Simplify tui_update_source_windows_with_addr
[deliverable/binutils-gdb.git] / gdb / v850-tdep.c
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
3 Copyright (C) 1996-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "trad-frame.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
26 #include "gdbtypes.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "dis-asm.h"
32 #include "osabi.h"
33 #include "elf-bfd.h"
34 #include "elf/v850.h"
35
36 enum
37 {
38 /* General purpose registers. */
39 E_R0_REGNUM,
40 E_R1_REGNUM,
41 E_R2_REGNUM,
42 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM,
44 E_R5_REGNUM,
45 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
46 E_R7_REGNUM,
47 E_R8_REGNUM,
48 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
49 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
50 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
51 E_R12_REGNUM,
52 E_R13_REGNUM,
53 E_R14_REGNUM,
54 E_R15_REGNUM,
55 E_R16_REGNUM,
56 E_R17_REGNUM,
57 E_R18_REGNUM,
58 E_R19_REGNUM,
59 E_R20_REGNUM,
60 E_R21_REGNUM,
61 E_R22_REGNUM,
62 E_R23_REGNUM,
63 E_R24_REGNUM,
64 E_R25_REGNUM,
65 E_R26_REGNUM,
66 E_R27_REGNUM,
67 E_R28_REGNUM,
68 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
69 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
70 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
71
72 /* System registers - main banks. */
73 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
74 E_R33_REGNUM,
75 E_R34_REGNUM,
76 E_R35_REGNUM,
77 E_R36_REGNUM,
78 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
79 E_R38_REGNUM,
80 E_R39_REGNUM,
81 E_R40_REGNUM,
82 E_R41_REGNUM,
83 E_R42_REGNUM,
84 E_R43_REGNUM,
85 E_R44_REGNUM,
86 E_R45_REGNUM,
87 E_R46_REGNUM,
88 E_R47_REGNUM,
89 E_R48_REGNUM,
90 E_R49_REGNUM,
91 E_R50_REGNUM,
92 E_R51_REGNUM,
93 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
94 E_R53_REGNUM,
95 E_R54_REGNUM,
96 E_R55_REGNUM,
97 E_R56_REGNUM,
98 E_R57_REGNUM,
99 E_R58_REGNUM,
100 E_R59_REGNUM,
101 E_R60_REGNUM,
102 E_R61_REGNUM,
103 E_R62_REGNUM,
104 E_R63_REGNUM,
105
106 /* PC. */
107 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
108 E_R65_REGNUM,
109 E_NUM_OF_V850_REGS,
110 E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,
111
112 /* System registers - MPV (PROT00) bank. */
113 E_R66_REGNUM = E_NUM_OF_V850_REGS,
114 E_R67_REGNUM,
115 E_R68_REGNUM,
116 E_R69_REGNUM,
117 E_R70_REGNUM,
118 E_R71_REGNUM,
119 E_R72_REGNUM,
120 E_R73_REGNUM,
121 E_R74_REGNUM,
122 E_R75_REGNUM,
123 E_R76_REGNUM,
124 E_R77_REGNUM,
125 E_R78_REGNUM,
126 E_R79_REGNUM,
127 E_R80_REGNUM,
128 E_R81_REGNUM,
129 E_R82_REGNUM,
130 E_R83_REGNUM,
131 E_R84_REGNUM,
132 E_R85_REGNUM,
133 E_R86_REGNUM,
134 E_R87_REGNUM,
135 E_R88_REGNUM,
136 E_R89_REGNUM,
137 E_R90_REGNUM,
138 E_R91_REGNUM,
139 E_R92_REGNUM,
140 E_R93_REGNUM,
141
142 /* System registers - MPU (PROT01) bank. */
143 E_R94_REGNUM,
144 E_R95_REGNUM,
145 E_R96_REGNUM,
146 E_R97_REGNUM,
147 E_R98_REGNUM,
148 E_R99_REGNUM,
149 E_R100_REGNUM,
150 E_R101_REGNUM,
151 E_R102_REGNUM,
152 E_R103_REGNUM,
153 E_R104_REGNUM,
154 E_R105_REGNUM,
155 E_R106_REGNUM,
156 E_R107_REGNUM,
157 E_R108_REGNUM,
158 E_R109_REGNUM,
159 E_R110_REGNUM,
160 E_R111_REGNUM,
161 E_R112_REGNUM,
162 E_R113_REGNUM,
163 E_R114_REGNUM,
164 E_R115_REGNUM,
165 E_R116_REGNUM,
166 E_R117_REGNUM,
167 E_R118_REGNUM,
168 E_R119_REGNUM,
169 E_R120_REGNUM,
170 E_R121_REGNUM,
171
172 /* FPU system registers. */
173 E_R122_REGNUM,
174 E_R123_REGNUM,
175 E_R124_REGNUM,
176 E_R125_REGNUM,
177 E_R126_REGNUM,
178 E_R127_REGNUM,
179 E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
180 E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
181 E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
182 E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
183 E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
184 E_R133_REGNUM,
185 E_R134_REGNUM,
186 E_R135_REGNUM,
187 E_R136_REGNUM,
188 E_R137_REGNUM,
189 E_R138_REGNUM,
190 E_R139_REGNUM,
191 E_R140_REGNUM,
192 E_R141_REGNUM,
193 E_R142_REGNUM,
194 E_R143_REGNUM,
195 E_R144_REGNUM,
196 E_R145_REGNUM,
197 E_R146_REGNUM,
198 E_R147_REGNUM,
199 E_R148_REGNUM,
200 E_R149_REGNUM,
201 E_NUM_OF_V850E2_REGS,
202
203 /* v850e3v5 system registers, selID 1 thru 7. */
204 E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
205 E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,
206
207 E_SELID_2_R0_REGNUM,
208 E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,
209
210 E_SELID_3_R0_REGNUM,
211 E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,
212
213 E_SELID_4_R0_REGNUM,
214 E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,
215
216 E_SELID_5_R0_REGNUM,
217 E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,
218
219 E_SELID_6_R0_REGNUM,
220 E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,
221
222 E_SELID_7_R0_REGNUM,
223 E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,
224
225 /* v850e3v5 vector registers. */
226 E_VR0_REGNUM,
227 E_VR31_REGNUM = E_VR0_REGNUM + 31,
228
229 E_NUM_OF_V850E3V5_REGS,
230
231 /* Total number of possible registers. */
232 E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
233 };
234
235 enum
236 {
237 v850_reg_size = 4
238 };
239
240 /* Size of return datatype which fits into all return registers. */
241 enum
242 {
243 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
244 };
245
246 /* When v850 support was added to GCC in the late nineties, the intention
247 was to follow the Green Hills ABI for v850. In fact, the authors of
248 that support at the time thought that they were doing so. As far as
249 I can tell, the calling conventions are correct, but the return value
250 conventions were not quite right. Over time, the return value code
251 in this file was modified to mostly reflect what GCC was actually
252 doing instead of to actually follow the Green Hills ABI as it did
253 when the code was first written.
254
255 Renesas defined the RH850 ABI which they use in their compiler. It
256 is similar to the original Green Hills ABI with some minor
257 differences. */
258
259 enum v850_abi
260 {
261 V850_ABI_GCC,
262 V850_ABI_RH850
263 };
264
265 /* Architecture specific data. */
266
267 struct gdbarch_tdep
268 {
269 /* Fields from the ELF header. */
270 int e_flags;
271 int e_machine;
272
273 /* Which ABI are we using? */
274 enum v850_abi abi;
275 int eight_byte_align;
276 };
277
278 struct v850_frame_cache
279 {
280 /* Base address. */
281 CORE_ADDR base;
282 LONGEST sp_offset;
283 CORE_ADDR pc;
284
285 /* Flag showing that a frame has been created in the prologue code. */
286 int uses_fp;
287
288 /* Saved registers. */
289 struct trad_frame_saved_reg *saved_regs;
290 };
291
292 /* Info gleaned from scanning a function's prologue. */
293 struct pifsr /* Info about one saved register. */
294 {
295 int offset; /* Offset from sp or fp. */
296 int cur_frameoffset; /* Current frameoffset. */
297 int reg; /* Saved register number. */
298 };
299
300 static const char *
301 v850_register_name (struct gdbarch *gdbarch, int regnum)
302 {
303 static const char *v850_reg_names[] =
304 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
305 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
306 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
307 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
308 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
309 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
310 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
311 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
312 "pc", "fp"
313 };
314 if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
315 return NULL;
316 return v850_reg_names[regnum];
317 }
318
319 static const char *
320 v850e_register_name (struct gdbarch *gdbarch, int regnum)
321 {
322 static const char *v850e_reg_names[] =
323 {
324 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
325 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
326 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
327 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
328 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
329 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
330 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
331 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
332 "pc", "fp"
333 };
334 if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
335 return NULL;
336 return v850e_reg_names[regnum];
337 }
338
339 static const char *
340 v850e2_register_name (struct gdbarch *gdbarch, int regnum)
341 {
342 static const char *v850e2_reg_names[] =
343 {
344 /* General purpose registers. */
345 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
346 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
347 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
348 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
349
350 /* System registers - main banks. */
351 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
352 "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
353 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
354 "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
355
356
357 /* PC. */
358 "pc", "",
359
360 /* System registers - MPV (PROT00) bank. */
361 "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
362 "vpecr", "vptid", "vpadr", "", "", "", "", "",
363 "", "", "", "", "", "", "", "",
364 "mca", "mcs", "mcc", "mcr",
365
366 /* System registers - MPU (PROT01) bank. */
367 "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
368 "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
369 "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
370 "dpa4l", "dpa4u", "dpa5l", "dpa5u",
371
372 /* FPU system registers. */
373 "", "", "", "", "", "", "fpsr", "fpepc",
374 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
375 "", "", "", "", "", "", "", "",
376 "", "", "", "fpspc"
377 };
378 if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
379 return NULL;
380 return v850e2_reg_names[regnum];
381 }
382
383 /* Implement the "register_name" gdbarch method for v850e3v5. */
384
385 static const char *
386 v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
387 {
388 static const char *v850e3v5_reg_names[] =
389 {
390 /* General purpose registers. */
391 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
392 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
393 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
394 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
395
396 /* selID 0, not including FPU registers. The FPU registers are
397 listed later on. */
398 "eipc", "eipsw", "fepc", "fepsw",
399 "", "psw", "" /* fpsr */, "" /* fpepc */,
400 "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
401 "sesr", "eiic", "feic", "",
402 "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
403 "", "", "", "", "eiwr", "fewr", "", "bsel",
404
405
406 /* PC. */
407 "pc", "",
408
409 /* v850e2 MPV bank. */
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
413 "", "", "", "",
414
415 /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
416 32 entries for this bank. */
417 "", "", "", "", "", "", "", "",
418 "", "", "", "", "", "", "", "",
419 "", "", "", "", "", "", "", "",
420 "", "", "", "",
421
422 /* FPU system registers. These are actually in selID 0, but
423 are placed here to preserve register numbering compatibility
424 with previous architectures. */
425 "", "", "", "", "", "", "fpsr", "fpepc",
426 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
427 "", "", "", "", "", "", "", "",
428 "", "", "", "",
429
430 /* selID 1. */
431 "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
432 "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
433 "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
434 "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
435
436 /* selID 2. */
437 "htcfg0", "", "", "", "", "htctl", "mea", "asid",
438 "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
439 "tlbsch", "", "", "", "", "", "", "htscctl",
440 "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
441 "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
442
443 /* selID 3. */
444 "", "", "", "", "", "", "", "",
445 "", "", "", "", "", "", "", "",
446 "", "", "", "", "", "", "", "",
447 "", "", "", "", "", "", "", "",
448
449 /* selID 4. */
450 "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
451 "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
452 "ictagl", "ictagh", "icdatl", "icdath",
453 "dctagl", "dctagh", "dcdatl", "dcdath",
454 "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
455
456 /* selID 5. */
457 "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
458 "mca", "mcs", "mcc", "mcr", "", "", "", "",
459 "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
460 "", "", "", "", "", "", "", "",
461
462 /* selID 6. */
463 "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
464 "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
465 "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
466 "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
467
468 /* selID 7. */
469 "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
470 "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
471 "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
472 "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
473
474 /* Vector Registers */
475 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
476 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
477 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
478 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
479 };
480
481 if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
482 return NULL;
483 return v850e3v5_reg_names[regnum];
484 }
485
486 /* Returns the default type for register N. */
487
488 static struct type *
489 v850_register_type (struct gdbarch *gdbarch, int regnum)
490 {
491 if (regnum == E_PC_REGNUM)
492 return builtin_type (gdbarch)->builtin_func_ptr;
493 else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
494 return builtin_type (gdbarch)->builtin_uint64;
495 return builtin_type (gdbarch)->builtin_int32;
496 }
497
498 static int
499 v850_type_is_scalar (struct type *t)
500 {
501 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
502 && TYPE_CODE (t) != TYPE_CODE_UNION
503 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
504 }
505
506 /* Should call_function allocate stack space for a struct return? */
507
508 static int
509 v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
510 {
511 int i;
512 struct type *fld_type, *tgt_type;
513
514 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
515 {
516 if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
517 return 0;
518
519 /* Structs are never returned in registers for this ABI. */
520 return 1;
521 }
522 /* 1. The value is greater than 8 bytes -> returned by copying. */
523 if (TYPE_LENGTH (type) > 8)
524 return 1;
525
526 /* 2. The value is a single basic type -> returned in register. */
527 if (v850_type_is_scalar (type))
528 return 0;
529
530 /* The value is a structure or union with a single element and that
531 element is either a single basic type or an array of a single basic
532 type whose size is greater than or equal to 4 -> returned in register. */
533 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
534 || TYPE_CODE (type) == TYPE_CODE_UNION)
535 && TYPE_NFIELDS (type) == 1)
536 {
537 fld_type = TYPE_FIELD_TYPE (type, 0);
538 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
539 return 0;
540
541 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
542 {
543 tgt_type = TYPE_TARGET_TYPE (fld_type);
544 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
545 return 0;
546 }
547 }
548
549 /* The value is a structure whose first element is an integer or a float,
550 and which contains no arrays of more than two elements -> returned in
551 register. */
552 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
553 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
554 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
555 {
556 for (i = 1; i < TYPE_NFIELDS (type); ++i)
557 {
558 fld_type = TYPE_FIELD_TYPE (type, 0);
559 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
560 {
561 tgt_type = TYPE_TARGET_TYPE (fld_type);
562 if (TYPE_LENGTH (tgt_type) > 0
563 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
564 return 1;
565 }
566 }
567 return 0;
568 }
569
570 /* The value is a union which contains at least one field which
571 would be returned in registers according to these rules ->
572 returned in register. */
573 if (TYPE_CODE (type) == TYPE_CODE_UNION)
574 {
575 for (i = 0; i < TYPE_NFIELDS (type); ++i)
576 {
577 fld_type = TYPE_FIELD_TYPE (type, 0);
578 if (!v850_use_struct_convention (gdbarch, fld_type))
579 return 0;
580 }
581 }
582
583 return 1;
584 }
585
586 /* Structure for mapping bits in register lists to register numbers. */
587
588 struct reg_list
589 {
590 long mask;
591 int regno;
592 };
593
594 /* Helper function for v850_scan_prologue to handle prepare instruction. */
595
596 static void
597 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
598 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
599 {
600 CORE_ADDR current_pc = *current_pc_ptr;
601 struct pifsr *pifsr = *pifsr_ptr;
602 long next = insn2 & 0xffff;
603 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
604 long offset = (insn & 0x3e) << 1;
605 static struct reg_list reg_table[] =
606 {
607 {0x00800, 20}, /* r20 */
608 {0x00400, 21}, /* r21 */
609 {0x00200, 22}, /* r22 */
610 {0x00100, 23}, /* r23 */
611 {0x08000, 24}, /* r24 */
612 {0x04000, 25}, /* r25 */
613 {0x02000, 26}, /* r26 */
614 {0x01000, 27}, /* r27 */
615 {0x00080, 28}, /* r28 */
616 {0x00040, 29}, /* r29 */
617 {0x10000, 30}, /* ep */
618 {0x00020, 31}, /* lp */
619 {0, 0} /* end of table */
620 };
621 int i;
622
623 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
624 current_pc += 2;
625 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
626 current_pc += 2;
627 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
628 current_pc += 4;
629
630 /* Calculate the total size of the saved registers, and add it to the
631 immediate value used to adjust SP. */
632 for (i = 0; reg_table[i].mask != 0; i++)
633 if (list12 & reg_table[i].mask)
634 offset += v850_reg_size;
635 pi->sp_offset -= offset;
636
637 /* Calculate the offsets of the registers relative to the value the SP
638 will have after the registers have been pushed and the imm5 value has
639 been subtracted from it. */
640 if (pifsr)
641 {
642 for (i = 0; reg_table[i].mask != 0; i++)
643 {
644 if (list12 & reg_table[i].mask)
645 {
646 int reg = reg_table[i].regno;
647 offset -= v850_reg_size;
648 pifsr->reg = reg;
649 pifsr->offset = offset;
650 pifsr->cur_frameoffset = pi->sp_offset;
651 pifsr++;
652 }
653 }
654 }
655
656 /* Set result parameters. */
657 *current_pc_ptr = current_pc;
658 *pifsr_ptr = pifsr;
659 }
660
661
662 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
663 The SR bit of the register list is not supported. gcc does not generate
664 this bit. */
665
666 static void
667 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
668 struct pifsr **pifsr_ptr)
669 {
670 struct pifsr *pifsr = *pifsr_ptr;
671 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
672 long offset = 0;
673 static struct reg_list pushml_reg_table[] =
674 {
675 {0x80000, E_PS_REGNUM}, /* PSW */
676 {0x40000, 1}, /* r1 */
677 {0x20000, 2}, /* r2 */
678 {0x10000, 3}, /* r3 */
679 {0x00800, 4}, /* r4 */
680 {0x00400, 5}, /* r5 */
681 {0x00200, 6}, /* r6 */
682 {0x00100, 7}, /* r7 */
683 {0x08000, 8}, /* r8 */
684 {0x04000, 9}, /* r9 */
685 {0x02000, 10}, /* r10 */
686 {0x01000, 11}, /* r11 */
687 {0x00080, 12}, /* r12 */
688 {0x00040, 13}, /* r13 */
689 {0x00020, 14}, /* r14 */
690 {0x00010, 15}, /* r15 */
691 {0, 0} /* end of table */
692 };
693 static struct reg_list pushmh_reg_table[] =
694 {
695 {0x80000, 16}, /* r16 */
696 {0x40000, 17}, /* r17 */
697 {0x20000, 18}, /* r18 */
698 {0x10000, 19}, /* r19 */
699 {0x00800, 20}, /* r20 */
700 {0x00400, 21}, /* r21 */
701 {0x00200, 22}, /* r22 */
702 {0x00100, 23}, /* r23 */
703 {0x08000, 24}, /* r24 */
704 {0x04000, 25}, /* r25 */
705 {0x02000, 26}, /* r26 */
706 {0x01000, 27}, /* r27 */
707 {0x00080, 28}, /* r28 */
708 {0x00040, 29}, /* r29 */
709 {0x00010, 30}, /* r30 */
710 {0x00020, 31}, /* r31 */
711 {0, 0} /* end of table */
712 };
713 struct reg_list *reg_table;
714 int i;
715
716 /* Is this a pushml or a pushmh? */
717 if ((insn2 & 7) == 1)
718 reg_table = pushml_reg_table;
719 else
720 reg_table = pushmh_reg_table;
721
722 /* Calculate the total size of the saved registers, and add it to the
723 immediate value used to adjust SP. */
724 for (i = 0; reg_table[i].mask != 0; i++)
725 if (list12 & reg_table[i].mask)
726 offset += v850_reg_size;
727 pi->sp_offset -= offset;
728
729 /* Calculate the offsets of the registers relative to the value the SP
730 will have after the registers have been pushed and the imm5 value is
731 subtracted from it. */
732 if (pifsr)
733 {
734 for (i = 0; reg_table[i].mask != 0; i++)
735 {
736 if (list12 & reg_table[i].mask)
737 {
738 int reg = reg_table[i].regno;
739 offset -= v850_reg_size;
740 pifsr->reg = reg;
741 pifsr->offset = offset;
742 pifsr->cur_frameoffset = pi->sp_offset;
743 pifsr++;
744 }
745 }
746 }
747
748 /* Set result parameters. */
749 *pifsr_ptr = pifsr;
750 }
751
752 /* Helper function to evaluate if register is one of the "save" registers.
753 This allows to simplify conditionals in v850_analyze_prologue a lot. */
754
755 static int
756 v850_is_save_register (int reg)
757 {
758 /* The caller-save registers are R2, R20 - R29 and R31. All other
759 registers are either special purpose (PC, SP), argument registers,
760 or just considered free for use in the caller. */
761 return reg == E_R2_REGNUM
762 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
763 || reg == E_R31_REGNUM;
764 }
765
766 /* Scan the prologue of the function that contains PC, and record what
767 we find in PI. Returns the pc after the prologue. Note that the
768 addresses saved in frame->saved_regs are just frame relative (negative
769 offsets from the frame pointer). This is because we don't know the
770 actual value of the frame pointer yet. In some circumstances, the
771 frame pointer can't be determined till after we have scanned the
772 prologue. */
773
774 static CORE_ADDR
775 v850_analyze_prologue (struct gdbarch *gdbarch,
776 CORE_ADDR func_addr, CORE_ADDR pc,
777 struct v850_frame_cache *pi, ULONGEST ctbp)
778 {
779 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
780 CORE_ADDR prologue_end, current_pc;
781 struct pifsr pifsrs[E_NUM_REGS + 1];
782 struct pifsr *pifsr, *pifsr_tmp;
783 int ep_used;
784 int reg;
785 CORE_ADDR save_pc, save_end;
786 int regsave_func_p;
787 int r12_tmp;
788
789 memset (&pifsrs, 0, sizeof pifsrs);
790 pifsr = &pifsrs[0];
791
792 prologue_end = pc;
793
794 /* Now, search the prologue looking for instructions that setup fp, save
795 rp, adjust sp and such. We also record the frame offset of any saved
796 registers. */
797
798 pi->sp_offset = 0;
799 pi->uses_fp = 0;
800 ep_used = 0;
801 regsave_func_p = 0;
802 save_pc = 0;
803 save_end = 0;
804 r12_tmp = 0;
805
806 for (current_pc = func_addr; current_pc < prologue_end;)
807 {
808 int insn;
809 int insn2 = -1; /* dummy value */
810
811 insn = read_memory_integer (current_pc, 2, byte_order);
812 current_pc += 2;
813 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
814 {
815 insn2 = read_memory_integer (current_pc, 2, byte_order);
816 current_pc += 2;
817 }
818
819 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
820 { /* jarl <func>,10 */
821 long low_disp = insn2 & ~(long) 1;
822 long disp = (((((insn & 0x3f) << 16) + low_disp)
823 & ~(long) 1) ^ 0x00200000) - 0x00200000;
824
825 save_pc = current_pc;
826 save_end = prologue_end;
827 regsave_func_p = 1;
828 current_pc += disp - 4;
829 prologue_end = (current_pc
830 + (2 * 3) /* moves to/from ep */
831 + 4 /* addi <const>,sp,sp */
832 + 2 /* jmp [r10] */
833 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
834 + 20); /* slop area */
835 }
836 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
837 { /* callt <imm6> */
838 long adr = ctbp + ((insn & 0x3f) << 1);
839
840 save_pc = current_pc;
841 save_end = prologue_end;
842 regsave_func_p = 1;
843 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
844 & 0xffff);
845 prologue_end = (current_pc
846 + (2 * 3) /* prepare list2,imm5,sp/imm */
847 + 4 /* ctret */
848 + 20); /* slop area */
849 continue;
850 }
851 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
852 {
853 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
854 continue;
855 }
856 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
857 { /* ctret after processing register save. */
858 current_pc = save_pc;
859 prologue_end = save_end;
860 regsave_func_p = 0;
861 continue;
862 }
863 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
864 { /* pushml, pushmh */
865 v850_handle_pushm (insn, insn2, pi, &pifsr);
866 continue;
867 }
868 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
869 { /* jmp after processing register save. */
870 current_pc = save_pc;
871 prologue_end = save_end;
872 regsave_func_p = 0;
873 continue;
874 }
875 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
876 || (insn & 0xffe0) == 0x0060 /* jmp */
877 || (insn & 0x0780) == 0x0580) /* branch */
878 {
879 break; /* Ran into end of prologue. */
880 }
881
882 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
883 /* add <imm>,sp */
884 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
885 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
886 /* addi <imm>,sp,sp */
887 pi->sp_offset += insn2;
888 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
889 /* mov sp,fp */
890 pi->uses_fp = 1;
891 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
892 /* movhi hi(const),r0,r12 */
893 r12_tmp = insn2 << 16;
894 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
895 /* movea lo(const),r12,r12 */
896 r12_tmp += insn2;
897 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
898 /* add r12,sp */
899 pi->sp_offset += r12_tmp;
900 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
901 /* mov sp,ep */
902 ep_used = 1;
903 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
904 /* mov r1,ep */
905 ep_used = 0;
906 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
907 || (pi->uses_fp
908 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
909 && pifsr
910 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
911 {
912 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
913 pifsr->reg = reg;
914 pifsr->offset = insn2 & ~1;
915 pifsr->cur_frameoffset = pi->sp_offset;
916 pifsr++;
917 }
918 else if (ep_used
919 && ((insn & 0x0781) == 0x0501)
920 && pifsr
921 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
922 {
923 /* sst.w <reg>,<offset>[ep] */
924 pifsr->reg = reg;
925 pifsr->offset = (insn & 0x007e) << 1;
926 pifsr->cur_frameoffset = pi->sp_offset;
927 pifsr++;
928 }
929 }
930
931 /* Fix up any offsets to the final offset. If a frame pointer was created,
932 use it instead of the stack pointer. */
933 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
934 {
935 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
936 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
937 }
938
939 return current_pc;
940 }
941
942 /* Return the address of the first code past the prologue of the function. */
943
944 static CORE_ADDR
945 v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
946 {
947 CORE_ADDR func_addr, func_end;
948
949 /* See what the symbol table says. */
950
951 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
952 {
953 struct symtab_and_line sal;
954
955 sal = find_pc_line (func_addr, 0);
956 if (sal.line != 0 && sal.end < func_end)
957 return sal.end;
958
959 /* Either there's no line info, or the line after the prologue is after
960 the end of the function. In this case, there probably isn't a
961 prologue. */
962 return pc;
963 }
964
965 /* We can't find the start of this function, so there's nothing we
966 can do. */
967 return pc;
968 }
969
970 /* Return 1 if the data structure has any 8-byte fields that'll require
971 the entire data structure to be aligned. Otherwise, return 0. */
972
973 static int
974 v850_eight_byte_align_p (struct type *type)
975 {
976 type = check_typedef (type);
977
978 if (v850_type_is_scalar (type))
979 return (TYPE_LENGTH (type) == 8);
980 else
981 {
982 int i;
983
984 for (i = 0; i < TYPE_NFIELDS (type); i++)
985 {
986 if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type, i)))
987 return 1;
988 }
989 }
990 return 0;
991 }
992
993 static CORE_ADDR
994 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
995 {
996 return sp & ~3;
997 }
998
999 /* Setup arguments and LP for a call to the target. First four args
1000 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
1001 are passed by reference. 64 bit quantities (doubles and long longs)
1002 may be split between the regs and the stack. When calling a function
1003 that returns a struct, a pointer to the struct is passed in as a secret
1004 first argument (always in R6).
1005
1006 Stack space for the args has NOT been allocated: that job is up to us. */
1007
1008 static CORE_ADDR
1009 v850_push_dummy_call (struct gdbarch *gdbarch,
1010 struct value *function,
1011 struct regcache *regcache,
1012 CORE_ADDR bp_addr,
1013 int nargs,
1014 struct value **args,
1015 CORE_ADDR sp,
1016 function_call_return_method return_method,
1017 CORE_ADDR struct_addr)
1018 {
1019 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1020 int argreg;
1021 int argnum;
1022 int arg_space = 0;
1023 int stack_offset;
1024
1025 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
1026 stack_offset = 0;
1027 else
1028 /* The offset onto the stack at which we will start copying parameters
1029 (after the registers are used up) begins at 16 rather than at zero.
1030 That's how the ABI is defined, though there's no indication that these
1031 16 bytes are used for anything, not even for saving incoming
1032 argument registers. */
1033 stack_offset = 16;
1034
1035 /* Now make space on the stack for the args. */
1036 for (argnum = 0; argnum < nargs; argnum++)
1037 arg_space += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
1038 sp -= arg_space + stack_offset;
1039
1040 argreg = E_ARG0_REGNUM;
1041 /* The struct_return pointer occupies the first parameter register. */
1042 if (return_method == return_method_struct)
1043 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1044
1045 /* Now load as many as possible of the first arguments into
1046 registers, and push the rest onto the stack. There are 16 bytes
1047 in four registers available. Loop thru args from first to last. */
1048 for (argnum = 0; argnum < nargs; argnum++)
1049 {
1050 int len;
1051 gdb_byte *val;
1052 gdb_byte valbuf[v850_reg_size];
1053
1054 if (!v850_type_is_scalar (value_type (*args))
1055 && gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC
1056 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
1057 {
1058 store_unsigned_integer (valbuf, 4, byte_order,
1059 value_address (*args));
1060 len = 4;
1061 val = valbuf;
1062 }
1063 else
1064 {
1065 len = TYPE_LENGTH (value_type (*args));
1066 val = (gdb_byte *) value_contents (*args);
1067 }
1068
1069 if (gdbarch_tdep (gdbarch)->eight_byte_align
1070 && v850_eight_byte_align_p (value_type (*args)))
1071 {
1072 if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
1073 argreg++;
1074 else if (stack_offset & 0x4)
1075 stack_offset += 4;
1076 }
1077
1078 while (len > 0)
1079 if (argreg <= E_ARGLAST_REGNUM)
1080 {
1081 CORE_ADDR regval;
1082
1083 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
1084 regcache_cooked_write_unsigned (regcache, argreg, regval);
1085
1086 len -= v850_reg_size;
1087 val += v850_reg_size;
1088 argreg++;
1089 }
1090 else
1091 {
1092 write_memory (sp + stack_offset, val, 4);
1093
1094 len -= 4;
1095 val += 4;
1096 stack_offset += 4;
1097 }
1098 args++;
1099 }
1100
1101 /* Store return address. */
1102 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
1103
1104 /* Update stack pointer. */
1105 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1106
1107 return sp;
1108 }
1109
1110 static void
1111 v850_extract_return_value (struct type *type, struct regcache *regcache,
1112 gdb_byte *valbuf)
1113 {
1114 struct gdbarch *gdbarch = regcache->arch ();
1115 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1116 int len = TYPE_LENGTH (type);
1117
1118 if (len <= v850_reg_size)
1119 {
1120 ULONGEST val;
1121
1122 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
1123 store_unsigned_integer (valbuf, len, byte_order, val);
1124 }
1125 else if (len <= 2 * v850_reg_size)
1126 {
1127 int i, regnum = E_V0_REGNUM;
1128 gdb_byte buf[v850_reg_size];
1129 for (i = 0; len > 0; i += 4, len -= 4)
1130 {
1131 regcache->raw_read (regnum++, buf);
1132 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
1133 }
1134 }
1135 }
1136
1137 static void
1138 v850_store_return_value (struct type *type, struct regcache *regcache,
1139 const gdb_byte *valbuf)
1140 {
1141 struct gdbarch *gdbarch = regcache->arch ();
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143 int len = TYPE_LENGTH (type);
1144
1145 if (len <= v850_reg_size)
1146 regcache_cooked_write_unsigned
1147 (regcache, E_V0_REGNUM,
1148 extract_unsigned_integer (valbuf, len, byte_order));
1149 else if (len <= 2 * v850_reg_size)
1150 {
1151 int i, regnum = E_V0_REGNUM;
1152 for (i = 0; i < len; i += 4)
1153 regcache->raw_write (regnum++, valbuf + i);
1154 }
1155 }
1156
1157 static enum return_value_convention
1158 v850_return_value (struct gdbarch *gdbarch, struct value *function,
1159 struct type *type, struct regcache *regcache,
1160 gdb_byte *readbuf, const gdb_byte *writebuf)
1161 {
1162 if (v850_use_struct_convention (gdbarch, type))
1163 return RETURN_VALUE_STRUCT_CONVENTION;
1164 if (writebuf)
1165 v850_store_return_value (type, regcache, writebuf);
1166 else if (readbuf)
1167 v850_extract_return_value (type, regcache, readbuf);
1168 return RETURN_VALUE_REGISTER_CONVENTION;
1169 }
1170
1171 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1172
1173 static int
1174 v850_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1175 {
1176 return 2;
1177 }
1178
1179 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1180
1181 static const gdb_byte *
1182 v850_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1183 {
1184 *size = kind;
1185
1186 switch (gdbarch_bfd_arch_info (gdbarch)->mach)
1187 {
1188 case bfd_mach_v850e2:
1189 case bfd_mach_v850e2v3:
1190 case bfd_mach_v850e3v5:
1191 {
1192 /* Implement software breakpoints by using the dbtrap instruction.
1193 Older architectures had no such instruction. For those, an
1194 unconditional branch to self instruction is used. */
1195
1196 static unsigned char dbtrap_breakpoint[] = { 0x40, 0xf8 };
1197
1198 return dbtrap_breakpoint;
1199 }
1200 break;
1201 default:
1202 {
1203 static unsigned char breakpoint[] = { 0x85, 0x05 };
1204
1205 return breakpoint;
1206 }
1207 break;
1208 }
1209 }
1210
1211 static struct v850_frame_cache *
1212 v850_alloc_frame_cache (struct frame_info *this_frame)
1213 {
1214 struct v850_frame_cache *cache;
1215
1216 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
1217 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1218
1219 /* Base address. */
1220 cache->base = 0;
1221 cache->sp_offset = 0;
1222 cache->pc = 0;
1223
1224 /* Frameless until proven otherwise. */
1225 cache->uses_fp = 0;
1226
1227 return cache;
1228 }
1229
1230 static struct v850_frame_cache *
1231 v850_frame_cache (struct frame_info *this_frame, void **this_cache)
1232 {
1233 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1234 struct v850_frame_cache *cache;
1235 CORE_ADDR current_pc;
1236 int i;
1237
1238 if (*this_cache)
1239 return (struct v850_frame_cache *) *this_cache;
1240
1241 cache = v850_alloc_frame_cache (this_frame);
1242 *this_cache = cache;
1243
1244 /* In principle, for normal frames, fp holds the frame pointer,
1245 which holds the base address for the current stack frame.
1246 However, for functions that don't need it, the frame pointer is
1247 optional. For these "frameless" functions the frame pointer is
1248 actually the frame pointer of the calling frame. */
1249 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
1250 if (cache->base == 0)
1251 return cache;
1252
1253 cache->pc = get_frame_func (this_frame);
1254 current_pc = get_frame_pc (this_frame);
1255 if (cache->pc != 0)
1256 {
1257 ULONGEST ctbp;
1258 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
1259 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
1260 }
1261
1262 if (!cache->uses_fp)
1263 {
1264 /* We didn't find a valid frame, which means that CACHE->base
1265 currently holds the frame pointer for our calling frame. If
1266 we're at the start of a function, or somewhere half-way its
1267 prologue, the function's frame probably hasn't been fully
1268 setup yet. Try to reconstruct the base address for the stack
1269 frame by looking at the stack pointer. For truly "frameless"
1270 functions this might work too. */
1271 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1272 }
1273
1274 /* Now that we have the base address for the stack frame we can
1275 calculate the value of sp in the calling frame. */
1276 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
1277 cache->base - cache->sp_offset);
1278
1279 /* Adjust all the saved registers such that they contain addresses
1280 instead of offsets. */
1281 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1282 if (trad_frame_addr_p (cache->saved_regs, i))
1283 cache->saved_regs[i].addr += cache->base;
1284
1285 /* The call instruction moves the caller's PC in the callee's LP.
1286 Since this is an unwind, do the reverse. Copy the location of LP
1287 into PC (the address / regnum) so that a request for PC will be
1288 converted into a request for the LP. */
1289
1290 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
1291
1292 return cache;
1293 }
1294
1295
1296 static struct value *
1297 v850_frame_prev_register (struct frame_info *this_frame,
1298 void **this_cache, int regnum)
1299 {
1300 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1301
1302 gdb_assert (regnum >= 0);
1303
1304 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1305 }
1306
1307 static void
1308 v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
1309 struct frame_id *this_id)
1310 {
1311 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1312
1313 /* This marks the outermost frame. */
1314 if (cache->base == 0)
1315 return;
1316
1317 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
1318 }
1319
1320 static const struct frame_unwind v850_frame_unwind = {
1321 NORMAL_FRAME,
1322 default_frame_unwind_stop_reason,
1323 v850_frame_this_id,
1324 v850_frame_prev_register,
1325 NULL,
1326 default_frame_sniffer
1327 };
1328
1329 static CORE_ADDR
1330 v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
1331 {
1332 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1333
1334 return cache->base;
1335 }
1336
1337 static const struct frame_base v850_frame_base = {
1338 &v850_frame_unwind,
1339 v850_frame_base_address,
1340 v850_frame_base_address,
1341 v850_frame_base_address
1342 };
1343
1344 static struct gdbarch *
1345 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1346 {
1347 struct gdbarch *gdbarch;
1348 struct gdbarch_tdep *tdep;
1349 int e_flags, e_machine;
1350
1351 /* Extract the elf_flags if available. */
1352 if (info.abfd != NULL
1353 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1354 {
1355 e_flags = elf_elfheader (info.abfd)->e_flags;
1356 e_machine = elf_elfheader (info.abfd)->e_machine;
1357 }
1358 else
1359 {
1360 e_flags = 0;
1361 e_machine = 0;
1362 }
1363
1364
1365 /* Try to find the architecture in the list of already defined
1366 architectures. */
1367 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1368 arches != NULL;
1369 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1370 {
1371 if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags
1372 || gdbarch_tdep (arches->gdbarch)->e_machine != e_machine)
1373 continue;
1374
1375 return arches->gdbarch;
1376 }
1377 tdep = XCNEW (struct gdbarch_tdep);
1378 tdep->e_flags = e_flags;
1379 tdep->e_machine = e_machine;
1380
1381 switch (tdep->e_machine)
1382 {
1383 case EM_V800:
1384 tdep->abi = V850_ABI_RH850;
1385 break;
1386 default:
1387 tdep->abi = V850_ABI_GCC;
1388 break;
1389 }
1390
1391 tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
1392 gdbarch = gdbarch_alloc (&info, tdep);
1393
1394 switch (info.bfd_arch_info->mach)
1395 {
1396 case bfd_mach_v850:
1397 set_gdbarch_register_name (gdbarch, v850_register_name);
1398 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
1399 break;
1400 case bfd_mach_v850e:
1401 case bfd_mach_v850e1:
1402 set_gdbarch_register_name (gdbarch, v850e_register_name);
1403 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
1404 break;
1405 case bfd_mach_v850e2:
1406 case bfd_mach_v850e2v3:
1407 set_gdbarch_register_name (gdbarch, v850e2_register_name);
1408 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1409 break;
1410 case bfd_mach_v850e3v5:
1411 set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
1412 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
1413 break;
1414 }
1415
1416 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1417 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1418 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1419 set_gdbarch_fp0_regnum (gdbarch, -1);
1420
1421 set_gdbarch_register_type (gdbarch, v850_register_type);
1422
1423 set_gdbarch_char_signed (gdbarch, 1);
1424 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1425 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1426 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1427 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1428
1429 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1430 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1431 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1432
1433 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1434 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1435
1436 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1437
1438 set_gdbarch_breakpoint_kind_from_pc (gdbarch, v850_breakpoint_kind_from_pc);
1439 set_gdbarch_sw_breakpoint_from_kind (gdbarch, v850_sw_breakpoint_from_kind);
1440 set_gdbarch_return_value (gdbarch, v850_return_value);
1441 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1442 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1443
1444 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1445 frame_base_set_default (gdbarch, &v850_frame_base);
1446
1447 /* Hook in ABI-specific overrides, if they have been registered. */
1448 gdbarch_init_osabi (info, gdbarch);
1449
1450 dwarf2_append_unwinders (gdbarch);
1451 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
1452
1453 return gdbarch;
1454 }
1455
1456 void
1457 _initialize_v850_tdep (void)
1458 {
1459 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1460 register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);
1461 }
This page took 0.095063 seconds and 4 git commands to generate.