERIAL_UN_FDOPEN (gdb_stdout_serial);
858
859 annotate_error_begin ();
860
861 /* Don't use *_filtered; we don't want to prompt the user to continue. */
862 if (quit_pre_print)
863 fprintf_unfiltered (gdb_stderr, quit_pre_print);
864
865 #ifdef __MSDOS__
866 /* No steenking SIGINT will ever be coming our way when the
867 program is resumed. Don't lie. */
868 fprintf_unfiltered (gdb_stderr, "Quit\n");
869 #else
870 if (job_control
871 /* If there is no terminal switching for this target, then we can't
872 possibly get screwed by the lack of job control. */
873 || current_target.to_terminal_ours == NULL)
874 fprintf_unfiltered (gdb_stderr, "Quit\n");
875 else
876 fprintf_unfiltered (gdb_stderr,
877 "Quit (expect signal SIGINT when the program is resumed)\n");
878 #endif
879 return_to_top_level (RETURN_QUIT);
880 }
881
882
883 #if defined(_MSC_VER) /* should test for wingdb instead? */
884
885 /*
886 * Windows translates all keyboard and mouse events
887 * into a message which is appended to the message
888 * queue for the process.
889 */
890
891 void
892 notice_quit ()
893 {
894 int k = win32pollquit ();
895 if (k == 1)
896 quit_flag = 1;
897 else if (k == 2)
898 immediate_quit = 1;
899 }
900
901 #else /* !defined(_MSC_VER) */
902
903 void
904 notice_quit ()
905 {
906 /* Done by signals */
907 }
908
909 #endif /* !defined(_MSC_VER) */
910
911 /* Control C comes here */
912 void
913 request_quit (signo)
914 int signo;
915 {
916 quit_flag = 1;
917 /* Restore the signal handler. Harmless with BSD-style signals, needed
918 for System V-style signals. So just always do it, rather than worrying
919 about USG defines and stuff like that. */
920 signal (signo, request_quit);
921
922 #ifdef REQUEST_QUIT
923 REQUEST_QUIT;
924 #else
925 if (immediate_quit)
926 quit ();
927 #endif
928 }
929 \f
930 /* Memory management stuff (malloc friends). */
931
932 /* Make a substitute size_t for non-ANSI compilers. */
933
934 #ifndef HAVE_STDDEF_H
935 #ifndef size_t
936 #define size_t unsigned int
937 #endif
938 #endif
939
940 #if !defined (USE_MMALLOC)
941
942 PTR
943 mcalloc (PTR md, size_t number, size_t size)
944 {
945 return calloc (number, size);
946 }
947
948 PTR
949 mmalloc (md, size)
950 PTR md;
951 size_t size;
952 {
953 return malloc (size);
954 }
955
956 PTR
957 mrealloc (md, ptr, size)
958 PTR md;
959 PTR ptr;
960 size_t size;
961 {
962 if (ptr == 0) /* Guard against old realloc's */
963 return malloc (size);
964 else
965 return realloc (ptr, size);
966 }
967
968 void
969 mfree (md, ptr)
970 PTR md;
971 PTR ptr;
972 {
973 free (ptr);
974 }
975
976 #endif /* USE_MMALLOC */
977
978 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
979
980 void
981 init_malloc (void *md)
982 {
983 }
984
985 #else /* Have mmalloc and want corruption checking */
986
987 static void
988 malloc_botch ()
989 {
990 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
991 abort ();
992 }
993
994 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
995 by MD, to detect memory corruption. Note that MD may be NULL to specify
996 the default heap that grows via sbrk.
997
998 Note that for freshly created regions, we must call mmcheckf prior to any
999 mallocs in the region. Otherwise, any region which was allocated prior to
1000 installing the checking hooks, which is later reallocated or freed, will
1001 fail the checks! The mmcheck function only allows initial hooks to be
1002 installed before the first mmalloc. However, anytime after we have called
1003 mmcheck the first time to install the checking hooks, we can call it again
1004 to update the function pointer to the memory corruption handler.
1005
1006 Returns zero on failure, non-zero on success. */
1007
1008 #ifndef MMCHECK_FORCE
1009 #define MMCHECK_FORCE 0
1010 #endif
1011
1012 void
1013 init_malloc (void *md)
1014 {
1015 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1016 {
1017 /* Don't use warning(), which relies on current_target being set
1018 to something other than dummy_target, until after
1019 initialize_all_files(). */
1020
1021 fprintf_unfiltered
1022 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1023 fprintf_unfiltered
1024 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1025 }
1026
1027 mmtrace ();
1028 }
1029
1030 #endif /* Have mmalloc and want corruption checking */
1031
1032 /* Called when a memory allocation fails, with the number of bytes of
1033 memory requested in SIZE. */
1034
1035 NORETURN void
1036 nomem (size)
1037 long size;
1038 {
1039 if (size > 0)
1040 {
1041 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1042 }
1043 else
1044 {
1045 internal_error ("virtual memory exhausted.");
1046 }
1047 }
1048
1049 /* Like mmalloc but get error if no storage available, and protect against
1050 the caller wanting to allocate zero bytes. Whether to return NULL for
1051 a zero byte request, or translate the request into a request for one
1052 byte of zero'd storage, is a religious issue. */
1053
1054 PTR
1055 xmmalloc (md, size)
1056 PTR md;
1057 long size;
1058 {
1059 register PTR val;
1060
1061 if (size == 0)
1062 {
1063 val = NULL;
1064 }
1065 else if ((val = mmalloc (md, size)) == NULL)
1066 {
1067 nomem (size);
1068 }
1069 return (val);
1070 }
1071
1072 /* Like mrealloc but get error if no storage available. */
1073
1074 PTR
1075 xmrealloc (md, ptr, size)
1076 PTR md;
1077 PTR ptr;
1078 long size;
1079 {
1080 register PTR val;
1081
1082 if (ptr != NULL)
1083 {
1084 val = mrealloc (md, ptr, size);
1085 }
1086 else
1087 {
1088 val = mmalloc (md, size);
1089 }
1090 if (val == NULL)
1091 {
1092 nomem (size);
1093 }
1094 return (val);
1095 }
1096
1097 /* Like malloc but get error if no storage available, and protect against
1098 the caller wanting to allocate zero bytes. */
1099
1100 PTR
1101 xmalloc (size)
1102 size_t size;
1103 {
1104 return (xmmalloc ((PTR) NULL, size));
1105 }
1106
1107 /* Like calloc but get error if no storage available */
1108
1109 PTR
1110 xcalloc (size_t number, size_t size)
1111 {
1112 void *mem = mcalloc (NULL, number, size);
1113 if (mem == NULL)
1114 nomem (number * size);
1115 return mem;
1116 }
1117
1118 /* Like mrealloc but get error if no storage available. */
1119
1120 PTR
1121 xrealloc (ptr, size)
1122 PTR ptr;
1123 size_t size;
1124 {
1125 return (xmrealloc ((PTR) NULL, ptr, size));
1126 }
1127 \f
1128
1129 /* My replacement for the read system call.
1130 Used like `read' but keeps going if `read' returns too soon. */
1131
1132 int
1133 myread (desc, addr, len)
1134 int desc;
1135 char *addr;
1136 int len;
1137 {
1138 register int val;
1139 int orglen = len;
1140
1141 while (len > 0)
1142 {
1143 val = read (desc, addr, len);
1144 if (val < 0)
1145 return val;
1146 if (val == 0)
1147 return orglen - len;
1148 len -= val;
1149 addr += val;
1150 }
1151 return orglen;
1152 }
1153 \f
1154 /* Make a copy of the string at PTR with SIZE characters
1155 (and add a null character at the end in the copy).
1156 Uses malloc to get the space. Returns the address of the copy. */
1157
1158 char *
1159 savestring (ptr, size)
1160 const char *ptr;
1161 int size;
1162 {
1163 register char *p = (char *) xmalloc (size + 1);
1164 memcpy (p, ptr, size);
1165 p[size] = 0;
1166 return p;
1167 }
1168
1169 char *
1170 msavestring (void *md, const char *ptr, int size)
1171 {
1172 register char *p = (char *) xmmalloc (md, size + 1);
1173 memcpy (p, ptr, size);
1174 p[size] = 0;
1175 return p;
1176 }
1177
1178 /* The "const" is so it compiles under DGUX (which prototypes strsave
1179 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1180 Doesn't real strsave return NULL if out of memory? */
1181 char *
1182 strsave (ptr)
1183 const char *ptr;
1184 {
1185 return savestring (ptr, strlen (ptr));
1186 }
1187
1188 char *
1189 mstrsave (void *md, const char *ptr)
1190 {
1191 return (msavestring (md, ptr, strlen (ptr)));
1192 }
1193
1194 void
1195 print_spaces (n, file)
1196 register int n;
1197 register struct ui_file *file;
1198 {
1199 fputs_unfiltered (n_spaces (n), file);
1200 }
1201
1202 /* Print a host address. */
1203
1204 void
1205 gdb_print_host_address (void *addr, struct ui_file *stream)
1206 {
1207
1208 /* We could use the %p conversion specifier to fprintf if we had any
1209 way of knowing whether this host supports it. But the following
1210 should work on the Alpha and on 32 bit machines. */
1211
1212 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1213 }
1214
1215 /* Ask user a y-or-n question and return 1 iff answer is yes.
1216 Takes three args which are given to printf to print the question.
1217 The first, a control string, should end in "? ".
1218 It should not say how to answer, because we do that. */
1219
1220 /* VARARGS */
1221 int
1222 query (char *ctlstr,...)
1223 {
1224 va_list args;
1225 register int answer;
1226 register int ans2;
1227 int retval;
1228
1229 va_start (args, ctlstr);
1230
1231 if (query_hook)
1232 {
1233 return query_hook (ctlstr, args);
1234 }
1235
1236 /* Automatically answer "yes" if input is not from a terminal. */
1237 if (!input_from_terminal_p ())
1238 return 1;
1239 #ifdef MPW
1240 /* FIXME Automatically answer "yes" if called from MacGDB. */
1241 if (mac_app)
1242 return 1;
1243 #endif /* MPW */
1244
1245 while (1)
1246 {
1247 wrap_here (""); /* Flush any buffered output */
1248 gdb_flush (gdb_stdout);
1249
1250 if (annotation_level > 1)
1251 printf_filtered ("\n\032\032pre-query\n");
1252
1253 vfprintf_filtered (gdb_stdout, ctlstr, args);
1254 printf_filtered ("(y or n) ");
1255
1256 if (annotation_level > 1)
1257 printf_filtered ("\n\032\032query\n");
1258
1259 #ifdef MPW
1260 /* If not in MacGDB, move to a new line so the entered line doesn't
1261 have a prompt on the front of it. */
1262 if (!mac_app)
1263 fputs_unfiltered ("\n", gdb_stdout);
1264 #endif /* MPW */
1265
1266 wrap_here ("");
1267 gdb_flush (gdb_stdout);
1268
1269 #if defined(TUI)
1270 if (!tui_version || cmdWin == tuiWinWithFocus ())
1271 #endif
1272 answer = fgetc (stdin);
1273 #if defined(TUI)
1274 else
1275 answer = (unsigned char) tuiBufferGetc ();
1276
1277 #endif
1278 clearerr (stdin); /* in case of C-d */
1279 if (answer == EOF) /* C-d */
1280 {
1281 retval = 1;
1282 break;
1283 }
1284 /* Eat rest of input line, to EOF or newline */
1285 if ((answer != '\n') || (tui_version && answer != '\r'))
1286 do
1287 {
1288 #if defined(TUI)
1289 if (!tui_version || cmdWin == tuiWinWithFocus ())
1290 #endif
1291 ans2 = fgetc (stdin);
1292 #if defined(TUI)
1293 else
1294 ans2 = (unsigned char) tuiBufferGetc ();
1295 #endif
1296 clearerr (stdin);
1297 }
1298 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1299 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1300
1301 if (answer >= 'a')
1302 answer -= 040;
1303 if (answer == 'Y')
1304 {
1305 retval = 1;
1306 break;
1307 }
1308 if (answer == 'N')
1309 {
1310 retval = 0;
1311 break;
1312 }
1313 printf_filtered ("Please answer y or n.\n");
1314 }
1315
1316 if (annotation_level > 1)
1317 printf_filtered ("\n\032\032post-query\n");
1318 return retval;
1319 }
1320 \f
1321
1322 /* Parse a C escape sequence. STRING_PTR points to a variable
1323 containing a pointer to the string to parse. That pointer
1324 should point to the character after the \. That pointer
1325 is updated past the characters we use. The value of the
1326 escape sequence is returned.
1327
1328 A negative value means the sequence \ newline was seen,
1329 which is supposed to be equivalent to nothing at all.
1330
1331 If \ is followed by a null character, we return a negative
1332 value and leave the string pointer pointing at the null character.
1333
1334 If \ is followed by 000, we return 0 and leave the string pointer
1335 after the zeros. A value of 0 does not mean end of string. */
1336
1337 int
1338 parse_escape (string_ptr)
1339 char **string_ptr;
1340 {
1341 register int c = *(*string_ptr)++;
1342 switch (c)
1343 {
1344 case 'a':
1345 return 007; /* Bell (alert) char */
1346 case 'b':
1347 return '\b';
1348 case 'e': /* Escape character */
1349 return 033;
1350 case 'f':
1351 return '\f';
1352 case 'n':
1353 return '\n';
1354 case 'r':
1355 return '\r';
1356 case 't':
1357 return '\t';
1358 case 'v':
1359 return '\v';
1360 case '\n':
1361 return -2;
1362 case 0:
1363 (*string_ptr)--;
1364 return 0;
1365 case '^':
1366 c = *(*string_ptr)++;
1367 if (c == '\\')
1368 c = parse_escape (string_ptr);
1369 if (c == '?')
1370 return 0177;
1371 return (c & 0200) | (c & 037);
1372
1373 case '0':
1374 case '1':
1375 case '2':
1376 case '3':
1377 case '4':
1378 case '5':
1379 case '6':
1380 case '7':
1381 {
1382 register int i = c - '0';
1383 register int count = 0;
1384 while (++count < 3)
1385 {
1386 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1387 {
1388 i *= 8;
1389 i += c - '0';
1390 }
1391 else
1392 {
1393 (*string_ptr)--;
1394 break;
1395 }
1396 }
1397 return i;
1398 }
1399 default:
1400 return c;
1401 }
1402 }
1403 \f
1404 /* Print the character C on STREAM as part of the contents of a literal
1405 string whose delimiter is QUOTER. Note that this routine should only
1406 be call for printing things which are independent of the language
1407 of the program being debugged. */
1408
1409 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1410
1411 static void
1412 printchar (c, do_fputs, do_fprintf, stream, quoter)
1413 int c;
1414 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1415 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1416 struct ui_file *stream;
1417 int quoter;
1418 {
1419
1420 c &= 0xFF; /* Avoid sign bit follies */
1421
1422 if (c < 0x20 || /* Low control chars */
1423 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1424 (sevenbit_strings && c >= 0x80))
1425 { /* high order bit set */
1426 switch (c)
1427 {
1428 case '\n':
1429 do_fputs ("\\n", stream);
1430 break;
1431 case '\b':
1432 do_fputs ("\\b", stream);
1433 break;
1434 case '\t':
1435 do_fputs ("\\t", stream);
1436 break;
1437 case '\f':
1438 do_fputs ("\\f", stream);
1439 break;
1440 case '\r':
1441 do_fputs ("\\r", stream);
1442 break;
1443 case '\033':
1444 do_fputs ("\\e", stream);
1445 break;
1446 case '\007':
1447 do_fputs ("\\a", stream);
1448 break;
1449 default:
1450 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1451 break;
1452 }
1453 }
1454 else
1455 {
1456 if (c == '\\' || c == quoter)
1457 do_fputs ("\\", stream);
1458 do_fprintf (stream, "%c", c);
1459 }
1460 }
1461
1462 /* Print the character C on STREAM as part of the contents of a
1463 literal string whose delimiter is QUOTER. Note that these routines
1464 should only be call for printing things which are independent of
1465 the language of the program being debugged. */
1466
1467 void
1468 fputstr_filtered (str, quoter, stream)
1469 const char *str;
1470 int quoter;
1471 struct ui_file *stream;
1472 {
1473 while (*str)
1474 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1475 }
1476
1477 void
1478 fputstr_unfiltered (str, quoter, stream)
1479 const char *str;
1480 int quoter;
1481 struct ui_file *stream;
1482 {
1483 while (*str)
1484 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1485 }
1486
1487 void
1488 fputstrn_unfiltered (str, n, quoter, stream)
1489 const char *str;
1490 int n;
1491 int quoter;
1492 struct ui_file *stream;
1493 {
1494 int i;
1495 for (i = 0; i < n; i++)
1496 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1497 }
1498
1499 \f
1500
1501 /* Number of lines per page or UINT_MAX if paging is disabled. */
1502 static unsigned int lines_per_page;
1503 /* Number of chars per line or UNIT_MAX if line folding is disabled. */
1504 static unsigned int chars_per_line;
1505 /* Current count of lines printed on this page, chars on this line. */
1506 static unsigned int lines_printed, chars_printed;
1507
1508 /* Buffer and start column of buffered text, for doing smarter word-
1509 wrapping. When someone calls wrap_here(), we start buffering output
1510 that comes through fputs_filtered(). If we see a newline, we just
1511 spit it out and forget about the wrap_here(). If we see another
1512 wrap_here(), we spit it out and remember the newer one. If we see
1513 the end of the line, we spit out a newline, the indent, and then
1514 the buffered output. */
1515
1516 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1517 are waiting to be output (they have already been counted in chars_printed).
1518 When wrap_buffer[0] is null, the buffer is empty. */
1519 static char *wrap_buffer;
1520
1521 /* Pointer in wrap_buffer to the next character to fill. */
1522 static char *wrap_pointer;
1523
1524 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1525 is non-zero. */
1526 static char *wrap_indent;
1527
1528 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1529 is not in effect. */
1530 static int wrap_column;
1531 \f
1532
1533 /* Inialize the lines and chars per page */
1534 void
1535 init_page_info ()
1536 {
1537 #if defined(TUI)
1538 if (tui_version && m_winPtrNotNull (cmdWin))
1539 {
1540 lines_per_page = cmdWin->generic.height;
1541 chars_per_line = cmdWin->generic.width;
1542 }
1543 else
1544 #endif
1545 {
1546 /* These defaults will be used if we are unable to get the correct
1547 values from termcap. */
1548 #if defined(__GO32__)
1549 lines_per_page = ScreenRows ();
1550 chars_per_line = ScreenCols ();
1551 #else
1552 lines_per_page = 24;
1553 chars_per_line = 80;
1554
1555 #if !defined (MPW) && !defined (_WIN32)
1556 /* No termcap under MPW, although might be cool to do something
1557 by looking at worksheet or console window sizes. */
1558 /* Initialize the screen height and width from termcap. */
1559 {
1560 char *termtype = getenv ("TERM");
1561
1562 /* Positive means success, nonpositive means failure. */
1563 int status;
1564
1565 /* 2048 is large enough for all known terminals, according to the
1566 GNU termcap manual. */
1567 char term_buffer[2048];
1568
1569 if (termtype)
1570 {
1571 status = tgetent (term_buffer, termtype);
1572 if (status > 0)
1573 {
1574 int val;
1575 int running_in_emacs = getenv ("EMACS") != NULL;
1576
1577 val = tgetnum ("li");
1578 if (val >= 0 && !running_in_emacs)
1579 lines_per_page = val;
1580 else
1581 /* The number of lines per page is not mentioned
1582 in the terminal description. This probably means
1583 that paging is not useful (e.g. emacs shell window),
1584 so disable paging. */
1585 lines_per_page = UINT_MAX;
1586
1587 val = tgetnum ("co");
1588 if (val >= 0)
1589 chars_per_line = val;
1590 }
1591 }
1592 }
1593 #endif /* MPW */
1594
1595 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1596
1597 /* If there is a better way to determine the window size, use it. */
1598 SIGWINCH_HANDLER (SIGWINCH);
1599 #endif
1600 #endif
1601 /* If the output is not a terminal, don't paginate it. */
1602 if (!ui_file_isatty (gdb_stdout))
1603 lines_per_page = UINT_MAX;
1604 } /* the command_line_version */
1605 set_width ();
1606 }
1607
1608 static void
1609 set_width ()
1610 {
1611 if (chars_per_line == 0)
1612 init_page_info ();
1613
1614 if (!wrap_buffer)
1615 {
1616 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1617 wrap_buffer[0] = '\0';
1618 }
1619 else
1620 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1621 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1622 }
1623
1624 /* ARGSUSED */
1625 static void
1626 set_width_command (args, from_tty, c)
1627 char *args;
1628 int from_tty;
1629 struct cmd_list_element *c;
1630 {
1631 set_width ();
1632 }
1633
1634 /* Wait, so the user can read what's on the screen. Prompt the user
1635 to continue by pressing RETURN. */
1636
1637 static void
1638 prompt_for_continue ()
1639 {
1640 char *ignore;
1641 char cont_prompt[120];
1642
1643 if (annotation_level > 1)
1644 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1645
1646 strcpy (cont_prompt,
1647 "---Type <return> to continue, or q <return> to quit---");
1648 if (annotation_level > 1)
1649 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1650
1651 /* We must do this *before* we call gdb_readline, else it will eventually
1652 call us -- thinking that we're trying to print beyond the end of the
1653 screen. */
1654 reinitialize_more_filter ();
1655
1656 immediate_quit++;
1657 /* On a real operating system, the user can quit with SIGINT.
1658 But not on GO32.
1659
1660 'q' is provided on all systems so users don't have to change habits
1661 from system to system, and because telling them what to do in
1662 the prompt is more user-friendly than expecting them to think of
1663 SIGINT. */
1664 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1665 whereas control-C to gdb_readline will cause the user to get dumped
1666 out to DOS. */
1667 ignore = readline (cont_prompt);
1668
1669 if (annotation_level > 1)
1670 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1671
1672 if (ignore)
1673 {
1674 char *p = ignore;
1675 while (*p == ' ' || *p == '\t')
1676 ++p;
1677 if (p[0] == 'q')
1678 {
1679 if (!event_loop_p)
1680 request_quit (SIGINT);
1681 else
1682 async_request_quit (0);
1683 }
1684 free (ignore);
1685 }
1686 immediate_quit--;
1687
1688 /* Now we have to do this again, so that GDB will know that it doesn't
1689 need to save the ---Type <return>--- line at the top of the screen. */
1690 reinitialize_more_filter ();
1691
1692 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1693 }
1694
1695 /* Reinitialize filter; ie. tell it to reset to original values. */
1696
1697 void
1698 reinitialize_more_filter ()
1699 {
1700 lines_printed = 0;
1701 chars_printed = 0;
1702 }
1703
1704 /* Indicate that if the next sequence of characters overflows the line,
1705 a newline should be inserted here rather than when it hits the end.
1706 If INDENT is non-null, it is a string to be printed to indent the
1707 wrapped part on the next line. INDENT must remain accessible until
1708 the next call to wrap_here() or until a newline is printed through
1709 fputs_filtered().
1710
1711 If the line is already overfull, we immediately print a newline and
1712 the indentation, and disable further wrapping.
1713
1714 If we don't know the width of lines, but we know the page height,
1715 we must not wrap words, but should still keep track of newlines
1716 that were explicitly printed.
1717
1718 INDENT should not contain tabs, as that will mess up the char count
1719 on the next line. FIXME.
1720
1721 This routine is guaranteed to force out any output which has been
1722 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1723 used to force out output from the wrap_buffer. */
1724
1725 void
1726 wrap_here (indent)
1727 char *indent;
1728 {
1729 /* This should have been allocated, but be paranoid anyway. */
1730 if (!wrap_buffer)
1731 abort ();
1732
1733 if (wrap_buffer[0])
1734 {
1735 *wrap_pointer = '\0';
1736 fputs_unfiltered (wrap_buffer, gdb_stdout);
1737 }
1738 wrap_pointer = wrap_buffer;
1739 wrap_buffer[0] = '\0';
1740 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1741 {
1742 wrap_column = 0;
1743 }
1744 else if (chars_printed >= chars_per_line)
1745 {
1746 puts_filtered ("\n");
1747 if (indent != NULL)
1748 puts_filtered (indent);
1749 wrap_column = 0;
1750 }
1751 else
1752 {
1753 wrap_column = chars_printed;
1754 if (indent == NULL)
1755 wrap_indent = "";
1756 else
1757 wrap_indent = indent;
1758 }
1759 }
1760
1761 /* Ensure that whatever gets printed next, using the filtered output
1762 commands, starts at the beginning of the line. I.E. if there is
1763 any pending output for the current line, flush it and start a new
1764 line. Otherwise do nothing. */
1765
1766 void
1767 begin_line ()
1768 {
1769 if (chars_printed > 0)
1770 {
1771 puts_filtered ("\n");
1772 }
1773 }
1774
1775
1776 /* Like fputs but if FILTER is true, pause after every screenful.
1777
1778 Regardless of FILTER can wrap at points other than the final
1779 character of a line.
1780
1781 Unlike fputs, fputs_maybe_filtered does not return a value.
1782 It is OK for LINEBUFFER to be NULL, in which case just don't print
1783 anything.
1784
1785 Note that a longjmp to top level may occur in this routine (only if
1786 FILTER is true) (since prompt_for_continue may do so) so this
1787 routine should not be called when cleanups are not in place. */
1788
1789 static void
1790 fputs_maybe_filtered (linebuffer, stream, filter)
1791 const char *linebuffer;
1792 struct ui_file *stream;
1793 int filter;
1794 {
1795 const char *lineptr;
1796
1797 if (linebuffer == 0)
1798 return;
1799
1800 /* Don't do any filtering if it is disabled. */
1801 if ((stream != gdb_stdout) || !pagination_enabled
1802 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1803 {
1804 fputs_unfiltered (linebuffer, stream);
1805 return;
1806 }
1807
1808 /* Go through and output each character. Show line extension
1809 when this is necessary; prompt user for new page when this is
1810 necessary. */
1811
1812 lineptr = linebuffer;
1813 while (*lineptr)
1814 {
1815 /* Possible new page. */
1816 if (filter &&
1817 (lines_printed >= lines_per_page - 1))
1818 prompt_for_continue ();
1819
1820 while (*lineptr && *lineptr != '\n')
1821 {
1822 /* Print a single line. */
1823 if (*lineptr == '\t')
1824 {
1825 if (wrap_column)
1826 *wrap_pointer++ = '\t';
1827 else
1828 fputc_unfiltered ('\t', stream);
1829 /* Shifting right by 3 produces the number of tab stops
1830 we have already passed, and then adding one and
1831 shifting left 3 advances to the next tab stop. */
1832 chars_printed = ((chars_printed >> 3) + 1) << 3;
1833 lineptr++;
1834 }
1835 else
1836 {
1837 if (wrap_column)
1838 *wrap_pointer++ = *lineptr;
1839 else
1840 fputc_unfiltered (*lineptr, stream);
1841 chars_printed++;
1842 lineptr++;
1843 }
1844
1845 if (chars_printed >= chars_per_line)
1846 {
1847 unsigned int save_chars = chars_printed;
1848
1849 chars_printed = 0;
1850 lines_printed++;
1851 /* If we aren't actually wrapping, don't output newline --
1852 if chars_per_line is right, we probably just overflowed
1853 anyway; if it's wrong, let us keep going. */
1854 if (wrap_column)
1855 fputc_unfiltered ('\n', stream);
1856
1857 /* Possible new page. */
1858 if (lines_printed >= lines_per_page - 1)
1859 prompt_for_continue ();
1860
1861 /* Now output indentation and wrapped string */
1862 if (wrap_column)
1863 {
1864 fputs_unfiltered (wrap_indent, stream);
1865 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1866 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1867 /* FIXME, this strlen is what prevents wrap_indent from
1868 containing tabs. However, if we recurse to print it
1869 and count its chars, we risk trouble if wrap_indent is
1870 longer than (the user settable) chars_per_line.
1871 Note also that this can set chars_printed > chars_per_line
1872 if we are printing a long string. */
1873 chars_printed = strlen (wrap_indent)
1874 + (save_chars - wrap_column);
1875 wrap_pointer = wrap_buffer; /* Reset buffer */
1876 wrap_buffer[0] = '\0';
1877 wrap_column = 0; /* And disable fancy wrap */
1878 }
1879 }
1880 }
1881
1882 if (*lineptr == '\n')
1883 {
1884 chars_printed = 0;
1885 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1886 lines_printed++;
1887 fputc_unfiltered ('\n', stream);
1888 lineptr++;
1889 }
1890 }
1891 }
1892
1893 void
1894 fputs_filtered (linebuffer, stream)
1895 const char *linebuffer;
1896 struct ui_file *stream;
1897 {
1898 fputs_maybe_filtered (linebuffer, stream, 1);
1899 }
1900
1901 int
1902 putchar_unfiltered (c)
1903 int c;
1904 {
1905 char buf = c;
1906 ui_file_write (gdb_stdout, &buf, 1);
1907 return c;
1908 }
1909
1910 int
1911 fputc_unfiltered (c, stream)
1912 int c;
1913 struct ui_file *stream;
1914 {
1915 char buf = c;
1916 ui_file_write (stream, &buf, 1);
1917 return c;
1918 }
1919
1920 int
1921 fputc_filtered (c, stream)
1922 int c;
1923 struct ui_file *stream;
1924 {
1925 char buf[2];
1926
1927 buf[0] = c;
1928 buf[1] = 0;
1929 fputs_filtered (buf, stream);
1930 return c;
1931 }
1932
1933 /* puts_debug is like fputs_unfiltered, except it prints special
1934 characters in printable fashion. */
1935
1936 void
1937 puts_debug (prefix, string, suffix)
1938 char *prefix;
1939 char *string;
1940 char *suffix;
1941 {
1942 int ch;
1943
1944 /* Print prefix and suffix after each line. */
1945 static int new_line = 1;
1946 static int return_p = 0;
1947 static char *prev_prefix = "";
1948 static char *prev_suffix = "";
1949
1950 if (*string == '\n')
1951 return_p = 0;
1952
1953 /* If the prefix is changing, print the previous suffix, a new line,
1954 and the new prefix. */
1955 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1956 {
1957 fputs_unfiltered (prev_suffix, gdb_stdlog);
1958 fputs_unfiltered ("\n", gdb_stdlog);
1959 fputs_unfiltered (prefix, gdb_stdlog);
1960 }
1961
1962 /* Print prefix if we printed a newline during the previous call. */
1963 if (new_line)
1964 {
1965 new_line = 0;
1966 fputs_unfiltered (prefix, gdb_stdlog);
1967 }
1968
1969 prev_prefix = prefix;
1970 prev_suffix = suffix;
1971
1972 /* Output characters in a printable format. */
1973 while ((ch = *string++) != '\0')
1974 {
1975 switch (ch)
1976 {
1977 default:
1978 if (isprint (ch))
1979 fputc_unfiltered (ch, gdb_stdlog);
1980
1981 else
1982 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1983 break;
1984
1985 case '\\':
1986 fputs_unfiltered ("\\\\", gdb_stdlog);
1987 break;
1988 case '\b':
1989 fputs_unfiltered ("\\b", gdb_stdlog);
1990 break;
1991 case '\f':
1992 fputs_unfiltered ("\\f", gdb_stdlog);
1993 break;
1994 case '\n':
1995 new_line = 1;
1996 fputs_unfiltered ("\\n", gdb_stdlog);
1997 break;
1998 case '\r':
1999 fputs_unfiltered ("\\r", gdb_stdlog);
2000 break;
2001 case '\t':
2002 fputs_unfiltered ("\\t", gdb_stdlog);
2003 break;
2004 case '\v':
2005 fputs_unfiltered ("\\v", gdb_stdlog);
2006 break;
2007 }
2008
2009 return_p = ch == '\r';
2010 }
2011
2012 /* Print suffix if we printed a newline. */
2013 if (new_line)
2014 {
2015 fputs_unfiltered (suffix, gdb_stdlog);
2016 fputs_unfiltered ("\n", gdb_stdlog);
2017 }
2018 }
2019
2020
2021 /* Print a variable number of ARGS using format FORMAT. If this
2022 information is going to put the amount written (since the last call
2023 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2024 call prompt_for_continue to get the users permision to continue.
2025
2026 Unlike fprintf, this function does not return a value.
2027
2028 We implement three variants, vfprintf (takes a vararg list and stream),
2029 fprintf (takes a stream to write on), and printf (the usual).
2030
2031 Note also that a longjmp to top level may occur in this routine
2032 (since prompt_for_continue may do so) so this routine should not be
2033 called when cleanups are not in place. */
2034
2035 static void
2036 vfprintf_maybe_filtered (stream, format, args, filter)
2037 struct ui_file *stream;
2038 const char *format;
2039 va_list args;
2040 int filter;
2041 {
2042 char *linebuffer;
2043 struct cleanup *old_cleanups;
2044
2045 vasprintf (&linebuffer, format, args);
2046 if (linebuffer == NULL)
2047 {
2048 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2049 exit (1);
2050 }
2051 old_cleanups = make_cleanup (free, linebuffer);
2052 fputs_maybe_filtered (linebuffer, stream, filter);
2053 do_cleanups (old_cleanups);
2054 }
2055
2056
2057 void
2058 vfprintf_filtered (stream, format, args)
2059 struct ui_file *stream;
2060 const char *format;
2061 va_list args;
2062 {
2063 vfprintf_maybe_filtered (stream, format, args, 1);
2064 }
2065
2066 void
2067 vfprintf_unfiltered (stream, format, args)
2068 struct ui_file *stream;
2069 const char *format;
2070 va_list args;
2071 {
2072 char *linebuffer;
2073 struct cleanup *old_cleanups;
2074
2075 vasprintf (&linebuffer, format, args);
2076 if (linebuffer == NULL)
2077 {
2078 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2079 exit (1);
2080 }
2081 old_cleanups = make_cleanup (free, linebuffer);
2082 fputs_unfiltered (linebuffer, stream);
2083 do_cleanups (old_cleanups);
2084 }
2085
2086 void
2087 vprintf_filtered (format, args)
2088 const char *format;
2089 va_list args;
2090 {
2091 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2092 }
2093
2094 void
2095 vprintf_unfiltered (format, args)
2096 const char *format;
2097 va_list args;
2098 {
2099 vfprintf_unfiltered (gdb_stdout, format, args);
2100 }
2101
2102 void
2103 fprintf_filtered (struct ui_file * stream, const char *format,...)
2104 {
2105 va_list args;
2106 va_start (args, format);
2107 vfprintf_filtered (stream, format, args);
2108 va_end (args);
2109 }
2110
2111 void
2112 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2113 {
2114 va_list args;
2115 va_start (args, format);
2116 vfprintf_unfiltered (stream, format, args);
2117 va_end (args);
2118 }
2119
2120 /* Like fprintf_filtered, but prints its result indented.
2121 Called as fprintfi_filtered (spaces, stream, format, ...); */
2122
2123 void
2124 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2125 {
2126 va_list args;
2127 va_start (args, format);
2128 print_spaces_filtered (spaces, stream);
2129
2130 vfprintf_filtered (stream, format, args);
2131 va_end (args);
2132 }
2133
2134
2135 void
2136 printf_filtered (const char *format,...)
2137 {
2138 va_list args;
2139 va_start (args, format);
2140 vfprintf_filtered (gdb_stdout, format, args);
2141 va_end (args);
2142 }
2143
2144
2145 void
2146 printf_unfiltered (const char *format,...)
2147 {
2148 va_list args;
2149 va_start (args, format);
2150 vfprintf_unfiltered (gdb_stdout, format, args);
2151 va_end (args);
2152 }
2153
2154 /* Like printf_filtered, but prints it's result indented.
2155 Called as printfi_filtered (spaces, format, ...); */
2156
2157 void
2158 printfi_filtered (int spaces, const char *format,...)
2159 {
2160 va_list args;
2161 va_start (args, format);
2162 print_spaces_filtered (spaces, gdb_stdout);
2163 vfprintf_filtered (gdb_stdout, format, args);
2164 va_end (args);
2165 }
2166
2167 /* Easy -- but watch out!
2168
2169 This routine is *not* a replacement for puts()! puts() appends a newline.
2170 This one doesn't, and had better not! */
2171
2172 void
2173 puts_filtered (string)
2174 const char *string;
2175 {
2176 fputs_filtered (string, gdb_stdout);
2177 }
2178
2179 void
2180 puts_unfiltered (string)
2181 const char *string;
2182 {
2183 fputs_unfiltered (string, gdb_stdout);
2184 }
2185
2186 /* Return a pointer to N spaces and a null. The pointer is good
2187 until the next call to here. */
2188 char *
2189 n_spaces (n)
2190 int n;
2191 {
2192 char *t;
2193 static char *spaces = 0;
2194 static int max_spaces = -1;
2195
2196 if (n > max_spaces)
2197 {
2198 if (spaces)
2199 free (spaces);
2200 spaces = (char *) xmalloc (n + 1);
2201 for (t = spaces + n; t != spaces;)
2202 *--t = ' ';
2203 spaces[n] = '\0';
2204 max_spaces = n;
2205 }
2206
2207 return spaces + max_spaces - n;
2208 }
2209
2210 /* Print N spaces. */
2211 void
2212 print_spaces_filtered (n, stream)
2213 int n;
2214 struct ui_file *stream;
2215 {
2216 fputs_filtered (n_spaces (n), stream);
2217 }
2218 \f
2219 /* C++ demangler stuff. */
2220
2221 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2222 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2223 If the name is not mangled, or the language for the name is unknown, or
2224 demangling is off, the name is printed in its "raw" form. */
2225
2226 void
2227 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2228 struct ui_file *stream;
2229 char *name;
2230 enum language lang;
2231 int arg_mode;
2232 {
2233 char *demangled;
2234
2235 if (name != NULL)
2236 {
2237 /* If user wants to see raw output, no problem. */
2238 if (!demangle)
2239 {
2240 fputs_filtered (name, stream);
2241 }
2242 else
2243 {
2244 switch (lang)
2245 {
2246 case language_cplus:
2247 demangled = cplus_demangle (name, arg_mode);
2248 break;
2249 case language_java:
2250 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2251 break;
2252 case language_chill:
2253 demangled = chill_demangle (name);
2254 break;
2255 default:
2256 demangled = NULL;
2257 break;
2258 }
2259 fputs_filtered (demangled ? demangled : name, stream);
2260 if (demangled != NULL)
2261 {
2262 free (demangled);
2263 }
2264 }
2265 }
2266 }
2267
2268 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2269 differences in whitespace. Returns 0 if they match, non-zero if they
2270 don't (slightly different than strcmp()'s range of return values).
2271
2272 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2273 This "feature" is useful when searching for matching C++ function names
2274 (such as if the user types 'break FOO', where FOO is a mangled C++
2275 function). */
2276
2277 int
2278 strcmp_iw (string1, string2)
2279 const char *string1;
2280 const char *string2;
2281 {
2282 while ((*string1 != '\0') && (*string2 != '\0'))
2283 {
2284 while (isspace (*string1))
2285 {
2286 string1++;
2287 }
2288 while (isspace (*string2))
2289 {
2290 string2++;
2291 }
2292 if (*string1 != *string2)
2293 {
2294 break;
2295 }
2296 if (*string1 != '\0')
2297 {
2298 string1++;
2299 string2++;
2300 }
2301 }
2302 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2303 }
2304 \f
2305
2306 /*
2307 ** subset_compare()
2308 ** Answer whether string_to_compare is a full or partial match to
2309 ** template_string. The partial match must be in sequence starting
2310 ** at index 0.
2311 */
2312 int
2313 subset_compare (string_to_compare, template_string)
2314 char *string_to_compare;
2315 char *template_string;
2316 {
2317 int match;
2318 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2319 strlen (string_to_compare) <= strlen (template_string))
2320 match = (strncmp (template_string,
2321 string_to_compare,
2322 strlen (string_to_compare)) == 0);
2323 else
2324 match = 0;
2325 return match;
2326 }
2327
2328
2329 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2330 static void
2331 pagination_on_command (arg, from_tty)
2332 char *arg;
2333 int from_tty;
2334 {
2335 pagination_enabled = 1;
2336 }
2337
2338 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2339 static void
2340 pagination_off_command (arg, from_tty)
2341 char *arg;
2342 int from_tty;
2343 {
2344 pagination_enabled = 0;
2345 }
2346 \f
2347
2348 void
2349 initialize_utils ()
2350 {
2351 struct cmd_list_element *c;
2352
2353 c = add_set_cmd ("width", class_support, var_uinteger,
2354 (char *) &chars_per_line,
2355 "Set number of characters gdb thinks are in a line.",
2356 &setlist);
2357 add_show_from_set (c, &showlist);
2358 c->function.sfunc = set_width_command;
2359
2360 add_show_from_set
2361 (add_set_cmd ("height", class_support,
2362 var_uinteger, (char *) &lines_per_page,
2363 "Set number of lines gdb thinks are in a page.", &setlist),
2364 &showlist);
2365
2366 init_page_info ();
2367
2368 /* If the output is not a terminal, don't paginate it. */
2369 if (!ui_file_isatty (gdb_stdout))
2370 lines_per_page = UINT_MAX;
2371
2372 set_width_command ((char *) NULL, 0, c);
2373
2374 add_show_from_set
2375 (add_set_cmd ("demangle", class_support, var_boolean,
2376 (char *) &demangle,
2377 "Set demangling of encoded C++ names when displaying symbols.",
2378 &setprintlist),
2379 &showprintlist);
2380
2381 add_show_from_set
2382 (add_set_cmd ("pagination", class_support,
2383 var_boolean, (char *) &pagination_enabled,
2384 "Set state of pagination.", &setlist),
2385 &showlist);
2386
2387 if (xdb_commands)
2388 {
2389 add_com ("am", class_support, pagination_on_command,
2390 "Enable pagination");
2391 add_com ("sm", class_support, pagination_off_command,
2392 "Disable pagination");
2393 }
2394
2395 add_show_from_set
2396 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2397 (char *) &sevenbit_strings,
2398 "Set printing of 8-bit characters in strings as \\nnn.",
2399 &setprintlist),
2400 &showprintlist);
2401
2402 add_show_from_set
2403 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2404 (char *) &asm_demangle,
2405 "Set demangling of C++ names in disassembly listings.",
2406 &setprintlist),
2407 &showprintlist);
2408 }
2409
2410 /* Machine specific function to handle SIGWINCH signal. */
2411
2412 #ifdef SIGWINCH_HANDLER_BODY
2413 SIGWINCH_HANDLER_BODY
2414 #endif
2415 \f
2416 /* Support for converting target fp numbers into host DOUBLEST format. */
2417
2418 /* XXX - This code should really be in libiberty/floatformat.c, however
2419 configuration issues with libiberty made this very difficult to do in the
2420 available time. */
2421
2422 #include "floatformat.h"
2423 #include <math.h> /* ldexp */
2424
2425 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2426 going to bother with trying to muck around with whether it is defined in
2427 a system header, what we do if not, etc. */
2428 #define FLOATFORMAT_CHAR_BIT 8
2429
2430 static unsigned long get_field PARAMS ((unsigned char *,
2431 enum floatformat_byteorders,
2432 unsigned int,
2433 unsigned int,
2434 unsigned int));
2435
2436 /* Extract a field which starts at START and is LEN bytes long. DATA and
2437 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2438 static unsigned long
2439 get_field (data, order, total_len, start, len)
2440 unsigned char *data;
2441 enum floatformat_byteorders order;
2442 unsigned int total_len;
2443 unsigned int start;
2444 unsigned int len;
2445 {
2446 unsigned long result;
2447 unsigned int cur_byte;
2448 int cur_bitshift;
2449
2450 /* Start at the least significant part of the field. */
2451 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2452 {
2453 /* We start counting from the other end (i.e, from the high bytes
2454 rather than the low bytes). As such, we need to be concerned
2455 with what happens if bit 0 doesn't start on a byte boundary.
2456 I.e, we need to properly handle the case where total_len is
2457 not evenly divisible by 8. So we compute ``excess'' which
2458 represents the number of bits from the end of our starting
2459 byte needed to get to bit 0. */
2460 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2461 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2462 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2463 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2464 - FLOATFORMAT_CHAR_BIT;
2465 }
2466 else
2467 {
2468 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2469 cur_bitshift =
2470 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2471 }
2472 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2473 result = *(data + cur_byte) >> (-cur_bitshift);
2474 else
2475 result = 0;
2476 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2477 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2478 ++cur_byte;
2479 else
2480 --cur_byte;
2481
2482 /* Move towards the most significant part of the field. */
2483 while (cur_bitshift < len)
2484 {
2485 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2486 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2487 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2488 ++cur_byte;
2489 else
2490 --cur_byte;
2491 }
2492 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2493 /* Mask out bits which are not part of the field */
2494 result &= ((1UL << len) - 1);
2495 return result;
2496 }
2497
2498 /* Convert from FMT to a DOUBLEST.
2499 FROM is the address of the extended float.
2500 Store the DOUBLEST in *TO. */
2501
2502 void
2503 floatformat_to_doublest (fmt, from, to)
2504 const struct floatformat *fmt;
2505 char *from;
2506 DOUBLEST *to;
2507 {
2508 unsigned char *ufrom = (unsigned char *) from;
2509 DOUBLEST dto;
2510 long exponent;
2511 unsigned long mant;
2512 unsigned int mant_bits, mant_off;
2513 int mant_bits_left;
2514 int special_exponent; /* It's a NaN, denorm or zero */
2515
2516 /* If the mantissa bits are not contiguous from one end of the
2517 mantissa to the other, we need to make a private copy of the
2518 source bytes that is in the right order since the unpacking
2519 algorithm assumes that the bits are contiguous.
2520
2521 Swap the bytes individually rather than accessing them through
2522 "long *" since we have no guarantee that they start on a long
2523 alignment, and also sizeof(long) for the host could be different
2524 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2525 for the target is 4. */
2526
2527 if (fmt->byteorder == floatformat_littlebyte_bigword)
2528 {
2529 static unsigned char *newfrom;
2530 unsigned char *swapin, *swapout;
2531 int longswaps;
2532
2533 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2534 longswaps >>= 3;
2535
2536 if (newfrom == NULL)
2537 {
2538 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2539 }
2540 swapout = newfrom;
2541 swapin = ufrom;
2542 ufrom = newfrom;
2543 while (longswaps-- > 0)
2544 {
2545 /* This is ugly, but efficient */
2546 *swapout++ = swapin[4];
2547 *swapout++ = swapin[5];
2548 *swapout++ = swapin[6];
2549 *swapout++ = swapin[7];
2550 *swapout++ = swapin[0];
2551 *swapout++ = swapin[1];
2552 *swapout++ = swapin[2];
2553 *swapout++ = swapin[3];
2554 swapin += 8;
2555 }
2556 }
2557
2558 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2559 fmt->exp_start, fmt->exp_len);
2560 /* Note that if exponent indicates a NaN, we can't really do anything useful
2561 (not knowing if the host has NaN's, or how to build one). So it will
2562 end up as an infinity or something close; that is OK. */
2563
2564 mant_bits_left = fmt->man_len;
2565 mant_off = fmt->man_start;
2566 dto = 0.0;
2567
2568 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2569
2570 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2571 we don't check for zero as the exponent doesn't matter. */
2572 if (!special_exponent)
2573 exponent -= fmt->exp_bias;
2574 else if (exponent == 0)
2575 exponent = 1 - fmt->exp_bias;
2576
2577 /* Build the result algebraically. Might go infinite, underflow, etc;
2578 who cares. */
2579
2580 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2581 increment the exponent by one to account for the integer bit. */
2582
2583 if (!special_exponent)
2584 {
2585 if (fmt->intbit == floatformat_intbit_no)
2586 dto = ldexp (1.0, exponent);
2587 else
2588 exponent++;
2589 }
2590
2591 while (mant_bits_left > 0)
2592 {
2593 mant_bits = min (mant_bits_left, 32);
2594
2595 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2596 mant_off, mant_bits);
2597
2598 dto += ldexp ((double) mant, exponent - mant_bits);
2599 exponent -= mant_bits;
2600 mant_off += mant_bits;
2601 mant_bits_left -= mant_bits;
2602 }
2603
2604 /* Negate it if negative. */
2605 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2606 dto = -dto;
2607 *to = dto;
2608 }
2609 \f
2610 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2611 unsigned int,
2612 unsigned int,
2613 unsigned int,
2614 unsigned long));
2615
2616 /* Set a field which starts at START and is LEN bytes long. DATA and
2617 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2618 static void
2619 put_field (data, order, total_len, start, len, stuff_to_put)
2620 unsigned char *data;
2621 enum floatformat_byteorders order;
2622 unsigned int total_len;
2623 unsigned int start;
2624 unsigned int len;
2625 unsigned long stuff_to_put;
2626 {
2627 unsigned int cur_byte;
2628 int cur_bitshift;
2629
2630 /* Start at the least significant part of the field. */
2631 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2632 {
2633 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2634 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2635 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2636 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2637 - FLOATFORMAT_CHAR_BIT;
2638 }
2639 else
2640 {
2641 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2642 cur_bitshift =
2643 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2644 }
2645 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2646 {
2647 *(data + cur_byte) &=
2648 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2649 << (-cur_bitshift));
2650 *(data + cur_byte) |=
2651 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2652 }
2653 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2654 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2655 ++cur_byte;
2656 else
2657 --cur_byte;
2658
2659 /* Move towards the most significant part of the field. */
2660 while (cur_bitshift < len)
2661 {
2662 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2663 {
2664 /* This is the last byte. */
2665 *(data + cur_byte) &=
2666 ~((1 << (len - cur_bitshift)) - 1);
2667 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2668 }
2669 else
2670 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2671 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2672 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2673 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2674 ++cur_byte;
2675 else
2676 --cur_byte;
2677 }
2678 }
2679
2680 #ifdef HAVE_LONG_DOUBLE
2681 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2682 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2683 frexp, but operates on the long double data type. */
2684
2685 static long double ldfrexp PARAMS ((long double value, int *eptr));
2686
2687 static long double
2688 ldfrexp (value, eptr)
2689 long double value;
2690 int *eptr;
2691 {
2692 long double tmp;
2693 int exp;
2694
2695 /* Unfortunately, there are no portable functions for extracting the exponent
2696 of a long double, so we have to do it iteratively by multiplying or dividing
2697 by two until the fraction is between 0.5 and 1.0. */
2698
2699 if (value < 0.0l)
2700 value = -value;
2701
2702 tmp = 1.0l;
2703 exp = 0;
2704
2705 if (value >= tmp) /* Value >= 1.0 */
2706 while (value >= tmp)
2707 {
2708 tmp *= 2.0l;
2709 exp++;
2710 }
2711 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2712 {
2713 while (value < tmp)
2714 {
2715 tmp /= 2.0l;
2716 exp--;
2717 }
2718 tmp *= 2.0l;
2719 exp++;
2720 }
2721
2722 *eptr = exp;
2723 return value / tmp;
2724 }
2725 #endif /* HAVE_LONG_DOUBLE */
2726
2727
2728 /* The converse: convert the DOUBLEST *FROM to an extended float
2729 and store where TO points. Neither FROM nor TO have any alignment
2730 restrictions. */
2731
2732 void
2733 floatformat_from_doublest (fmt, from, to)
2734 CONST struct floatformat *fmt;
2735 DOUBLEST *from;
2736 char *to;
2737 {
2738 DOUBLEST dfrom;
2739 int exponent;
2740 DOUBLEST mant;
2741 unsigned int mant_bits, mant_off;
2742 int mant_bits_left;
2743 unsigned char *uto = (unsigned char *) to;
2744
2745 memcpy (&dfrom, from, sizeof (dfrom));
2746 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2747 / FLOATFORMAT_CHAR_BIT);
2748 if (dfrom == 0)
2749 return; /* Result is zero */
2750 if (dfrom != dfrom) /* Result is NaN */
2751 {
2752 /* From is NaN */
2753 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2754 fmt->exp_len, fmt->exp_nan);
2755 /* Be sure it's not infinity, but NaN value is irrel */
2756 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2757 32, 1);
2758 return;
2759 }
2760
2761 /* If negative, set the sign bit. */
2762 if (dfrom < 0)
2763 {
2764 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2765 dfrom = -dfrom;
2766 }
2767
2768 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2769 {
2770 /* Infinity exponent is same as NaN's. */
2771 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2772 fmt->exp_len, fmt->exp_nan);
2773 /* Infinity mantissa is all zeroes. */
2774 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2775 fmt->man_len, 0);
2776 return;
2777 }
2778
2779 #ifdef HAVE_LONG_DOUBLE
2780 mant = ldfrexp (dfrom, &exponent);
2781 #else
2782 mant = frexp (dfrom, &exponent);
2783 #endif
2784
2785 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2786 exponent + fmt->exp_bias - 1);
2787
2788 mant_bits_left = fmt->man_len;
2789 mant_off = fmt->man_start;
2790 while (mant_bits_left > 0)
2791 {
2792 unsigned long mant_long;
2793 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2794
2795 mant *= 4294967296.0;
2796 mant_long = ((unsigned long) mant) & 0xffffffffL;
2797 mant -= mant_long;
2798
2799 /* If the integer bit is implicit, then we need to discard it.
2800 If we are discarding a zero, we should be (but are not) creating
2801 a denormalized number which means adjusting the exponent
2802 (I think). */
2803 if (mant_bits_left == fmt->man_len
2804 && fmt->intbit == floatformat_intbit_no)
2805 {
2806 mant_long <<= 1;
2807 mant_long &= 0xffffffffL;
2808 mant_bits -= 1;
2809 }
2810
2811 if (mant_bits < 32)
2812 {
2813 /* The bits we want are in the most significant MANT_BITS bits of
2814 mant_long. Move them to the least significant. */
2815 mant_long >>= 32 - mant_bits;
2816 }
2817
2818 put_field (uto, fmt->byteorder, fmt->totalsize,
2819 mant_off, mant_bits, mant_long);
2820 mant_off += mant_bits;
2821 mant_bits_left -= mant_bits;
2822 }
2823 if (fmt->byteorder == floatformat_littlebyte_bigword)
2824 {
2825 int count;
2826 unsigned char *swaplow = uto;
2827 unsigned char *swaphigh = uto + 4;
2828 unsigned char tmp;
2829
2830 for (count = 0; count < 4; count++)
2831 {
2832 tmp = *swaplow;
2833 *swaplow++ = *swaphigh;
2834 *swaphigh++ = tmp;
2835 }
2836 }
2837 }
2838
2839 /* temporary storage using circular buffer */
2840 #define NUMCELLS 16
2841 #define CELLSIZE 32
2842 static char *
2843 get_cell ()
2844 {
2845 static char buf[NUMCELLS][CELLSIZE];
2846 static int cell = 0;
2847 if (++cell >= NUMCELLS)
2848 cell = 0;
2849 return buf[cell];
2850 }
2851
2852 /* print routines to handle variable size regs, etc.
2853
2854 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2855 unsigned long or unsigned long long, determined at configure time.
2856 If t_addr is an unsigned long long and sizeof (unsigned long long)
2857 is greater than sizeof (unsigned long), then I believe this code will
2858 probably lose, at least for little endian machines. I believe that
2859 it would also be better to eliminate the switch on the absolute size
2860 of t_addr and replace it with a sequence of if statements that compare
2861 sizeof t_addr with sizeof the various types and do the right thing,
2862 which includes knowing whether or not the host supports long long.
2863 -fnf
2864
2865 */
2866
2867 int
2868 strlen_paddr (void)
2869 {
2870 return (TARGET_PTR_BIT / 8 * 2);
2871 }
2872
2873
2874 /* eliminate warning from compiler on 32-bit systems */
2875 static int thirty_two = 32;
2876
2877 char *
2878 paddr (CORE_ADDR addr)
2879 {
2880 char *paddr_str = get_cell ();
2881 switch (TARGET_PTR_BIT / 8)
2882 {
2883 case 8:
2884 sprintf (paddr_str, "%08lx%08lx",
2885 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2886 break;
2887 case 4:
2888 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2889 break;
2890 case 2:
2891 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2892 break;
2893 default:
2894 sprintf (paddr_str, "%lx", (unsigned long) addr);
2895 }
2896 return paddr_str;
2897 }
2898
2899 char *
2900 paddr_nz (CORE_ADDR addr)
2901 {
2902 char *paddr_str = get_cell ();
2903 switch (TARGET_PTR_BIT / 8)
2904 {
2905 case 8:
2906 {
2907 unsigned long high = (unsigned long) (addr >> thirty_two);
2908 if (high == 0)
2909 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2910 else
2911 sprintf (paddr_str, "%lx%08lx",
2912 high, (unsigned long) (addr & 0xffffffff));
2913 break;
2914 }
2915 case 4:
2916 sprintf (paddr_str, "%lx", (unsigned long) addr);
2917 break;
2918 case 2:
2919 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2920 break;
2921 default:
2922 sprintf (paddr_str, "%lx", (unsigned long) addr);
2923 }
2924 return paddr_str;
2925 }
2926
2927 static void
2928 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2929 {
2930 /* steal code from valprint.c:print_decimal(). Should this worry
2931 about the real size of addr as the above does? */
2932 unsigned long temp[3];
2933 int i = 0;
2934 do
2935 {
2936 temp[i] = addr % (1000 * 1000 * 1000);
2937 addr /= (1000 * 1000 * 1000);
2938 i++;
2939 }
2940 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2941 switch (i)
2942 {
2943 case 1:
2944 sprintf (paddr_str, "%s%lu",
2945 sign, temp[0]);
2946 break;
2947 case 2:
2948 sprintf (paddr_str, "%s%lu%09lu",
2949 sign, temp[1], temp[0]);
2950 break;
2951 case 3:
2952 sprintf (paddr_str, "%s%lu%09lu%09lu",
2953 sign, temp[2], temp[1], temp[0]);
2954 break;
2955 default:
2956 abort ();
2957 }
2958 }
2959
2960 char *
2961 paddr_u (CORE_ADDR addr)
2962 {
2963 char *paddr_str = get_cell ();
2964 decimal2str (paddr_str, "", addr);
2965 return paddr_str;
2966 }
2967
2968 char *
2969 paddr_d (LONGEST addr)
2970 {
2971 char *paddr_str = get_cell ();
2972 if (addr < 0)
2973 decimal2str (paddr_str, "-", -addr);
2974 else
2975 decimal2str (paddr_str, "", addr);
2976 return paddr_str;
2977 }
2978
2979 char *
2980 preg (reg)
2981 t_reg reg;
2982 {
2983 char *preg_str = get_cell ();
2984 switch (sizeof (t_reg))
2985 {
2986 case 8:
2987 sprintf (preg_str, "%08lx%08lx",
2988 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2989 break;
2990 case 4:
2991 sprintf (preg_str, "%08lx", (unsigned long) reg);
2992 break;
2993 case 2:
2994 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2995 break;
2996 default:
2997 sprintf (preg_str, "%lx", (unsigned long) reg);
2998 }
2999 return preg_str;
3000 }
3001
3002 char *
3003 preg_nz (reg)
3004 t_reg reg;
3005 {
3006 char *preg_str = get_cell ();
3007 switch (sizeof (t_reg))
3008 {
3009 case 8:
3010 {
3011 unsigned long high = (unsigned long) (reg >> thirty_two);
3012 if (high == 0)
3013 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
3014 else
3015 sprintf (preg_str, "%lx%08lx",
3016 high, (unsigned long) (reg & 0xffffffff));
3017 break;
3018 }
3019 case 4:
3020 sprintf (preg_str, "%lx", (unsigned long) reg);
3021 break;
3022 case 2:
3023 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3024 break;
3025 default:
3026 sprintf (preg_str, "%lx", (unsigned long) reg);
3027 }
3028 return preg_str;
3029 }
This page took 0.105857 seconds and 5 git commands to generate.