2004-11-13 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "value.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "target.h"
30 #include "language.h"
31 #include "gdb_string.h"
32 #include "doublest.h"
33 #include <math.h>
34 #include "infcall.h"
35
36 /* Define whether or not the C operator '/' truncates towards zero for
37 differently signed operands (truncation direction is undefined in C). */
38
39 #ifndef TRUNCATION_TOWARDS_ZERO
40 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
41 #endif
42
43 static struct value *value_subscripted_rvalue (struct value *, struct value *, int);
44
45 void _initialize_valarith (void);
46 \f
47
48 /* Given a pointer, return the size of its target.
49 If the pointer type is void *, then return 1.
50 If the target type is incomplete, then error out.
51 This isn't a general purpose function, but just a
52 helper for value_sub & value_add.
53 */
54
55 static LONGEST
56 find_size_for_pointer_math (struct type *ptr_type)
57 {
58 LONGEST sz = -1;
59 struct type *ptr_target;
60
61 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
62
63 sz = TYPE_LENGTH (ptr_target);
64 if (sz == 0)
65 {
66 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
67 sz = 1;
68 else
69 {
70 char *name;
71
72 name = TYPE_NAME (ptr_target);
73 if (name == NULL)
74 name = TYPE_TAG_NAME (ptr_target);
75 if (name == NULL)
76 error ("Cannot perform pointer math on incomplete types, "
77 "try casting to a known type, or void *.");
78 else
79 error ("Cannot perform pointer math on incomplete type \"%s\", "
80 "try casting to a known type, or void *.", name);
81 }
82 }
83 return sz;
84 }
85
86 struct value *
87 value_add (struct value *arg1, struct value *arg2)
88 {
89 struct value *valint;
90 struct value *valptr;
91 LONGEST sz;
92 struct type *type1, *type2, *valptrtype;
93
94 arg1 = coerce_array (arg1);
95 arg2 = coerce_array (arg2);
96 type1 = check_typedef (value_type (arg1));
97 type2 = check_typedef (value_type (arg2));
98
99 if ((TYPE_CODE (type1) == TYPE_CODE_PTR
100 || TYPE_CODE (type2) == TYPE_CODE_PTR)
101 &&
102 (is_integral_type (type1) || is_integral_type (type2)))
103 /* Exactly one argument is a pointer, and one is an integer. */
104 {
105 struct value *retval;
106
107 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
108 {
109 valptr = arg1;
110 valint = arg2;
111 valptrtype = type1;
112 }
113 else
114 {
115 valptr = arg2;
116 valint = arg1;
117 valptrtype = type2;
118 }
119
120 sz = find_size_for_pointer_math (valptrtype);
121
122 retval = value_from_pointer (valptrtype,
123 value_as_address (valptr)
124 + (sz * value_as_long (valint)));
125 return retval;
126 }
127
128 return value_binop (arg1, arg2, BINOP_ADD);
129 }
130
131 struct value *
132 value_sub (struct value *arg1, struct value *arg2)
133 {
134 struct type *type1, *type2;
135 arg1 = coerce_array (arg1);
136 arg2 = coerce_array (arg2);
137 type1 = check_typedef (value_type (arg1));
138 type2 = check_typedef (value_type (arg2));
139
140 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
141 {
142 if (is_integral_type (type2))
143 {
144 /* pointer - integer. */
145 LONGEST sz = find_size_for_pointer_math (type1);
146
147 return value_from_pointer (type1,
148 (value_as_address (arg1)
149 - (sz * value_as_long (arg2))));
150 }
151 else if (TYPE_CODE (type2) == TYPE_CODE_PTR
152 && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
153 == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
154 {
155 /* pointer to <type x> - pointer to <type x>. */
156 LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
157 return value_from_longest
158 (builtin_type_long, /* FIXME -- should be ptrdiff_t */
159 (value_as_long (arg1) - value_as_long (arg2)) / sz);
160 }
161 else
162 {
163 error ("\
164 First argument of `-' is a pointer and second argument is neither\n\
165 an integer nor a pointer of the same type.");
166 }
167 }
168
169 return value_binop (arg1, arg2, BINOP_SUB);
170 }
171
172 /* Return the value of ARRAY[IDX].
173 See comments in value_coerce_array() for rationale for reason for
174 doing lower bounds adjustment here rather than there.
175 FIXME: Perhaps we should validate that the index is valid and if
176 verbosity is set, warn about invalid indices (but still use them). */
177
178 struct value *
179 value_subscript (struct value *array, struct value *idx)
180 {
181 struct value *bound;
182 int c_style = current_language->c_style_arrays;
183 struct type *tarray;
184
185 array = coerce_ref (array);
186 tarray = check_typedef (value_type (array));
187
188 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
189 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (tarray);
192 LONGEST lowerbound, upperbound;
193 get_discrete_bounds (range_type, &lowerbound, &upperbound);
194
195 if (VALUE_LVAL (array) != lval_memory)
196 return value_subscripted_rvalue (array, idx, lowerbound);
197
198 if (c_style == 0)
199 {
200 LONGEST index = value_as_long (idx);
201 if (index >= lowerbound && index <= upperbound)
202 return value_subscripted_rvalue (array, idx, lowerbound);
203 /* Emit warning unless we have an array of unknown size.
204 An array of unknown size has lowerbound 0 and upperbound -1. */
205 if (upperbound > -1)
206 warning ("array or string index out of range");
207 /* fall doing C stuff */
208 c_style = 1;
209 }
210
211 if (lowerbound != 0)
212 {
213 bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
214 idx = value_sub (idx, bound);
215 }
216
217 array = value_coerce_array (array);
218 }
219
220 if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
221 {
222 struct type *range_type = TYPE_INDEX_TYPE (tarray);
223 LONGEST index = value_as_long (idx);
224 struct value *v;
225 int offset, byte, bit_index;
226 LONGEST lowerbound, upperbound;
227 get_discrete_bounds (range_type, &lowerbound, &upperbound);
228 if (index < lowerbound || index > upperbound)
229 error ("bitstring index out of range");
230 index -= lowerbound;
231 offset = index / TARGET_CHAR_BIT;
232 byte = *((char *) VALUE_CONTENTS (array) + offset);
233 bit_index = index % TARGET_CHAR_BIT;
234 byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index);
235 v = value_from_longest (LA_BOOL_TYPE, byte & 1);
236 v->bitpos = bit_index;
237 v->bitsize = 1;
238 VALUE_LVAL (v) = VALUE_LVAL (array);
239 if (VALUE_LVAL (array) == lval_internalvar)
240 VALUE_LVAL (v) = lval_internalvar_component;
241 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
242 v->offset = offset + value_offset (array);
243 return v;
244 }
245
246 if (c_style)
247 return value_ind (value_add (array, idx));
248 else
249 error ("not an array or string");
250 }
251
252 /* Return the value of EXPR[IDX], expr an aggregate rvalue
253 (eg, a vector register). This routine used to promote floats
254 to doubles, but no longer does. */
255
256 static struct value *
257 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
258 {
259 struct type *array_type = check_typedef (value_type (array));
260 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
261 unsigned int elt_size = TYPE_LENGTH (elt_type);
262 LONGEST index = value_as_long (idx);
263 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
264 struct value *v;
265
266 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
267 error ("no such vector element");
268
269 v = allocate_value (elt_type);
270 if (VALUE_LAZY (array))
271 VALUE_LAZY (v) = 1;
272 else
273 memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size);
274
275 if (VALUE_LVAL (array) == lval_internalvar)
276 VALUE_LVAL (v) = lval_internalvar_component;
277 else
278 VALUE_LVAL (v) = VALUE_LVAL (array);
279 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
280 VALUE_REGNUM (v) = VALUE_REGNUM (array);
281 v->offset = value_offset (array) + elt_offs;
282 return v;
283 }
284 \f
285 /* Check to see if either argument is a structure. This is called so
286 we know whether to go ahead with the normal binop or look for a
287 user defined function instead.
288
289 For now, we do not overload the `=' operator. */
290
291 int
292 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
293 {
294 struct type *type1, *type2;
295 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
296 return 0;
297 type1 = check_typedef (value_type (arg1));
298 type2 = check_typedef (value_type (arg2));
299 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
300 || TYPE_CODE (type2) == TYPE_CODE_STRUCT
301 || (TYPE_CODE (type1) == TYPE_CODE_REF
302 && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT)
303 || (TYPE_CODE (type2) == TYPE_CODE_REF
304 && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT));
305 }
306
307 /* Check to see if argument is a structure. This is called so
308 we know whether to go ahead with the normal unop or look for a
309 user defined function instead.
310
311 For now, we do not overload the `&' operator. */
312
313 int
314 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
315 {
316 struct type *type1;
317 if (op == UNOP_ADDR)
318 return 0;
319 type1 = check_typedef (value_type (arg1));
320 for (;;)
321 {
322 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
323 return 1;
324 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
325 type1 = TYPE_TARGET_TYPE (type1);
326 else
327 return 0;
328 }
329 }
330
331 /* We know either arg1 or arg2 is a structure, so try to find the right
332 user defined function. Create an argument vector that calls
333 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
334 binary operator which is legal for GNU C++).
335
336 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
337 is the opcode saying how to modify it. Otherwise, OTHEROP is
338 unused. */
339
340 struct value *
341 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
342 enum exp_opcode otherop, enum noside noside)
343 {
344 struct value **argvec;
345 char *ptr;
346 char tstr[13];
347 int static_memfuncp;
348
349 arg1 = coerce_ref (arg1);
350 arg2 = coerce_ref (arg2);
351 arg1 = coerce_enum (arg1);
352 arg2 = coerce_enum (arg2);
353
354 /* now we know that what we have to do is construct our
355 arg vector and find the right function to call it with. */
356
357 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
358 error ("Can't do that binary op on that type"); /* FIXME be explicit */
359
360 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
361 argvec[1] = value_addr (arg1);
362 argvec[2] = arg2;
363 argvec[3] = 0;
364
365 /* make the right function name up */
366 strcpy (tstr, "operator__");
367 ptr = tstr + 8;
368 switch (op)
369 {
370 case BINOP_ADD:
371 strcpy (ptr, "+");
372 break;
373 case BINOP_SUB:
374 strcpy (ptr, "-");
375 break;
376 case BINOP_MUL:
377 strcpy (ptr, "*");
378 break;
379 case BINOP_DIV:
380 strcpy (ptr, "/");
381 break;
382 case BINOP_REM:
383 strcpy (ptr, "%");
384 break;
385 case BINOP_LSH:
386 strcpy (ptr, "<<");
387 break;
388 case BINOP_RSH:
389 strcpy (ptr, ">>");
390 break;
391 case BINOP_BITWISE_AND:
392 strcpy (ptr, "&");
393 break;
394 case BINOP_BITWISE_IOR:
395 strcpy (ptr, "|");
396 break;
397 case BINOP_BITWISE_XOR:
398 strcpy (ptr, "^");
399 break;
400 case BINOP_LOGICAL_AND:
401 strcpy (ptr, "&&");
402 break;
403 case BINOP_LOGICAL_OR:
404 strcpy (ptr, "||");
405 break;
406 case BINOP_MIN:
407 strcpy (ptr, "<?");
408 break;
409 case BINOP_MAX:
410 strcpy (ptr, ">?");
411 break;
412 case BINOP_ASSIGN:
413 strcpy (ptr, "=");
414 break;
415 case BINOP_ASSIGN_MODIFY:
416 switch (otherop)
417 {
418 case BINOP_ADD:
419 strcpy (ptr, "+=");
420 break;
421 case BINOP_SUB:
422 strcpy (ptr, "-=");
423 break;
424 case BINOP_MUL:
425 strcpy (ptr, "*=");
426 break;
427 case BINOP_DIV:
428 strcpy (ptr, "/=");
429 break;
430 case BINOP_REM:
431 strcpy (ptr, "%=");
432 break;
433 case BINOP_BITWISE_AND:
434 strcpy (ptr, "&=");
435 break;
436 case BINOP_BITWISE_IOR:
437 strcpy (ptr, "|=");
438 break;
439 case BINOP_BITWISE_XOR:
440 strcpy (ptr, "^=");
441 break;
442 case BINOP_MOD: /* invalid */
443 default:
444 error ("Invalid binary operation specified.");
445 }
446 break;
447 case BINOP_SUBSCRIPT:
448 strcpy (ptr, "[]");
449 break;
450 case BINOP_EQUAL:
451 strcpy (ptr, "==");
452 break;
453 case BINOP_NOTEQUAL:
454 strcpy (ptr, "!=");
455 break;
456 case BINOP_LESS:
457 strcpy (ptr, "<");
458 break;
459 case BINOP_GTR:
460 strcpy (ptr, ">");
461 break;
462 case BINOP_GEQ:
463 strcpy (ptr, ">=");
464 break;
465 case BINOP_LEQ:
466 strcpy (ptr, "<=");
467 break;
468 case BINOP_MOD: /* invalid */
469 default:
470 error ("Invalid binary operation specified.");
471 }
472
473 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
474
475 if (argvec[0])
476 {
477 if (static_memfuncp)
478 {
479 argvec[1] = argvec[0];
480 argvec++;
481 }
482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
483 {
484 struct type *return_type;
485 return_type
486 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
487 return value_zero (return_type, VALUE_LVAL (arg1));
488 }
489 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
490 }
491 error ("member function %s not found", tstr);
492 #ifdef lint
493 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
494 #endif
495 }
496
497 /* We know that arg1 is a structure, so try to find a unary user
498 defined operator that matches the operator in question.
499 Create an argument vector that calls arg1.operator @ (arg1)
500 and return that value (where '@' is (almost) any unary operator which
501 is legal for GNU C++). */
502
503 struct value *
504 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
505 {
506 struct value **argvec;
507 char *ptr, *mangle_ptr;
508 char tstr[13], mangle_tstr[13];
509 int static_memfuncp, nargs;
510
511 arg1 = coerce_ref (arg1);
512 arg1 = coerce_enum (arg1);
513
514 /* now we know that what we have to do is construct our
515 arg vector and find the right function to call it with. */
516
517 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
518 error ("Can't do that unary op on that type"); /* FIXME be explicit */
519
520 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
521 argvec[1] = value_addr (arg1);
522 argvec[2] = 0;
523
524 nargs = 1;
525
526 /* make the right function name up */
527 strcpy (tstr, "operator__");
528 ptr = tstr + 8;
529 strcpy (mangle_tstr, "__");
530 mangle_ptr = mangle_tstr + 2;
531 switch (op)
532 {
533 case UNOP_PREINCREMENT:
534 strcpy (ptr, "++");
535 break;
536 case UNOP_PREDECREMENT:
537 strcpy (ptr, "--");
538 break;
539 case UNOP_POSTINCREMENT:
540 strcpy (ptr, "++");
541 argvec[2] = value_from_longest (builtin_type_int, 0);
542 argvec[3] = 0;
543 nargs ++;
544 break;
545 case UNOP_POSTDECREMENT:
546 strcpy (ptr, "--");
547 argvec[2] = value_from_longest (builtin_type_int, 0);
548 argvec[3] = 0;
549 nargs ++;
550 break;
551 case UNOP_LOGICAL_NOT:
552 strcpy (ptr, "!");
553 break;
554 case UNOP_COMPLEMENT:
555 strcpy (ptr, "~");
556 break;
557 case UNOP_NEG:
558 strcpy (ptr, "-");
559 break;
560 case UNOP_IND:
561 strcpy (ptr, "*");
562 break;
563 default:
564 error ("Invalid unary operation specified.");
565 }
566
567 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
568
569 if (argvec[0])
570 {
571 if (static_memfuncp)
572 {
573 argvec[1] = argvec[0];
574 nargs --;
575 argvec++;
576 }
577 if (noside == EVAL_AVOID_SIDE_EFFECTS)
578 {
579 struct type *return_type;
580 return_type
581 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
582 return value_zero (return_type, VALUE_LVAL (arg1));
583 }
584 return call_function_by_hand (argvec[0], nargs, argvec + 1);
585 }
586 error ("member function %s not found", tstr);
587 return 0; /* For lint -- never reached */
588 }
589 \f
590
591 /* Concatenate two values with the following conditions:
592
593 (1) Both values must be either bitstring values or character string
594 values and the resulting value consists of the concatenation of
595 ARG1 followed by ARG2.
596
597 or
598
599 One value must be an integer value and the other value must be
600 either a bitstring value or character string value, which is
601 to be repeated by the number of times specified by the integer
602 value.
603
604
605 (2) Boolean values are also allowed and are treated as bit string
606 values of length 1.
607
608 (3) Character values are also allowed and are treated as character
609 string values of length 1.
610 */
611
612 struct value *
613 value_concat (struct value *arg1, struct value *arg2)
614 {
615 struct value *inval1;
616 struct value *inval2;
617 struct value *outval = NULL;
618 int inval1len, inval2len;
619 int count, idx;
620 char *ptr;
621 char inchar;
622 struct type *type1 = check_typedef (value_type (arg1));
623 struct type *type2 = check_typedef (value_type (arg2));
624
625 /* First figure out if we are dealing with two values to be concatenated
626 or a repeat count and a value to be repeated. INVAL1 is set to the
627 first of two concatenated values, or the repeat count. INVAL2 is set
628 to the second of the two concatenated values or the value to be
629 repeated. */
630
631 if (TYPE_CODE (type2) == TYPE_CODE_INT)
632 {
633 struct type *tmp = type1;
634 type1 = tmp;
635 tmp = type2;
636 inval1 = arg2;
637 inval2 = arg1;
638 }
639 else
640 {
641 inval1 = arg1;
642 inval2 = arg2;
643 }
644
645 /* Now process the input values. */
646
647 if (TYPE_CODE (type1) == TYPE_CODE_INT)
648 {
649 /* We have a repeat count. Validate the second value and then
650 construct a value repeated that many times. */
651 if (TYPE_CODE (type2) == TYPE_CODE_STRING
652 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
653 {
654 count = longest_to_int (value_as_long (inval1));
655 inval2len = TYPE_LENGTH (type2);
656 ptr = (char *) alloca (count * inval2len);
657 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
658 {
659 inchar = (char) unpack_long (type2,
660 VALUE_CONTENTS (inval2));
661 for (idx = 0; idx < count; idx++)
662 {
663 *(ptr + idx) = inchar;
664 }
665 }
666 else
667 {
668 for (idx = 0; idx < count; idx++)
669 {
670 memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2),
671 inval2len);
672 }
673 }
674 outval = value_string (ptr, count * inval2len);
675 }
676 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
677 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
678 {
679 error ("unimplemented support for bitstring/boolean repeats");
680 }
681 else
682 {
683 error ("can't repeat values of that type");
684 }
685 }
686 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
687 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
688 {
689 /* We have two character strings to concatenate. */
690 if (TYPE_CODE (type2) != TYPE_CODE_STRING
691 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
692 {
693 error ("Strings can only be concatenated with other strings.");
694 }
695 inval1len = TYPE_LENGTH (type1);
696 inval2len = TYPE_LENGTH (type2);
697 ptr = (char *) alloca (inval1len + inval2len);
698 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
699 {
700 *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1));
701 }
702 else
703 {
704 memcpy (ptr, VALUE_CONTENTS (inval1), inval1len);
705 }
706 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
707 {
708 *(ptr + inval1len) =
709 (char) unpack_long (type2, VALUE_CONTENTS (inval2));
710 }
711 else
712 {
713 memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len);
714 }
715 outval = value_string (ptr, inval1len + inval2len);
716 }
717 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
718 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
719 {
720 /* We have two bitstrings to concatenate. */
721 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
722 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
723 {
724 error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.");
725 }
726 error ("unimplemented support for bitstring/boolean concatenation.");
727 }
728 else
729 {
730 /* We don't know how to concatenate these operands. */
731 error ("illegal operands for concatenation.");
732 }
733 return (outval);
734 }
735 \f
736
737
738 /* Perform a binary operation on two operands which have reasonable
739 representations as integers or floats. This includes booleans,
740 characters, integers, or floats.
741 Does not support addition and subtraction on pointers;
742 use value_add or value_sub if you want to handle those possibilities. */
743
744 struct value *
745 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
746 {
747 struct value *val;
748 struct type *type1, *type2;
749
750 arg1 = coerce_ref (arg1);
751 arg2 = coerce_ref (arg2);
752 type1 = check_typedef (value_type (arg1));
753 type2 = check_typedef (value_type (arg2));
754
755 if ((TYPE_CODE (type1) != TYPE_CODE_FLT && !is_integral_type (type1))
756 ||
757 (TYPE_CODE (type2) != TYPE_CODE_FLT && !is_integral_type (type2)))
758 error ("Argument to arithmetic operation not a number or boolean.");
759
760 if (TYPE_CODE (type1) == TYPE_CODE_FLT
761 ||
762 TYPE_CODE (type2) == TYPE_CODE_FLT)
763 {
764 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
765 in target format. real.c in GCC probably has the necessary
766 code. */
767 DOUBLEST v1, v2, v = 0;
768 v1 = value_as_double (arg1);
769 v2 = value_as_double (arg2);
770 switch (op)
771 {
772 case BINOP_ADD:
773 v = v1 + v2;
774 break;
775
776 case BINOP_SUB:
777 v = v1 - v2;
778 break;
779
780 case BINOP_MUL:
781 v = v1 * v2;
782 break;
783
784 case BINOP_DIV:
785 v = v1 / v2;
786 break;
787
788 case BINOP_EXP:
789 v = pow (v1, v2);
790 if (errno)
791 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
792 break;
793
794 default:
795 error ("Integer-only operation on floating point number.");
796 }
797
798 /* If either arg was long double, make sure that value is also long
799 double. */
800
801 if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT
802 || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT)
803 val = allocate_value (builtin_type_long_double);
804 else
805 val = allocate_value (builtin_type_double);
806
807 store_typed_floating (VALUE_CONTENTS_RAW (val), value_type (val), v);
808 }
809 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
810 &&
811 TYPE_CODE (type2) == TYPE_CODE_BOOL)
812 {
813 LONGEST v1, v2, v = 0;
814 v1 = value_as_long (arg1);
815 v2 = value_as_long (arg2);
816
817 switch (op)
818 {
819 case BINOP_BITWISE_AND:
820 v = v1 & v2;
821 break;
822
823 case BINOP_BITWISE_IOR:
824 v = v1 | v2;
825 break;
826
827 case BINOP_BITWISE_XOR:
828 v = v1 ^ v2;
829 break;
830
831 case BINOP_EQUAL:
832 v = v1 == v2;
833 break;
834
835 case BINOP_NOTEQUAL:
836 v = v1 != v2;
837 break;
838
839 default:
840 error ("Invalid operation on booleans.");
841 }
842
843 val = allocate_value (type1);
844 store_signed_integer (VALUE_CONTENTS_RAW (val),
845 TYPE_LENGTH (type1),
846 v);
847 }
848 else
849 /* Integral operations here. */
850 /* FIXME: Also mixed integral/booleans, with result an integer. */
851 /* FIXME: This implements ANSI C rules (also correct for C++).
852 What about FORTRAN and (the deleted) chill ? */
853 {
854 unsigned int promoted_len1 = TYPE_LENGTH (type1);
855 unsigned int promoted_len2 = TYPE_LENGTH (type2);
856 int is_unsigned1 = TYPE_UNSIGNED (type1);
857 int is_unsigned2 = TYPE_UNSIGNED (type2);
858 unsigned int result_len;
859 int unsigned_operation;
860
861 /* Determine type length and signedness after promotion for
862 both operands. */
863 if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
864 {
865 is_unsigned1 = 0;
866 promoted_len1 = TYPE_LENGTH (builtin_type_int);
867 }
868 if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
869 {
870 is_unsigned2 = 0;
871 promoted_len2 = TYPE_LENGTH (builtin_type_int);
872 }
873
874 /* Determine type length of the result, and if the operation should
875 be done unsigned.
876 Use the signedness of the operand with the greater length.
877 If both operands are of equal length, use unsigned operation
878 if one of the operands is unsigned. */
879 if (promoted_len1 > promoted_len2)
880 {
881 unsigned_operation = is_unsigned1;
882 result_len = promoted_len1;
883 }
884 else if (promoted_len2 > promoted_len1)
885 {
886 unsigned_operation = is_unsigned2;
887 result_len = promoted_len2;
888 }
889 else
890 {
891 unsigned_operation = is_unsigned1 || is_unsigned2;
892 result_len = promoted_len1;
893 }
894
895 if (unsigned_operation)
896 {
897 ULONGEST v1, v2, v = 0;
898 v1 = (ULONGEST) value_as_long (arg1);
899 v2 = (ULONGEST) value_as_long (arg2);
900
901 /* Truncate values to the type length of the result. */
902 if (result_len < sizeof (ULONGEST))
903 {
904 v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
905 v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
906 }
907
908 switch (op)
909 {
910 case BINOP_ADD:
911 v = v1 + v2;
912 break;
913
914 case BINOP_SUB:
915 v = v1 - v2;
916 break;
917
918 case BINOP_MUL:
919 v = v1 * v2;
920 break;
921
922 case BINOP_DIV:
923 v = v1 / v2;
924 break;
925
926 case BINOP_EXP:
927 v = pow (v1, v2);
928 if (errno)
929 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
930 break;
931
932 case BINOP_REM:
933 v = v1 % v2;
934 break;
935
936 case BINOP_MOD:
937 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
938 v1 mod 0 has a defined value, v1. */
939 if (v2 == 0)
940 {
941 v = v1;
942 }
943 else
944 {
945 v = v1 / v2;
946 /* Note floor(v1/v2) == v1/v2 for unsigned. */
947 v = v1 - (v2 * v);
948 }
949 break;
950
951 case BINOP_LSH:
952 v = v1 << v2;
953 break;
954
955 case BINOP_RSH:
956 v = v1 >> v2;
957 break;
958
959 case BINOP_BITWISE_AND:
960 v = v1 & v2;
961 break;
962
963 case BINOP_BITWISE_IOR:
964 v = v1 | v2;
965 break;
966
967 case BINOP_BITWISE_XOR:
968 v = v1 ^ v2;
969 break;
970
971 case BINOP_LOGICAL_AND:
972 v = v1 && v2;
973 break;
974
975 case BINOP_LOGICAL_OR:
976 v = v1 || v2;
977 break;
978
979 case BINOP_MIN:
980 v = v1 < v2 ? v1 : v2;
981 break;
982
983 case BINOP_MAX:
984 v = v1 > v2 ? v1 : v2;
985 break;
986
987 case BINOP_EQUAL:
988 v = v1 == v2;
989 break;
990
991 case BINOP_NOTEQUAL:
992 v = v1 != v2;
993 break;
994
995 case BINOP_LESS:
996 v = v1 < v2;
997 break;
998
999 default:
1000 error ("Invalid binary operation on numbers.");
1001 }
1002
1003 /* This is a kludge to get around the fact that we don't
1004 know how to determine the result type from the types of
1005 the operands. (I'm not really sure how much we feel the
1006 need to duplicate the exact rules of the current
1007 language. They can get really hairy. But not to do so
1008 makes it hard to document just what we *do* do). */
1009
1010 /* Can't just call init_type because we wouldn't know what
1011 name to give the type. */
1012 val = allocate_value
1013 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1014 ? builtin_type_unsigned_long_long
1015 : builtin_type_unsigned_long);
1016 store_unsigned_integer (VALUE_CONTENTS_RAW (val),
1017 TYPE_LENGTH (value_type (val)),
1018 v);
1019 }
1020 else
1021 {
1022 LONGEST v1, v2, v = 0;
1023 v1 = value_as_long (arg1);
1024 v2 = value_as_long (arg2);
1025
1026 switch (op)
1027 {
1028 case BINOP_ADD:
1029 v = v1 + v2;
1030 break;
1031
1032 case BINOP_SUB:
1033 v = v1 - v2;
1034 break;
1035
1036 case BINOP_MUL:
1037 v = v1 * v2;
1038 break;
1039
1040 case BINOP_DIV:
1041 if (v2 != 0)
1042 v = v1 / v2;
1043 else
1044 error ("Division by zero");
1045 break;
1046
1047 case BINOP_EXP:
1048 v = pow (v1, v2);
1049 if (errno)
1050 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
1051 break;
1052
1053 case BINOP_REM:
1054 if (v2 != 0)
1055 v = v1 % v2;
1056 else
1057 error ("Division by zero");
1058 break;
1059
1060 case BINOP_MOD:
1061 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1062 X mod 0 has a defined value, X. */
1063 if (v2 == 0)
1064 {
1065 v = v1;
1066 }
1067 else
1068 {
1069 v = v1 / v2;
1070 /* Compute floor. */
1071 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1072 {
1073 v--;
1074 }
1075 v = v1 - (v2 * v);
1076 }
1077 break;
1078
1079 case BINOP_LSH:
1080 v = v1 << v2;
1081 break;
1082
1083 case BINOP_RSH:
1084 v = v1 >> v2;
1085 break;
1086
1087 case BINOP_BITWISE_AND:
1088 v = v1 & v2;
1089 break;
1090
1091 case BINOP_BITWISE_IOR:
1092 v = v1 | v2;
1093 break;
1094
1095 case BINOP_BITWISE_XOR:
1096 v = v1 ^ v2;
1097 break;
1098
1099 case BINOP_LOGICAL_AND:
1100 v = v1 && v2;
1101 break;
1102
1103 case BINOP_LOGICAL_OR:
1104 v = v1 || v2;
1105 break;
1106
1107 case BINOP_MIN:
1108 v = v1 < v2 ? v1 : v2;
1109 break;
1110
1111 case BINOP_MAX:
1112 v = v1 > v2 ? v1 : v2;
1113 break;
1114
1115 case BINOP_EQUAL:
1116 v = v1 == v2;
1117 break;
1118
1119 case BINOP_LESS:
1120 v = v1 < v2;
1121 break;
1122
1123 default:
1124 error ("Invalid binary operation on numbers.");
1125 }
1126
1127 /* This is a kludge to get around the fact that we don't
1128 know how to determine the result type from the types of
1129 the operands. (I'm not really sure how much we feel the
1130 need to duplicate the exact rules of the current
1131 language. They can get really hairy. But not to do so
1132 makes it hard to document just what we *do* do). */
1133
1134 /* Can't just call init_type because we wouldn't know what
1135 name to give the type. */
1136 val = allocate_value
1137 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1138 ? builtin_type_long_long
1139 : builtin_type_long);
1140 store_signed_integer (VALUE_CONTENTS_RAW (val),
1141 TYPE_LENGTH (value_type (val)),
1142 v);
1143 }
1144 }
1145
1146 return val;
1147 }
1148 \f
1149 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1150
1151 int
1152 value_logical_not (struct value *arg1)
1153 {
1154 int len;
1155 char *p;
1156 struct type *type1;
1157
1158 arg1 = coerce_number (arg1);
1159 type1 = check_typedef (value_type (arg1));
1160
1161 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1162 return 0 == value_as_double (arg1);
1163
1164 len = TYPE_LENGTH (type1);
1165 p = VALUE_CONTENTS (arg1);
1166
1167 while (--len >= 0)
1168 {
1169 if (*p++)
1170 break;
1171 }
1172
1173 return len < 0;
1174 }
1175
1176 /* Perform a comparison on two string values (whose content are not
1177 necessarily null terminated) based on their length */
1178
1179 static int
1180 value_strcmp (struct value *arg1, struct value *arg2)
1181 {
1182 int len1 = TYPE_LENGTH (value_type (arg1));
1183 int len2 = TYPE_LENGTH (value_type (arg2));
1184 char *s1 = VALUE_CONTENTS (arg1);
1185 char *s2 = VALUE_CONTENTS (arg2);
1186 int i, len = len1 < len2 ? len1 : len2;
1187
1188 for (i = 0; i < len; i++)
1189 {
1190 if (s1[i] < s2[i])
1191 return -1;
1192 else if (s1[i] > s2[i])
1193 return 1;
1194 else
1195 continue;
1196 }
1197
1198 if (len1 < len2)
1199 return -1;
1200 else if (len1 > len2)
1201 return 1;
1202 else
1203 return 0;
1204 }
1205
1206 /* Simulate the C operator == by returning a 1
1207 iff ARG1 and ARG2 have equal contents. */
1208
1209 int
1210 value_equal (struct value *arg1, struct value *arg2)
1211 {
1212 int len;
1213 char *p1, *p2;
1214 struct type *type1, *type2;
1215 enum type_code code1;
1216 enum type_code code2;
1217 int is_int1, is_int2;
1218
1219 arg1 = coerce_array (arg1);
1220 arg2 = coerce_array (arg2);
1221
1222 type1 = check_typedef (value_type (arg1));
1223 type2 = check_typedef (value_type (arg2));
1224 code1 = TYPE_CODE (type1);
1225 code2 = TYPE_CODE (type2);
1226 is_int1 = is_integral_type (type1);
1227 is_int2 = is_integral_type (type2);
1228
1229 if (is_int1 && is_int2)
1230 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1231 BINOP_EQUAL)));
1232 else if ((code1 == TYPE_CODE_FLT || is_int1)
1233 && (code2 == TYPE_CODE_FLT || is_int2))
1234 return value_as_double (arg1) == value_as_double (arg2);
1235
1236 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1237 is bigger. */
1238 else if (code1 == TYPE_CODE_PTR && is_int2)
1239 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1240 else if (code2 == TYPE_CODE_PTR && is_int1)
1241 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1242
1243 else if (code1 == code2
1244 && ((len = (int) TYPE_LENGTH (type1))
1245 == (int) TYPE_LENGTH (type2)))
1246 {
1247 p1 = VALUE_CONTENTS (arg1);
1248 p2 = VALUE_CONTENTS (arg2);
1249 while (--len >= 0)
1250 {
1251 if (*p1++ != *p2++)
1252 break;
1253 }
1254 return len < 0;
1255 }
1256 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1257 {
1258 return value_strcmp (arg1, arg2) == 0;
1259 }
1260 else
1261 {
1262 error ("Invalid type combination in equality test.");
1263 return 0; /* For lint -- never reached */
1264 }
1265 }
1266
1267 /* Simulate the C operator < by returning 1
1268 iff ARG1's contents are less than ARG2's. */
1269
1270 int
1271 value_less (struct value *arg1, struct value *arg2)
1272 {
1273 enum type_code code1;
1274 enum type_code code2;
1275 struct type *type1, *type2;
1276 int is_int1, is_int2;
1277
1278 arg1 = coerce_array (arg1);
1279 arg2 = coerce_array (arg2);
1280
1281 type1 = check_typedef (value_type (arg1));
1282 type2 = check_typedef (value_type (arg2));
1283 code1 = TYPE_CODE (type1);
1284 code2 = TYPE_CODE (type2);
1285 is_int1 = is_integral_type (type1);
1286 is_int2 = is_integral_type (type2);
1287
1288 if (is_int1 && is_int2)
1289 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1290 BINOP_LESS)));
1291 else if ((code1 == TYPE_CODE_FLT || is_int1)
1292 && (code2 == TYPE_CODE_FLT || is_int2))
1293 return value_as_double (arg1) < value_as_double (arg2);
1294 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1295 return value_as_address (arg1) < value_as_address (arg2);
1296
1297 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1298 is bigger. */
1299 else if (code1 == TYPE_CODE_PTR && is_int2)
1300 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1301 else if (code2 == TYPE_CODE_PTR && is_int1)
1302 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1303 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1304 return value_strcmp (arg1, arg2) < 0;
1305 else
1306 {
1307 error ("Invalid type combination in ordering comparison.");
1308 return 0;
1309 }
1310 }
1311 \f
1312 /* The unary operators - and ~. Both free the argument ARG1. */
1313
1314 struct value *
1315 value_neg (struct value *arg1)
1316 {
1317 struct type *type;
1318 struct type *result_type = value_type (arg1);
1319
1320 arg1 = coerce_ref (arg1);
1321
1322 type = check_typedef (value_type (arg1));
1323
1324 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1325 return value_from_double (result_type, -value_as_double (arg1));
1326 else if (is_integral_type (type))
1327 {
1328 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1329 FORTRAN and (the deleted) chill ? */
1330 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1331 result_type = builtin_type_int;
1332
1333 return value_from_longest (result_type, -value_as_long (arg1));
1334 }
1335 else
1336 {
1337 error ("Argument to negate operation not a number.");
1338 return 0; /* For lint -- never reached */
1339 }
1340 }
1341
1342 struct value *
1343 value_complement (struct value *arg1)
1344 {
1345 struct type *type;
1346 struct type *result_type = value_type (arg1);
1347
1348 arg1 = coerce_ref (arg1);
1349
1350 type = check_typedef (value_type (arg1));
1351
1352 if (!is_integral_type (type))
1353 error ("Argument to complement operation not an integer or boolean.");
1354
1355 /* Perform integral promotion for ANSI C/C++.
1356 FIXME: What about FORTRAN ? */
1357 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1358 result_type = builtin_type_int;
1359
1360 return value_from_longest (result_type, ~value_as_long (arg1));
1361 }
1362 \f
1363 /* The INDEX'th bit of SET value whose value_type is TYPE,
1364 and whose VALUE_CONTENTS is valaddr.
1365 Return -1 if out of range, -2 other error. */
1366
1367 int
1368 value_bit_index (struct type *type, char *valaddr, int index)
1369 {
1370 LONGEST low_bound, high_bound;
1371 LONGEST word;
1372 unsigned rel_index;
1373 struct type *range = TYPE_FIELD_TYPE (type, 0);
1374 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1375 return -2;
1376 if (index < low_bound || index > high_bound)
1377 return -1;
1378 rel_index = index - low_bound;
1379 word = unpack_long (builtin_type_unsigned_char,
1380 valaddr + (rel_index / TARGET_CHAR_BIT));
1381 rel_index %= TARGET_CHAR_BIT;
1382 if (BITS_BIG_ENDIAN)
1383 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1384 return (word >> rel_index) & 1;
1385 }
1386
1387 struct value *
1388 value_in (struct value *element, struct value *set)
1389 {
1390 int member;
1391 struct type *settype = check_typedef (value_type (set));
1392 struct type *eltype = check_typedef (value_type (element));
1393 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1394 eltype = TYPE_TARGET_TYPE (eltype);
1395 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1396 error ("Second argument of 'IN' has wrong type");
1397 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1398 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1399 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1400 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1401 error ("First argument of 'IN' has wrong type");
1402 member = value_bit_index (settype, VALUE_CONTENTS (set),
1403 value_as_long (element));
1404 if (member < 0)
1405 error ("First argument of 'IN' not in range");
1406 return value_from_longest (LA_BOOL_TYPE, member);
1407 }
1408
1409 void
1410 _initialize_valarith (void)
1411 {
1412 }
This page took 0.05672 seconds and 4 git commands to generate.