GDB: aarch64: Add ability to displaced step over a BR/BLR instruction
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "gdbsupport/byte-vector.h"
30 #include "gdbarch.h"
31
32 /* Define whether or not the C operator '/' truncates towards zero for
33 differently signed operands (truncation direction is undefined in C). */
34
35 #ifndef TRUNCATION_TOWARDS_ZERO
36 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
37 #endif
38
39 /* Given a pointer, return the size of its target.
40 If the pointer type is void *, then return 1.
41 If the target type is incomplete, then error out.
42 This isn't a general purpose function, but just a
43 helper for value_ptradd. */
44
45 static LONGEST
46 find_size_for_pointer_math (struct type *ptr_type)
47 {
48 LONGEST sz = -1;
49 struct type *ptr_target;
50
51 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
52 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
53
54 sz = type_length_units (ptr_target);
55 if (sz == 0)
56 {
57 if (ptr_type->code () == TYPE_CODE_VOID)
58 sz = 1;
59 else
60 {
61 const char *name;
62
63 name = ptr_target->name ();
64 if (name == NULL)
65 error (_("Cannot perform pointer math on incomplete types, "
66 "try casting to a known type, or void *."));
67 else
68 error (_("Cannot perform pointer math on incomplete type \"%s\", "
69 "try casting to a known type, or void *."), name);
70 }
71 }
72 return sz;
73 }
74
75 /* Given a pointer ARG1 and an integral value ARG2, return the
76 result of C-style pointer arithmetic ARG1 + ARG2. */
77
78 struct value *
79 value_ptradd (struct value *arg1, LONGEST arg2)
80 {
81 struct type *valptrtype;
82 LONGEST sz;
83 struct value *result;
84
85 arg1 = coerce_array (arg1);
86 valptrtype = check_typedef (value_type (arg1));
87 sz = find_size_for_pointer_math (valptrtype);
88
89 result = value_from_pointer (valptrtype,
90 value_as_address (arg1) + sz * arg2);
91 if (VALUE_LVAL (result) != lval_internalvar)
92 set_value_component_location (result, arg1);
93 return result;
94 }
95
96 /* Given two compatible pointer values ARG1 and ARG2, return the
97 result of C-style pointer arithmetic ARG1 - ARG2. */
98
99 LONGEST
100 value_ptrdiff (struct value *arg1, struct value *arg2)
101 {
102 struct type *type1, *type2;
103 LONGEST sz;
104
105 arg1 = coerce_array (arg1);
106 arg2 = coerce_array (arg2);
107 type1 = check_typedef (value_type (arg1));
108 type2 = check_typedef (value_type (arg2));
109
110 gdb_assert (type1->code () == TYPE_CODE_PTR);
111 gdb_assert (type2->code () == TYPE_CODE_PTR);
112
113 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
114 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
115 error (_("First argument of `-' is a pointer and "
116 "second argument is neither\n"
117 "an integer nor a pointer of the same type."));
118
119 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
120 if (sz == 0)
121 {
122 warning (_("Type size unknown, assuming 1. "
123 "Try casting to a known type, or void *."));
124 sz = 1;
125 }
126
127 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
128 }
129
130 /* Return the value of ARRAY[IDX].
131
132 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
133 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
134
135 See comments in value_coerce_array() for rationale for reason for
136 doing lower bounds adjustment here rather than there.
137 FIXME: Perhaps we should validate that the index is valid and if
138 verbosity is set, warn about invalid indices (but still use them). */
139
140 struct value *
141 value_subscript (struct value *array, LONGEST index)
142 {
143 bool c_style = current_language->c_style_arrays_p ();
144 struct type *tarray;
145
146 array = coerce_ref (array);
147 tarray = check_typedef (value_type (array));
148
149 if (tarray->code () == TYPE_CODE_ARRAY
150 || tarray->code () == TYPE_CODE_STRING)
151 {
152 struct type *range_type = tarray->index_type ();
153 gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
154 if (!lowerbound.has_value ())
155 lowerbound = 0;
156
157 if (VALUE_LVAL (array) != lval_memory)
158 return value_subscripted_rvalue (array, index, *lowerbound);
159
160 if (!c_style)
161 {
162 gdb::optional<LONGEST> upperbound
163 = get_discrete_high_bound (range_type);
164
165 if (!upperbound.has_value ())
166 upperbound = 0;
167
168 if (index >= *lowerbound && index <= *upperbound)
169 return value_subscripted_rvalue (array, index, *lowerbound);
170
171 /* Emit warning unless we have an array of unknown size.
172 An array of unknown size has lowerbound 0 and upperbound -1. */
173 if (*upperbound > -1)
174 warning (_("array or string index out of range"));
175 /* fall doing C stuff */
176 c_style = true;
177 }
178
179 index -= *lowerbound;
180 array = value_coerce_array (array);
181 }
182
183 if (c_style)
184 return value_ind (value_ptradd (array, index));
185 else
186 error (_("not an array or string"));
187 }
188
189 /* Return the value of EXPR[IDX], expr an aggregate rvalue
190 (eg, a vector register). This routine used to promote floats
191 to doubles, but no longer does. */
192
193 struct value *
194 value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound)
195 {
196 struct type *array_type = check_typedef (value_type (array));
197 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
198 LONGEST elt_size = type_length_units (elt_type);
199
200 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
201 in a byte. */
202 LONGEST stride = array_type->bit_stride ();
203 if (stride != 0)
204 {
205 struct gdbarch *arch = get_type_arch (elt_type);
206 int unit_size = gdbarch_addressable_memory_unit_size (arch);
207 elt_size = stride / (unit_size * 8);
208 }
209
210 LONGEST elt_offs = elt_size * (index - lowerbound);
211 bool array_upper_bound_undefined
212 = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
213
214 if (index < lowerbound
215 || (!array_upper_bound_undefined
216 && elt_offs >= type_length_units (array_type))
217 || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
218 {
219 if (type_not_associated (array_type))
220 error (_("no such vector element (vector not associated)"));
221 else if (type_not_allocated (array_type))
222 error (_("no such vector element (vector not allocated)"));
223 else
224 error (_("no such vector element"));
225 }
226
227 if (is_dynamic_type (elt_type))
228 {
229 CORE_ADDR address;
230
231 address = value_address (array) + elt_offs;
232 elt_type = resolve_dynamic_type (elt_type, {}, address);
233 }
234
235 return value_from_component (array, elt_type, elt_offs);
236 }
237
238 \f
239 /* Check to see if either argument is a structure, or a reference to
240 one. This is called so we know whether to go ahead with the normal
241 binop or look for a user defined function instead.
242
243 For now, we do not overload the `=' operator. */
244
245 int
246 binop_types_user_defined_p (enum exp_opcode op,
247 struct type *type1, struct type *type2)
248 {
249 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
250 return 0;
251
252 type1 = check_typedef (type1);
253 if (TYPE_IS_REFERENCE (type1))
254 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
255
256 type2 = check_typedef (type2);
257 if (TYPE_IS_REFERENCE (type2))
258 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
259
260 return (type1->code () == TYPE_CODE_STRUCT
261 || type2->code () == TYPE_CODE_STRUCT);
262 }
263
264 /* Check to see if either argument is a structure, or a reference to
265 one. This is called so we know whether to go ahead with the normal
266 binop or look for a user defined function instead.
267
268 For now, we do not overload the `=' operator. */
269
270 int
271 binop_user_defined_p (enum exp_opcode op,
272 struct value *arg1, struct value *arg2)
273 {
274 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
275 }
276
277 /* Check to see if argument is a structure. This is called so
278 we know whether to go ahead with the normal unop or look for a
279 user defined function instead.
280
281 For now, we do not overload the `&' operator. */
282
283 int
284 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
285 {
286 struct type *type1;
287
288 if (op == UNOP_ADDR)
289 return 0;
290 type1 = check_typedef (value_type (arg1));
291 if (TYPE_IS_REFERENCE (type1))
292 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
293 return type1->code () == TYPE_CODE_STRUCT;
294 }
295
296 /* Try to find an operator named OPERATOR which takes NARGS arguments
297 specified in ARGS. If the operator found is a static member operator
298 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
299 The search if performed through find_overload_match which will handle
300 member operators, non member operators, operators imported implicitly or
301 explicitly, and perform correct overload resolution in all of the above
302 situations or combinations thereof. */
303
304 static struct value *
305 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
306 int *static_memfuncp, enum noside noside)
307 {
308
309 struct symbol *symp = NULL;
310 struct value *valp = NULL;
311
312 find_overload_match (args, oper, BOTH /* could be method */,
313 &args[0] /* objp */,
314 NULL /* pass NULL symbol since symbol is unknown */,
315 &valp, &symp, static_memfuncp, 0, noside);
316
317 if (valp)
318 return valp;
319
320 if (symp)
321 {
322 /* This is a non member function and does not
323 expect a reference as its first argument
324 rather the explicit structure. */
325 args[0] = value_ind (args[0]);
326 return value_of_variable (symp, 0);
327 }
328
329 error (_("Could not find %s."), oper);
330 }
331
332 /* Lookup user defined operator NAME. Return a value representing the
333 function, otherwise return NULL. */
334
335 static struct value *
336 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
337 char *name, int *static_memfuncp, enum noside noside)
338 {
339 struct value *result = NULL;
340
341 if (current_language->la_language == language_cplus)
342 {
343 result = value_user_defined_cpp_op (args, name, static_memfuncp,
344 noside);
345 }
346 else
347 result = value_struct_elt (argp, args.data (), name, static_memfuncp,
348 "structure");
349
350 return result;
351 }
352
353 /* We know either arg1 or arg2 is a structure, so try to find the right
354 user defined function. Create an argument vector that calls
355 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
356 binary operator which is legal for GNU C++).
357
358 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
359 is the opcode saying how to modify it. Otherwise, OTHEROP is
360 unused. */
361
362 struct value *
363 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
364 enum exp_opcode otherop, enum noside noside)
365 {
366 char *ptr;
367 char tstr[13];
368 int static_memfuncp;
369
370 arg1 = coerce_ref (arg1);
371 arg2 = coerce_ref (arg2);
372
373 /* now we know that what we have to do is construct our
374 arg vector and find the right function to call it with. */
375
376 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
377 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
378
379 value *argvec_storage[3];
380 gdb::array_view<value *> argvec = argvec_storage;
381
382 argvec[1] = value_addr (arg1);
383 argvec[2] = arg2;
384
385 /* Make the right function name up. */
386 strcpy (tstr, "operator__");
387 ptr = tstr + 8;
388 switch (op)
389 {
390 case BINOP_ADD:
391 strcpy (ptr, "+");
392 break;
393 case BINOP_SUB:
394 strcpy (ptr, "-");
395 break;
396 case BINOP_MUL:
397 strcpy (ptr, "*");
398 break;
399 case BINOP_DIV:
400 strcpy (ptr, "/");
401 break;
402 case BINOP_REM:
403 strcpy (ptr, "%");
404 break;
405 case BINOP_LSH:
406 strcpy (ptr, "<<");
407 break;
408 case BINOP_RSH:
409 strcpy (ptr, ">>");
410 break;
411 case BINOP_BITWISE_AND:
412 strcpy (ptr, "&");
413 break;
414 case BINOP_BITWISE_IOR:
415 strcpy (ptr, "|");
416 break;
417 case BINOP_BITWISE_XOR:
418 strcpy (ptr, "^");
419 break;
420 case BINOP_LOGICAL_AND:
421 strcpy (ptr, "&&");
422 break;
423 case BINOP_LOGICAL_OR:
424 strcpy (ptr, "||");
425 break;
426 case BINOP_MIN:
427 strcpy (ptr, "<?");
428 break;
429 case BINOP_MAX:
430 strcpy (ptr, ">?");
431 break;
432 case BINOP_ASSIGN:
433 strcpy (ptr, "=");
434 break;
435 case BINOP_ASSIGN_MODIFY:
436 switch (otherop)
437 {
438 case BINOP_ADD:
439 strcpy (ptr, "+=");
440 break;
441 case BINOP_SUB:
442 strcpy (ptr, "-=");
443 break;
444 case BINOP_MUL:
445 strcpy (ptr, "*=");
446 break;
447 case BINOP_DIV:
448 strcpy (ptr, "/=");
449 break;
450 case BINOP_REM:
451 strcpy (ptr, "%=");
452 break;
453 case BINOP_BITWISE_AND:
454 strcpy (ptr, "&=");
455 break;
456 case BINOP_BITWISE_IOR:
457 strcpy (ptr, "|=");
458 break;
459 case BINOP_BITWISE_XOR:
460 strcpy (ptr, "^=");
461 break;
462 case BINOP_MOD: /* invalid */
463 default:
464 error (_("Invalid binary operation specified."));
465 }
466 break;
467 case BINOP_SUBSCRIPT:
468 strcpy (ptr, "[]");
469 break;
470 case BINOP_EQUAL:
471 strcpy (ptr, "==");
472 break;
473 case BINOP_NOTEQUAL:
474 strcpy (ptr, "!=");
475 break;
476 case BINOP_LESS:
477 strcpy (ptr, "<");
478 break;
479 case BINOP_GTR:
480 strcpy (ptr, ">");
481 break;
482 case BINOP_GEQ:
483 strcpy (ptr, ">=");
484 break;
485 case BINOP_LEQ:
486 strcpy (ptr, "<=");
487 break;
488 case BINOP_MOD: /* invalid */
489 default:
490 error (_("Invalid binary operation specified."));
491 }
492
493 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
494 &static_memfuncp, noside);
495
496 if (argvec[0])
497 {
498 if (static_memfuncp)
499 {
500 argvec[1] = argvec[0];
501 argvec = argvec.slice (1);
502 }
503 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
504 {
505 /* Static xmethods are not supported yet. */
506 gdb_assert (static_memfuncp == 0);
507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
508 {
509 struct type *return_type
510 = result_type_of_xmethod (argvec[0], argvec.slice (1));
511
512 if (return_type == NULL)
513 error (_("Xmethod is missing return type."));
514 return value_zero (return_type, VALUE_LVAL (arg1));
515 }
516 return call_xmethod (argvec[0], argvec.slice (1));
517 }
518 if (noside == EVAL_AVOID_SIDE_EFFECTS)
519 {
520 struct type *return_type;
521
522 return_type
523 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
524 return value_zero (return_type, VALUE_LVAL (arg1));
525 }
526 return call_function_by_hand (argvec[0], NULL,
527 argvec.slice (1, 2 - static_memfuncp));
528 }
529 throw_error (NOT_FOUND_ERROR,
530 _("member function %s not found"), tstr);
531 }
532
533 /* We know that arg1 is a structure, so try to find a unary user
534 defined operator that matches the operator in question.
535 Create an argument vector that calls arg1.operator @ (arg1)
536 and return that value (where '@' is (almost) any unary operator which
537 is legal for GNU C++). */
538
539 struct value *
540 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
541 {
542 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
543 char *ptr;
544 char tstr[13], mangle_tstr[13];
545 int static_memfuncp, nargs;
546
547 arg1 = coerce_ref (arg1);
548
549 /* now we know that what we have to do is construct our
550 arg vector and find the right function to call it with. */
551
552 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
553 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
554
555 value *argvec_storage[3];
556 gdb::array_view<value *> argvec = argvec_storage;
557
558 argvec[1] = value_addr (arg1);
559 argvec[2] = 0;
560
561 nargs = 1;
562
563 /* Make the right function name up. */
564 strcpy (tstr, "operator__");
565 ptr = tstr + 8;
566 strcpy (mangle_tstr, "__");
567 switch (op)
568 {
569 case UNOP_PREINCREMENT:
570 strcpy (ptr, "++");
571 break;
572 case UNOP_PREDECREMENT:
573 strcpy (ptr, "--");
574 break;
575 case UNOP_POSTINCREMENT:
576 strcpy (ptr, "++");
577 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
578 nargs ++;
579 break;
580 case UNOP_POSTDECREMENT:
581 strcpy (ptr, "--");
582 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
583 nargs ++;
584 break;
585 case UNOP_LOGICAL_NOT:
586 strcpy (ptr, "!");
587 break;
588 case UNOP_COMPLEMENT:
589 strcpy (ptr, "~");
590 break;
591 case UNOP_NEG:
592 strcpy (ptr, "-");
593 break;
594 case UNOP_PLUS:
595 strcpy (ptr, "+");
596 break;
597 case UNOP_IND:
598 strcpy (ptr, "*");
599 break;
600 case STRUCTOP_PTR:
601 strcpy (ptr, "->");
602 break;
603 default:
604 error (_("Invalid unary operation specified."));
605 }
606
607 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
608 &static_memfuncp, noside);
609
610 if (argvec[0])
611 {
612 if (static_memfuncp)
613 {
614 argvec[1] = argvec[0];
615 argvec = argvec.slice (1);
616 }
617 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
618 {
619 /* Static xmethods are not supported yet. */
620 gdb_assert (static_memfuncp == 0);
621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
622 {
623 struct type *return_type
624 = result_type_of_xmethod (argvec[0], argvec[1]);
625
626 if (return_type == NULL)
627 error (_("Xmethod is missing return type."));
628 return value_zero (return_type, VALUE_LVAL (arg1));
629 }
630 return call_xmethod (argvec[0], argvec[1]);
631 }
632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
633 {
634 struct type *return_type;
635
636 return_type
637 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
638 return value_zero (return_type, VALUE_LVAL (arg1));
639 }
640 return call_function_by_hand (argvec[0], NULL,
641 argvec.slice (1, nargs));
642 }
643 throw_error (NOT_FOUND_ERROR,
644 _("member function %s not found"), tstr);
645 }
646 \f
647
648 /* Concatenate two values with the following conditions:
649
650 (1) Both values must be either bitstring values or character string
651 values and the resulting value consists of the concatenation of
652 ARG1 followed by ARG2.
653
654 or
655
656 One value must be an integer value and the other value must be
657 either a bitstring value or character string value, which is
658 to be repeated by the number of times specified by the integer
659 value.
660
661
662 (2) Boolean values are also allowed and are treated as bit string
663 values of length 1.
664
665 (3) Character values are also allowed and are treated as character
666 string values of length 1. */
667
668 struct value *
669 value_concat (struct value *arg1, struct value *arg2)
670 {
671 struct value *inval1;
672 struct value *inval2;
673 struct value *outval = NULL;
674 int inval1len, inval2len;
675 int count, idx;
676 char inchar;
677 struct type *type1 = check_typedef (value_type (arg1));
678 struct type *type2 = check_typedef (value_type (arg2));
679 struct type *char_type;
680
681 /* First figure out if we are dealing with two values to be concatenated
682 or a repeat count and a value to be repeated. INVAL1 is set to the
683 first of two concatenated values, or the repeat count. INVAL2 is set
684 to the second of the two concatenated values or the value to be
685 repeated. */
686
687 if (type2->code () == TYPE_CODE_INT)
688 {
689 struct type *tmp = type1;
690
691 type1 = tmp;
692 tmp = type2;
693 inval1 = arg2;
694 inval2 = arg1;
695 }
696 else
697 {
698 inval1 = arg1;
699 inval2 = arg2;
700 }
701
702 /* Now process the input values. */
703
704 if (type1->code () == TYPE_CODE_INT)
705 {
706 /* We have a repeat count. Validate the second value and then
707 construct a value repeated that many times. */
708 if (type2->code () == TYPE_CODE_STRING
709 || type2->code () == TYPE_CODE_CHAR)
710 {
711 count = longest_to_int (value_as_long (inval1));
712 inval2len = TYPE_LENGTH (type2);
713 std::vector<char> ptr (count * inval2len);
714 if (type2->code () == TYPE_CODE_CHAR)
715 {
716 char_type = type2;
717
718 inchar = (char) unpack_long (type2,
719 value_contents (inval2));
720 for (idx = 0; idx < count; idx++)
721 {
722 ptr[idx] = inchar;
723 }
724 }
725 else
726 {
727 char_type = TYPE_TARGET_TYPE (type2);
728
729 for (idx = 0; idx < count; idx++)
730 {
731 memcpy (&ptr[idx * inval2len], value_contents (inval2),
732 inval2len);
733 }
734 }
735 outval = value_string (ptr.data (), count * inval2len, char_type);
736 }
737 else if (type2->code () == TYPE_CODE_BOOL)
738 {
739 error (_("unimplemented support for boolean repeats"));
740 }
741 else
742 {
743 error (_("can't repeat values of that type"));
744 }
745 }
746 else if (type1->code () == TYPE_CODE_STRING
747 || type1->code () == TYPE_CODE_CHAR)
748 {
749 /* We have two character strings to concatenate. */
750 if (type2->code () != TYPE_CODE_STRING
751 && type2->code () != TYPE_CODE_CHAR)
752 {
753 error (_("Strings can only be concatenated with other strings."));
754 }
755 inval1len = TYPE_LENGTH (type1);
756 inval2len = TYPE_LENGTH (type2);
757 std::vector<char> ptr (inval1len + inval2len);
758 if (type1->code () == TYPE_CODE_CHAR)
759 {
760 char_type = type1;
761
762 ptr[0] = (char) unpack_long (type1, value_contents (inval1));
763 }
764 else
765 {
766 char_type = TYPE_TARGET_TYPE (type1);
767
768 memcpy (ptr.data (), value_contents (inval1), inval1len);
769 }
770 if (type2->code () == TYPE_CODE_CHAR)
771 {
772 ptr[inval1len] =
773 (char) unpack_long (type2, value_contents (inval2));
774 }
775 else
776 {
777 memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
778 }
779 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
780 }
781 else if (type1->code () == TYPE_CODE_BOOL)
782 {
783 /* We have two bitstrings to concatenate. */
784 if (type2->code () != TYPE_CODE_BOOL)
785 {
786 error (_("Booleans can only be concatenated "
787 "with other bitstrings or booleans."));
788 }
789 error (_("unimplemented support for boolean concatenation."));
790 }
791 else
792 {
793 /* We don't know how to concatenate these operands. */
794 error (_("illegal operands for concatenation."));
795 }
796 return (outval);
797 }
798 \f
799 /* Integer exponentiation: V1**V2, where both arguments are
800 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
801
802 static LONGEST
803 integer_pow (LONGEST v1, LONGEST v2)
804 {
805 if (v2 < 0)
806 {
807 if (v1 == 0)
808 error (_("Attempt to raise 0 to negative power."));
809 else
810 return 0;
811 }
812 else
813 {
814 /* The Russian Peasant's Algorithm. */
815 LONGEST v;
816
817 v = 1;
818 for (;;)
819 {
820 if (v2 & 1L)
821 v *= v1;
822 v2 >>= 1;
823 if (v2 == 0)
824 return v;
825 v1 *= v1;
826 }
827 }
828 }
829
830 /* Obtain argument values for binary operation, converting from
831 other types if one of them is not floating point. */
832 static void
833 value_args_as_target_float (struct value *arg1, struct value *arg2,
834 gdb_byte *x, struct type **eff_type_x,
835 gdb_byte *y, struct type **eff_type_y)
836 {
837 struct type *type1, *type2;
838
839 type1 = check_typedef (value_type (arg1));
840 type2 = check_typedef (value_type (arg2));
841
842 /* At least one of the arguments must be of floating-point type. */
843 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
844
845 if (is_floating_type (type1) && is_floating_type (type2)
846 && type1->code () != type2->code ())
847 /* The DFP extension to the C language does not allow mixing of
848 * decimal float types with other float types in expressions
849 * (see WDTR 24732, page 12). */
850 error (_("Mixing decimal floating types with "
851 "other floating types is not allowed."));
852
853 /* Obtain value of arg1, converting from other types if necessary. */
854
855 if (is_floating_type (type1))
856 {
857 *eff_type_x = type1;
858 memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
859 }
860 else if (is_integral_type (type1))
861 {
862 *eff_type_x = type2;
863 if (type1->is_unsigned ())
864 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
865 else
866 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
867 }
868 else
869 error (_("Don't know how to convert from %s to %s."), type1->name (),
870 type2->name ());
871
872 /* Obtain value of arg2, converting from other types if necessary. */
873
874 if (is_floating_type (type2))
875 {
876 *eff_type_y = type2;
877 memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
878 }
879 else if (is_integral_type (type2))
880 {
881 *eff_type_y = type1;
882 if (type2->is_unsigned ())
883 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
884 else
885 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
886 }
887 else
888 error (_("Don't know how to convert from %s to %s."), type1->name (),
889 type2->name ());
890 }
891
892 /* Assuming at last one of ARG1 or ARG2 is a fixed point value,
893 perform the binary operation OP on these two operands, and return
894 the resulting value (also as a fixed point). */
895
896 static struct value *
897 fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
898 {
899 struct type *type1 = check_typedef (value_type (arg1));
900 struct type *type2 = check_typedef (value_type (arg2));
901 const struct language_defn *language = current_language;
902
903 struct gdbarch *gdbarch = get_type_arch (type1);
904 struct value *val;
905
906 gdb_mpq v1, v2, res;
907
908 gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
909 if (op == BINOP_MUL || op == BINOP_DIV)
910 {
911 v1 = value_to_gdb_mpq (arg1);
912 v2 = value_to_gdb_mpq (arg2);
913
914 /* The code below uses TYPE1 for the result type, so make sure
915 it is set properly. */
916 if (!is_fixed_point_type (type1))
917 type1 = type2;
918 }
919 else
920 {
921 if (!is_fixed_point_type (type1))
922 {
923 arg1 = value_cast (type2, arg1);
924 type1 = type2;
925 }
926 if (!is_fixed_point_type (type2))
927 {
928 arg2 = value_cast (type1, arg2);
929 type2 = type1;
930 }
931
932 v1.read_fixed_point (gdb::make_array_view (value_contents (arg1),
933 TYPE_LENGTH (type1)),
934 type_byte_order (type1), type1->is_unsigned (),
935 type1->fixed_point_scaling_factor ());
936 v2.read_fixed_point (gdb::make_array_view (value_contents (arg2),
937 TYPE_LENGTH (type2)),
938 type_byte_order (type2), type2->is_unsigned (),
939 type2->fixed_point_scaling_factor ());
940 }
941
942 auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
943 {
944 value *fp_val = allocate_value (type1);
945
946 fp.write_fixed_point
947 (gdb::make_array_view (value_contents_raw (fp_val),
948 TYPE_LENGTH (type1)),
949 type_byte_order (type1),
950 type1->is_unsigned (),
951 type1->fixed_point_scaling_factor ());
952
953 return fp_val;
954 };
955
956 switch (op)
957 {
958 case BINOP_ADD:
959 mpq_add (res.val, v1.val, v2.val);
960 val = fixed_point_to_value (res);
961 break;
962
963 case BINOP_SUB:
964 mpq_sub (res.val, v1.val, v2.val);
965 val = fixed_point_to_value (res);
966 break;
967
968 case BINOP_MIN:
969 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
970 break;
971
972 case BINOP_MAX:
973 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
974 break;
975
976 case BINOP_MUL:
977 mpq_mul (res.val, v1.val, v2.val);
978 val = fixed_point_to_value (res);
979 break;
980
981 case BINOP_DIV:
982 if (mpq_sgn (v2.val) == 0)
983 error (_("Division by zero"));
984 mpq_div (res.val, v1.val, v2.val);
985 val = fixed_point_to_value (res);
986 break;
987
988 case BINOP_EQUAL:
989 val = value_from_ulongest (language_bool_type (language, gdbarch),
990 mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
991 break;
992
993 case BINOP_LESS:
994 val = value_from_ulongest (language_bool_type (language, gdbarch),
995 mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
996 break;
997
998 default:
999 error (_("Integer-only operation on fixed point number."));
1000 }
1001
1002 return val;
1003 }
1004
1005 /* A helper function that finds the type to use for a binary operation
1006 involving TYPE1 and TYPE2. */
1007
1008 static struct type *
1009 promotion_type (struct type *type1, struct type *type2)
1010 {
1011 struct type *result_type;
1012
1013 if (is_floating_type (type1) || is_floating_type (type2))
1014 {
1015 /* If only one type is floating-point, use its type.
1016 Otherwise use the bigger type. */
1017 if (!is_floating_type (type1))
1018 result_type = type2;
1019 else if (!is_floating_type (type2))
1020 result_type = type1;
1021 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1022 result_type = type2;
1023 else
1024 result_type = type1;
1025 }
1026 else
1027 {
1028 /* Integer types. */
1029 if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1030 result_type = type1;
1031 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1032 result_type = type2;
1033 else if (type1->is_unsigned ())
1034 result_type = type1;
1035 else if (type2->is_unsigned ())
1036 result_type = type2;
1037 else
1038 result_type = type1;
1039 }
1040
1041 return result_type;
1042 }
1043
1044 static struct value *scalar_binop (struct value *arg1, struct value *arg2,
1045 enum exp_opcode op);
1046
1047 /* Perform a binary operation on complex operands. */
1048
1049 static struct value *
1050 complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1051 {
1052 struct type *arg1_type = check_typedef (value_type (arg1));
1053 struct type *arg2_type = check_typedef (value_type (arg2));
1054
1055 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
1056 if (arg1_type->code () == TYPE_CODE_COMPLEX)
1057 {
1058 arg1_real = value_real_part (arg1);
1059 arg1_imag = value_imaginary_part (arg1);
1060 }
1061 else
1062 {
1063 arg1_real = arg1;
1064 arg1_imag = value_zero (arg1_type, not_lval);
1065 }
1066 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1067 {
1068 arg2_real = value_real_part (arg2);
1069 arg2_imag = value_imaginary_part (arg2);
1070 }
1071 else
1072 {
1073 arg2_real = arg2;
1074 arg2_imag = value_zero (arg2_type, not_lval);
1075 }
1076
1077 struct type *comp_type = promotion_type (value_type (arg1_real),
1078 value_type (arg2_real));
1079 arg1_real = value_cast (comp_type, arg1_real);
1080 arg1_imag = value_cast (comp_type, arg1_imag);
1081 arg2_real = value_cast (comp_type, arg2_real);
1082 arg2_imag = value_cast (comp_type, arg2_imag);
1083
1084 struct type *result_type = init_complex_type (nullptr, comp_type);
1085
1086 struct value *result_real, *result_imag;
1087 switch (op)
1088 {
1089 case BINOP_ADD:
1090 case BINOP_SUB:
1091 result_real = scalar_binop (arg1_real, arg2_real, op);
1092 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1093 break;
1094
1095 case BINOP_MUL:
1096 {
1097 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1098 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1099 result_real = scalar_binop (x1, x2, BINOP_SUB);
1100
1101 x1 = scalar_binop (arg1_real, arg2_imag, op);
1102 x2 = scalar_binop (arg1_imag, arg2_real, op);
1103 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1104 }
1105 break;
1106
1107 case BINOP_DIV:
1108 {
1109 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1110 {
1111 struct value *conjugate = value_complement (arg2);
1112 /* We have to reconstruct ARG1, in case the type was
1113 promoted. */
1114 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1115
1116 struct value *numerator = scalar_binop (arg1, conjugate,
1117 BINOP_MUL);
1118 arg1_real = value_real_part (numerator);
1119 arg1_imag = value_imaginary_part (numerator);
1120
1121 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1122 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1123 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1124 }
1125
1126 result_real = scalar_binop (arg1_real, arg2_real, op);
1127 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1128 }
1129 break;
1130
1131 case BINOP_EQUAL:
1132 case BINOP_NOTEQUAL:
1133 {
1134 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1135 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1136
1137 LONGEST v1 = value_as_long (x1);
1138 LONGEST v2 = value_as_long (x2);
1139
1140 if (op == BINOP_EQUAL)
1141 v1 = v1 && v2;
1142 else
1143 v1 = v1 || v2;
1144
1145 return value_from_longest (value_type (x1), v1);
1146 }
1147 break;
1148
1149 default:
1150 error (_("Invalid binary operation on numbers."));
1151 }
1152
1153 return value_literal_complex (result_real, result_imag, result_type);
1154 }
1155
1156 /* Perform a binary operation on two operands which have reasonable
1157 representations as integers or floats. This includes booleans,
1158 characters, integers, or floats.
1159 Does not support addition and subtraction on pointers;
1160 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1161
1162 static struct value *
1163 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1164 {
1165 struct value *val;
1166 struct type *type1, *type2, *result_type;
1167
1168 arg1 = coerce_ref (arg1);
1169 arg2 = coerce_ref (arg2);
1170
1171 type1 = check_typedef (value_type (arg1));
1172 type2 = check_typedef (value_type (arg2));
1173
1174 if (type1->code () == TYPE_CODE_COMPLEX
1175 || type2->code () == TYPE_CODE_COMPLEX)
1176 return complex_binop (arg1, arg2, op);
1177
1178 if ((!is_floating_value (arg1)
1179 && !is_integral_type (type1)
1180 && !is_fixed_point_type (type1))
1181 || (!is_floating_value (arg2)
1182 && !is_integral_type (type2)
1183 && !is_fixed_point_type (type2)))
1184 error (_("Argument to arithmetic operation not a number or boolean."));
1185
1186 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
1187 return fixed_point_binop (arg1, arg2, op);
1188
1189 if (is_floating_type (type1) || is_floating_type (type2))
1190 {
1191 result_type = promotion_type (type1, type2);
1192 val = allocate_value (result_type);
1193
1194 struct type *eff_type_v1, *eff_type_v2;
1195 gdb::byte_vector v1, v2;
1196 v1.resize (TYPE_LENGTH (result_type));
1197 v2.resize (TYPE_LENGTH (result_type));
1198
1199 value_args_as_target_float (arg1, arg2,
1200 v1.data (), &eff_type_v1,
1201 v2.data (), &eff_type_v2);
1202 target_float_binop (op, v1.data (), eff_type_v1,
1203 v2.data (), eff_type_v2,
1204 value_contents_raw (val), result_type);
1205 }
1206 else if (type1->code () == TYPE_CODE_BOOL
1207 || type2->code () == TYPE_CODE_BOOL)
1208 {
1209 LONGEST v1, v2, v = 0;
1210
1211 v1 = value_as_long (arg1);
1212 v2 = value_as_long (arg2);
1213
1214 switch (op)
1215 {
1216 case BINOP_BITWISE_AND:
1217 v = v1 & v2;
1218 break;
1219
1220 case BINOP_BITWISE_IOR:
1221 v = v1 | v2;
1222 break;
1223
1224 case BINOP_BITWISE_XOR:
1225 v = v1 ^ v2;
1226 break;
1227
1228 case BINOP_EQUAL:
1229 v = v1 == v2;
1230 break;
1231
1232 case BINOP_NOTEQUAL:
1233 v = v1 != v2;
1234 break;
1235
1236 default:
1237 error (_("Invalid operation on booleans."));
1238 }
1239
1240 result_type = type1;
1241
1242 val = allocate_value (result_type);
1243 store_signed_integer (value_contents_raw (val),
1244 TYPE_LENGTH (result_type),
1245 type_byte_order (result_type),
1246 v);
1247 }
1248 else
1249 /* Integral operations here. */
1250 {
1251 /* Determine type length of the result, and if the operation should
1252 be done unsigned. For exponentiation and shift operators,
1253 use the length and type of the left operand. Otherwise,
1254 use the signedness of the operand with the greater length.
1255 If both operands are of equal length, use unsigned operation
1256 if one of the operands is unsigned. */
1257 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1258 result_type = type1;
1259 else
1260 result_type = promotion_type (type1, type2);
1261
1262 if (result_type->is_unsigned ())
1263 {
1264 LONGEST v2_signed = value_as_long (arg2);
1265 ULONGEST v1, v2, v = 0;
1266
1267 v1 = (ULONGEST) value_as_long (arg1);
1268 v2 = (ULONGEST) v2_signed;
1269
1270 switch (op)
1271 {
1272 case BINOP_ADD:
1273 v = v1 + v2;
1274 break;
1275
1276 case BINOP_SUB:
1277 v = v1 - v2;
1278 break;
1279
1280 case BINOP_MUL:
1281 v = v1 * v2;
1282 break;
1283
1284 case BINOP_DIV:
1285 case BINOP_INTDIV:
1286 if (v2 != 0)
1287 v = v1 / v2;
1288 else
1289 error (_("Division by zero"));
1290 break;
1291
1292 case BINOP_EXP:
1293 v = uinteger_pow (v1, v2_signed);
1294 break;
1295
1296 case BINOP_REM:
1297 if (v2 != 0)
1298 v = v1 % v2;
1299 else
1300 error (_("Division by zero"));
1301 break;
1302
1303 case BINOP_MOD:
1304 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1305 v1 mod 0 has a defined value, v1. */
1306 if (v2 == 0)
1307 {
1308 v = v1;
1309 }
1310 else
1311 {
1312 v = v1 / v2;
1313 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1314 v = v1 - (v2 * v);
1315 }
1316 break;
1317
1318 case BINOP_LSH:
1319 v = v1 << v2;
1320 break;
1321
1322 case BINOP_RSH:
1323 v = v1 >> v2;
1324 break;
1325
1326 case BINOP_BITWISE_AND:
1327 v = v1 & v2;
1328 break;
1329
1330 case BINOP_BITWISE_IOR:
1331 v = v1 | v2;
1332 break;
1333
1334 case BINOP_BITWISE_XOR:
1335 v = v1 ^ v2;
1336 break;
1337
1338 case BINOP_LOGICAL_AND:
1339 v = v1 && v2;
1340 break;
1341
1342 case BINOP_LOGICAL_OR:
1343 v = v1 || v2;
1344 break;
1345
1346 case BINOP_MIN:
1347 v = v1 < v2 ? v1 : v2;
1348 break;
1349
1350 case BINOP_MAX:
1351 v = v1 > v2 ? v1 : v2;
1352 break;
1353
1354 case BINOP_EQUAL:
1355 v = v1 == v2;
1356 break;
1357
1358 case BINOP_NOTEQUAL:
1359 v = v1 != v2;
1360 break;
1361
1362 case BINOP_LESS:
1363 v = v1 < v2;
1364 break;
1365
1366 case BINOP_GTR:
1367 v = v1 > v2;
1368 break;
1369
1370 case BINOP_LEQ:
1371 v = v1 <= v2;
1372 break;
1373
1374 case BINOP_GEQ:
1375 v = v1 >= v2;
1376 break;
1377
1378 default:
1379 error (_("Invalid binary operation on numbers."));
1380 }
1381
1382 val = allocate_value (result_type);
1383 store_unsigned_integer (value_contents_raw (val),
1384 TYPE_LENGTH (value_type (val)),
1385 type_byte_order (result_type),
1386 v);
1387 }
1388 else
1389 {
1390 LONGEST v1, v2, v = 0;
1391
1392 v1 = value_as_long (arg1);
1393 v2 = value_as_long (arg2);
1394
1395 switch (op)
1396 {
1397 case BINOP_ADD:
1398 v = v1 + v2;
1399 break;
1400
1401 case BINOP_SUB:
1402 v = v1 - v2;
1403 break;
1404
1405 case BINOP_MUL:
1406 v = v1 * v2;
1407 break;
1408
1409 case BINOP_DIV:
1410 case BINOP_INTDIV:
1411 if (v2 != 0)
1412 v = v1 / v2;
1413 else
1414 error (_("Division by zero"));
1415 break;
1416
1417 case BINOP_EXP:
1418 v = integer_pow (v1, v2);
1419 break;
1420
1421 case BINOP_REM:
1422 if (v2 != 0)
1423 v = v1 % v2;
1424 else
1425 error (_("Division by zero"));
1426 break;
1427
1428 case BINOP_MOD:
1429 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1430 X mod 0 has a defined value, X. */
1431 if (v2 == 0)
1432 {
1433 v = v1;
1434 }
1435 else
1436 {
1437 v = v1 / v2;
1438 /* Compute floor. */
1439 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1440 {
1441 v--;
1442 }
1443 v = v1 - (v2 * v);
1444 }
1445 break;
1446
1447 case BINOP_LSH:
1448 v = v1 << v2;
1449 break;
1450
1451 case BINOP_RSH:
1452 v = v1 >> v2;
1453 break;
1454
1455 case BINOP_BITWISE_AND:
1456 v = v1 & v2;
1457 break;
1458
1459 case BINOP_BITWISE_IOR:
1460 v = v1 | v2;
1461 break;
1462
1463 case BINOP_BITWISE_XOR:
1464 v = v1 ^ v2;
1465 break;
1466
1467 case BINOP_LOGICAL_AND:
1468 v = v1 && v2;
1469 break;
1470
1471 case BINOP_LOGICAL_OR:
1472 v = v1 || v2;
1473 break;
1474
1475 case BINOP_MIN:
1476 v = v1 < v2 ? v1 : v2;
1477 break;
1478
1479 case BINOP_MAX:
1480 v = v1 > v2 ? v1 : v2;
1481 break;
1482
1483 case BINOP_EQUAL:
1484 v = v1 == v2;
1485 break;
1486
1487 case BINOP_NOTEQUAL:
1488 v = v1 != v2;
1489 break;
1490
1491 case BINOP_LESS:
1492 v = v1 < v2;
1493 break;
1494
1495 case BINOP_GTR:
1496 v = v1 > v2;
1497 break;
1498
1499 case BINOP_LEQ:
1500 v = v1 <= v2;
1501 break;
1502
1503 case BINOP_GEQ:
1504 v = v1 >= v2;
1505 break;
1506
1507 default:
1508 error (_("Invalid binary operation on numbers."));
1509 }
1510
1511 val = allocate_value (result_type);
1512 store_signed_integer (value_contents_raw (val),
1513 TYPE_LENGTH (value_type (val)),
1514 type_byte_order (result_type),
1515 v);
1516 }
1517 }
1518
1519 return val;
1520 }
1521
1522 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1523 replicating SCALAR_VALUE for each element of the vector. Only scalar
1524 types that can be cast to the type of one element of the vector are
1525 acceptable. The newly created vector value is returned upon success,
1526 otherwise an error is thrown. */
1527
1528 struct value *
1529 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1530 {
1531 /* Widen the scalar to a vector. */
1532 struct type *eltype, *scalar_type;
1533 struct value *val, *elval;
1534 LONGEST low_bound, high_bound;
1535 int i;
1536
1537 vector_type = check_typedef (vector_type);
1538
1539 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1540 && vector_type->is_vector ());
1541
1542 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1543 error (_("Could not determine the vector bounds"));
1544
1545 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1546 elval = value_cast (eltype, scalar_value);
1547
1548 scalar_type = check_typedef (value_type (scalar_value));
1549
1550 /* If we reduced the length of the scalar then check we didn't loose any
1551 important bits. */
1552 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1553 && !value_equal (elval, scalar_value))
1554 error (_("conversion of scalar to vector involves truncation"));
1555
1556 val = allocate_value (vector_type);
1557 for (i = 0; i < high_bound - low_bound + 1; i++)
1558 /* Duplicate the contents of elval into the destination vector. */
1559 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1560 value_contents_all (elval), TYPE_LENGTH (eltype));
1561
1562 return val;
1563 }
1564
1565 /* Performs a binary operation on two vector operands by calling scalar_binop
1566 for each pair of vector components. */
1567
1568 static struct value *
1569 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1570 {
1571 struct value *val, *tmp, *mark;
1572 struct type *type1, *type2, *eltype1, *eltype2;
1573 int t1_is_vec, t2_is_vec, elsize, i;
1574 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1575
1576 type1 = check_typedef (value_type (val1));
1577 type2 = check_typedef (value_type (val2));
1578
1579 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1580 && type1->is_vector ()) ? 1 : 0;
1581 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1582 && type2->is_vector ()) ? 1 : 0;
1583
1584 if (!t1_is_vec || !t2_is_vec)
1585 error (_("Vector operations are only supported among vectors"));
1586
1587 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1588 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1589 error (_("Could not determine the vector bounds"));
1590
1591 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1592 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1593 elsize = TYPE_LENGTH (eltype1);
1594
1595 if (eltype1->code () != eltype2->code ()
1596 || elsize != TYPE_LENGTH (eltype2)
1597 || eltype1->is_unsigned () != eltype2->is_unsigned ()
1598 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1599 error (_("Cannot perform operation on vectors with different types"));
1600
1601 val = allocate_value (type1);
1602 mark = value_mark ();
1603 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1604 {
1605 tmp = value_binop (value_subscript (val1, i),
1606 value_subscript (val2, i), op);
1607 memcpy (value_contents_writeable (val) + i * elsize,
1608 value_contents_all (tmp),
1609 elsize);
1610 }
1611 value_free_to_mark (mark);
1612
1613 return val;
1614 }
1615
1616 /* Perform a binary operation on two operands. */
1617
1618 struct value *
1619 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1620 {
1621 struct value *val;
1622 struct type *type1 = check_typedef (value_type (arg1));
1623 struct type *type2 = check_typedef (value_type (arg2));
1624 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1625 && type1->is_vector ());
1626 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1627 && type2->is_vector ());
1628
1629 if (!t1_is_vec && !t2_is_vec)
1630 val = scalar_binop (arg1, arg2, op);
1631 else if (t1_is_vec && t2_is_vec)
1632 val = vector_binop (arg1, arg2, op);
1633 else
1634 {
1635 /* Widen the scalar operand to a vector. */
1636 struct value **v = t1_is_vec ? &arg2 : &arg1;
1637 struct type *t = t1_is_vec ? type2 : type1;
1638
1639 if (t->code () != TYPE_CODE_FLT
1640 && t->code () != TYPE_CODE_DECFLOAT
1641 && !is_integral_type (t))
1642 error (_("Argument to operation not a number or boolean."));
1643
1644 /* Replicate the scalar value to make a vector value. */
1645 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1646
1647 val = vector_binop (arg1, arg2, op);
1648 }
1649
1650 return val;
1651 }
1652 \f
1653 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1654
1655 int
1656 value_logical_not (struct value *arg1)
1657 {
1658 int len;
1659 const gdb_byte *p;
1660 struct type *type1;
1661
1662 arg1 = coerce_array (arg1);
1663 type1 = check_typedef (value_type (arg1));
1664
1665 if (is_floating_value (arg1))
1666 return target_float_is_zero (value_contents (arg1), type1);
1667
1668 len = TYPE_LENGTH (type1);
1669 p = value_contents (arg1);
1670
1671 while (--len >= 0)
1672 {
1673 if (*p++)
1674 break;
1675 }
1676
1677 return len < 0;
1678 }
1679
1680 /* Perform a comparison on two string values (whose content are not
1681 necessarily null terminated) based on their length. */
1682
1683 static int
1684 value_strcmp (struct value *arg1, struct value *arg2)
1685 {
1686 int len1 = TYPE_LENGTH (value_type (arg1));
1687 int len2 = TYPE_LENGTH (value_type (arg2));
1688 const gdb_byte *s1 = value_contents (arg1);
1689 const gdb_byte *s2 = value_contents (arg2);
1690 int i, len = len1 < len2 ? len1 : len2;
1691
1692 for (i = 0; i < len; i++)
1693 {
1694 if (s1[i] < s2[i])
1695 return -1;
1696 else if (s1[i] > s2[i])
1697 return 1;
1698 else
1699 continue;
1700 }
1701
1702 if (len1 < len2)
1703 return -1;
1704 else if (len1 > len2)
1705 return 1;
1706 else
1707 return 0;
1708 }
1709
1710 /* Simulate the C operator == by returning a 1
1711 iff ARG1 and ARG2 have equal contents. */
1712
1713 int
1714 value_equal (struct value *arg1, struct value *arg2)
1715 {
1716 int len;
1717 const gdb_byte *p1;
1718 const gdb_byte *p2;
1719 struct type *type1, *type2;
1720 enum type_code code1;
1721 enum type_code code2;
1722 int is_int1, is_int2;
1723
1724 arg1 = coerce_array (arg1);
1725 arg2 = coerce_array (arg2);
1726
1727 type1 = check_typedef (value_type (arg1));
1728 type2 = check_typedef (value_type (arg2));
1729 code1 = type1->code ();
1730 code2 = type2->code ();
1731 is_int1 = is_integral_type (type1);
1732 is_int2 = is_integral_type (type2);
1733
1734 if (is_int1 && is_int2)
1735 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1736 BINOP_EQUAL)));
1737 else if ((is_floating_value (arg1) || is_int1)
1738 && (is_floating_value (arg2) || is_int2))
1739 {
1740 struct type *eff_type_v1, *eff_type_v2;
1741 gdb::byte_vector v1, v2;
1742 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1743 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1744
1745 value_args_as_target_float (arg1, arg2,
1746 v1.data (), &eff_type_v1,
1747 v2.data (), &eff_type_v2);
1748
1749 return target_float_compare (v1.data (), eff_type_v1,
1750 v2.data (), eff_type_v2) == 0;
1751 }
1752
1753 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1754 is bigger. */
1755 else if (code1 == TYPE_CODE_PTR && is_int2)
1756 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1757 else if (code2 == TYPE_CODE_PTR && is_int1)
1758 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1759
1760 else if (code1 == code2
1761 && ((len = (int) TYPE_LENGTH (type1))
1762 == (int) TYPE_LENGTH (type2)))
1763 {
1764 p1 = value_contents (arg1);
1765 p2 = value_contents (arg2);
1766 while (--len >= 0)
1767 {
1768 if (*p1++ != *p2++)
1769 break;
1770 }
1771 return len < 0;
1772 }
1773 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1774 {
1775 return value_strcmp (arg1, arg2) == 0;
1776 }
1777 else
1778 error (_("Invalid type combination in equality test."));
1779 }
1780
1781 /* Compare values based on their raw contents. Useful for arrays since
1782 value_equal coerces them to pointers, thus comparing just the address
1783 of the array instead of its contents. */
1784
1785 int
1786 value_equal_contents (struct value *arg1, struct value *arg2)
1787 {
1788 struct type *type1, *type2;
1789
1790 type1 = check_typedef (value_type (arg1));
1791 type2 = check_typedef (value_type (arg2));
1792
1793 return (type1->code () == type2->code ()
1794 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1795 && memcmp (value_contents (arg1), value_contents (arg2),
1796 TYPE_LENGTH (type1)) == 0);
1797 }
1798
1799 /* Simulate the C operator < by returning 1
1800 iff ARG1's contents are less than ARG2's. */
1801
1802 int
1803 value_less (struct value *arg1, struct value *arg2)
1804 {
1805 enum type_code code1;
1806 enum type_code code2;
1807 struct type *type1, *type2;
1808 int is_int1, is_int2;
1809
1810 arg1 = coerce_array (arg1);
1811 arg2 = coerce_array (arg2);
1812
1813 type1 = check_typedef (value_type (arg1));
1814 type2 = check_typedef (value_type (arg2));
1815 code1 = type1->code ();
1816 code2 = type2->code ();
1817 is_int1 = is_integral_type (type1);
1818 is_int2 = is_integral_type (type2);
1819
1820 if ((is_int1 && is_int2)
1821 || (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
1822 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1823 BINOP_LESS)));
1824 else if ((is_floating_value (arg1) || is_int1)
1825 && (is_floating_value (arg2) || is_int2))
1826 {
1827 struct type *eff_type_v1, *eff_type_v2;
1828 gdb::byte_vector v1, v2;
1829 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1830 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1831
1832 value_args_as_target_float (arg1, arg2,
1833 v1.data (), &eff_type_v1,
1834 v2.data (), &eff_type_v2);
1835
1836 return target_float_compare (v1.data (), eff_type_v1,
1837 v2.data (), eff_type_v2) == -1;
1838 }
1839 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1840 return value_as_address (arg1) < value_as_address (arg2);
1841
1842 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1843 is bigger. */
1844 else if (code1 == TYPE_CODE_PTR && is_int2)
1845 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1846 else if (code2 == TYPE_CODE_PTR && is_int1)
1847 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1848 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1849 return value_strcmp (arg1, arg2) < 0;
1850 else
1851 {
1852 error (_("Invalid type combination in ordering comparison."));
1853 return 0;
1854 }
1855 }
1856 \f
1857 /* The unary operators +, - and ~. They free the argument ARG1. */
1858
1859 struct value *
1860 value_pos (struct value *arg1)
1861 {
1862 struct type *type;
1863
1864 arg1 = coerce_ref (arg1);
1865 type = check_typedef (value_type (arg1));
1866
1867 if (is_integral_type (type) || is_floating_value (arg1)
1868 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1869 || type->code () == TYPE_CODE_COMPLEX)
1870 return value_from_contents (type, value_contents (arg1));
1871 else
1872 error (_("Argument to positive operation not a number."));
1873 }
1874
1875 struct value *
1876 value_neg (struct value *arg1)
1877 {
1878 struct type *type;
1879
1880 arg1 = coerce_ref (arg1);
1881 type = check_typedef (value_type (arg1));
1882
1883 if (is_integral_type (type) || is_floating_type (type))
1884 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1885 else if (is_fixed_point_type (type))
1886 return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
1887 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1888 {
1889 struct value *tmp, *val = allocate_value (type);
1890 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1891 int i;
1892 LONGEST low_bound, high_bound;
1893
1894 if (!get_array_bounds (type, &low_bound, &high_bound))
1895 error (_("Could not determine the vector bounds"));
1896
1897 for (i = 0; i < high_bound - low_bound + 1; i++)
1898 {
1899 tmp = value_neg (value_subscript (arg1, i));
1900 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1901 value_contents_all (tmp), TYPE_LENGTH (eltype));
1902 }
1903 return val;
1904 }
1905 else if (type->code () == TYPE_CODE_COMPLEX)
1906 {
1907 struct value *real = value_real_part (arg1);
1908 struct value *imag = value_imaginary_part (arg1);
1909
1910 real = value_neg (real);
1911 imag = value_neg (imag);
1912 return value_literal_complex (real, imag, type);
1913 }
1914 else
1915 error (_("Argument to negate operation not a number."));
1916 }
1917
1918 struct value *
1919 value_complement (struct value *arg1)
1920 {
1921 struct type *type;
1922 struct value *val;
1923
1924 arg1 = coerce_ref (arg1);
1925 type = check_typedef (value_type (arg1));
1926
1927 if (is_integral_type (type))
1928 val = value_from_longest (type, ~value_as_long (arg1));
1929 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1930 {
1931 struct value *tmp;
1932 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1933 int i;
1934 LONGEST low_bound, high_bound;
1935
1936 if (!get_array_bounds (type, &low_bound, &high_bound))
1937 error (_("Could not determine the vector bounds"));
1938
1939 val = allocate_value (type);
1940 for (i = 0; i < high_bound - low_bound + 1; i++)
1941 {
1942 tmp = value_complement (value_subscript (arg1, i));
1943 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1944 value_contents_all (tmp), TYPE_LENGTH (eltype));
1945 }
1946 }
1947 else if (type->code () == TYPE_CODE_COMPLEX)
1948 {
1949 /* GCC has an extension that treats ~complex as the complex
1950 conjugate. */
1951 struct value *real = value_real_part (arg1);
1952 struct value *imag = value_imaginary_part (arg1);
1953
1954 imag = value_neg (imag);
1955 return value_literal_complex (real, imag, type);
1956 }
1957 else
1958 error (_("Argument to complement operation not an integer, boolean."));
1959
1960 return val;
1961 }
1962 \f
1963 /* The INDEX'th bit of SET value whose value_type is TYPE,
1964 and whose value_contents is valaddr.
1965 Return -1 if out of range, -2 other error. */
1966
1967 int
1968 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1969 {
1970 struct gdbarch *gdbarch = get_type_arch (type);
1971 LONGEST low_bound, high_bound;
1972 LONGEST word;
1973 unsigned rel_index;
1974 struct type *range = type->index_type ();
1975
1976 if (!get_discrete_bounds (range, &low_bound, &high_bound))
1977 return -2;
1978 if (index < low_bound || index > high_bound)
1979 return -1;
1980 rel_index = index - low_bound;
1981 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1982 type_byte_order (type));
1983 rel_index %= TARGET_CHAR_BIT;
1984 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1985 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1986 return (word >> rel_index) & 1;
1987 }
1988
1989 int
1990 value_in (struct value *element, struct value *set)
1991 {
1992 int member;
1993 struct type *settype = check_typedef (value_type (set));
1994 struct type *eltype = check_typedef (value_type (element));
1995
1996 if (eltype->code () == TYPE_CODE_RANGE)
1997 eltype = TYPE_TARGET_TYPE (eltype);
1998 if (settype->code () != TYPE_CODE_SET)
1999 error (_("Second argument of 'IN' has wrong type"));
2000 if (eltype->code () != TYPE_CODE_INT
2001 && eltype->code () != TYPE_CODE_CHAR
2002 && eltype->code () != TYPE_CODE_ENUM
2003 && eltype->code () != TYPE_CODE_BOOL)
2004 error (_("First argument of 'IN' has wrong type"));
2005 member = value_bit_index (settype, value_contents (set),
2006 value_as_long (element));
2007 if (member < 0)
2008 error (_("First argument of 'IN' not in range"));
2009 return member;
2010 }
This page took 0.075536 seconds and 4 git commands to generate.