gas/
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 void _initialize_valarith (void);
43 \f
44
45 /* Given a pointer, return the size of its target.
46 If the pointer type is void *, then return 1.
47 If the target type is incomplete, then error out.
48 This isn't a general purpose function, but just a
49 helper for value_ptrsub & value_ptradd.
50 */
51
52 static LONGEST
53 find_size_for_pointer_math (struct type *ptr_type)
54 {
55 LONGEST sz = -1;
56 struct type *ptr_target;
57
58 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
59 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
60
61 sz = TYPE_LENGTH (ptr_target);
62 if (sz == 0)
63 {
64 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
65 sz = 1;
66 else
67 {
68 char *name;
69
70 name = TYPE_NAME (ptr_target);
71 if (name == NULL)
72 name = TYPE_TAG_NAME (ptr_target);
73 if (name == NULL)
74 error (_("Cannot perform pointer math on incomplete types, "
75 "try casting to a known type, or void *."));
76 else
77 error (_("Cannot perform pointer math on incomplete type \"%s\", "
78 "try casting to a known type, or void *."), name);
79 }
80 }
81 return sz;
82 }
83
84 /* Given a pointer ARG1 and an integral value ARG2, return the
85 result of C-style pointer arithmetic ARG1 + ARG2. */
86
87 struct value *
88 value_ptradd (struct value *arg1, struct value *arg2)
89 {
90 struct type *valptrtype;
91 LONGEST sz;
92
93 arg1 = coerce_array (arg1);
94 valptrtype = check_typedef (value_type (arg1));
95 sz = find_size_for_pointer_math (valptrtype);
96
97 if (!is_integral_type (value_type (arg2)))
98 error (_("Argument to arithmetic operation not a number or boolean."));
99
100 return value_from_pointer (valptrtype,
101 value_as_address (arg1)
102 + (sz * value_as_long (arg2)));
103 }
104
105 /* Given a pointer ARG1 and an integral value ARG2, return the
106 result of C-style pointer arithmetic ARG1 - ARG2. */
107
108 struct value *
109 value_ptrsub (struct value *arg1, struct value *arg2)
110 {
111 struct type *valptrtype;
112 LONGEST sz;
113
114 arg1 = coerce_array (arg1);
115 valptrtype = check_typedef (value_type (arg1));
116 sz = find_size_for_pointer_math (valptrtype);
117
118 if (!is_integral_type (value_type (arg2)))
119 error (_("Argument to arithmetic operation not a number or boolean."));
120
121 return value_from_pointer (valptrtype,
122 value_as_address (arg1)
123 - (sz * value_as_long (arg2)));
124 }
125
126 /* Given two compatible pointer values ARG1 and ARG2, return the
127 result of C-style pointer arithmetic ARG1 - ARG2. */
128
129 LONGEST
130 value_ptrdiff (struct value *arg1, struct value *arg2)
131 {
132 struct type *type1, *type2;
133 LONGEST sz;
134
135 arg1 = coerce_array (arg1);
136 arg2 = coerce_array (arg2);
137 type1 = check_typedef (value_type (arg1));
138 type2 = check_typedef (value_type (arg2));
139
140 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
141 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
142
143 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
144 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
145 error (_("\
146 First argument of `-' is a pointer and second argument is neither\n\
147 an integer nor a pointer of the same type."));
148
149 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
150 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
151 }
152
153 /* Return the value of ARRAY[IDX].
154
155 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
156 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
157 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
158
159 See comments in value_coerce_array() for rationale for reason for
160 doing lower bounds adjustment here rather than there.
161 FIXME: Perhaps we should validate that the index is valid and if
162 verbosity is set, warn about invalid indices (but still use them). */
163
164 struct value *
165 value_subscript (struct value *array, struct value *idx)
166 {
167 struct value *bound;
168 int c_style = current_language->c_style_arrays;
169 struct type *tarray;
170
171 array = coerce_ref (array);
172 tarray = check_typedef (value_type (array));
173
174 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
175 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
176 {
177 struct type *range_type = TYPE_INDEX_TYPE (tarray);
178 LONGEST lowerbound, upperbound;
179 get_discrete_bounds (range_type, &lowerbound, &upperbound);
180
181 if (VALUE_LVAL (array) != lval_memory)
182 return value_subscripted_rvalue (array, idx, lowerbound);
183
184 if (c_style == 0)
185 {
186 LONGEST index = value_as_long (idx);
187 if (index >= lowerbound && index <= upperbound)
188 return value_subscripted_rvalue (array, idx, lowerbound);
189 /* Emit warning unless we have an array of unknown size.
190 An array of unknown size has lowerbound 0 and upperbound -1. */
191 if (upperbound > -1)
192 warning (_("array or string index out of range"));
193 /* fall doing C stuff */
194 c_style = 1;
195 }
196
197 if (lowerbound != 0)
198 {
199 bound = value_from_longest (value_type (idx), (LONGEST) lowerbound);
200 idx = value_binop (idx, bound, BINOP_SUB);
201 }
202
203 array = value_coerce_array (array);
204 }
205
206 if (c_style)
207 return value_ind (value_ptradd (array, idx));
208 else
209 error (_("not an array or string"));
210 }
211
212 /* Return the value of EXPR[IDX], expr an aggregate rvalue
213 (eg, a vector register). This routine used to promote floats
214 to doubles, but no longer does. */
215
216 struct value *
217 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
218 {
219 struct type *array_type = check_typedef (value_type (array));
220 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
221 unsigned int elt_size = TYPE_LENGTH (elt_type);
222 LONGEST index = value_as_long (idx);
223 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
224 struct value *v;
225
226 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
227 error (_("no such vector element"));
228
229 v = allocate_value (elt_type);
230 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
231 set_value_lazy (v, 1);
232 else
233 memcpy (value_contents_writeable (v),
234 value_contents (array) + elt_offs, elt_size);
235
236 set_value_component_location (v, array);
237 VALUE_REGNUM (v) = VALUE_REGNUM (array);
238 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
239 set_value_offset (v, value_offset (array) + elt_offs);
240 return v;
241 }
242
243 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
244
245 struct value *
246 value_bitstring_subscript (struct type *type,
247 struct value *bitstring, struct value *idx)
248 {
249
250 struct type *bitstring_type, *range_type;
251 LONGEST index = value_as_long (idx);
252 struct value *v;
253 int offset, byte, bit_index;
254 LONGEST lowerbound, upperbound;
255
256 bitstring_type = check_typedef (value_type (bitstring));
257 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
258
259 range_type = TYPE_INDEX_TYPE (bitstring_type);
260 get_discrete_bounds (range_type, &lowerbound, &upperbound);
261 if (index < lowerbound || index > upperbound)
262 error (_("bitstring index out of range"));
263
264 index -= lowerbound;
265 offset = index / TARGET_CHAR_BIT;
266 byte = *((char *) value_contents (bitstring) + offset);
267
268 bit_index = index % TARGET_CHAR_BIT;
269 byte >>= (gdbarch_bits_big_endian (current_gdbarch) ?
270 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
271
272 v = value_from_longest (type, byte & 1);
273
274 set_value_bitpos (v, bit_index);
275 set_value_bitsize (v, 1);
276 set_value_component_location (v, bitstring);
277 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
278
279 set_value_offset (v, offset + value_offset (bitstring));
280
281 return v;
282 }
283
284 \f
285 /* Check to see if either argument is a structure, or a reference to
286 one. This is called so we know whether to go ahead with the normal
287 binop or look for a user defined function instead.
288
289 For now, we do not overload the `=' operator. */
290
291 int
292 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
293 {
294 struct type *type1, *type2;
295 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
296 return 0;
297
298 type1 = check_typedef (value_type (arg1));
299 if (TYPE_CODE (type1) == TYPE_CODE_REF)
300 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
301
302 type2 = check_typedef (value_type (arg2));
303 if (TYPE_CODE (type2) == TYPE_CODE_REF)
304 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
305
306 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
307 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
308 }
309
310 /* Check to see if argument is a structure. This is called so
311 we know whether to go ahead with the normal unop or look for a
312 user defined function instead.
313
314 For now, we do not overload the `&' operator. */
315
316 int
317 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
318 {
319 struct type *type1;
320 if (op == UNOP_ADDR)
321 return 0;
322 type1 = check_typedef (value_type (arg1));
323 for (;;)
324 {
325 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
326 return 1;
327 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
328 type1 = TYPE_TARGET_TYPE (type1);
329 else
330 return 0;
331 }
332 }
333
334 /* We know either arg1 or arg2 is a structure, so try to find the right
335 user defined function. Create an argument vector that calls
336 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
337 binary operator which is legal for GNU C++).
338
339 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
340 is the opcode saying how to modify it. Otherwise, OTHEROP is
341 unused. */
342
343 struct value *
344 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
345 enum exp_opcode otherop, enum noside noside)
346 {
347 struct value **argvec;
348 char *ptr;
349 char tstr[13];
350 int static_memfuncp;
351
352 arg1 = coerce_ref (arg1);
353 arg2 = coerce_ref (arg2);
354
355 /* now we know that what we have to do is construct our
356 arg vector and find the right function to call it with. */
357
358 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
359 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
360
361 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
362 argvec[1] = value_addr (arg1);
363 argvec[2] = arg2;
364 argvec[3] = 0;
365
366 /* make the right function name up */
367 strcpy (tstr, "operator__");
368 ptr = tstr + 8;
369 switch (op)
370 {
371 case BINOP_ADD:
372 strcpy (ptr, "+");
373 break;
374 case BINOP_SUB:
375 strcpy (ptr, "-");
376 break;
377 case BINOP_MUL:
378 strcpy (ptr, "*");
379 break;
380 case BINOP_DIV:
381 strcpy (ptr, "/");
382 break;
383 case BINOP_REM:
384 strcpy (ptr, "%");
385 break;
386 case BINOP_LSH:
387 strcpy (ptr, "<<");
388 break;
389 case BINOP_RSH:
390 strcpy (ptr, ">>");
391 break;
392 case BINOP_BITWISE_AND:
393 strcpy (ptr, "&");
394 break;
395 case BINOP_BITWISE_IOR:
396 strcpy (ptr, "|");
397 break;
398 case BINOP_BITWISE_XOR:
399 strcpy (ptr, "^");
400 break;
401 case BINOP_LOGICAL_AND:
402 strcpy (ptr, "&&");
403 break;
404 case BINOP_LOGICAL_OR:
405 strcpy (ptr, "||");
406 break;
407 case BINOP_MIN:
408 strcpy (ptr, "<?");
409 break;
410 case BINOP_MAX:
411 strcpy (ptr, ">?");
412 break;
413 case BINOP_ASSIGN:
414 strcpy (ptr, "=");
415 break;
416 case BINOP_ASSIGN_MODIFY:
417 switch (otherop)
418 {
419 case BINOP_ADD:
420 strcpy (ptr, "+=");
421 break;
422 case BINOP_SUB:
423 strcpy (ptr, "-=");
424 break;
425 case BINOP_MUL:
426 strcpy (ptr, "*=");
427 break;
428 case BINOP_DIV:
429 strcpy (ptr, "/=");
430 break;
431 case BINOP_REM:
432 strcpy (ptr, "%=");
433 break;
434 case BINOP_BITWISE_AND:
435 strcpy (ptr, "&=");
436 break;
437 case BINOP_BITWISE_IOR:
438 strcpy (ptr, "|=");
439 break;
440 case BINOP_BITWISE_XOR:
441 strcpy (ptr, "^=");
442 break;
443 case BINOP_MOD: /* invalid */
444 default:
445 error (_("Invalid binary operation specified."));
446 }
447 break;
448 case BINOP_SUBSCRIPT:
449 strcpy (ptr, "[]");
450 break;
451 case BINOP_EQUAL:
452 strcpy (ptr, "==");
453 break;
454 case BINOP_NOTEQUAL:
455 strcpy (ptr, "!=");
456 break;
457 case BINOP_LESS:
458 strcpy (ptr, "<");
459 break;
460 case BINOP_GTR:
461 strcpy (ptr, ">");
462 break;
463 case BINOP_GEQ:
464 strcpy (ptr, ">=");
465 break;
466 case BINOP_LEQ:
467 strcpy (ptr, "<=");
468 break;
469 case BINOP_MOD: /* invalid */
470 default:
471 error (_("Invalid binary operation specified."));
472 }
473
474 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
475
476 if (argvec[0])
477 {
478 if (static_memfuncp)
479 {
480 argvec[1] = argvec[0];
481 argvec++;
482 }
483 if (noside == EVAL_AVOID_SIDE_EFFECTS)
484 {
485 struct type *return_type;
486 return_type
487 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
488 return value_zero (return_type, VALUE_LVAL (arg1));
489 }
490 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
491 }
492 error (_("member function %s not found"), tstr);
493 #ifdef lint
494 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
495 #endif
496 }
497
498 /* We know that arg1 is a structure, so try to find a unary user
499 defined operator that matches the operator in question.
500 Create an argument vector that calls arg1.operator @ (arg1)
501 and return that value (where '@' is (almost) any unary operator which
502 is legal for GNU C++). */
503
504 struct value *
505 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
506 {
507 struct value **argvec;
508 char *ptr, *mangle_ptr;
509 char tstr[13], mangle_tstr[13];
510 int static_memfuncp, nargs;
511
512 arg1 = coerce_ref (arg1);
513
514 /* now we know that what we have to do is construct our
515 arg vector and find the right function to call it with. */
516
517 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
518 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
519
520 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
521 argvec[1] = value_addr (arg1);
522 argvec[2] = 0;
523
524 nargs = 1;
525
526 /* make the right function name up */
527 strcpy (tstr, "operator__");
528 ptr = tstr + 8;
529 strcpy (mangle_tstr, "__");
530 mangle_ptr = mangle_tstr + 2;
531 switch (op)
532 {
533 case UNOP_PREINCREMENT:
534 strcpy (ptr, "++");
535 break;
536 case UNOP_PREDECREMENT:
537 strcpy (ptr, "--");
538 break;
539 case UNOP_POSTINCREMENT:
540 strcpy (ptr, "++");
541 argvec[2] = value_from_longest (builtin_type_int8, 0);
542 argvec[3] = 0;
543 nargs ++;
544 break;
545 case UNOP_POSTDECREMENT:
546 strcpy (ptr, "--");
547 argvec[2] = value_from_longest (builtin_type_int8, 0);
548 argvec[3] = 0;
549 nargs ++;
550 break;
551 case UNOP_LOGICAL_NOT:
552 strcpy (ptr, "!");
553 break;
554 case UNOP_COMPLEMENT:
555 strcpy (ptr, "~");
556 break;
557 case UNOP_NEG:
558 strcpy (ptr, "-");
559 break;
560 case UNOP_PLUS:
561 strcpy (ptr, "+");
562 break;
563 case UNOP_IND:
564 strcpy (ptr, "*");
565 break;
566 default:
567 error (_("Invalid unary operation specified."));
568 }
569
570 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
571
572 if (argvec[0])
573 {
574 if (static_memfuncp)
575 {
576 argvec[1] = argvec[0];
577 nargs --;
578 argvec++;
579 }
580 if (noside == EVAL_AVOID_SIDE_EFFECTS)
581 {
582 struct type *return_type;
583 return_type
584 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
585 return value_zero (return_type, VALUE_LVAL (arg1));
586 }
587 return call_function_by_hand (argvec[0], nargs, argvec + 1);
588 }
589 error (_("member function %s not found"), tstr);
590 return 0; /* For lint -- never reached */
591 }
592 \f
593
594 /* Concatenate two values with the following conditions:
595
596 (1) Both values must be either bitstring values or character string
597 values and the resulting value consists of the concatenation of
598 ARG1 followed by ARG2.
599
600 or
601
602 One value must be an integer value and the other value must be
603 either a bitstring value or character string value, which is
604 to be repeated by the number of times specified by the integer
605 value.
606
607
608 (2) Boolean values are also allowed and are treated as bit string
609 values of length 1.
610
611 (3) Character values are also allowed and are treated as character
612 string values of length 1.
613 */
614
615 struct value *
616 value_concat (struct value *arg1, struct value *arg2)
617 {
618 struct value *inval1;
619 struct value *inval2;
620 struct value *outval = NULL;
621 int inval1len, inval2len;
622 int count, idx;
623 char *ptr;
624 char inchar;
625 struct type *type1 = check_typedef (value_type (arg1));
626 struct type *type2 = check_typedef (value_type (arg2));
627
628 /* First figure out if we are dealing with two values to be concatenated
629 or a repeat count and a value to be repeated. INVAL1 is set to the
630 first of two concatenated values, or the repeat count. INVAL2 is set
631 to the second of the two concatenated values or the value to be
632 repeated. */
633
634 if (TYPE_CODE (type2) == TYPE_CODE_INT)
635 {
636 struct type *tmp = type1;
637 type1 = tmp;
638 tmp = type2;
639 inval1 = arg2;
640 inval2 = arg1;
641 }
642 else
643 {
644 inval1 = arg1;
645 inval2 = arg2;
646 }
647
648 /* Now process the input values. */
649
650 if (TYPE_CODE (type1) == TYPE_CODE_INT)
651 {
652 /* We have a repeat count. Validate the second value and then
653 construct a value repeated that many times. */
654 if (TYPE_CODE (type2) == TYPE_CODE_STRING
655 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
656 {
657 count = longest_to_int (value_as_long (inval1));
658 inval2len = TYPE_LENGTH (type2);
659 ptr = (char *) alloca (count * inval2len);
660 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
661 {
662 inchar = (char) unpack_long (type2,
663 value_contents (inval2));
664 for (idx = 0; idx < count; idx++)
665 {
666 *(ptr + idx) = inchar;
667 }
668 }
669 else
670 {
671 for (idx = 0; idx < count; idx++)
672 {
673 memcpy (ptr + (idx * inval2len), value_contents (inval2),
674 inval2len);
675 }
676 }
677 outval = value_string (ptr, count * inval2len);
678 }
679 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
680 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
681 {
682 error (_("unimplemented support for bitstring/boolean repeats"));
683 }
684 else
685 {
686 error (_("can't repeat values of that type"));
687 }
688 }
689 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
690 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
691 {
692 /* We have two character strings to concatenate. */
693 if (TYPE_CODE (type2) != TYPE_CODE_STRING
694 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
695 {
696 error (_("Strings can only be concatenated with other strings."));
697 }
698 inval1len = TYPE_LENGTH (type1);
699 inval2len = TYPE_LENGTH (type2);
700 ptr = (char *) alloca (inval1len + inval2len);
701 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
702 {
703 *ptr = (char) unpack_long (type1, value_contents (inval1));
704 }
705 else
706 {
707 memcpy (ptr, value_contents (inval1), inval1len);
708 }
709 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
710 {
711 *(ptr + inval1len) =
712 (char) unpack_long (type2, value_contents (inval2));
713 }
714 else
715 {
716 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
717 }
718 outval = value_string (ptr, inval1len + inval2len);
719 }
720 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
721 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
722 {
723 /* We have two bitstrings to concatenate. */
724 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
725 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
726 {
727 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
728 }
729 error (_("unimplemented support for bitstring/boolean concatenation."));
730 }
731 else
732 {
733 /* We don't know how to concatenate these operands. */
734 error (_("illegal operands for concatenation."));
735 }
736 return (outval);
737 }
738 \f
739 /* Integer exponentiation: V1**V2, where both arguments are
740 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
741 static LONGEST
742 integer_pow (LONGEST v1, LONGEST v2)
743 {
744 if (v2 < 0)
745 {
746 if (v1 == 0)
747 error (_("Attempt to raise 0 to negative power."));
748 else
749 return 0;
750 }
751 else
752 {
753 /* The Russian Peasant's Algorithm */
754 LONGEST v;
755
756 v = 1;
757 for (;;)
758 {
759 if (v2 & 1L)
760 v *= v1;
761 v2 >>= 1;
762 if (v2 == 0)
763 return v;
764 v1 *= v1;
765 }
766 }
767 }
768
769 /* Integer exponentiation: V1**V2, where both arguments are
770 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
771 static ULONGEST
772 uinteger_pow (ULONGEST v1, LONGEST v2)
773 {
774 if (v2 < 0)
775 {
776 if (v1 == 0)
777 error (_("Attempt to raise 0 to negative power."));
778 else
779 return 0;
780 }
781 else
782 {
783 /* The Russian Peasant's Algorithm */
784 ULONGEST v;
785
786 v = 1;
787 for (;;)
788 {
789 if (v2 & 1L)
790 v *= v1;
791 v2 >>= 1;
792 if (v2 == 0)
793 return v;
794 v1 *= v1;
795 }
796 }
797 }
798
799 /* Obtain decimal value of arguments for binary operation, converting from
800 other types if one of them is not decimal floating point. */
801 static void
802 value_args_as_decimal (struct value *arg1, struct value *arg2,
803 gdb_byte *x, int *len_x, gdb_byte *y, int *len_y)
804 {
805 struct type *type1, *type2;
806
807 type1 = check_typedef (value_type (arg1));
808 type2 = check_typedef (value_type (arg2));
809
810 /* At least one of the arguments must be of decimal float type. */
811 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
812 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
813
814 if (TYPE_CODE (type1) == TYPE_CODE_FLT
815 || TYPE_CODE (type2) == TYPE_CODE_FLT)
816 /* The DFP extension to the C language does not allow mixing of
817 * decimal float types with other float types in expressions
818 * (see WDTR 24732, page 12). */
819 error (_("Mixing decimal floating types with other floating types is not allowed."));
820
821 /* Obtain decimal value of arg1, converting from other types
822 if necessary. */
823
824 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
825 {
826 *len_x = TYPE_LENGTH (type1);
827 memcpy (x, value_contents (arg1), *len_x);
828 }
829 else if (is_integral_type (type1))
830 {
831 *len_x = TYPE_LENGTH (type2);
832 decimal_from_integral (arg1, x, *len_x);
833 }
834 else
835 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
836 TYPE_NAME (type2));
837
838 /* Obtain decimal value of arg2, converting from other types
839 if necessary. */
840
841 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
842 {
843 *len_y = TYPE_LENGTH (type2);
844 memcpy (y, value_contents (arg2), *len_y);
845 }
846 else if (is_integral_type (type2))
847 {
848 *len_y = TYPE_LENGTH (type1);
849 decimal_from_integral (arg2, y, *len_y);
850 }
851 else
852 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
853 TYPE_NAME (type2));
854 }
855
856 /* Perform a binary operation on two operands which have reasonable
857 representations as integers or floats. This includes booleans,
858 characters, integers, or floats.
859 Does not support addition and subtraction on pointers;
860 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
861
862 struct value *
863 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
864 {
865 struct value *val;
866 struct type *type1, *type2, *result_type;
867
868 arg1 = coerce_ref (arg1);
869 arg2 = coerce_ref (arg2);
870
871 type1 = check_typedef (value_type (arg1));
872 type2 = check_typedef (value_type (arg2));
873
874 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
875 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
876 && !is_integral_type (type1))
877 || (TYPE_CODE (type2) != TYPE_CODE_FLT
878 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
879 && !is_integral_type (type2)))
880 error (_("Argument to arithmetic operation not a number or boolean."));
881
882 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
883 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
884 {
885 struct type *v_type;
886 int len_v1, len_v2, len_v;
887 gdb_byte v1[16], v2[16];
888 gdb_byte v[16];
889
890 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
891
892 switch (op)
893 {
894 case BINOP_ADD:
895 case BINOP_SUB:
896 case BINOP_MUL:
897 case BINOP_DIV:
898 case BINOP_EXP:
899 decimal_binop (op, v1, len_v1, v2, len_v2, v, &len_v);
900 break;
901
902 default:
903 error (_("Operation not valid for decimal floating point number."));
904 }
905
906 /* If only one type is decimal float, use its type.
907 Otherwise use the bigger type. */
908 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
909 result_type = type2;
910 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
911 result_type = type1;
912 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
913 result_type = type2;
914 else
915 result_type = type1;
916
917 val = value_from_decfloat (result_type, v);
918 }
919 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
920 || TYPE_CODE (type2) == TYPE_CODE_FLT)
921 {
922 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
923 in target format. real.c in GCC probably has the necessary
924 code. */
925 DOUBLEST v1, v2, v = 0;
926 v1 = value_as_double (arg1);
927 v2 = value_as_double (arg2);
928
929 switch (op)
930 {
931 case BINOP_ADD:
932 v = v1 + v2;
933 break;
934
935 case BINOP_SUB:
936 v = v1 - v2;
937 break;
938
939 case BINOP_MUL:
940 v = v1 * v2;
941 break;
942
943 case BINOP_DIV:
944 v = v1 / v2;
945 break;
946
947 case BINOP_EXP:
948 errno = 0;
949 v = pow (v1, v2);
950 if (errno)
951 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
952 break;
953
954 case BINOP_MIN:
955 v = v1 < v2 ? v1 : v2;
956 break;
957
958 case BINOP_MAX:
959 v = v1 > v2 ? v1 : v2;
960 break;
961
962 default:
963 error (_("Integer-only operation on floating point number."));
964 }
965
966 /* If only one type is float, use its type.
967 Otherwise use the bigger type. */
968 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
969 result_type = type2;
970 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
971 result_type = type1;
972 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
973 result_type = type2;
974 else
975 result_type = type1;
976
977 val = allocate_value (result_type);
978 store_typed_floating (value_contents_raw (val), value_type (val), v);
979 }
980 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
981 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
982 {
983 LONGEST v1, v2, v = 0;
984 v1 = value_as_long (arg1);
985 v2 = value_as_long (arg2);
986
987 switch (op)
988 {
989 case BINOP_BITWISE_AND:
990 v = v1 & v2;
991 break;
992
993 case BINOP_BITWISE_IOR:
994 v = v1 | v2;
995 break;
996
997 case BINOP_BITWISE_XOR:
998 v = v1 ^ v2;
999 break;
1000
1001 case BINOP_EQUAL:
1002 v = v1 == v2;
1003 break;
1004
1005 case BINOP_NOTEQUAL:
1006 v = v1 != v2;
1007 break;
1008
1009 default:
1010 error (_("Invalid operation on booleans."));
1011 }
1012
1013 result_type = type1;
1014
1015 val = allocate_value (result_type);
1016 store_signed_integer (value_contents_raw (val),
1017 TYPE_LENGTH (result_type),
1018 v);
1019 }
1020 else
1021 /* Integral operations here. */
1022 {
1023 /* Determine type length of the result, and if the operation should
1024 be done unsigned. For exponentiation and shift operators,
1025 use the length and type of the left operand. Otherwise,
1026 use the signedness of the operand with the greater length.
1027 If both operands are of equal length, use unsigned operation
1028 if one of the operands is unsigned. */
1029 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1030 result_type = type1;
1031 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1032 result_type = type1;
1033 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1034 result_type = type2;
1035 else if (TYPE_UNSIGNED (type1))
1036 result_type = type1;
1037 else if (TYPE_UNSIGNED (type2))
1038 result_type = type2;
1039 else
1040 result_type = type1;
1041
1042 if (TYPE_UNSIGNED (result_type))
1043 {
1044 LONGEST v2_signed = value_as_long (arg2);
1045 ULONGEST v1, v2, v = 0;
1046 v1 = (ULONGEST) value_as_long (arg1);
1047 v2 = (ULONGEST) v2_signed;
1048
1049 switch (op)
1050 {
1051 case BINOP_ADD:
1052 v = v1 + v2;
1053 break;
1054
1055 case BINOP_SUB:
1056 v = v1 - v2;
1057 break;
1058
1059 case BINOP_MUL:
1060 v = v1 * v2;
1061 break;
1062
1063 case BINOP_DIV:
1064 case BINOP_INTDIV:
1065 if (v2 != 0)
1066 v = v1 / v2;
1067 else
1068 error (_("Division by zero"));
1069 break;
1070
1071 case BINOP_EXP:
1072 v = uinteger_pow (v1, v2_signed);
1073 break;
1074
1075 case BINOP_REM:
1076 if (v2 != 0)
1077 v = v1 % v2;
1078 else
1079 error (_("Division by zero"));
1080 break;
1081
1082 case BINOP_MOD:
1083 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1084 v1 mod 0 has a defined value, v1. */
1085 if (v2 == 0)
1086 {
1087 v = v1;
1088 }
1089 else
1090 {
1091 v = v1 / v2;
1092 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1093 v = v1 - (v2 * v);
1094 }
1095 break;
1096
1097 case BINOP_LSH:
1098 v = v1 << v2;
1099 break;
1100
1101 case BINOP_RSH:
1102 v = v1 >> v2;
1103 break;
1104
1105 case BINOP_BITWISE_AND:
1106 v = v1 & v2;
1107 break;
1108
1109 case BINOP_BITWISE_IOR:
1110 v = v1 | v2;
1111 break;
1112
1113 case BINOP_BITWISE_XOR:
1114 v = v1 ^ v2;
1115 break;
1116
1117 case BINOP_LOGICAL_AND:
1118 v = v1 && v2;
1119 break;
1120
1121 case BINOP_LOGICAL_OR:
1122 v = v1 || v2;
1123 break;
1124
1125 case BINOP_MIN:
1126 v = v1 < v2 ? v1 : v2;
1127 break;
1128
1129 case BINOP_MAX:
1130 v = v1 > v2 ? v1 : v2;
1131 break;
1132
1133 case BINOP_EQUAL:
1134 v = v1 == v2;
1135 break;
1136
1137 case BINOP_NOTEQUAL:
1138 v = v1 != v2;
1139 break;
1140
1141 case BINOP_LESS:
1142 v = v1 < v2;
1143 break;
1144
1145 default:
1146 error (_("Invalid binary operation on numbers."));
1147 }
1148
1149 val = allocate_value (result_type);
1150 store_unsigned_integer (value_contents_raw (val),
1151 TYPE_LENGTH (value_type (val)),
1152 v);
1153 }
1154 else
1155 {
1156 LONGEST v1, v2, v = 0;
1157 v1 = value_as_long (arg1);
1158 v2 = value_as_long (arg2);
1159
1160 switch (op)
1161 {
1162 case BINOP_ADD:
1163 v = v1 + v2;
1164 break;
1165
1166 case BINOP_SUB:
1167 v = v1 - v2;
1168 break;
1169
1170 case BINOP_MUL:
1171 v = v1 * v2;
1172 break;
1173
1174 case BINOP_DIV:
1175 case BINOP_INTDIV:
1176 if (v2 != 0)
1177 v = v1 / v2;
1178 else
1179 error (_("Division by zero"));
1180 break;
1181
1182 case BINOP_EXP:
1183 v = integer_pow (v1, v2);
1184 break;
1185
1186 case BINOP_REM:
1187 if (v2 != 0)
1188 v = v1 % v2;
1189 else
1190 error (_("Division by zero"));
1191 break;
1192
1193 case BINOP_MOD:
1194 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1195 X mod 0 has a defined value, X. */
1196 if (v2 == 0)
1197 {
1198 v = v1;
1199 }
1200 else
1201 {
1202 v = v1 / v2;
1203 /* Compute floor. */
1204 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1205 {
1206 v--;
1207 }
1208 v = v1 - (v2 * v);
1209 }
1210 break;
1211
1212 case BINOP_LSH:
1213 v = v1 << v2;
1214 break;
1215
1216 case BINOP_RSH:
1217 v = v1 >> v2;
1218 break;
1219
1220 case BINOP_BITWISE_AND:
1221 v = v1 & v2;
1222 break;
1223
1224 case BINOP_BITWISE_IOR:
1225 v = v1 | v2;
1226 break;
1227
1228 case BINOP_BITWISE_XOR:
1229 v = v1 ^ v2;
1230 break;
1231
1232 case BINOP_LOGICAL_AND:
1233 v = v1 && v2;
1234 break;
1235
1236 case BINOP_LOGICAL_OR:
1237 v = v1 || v2;
1238 break;
1239
1240 case BINOP_MIN:
1241 v = v1 < v2 ? v1 : v2;
1242 break;
1243
1244 case BINOP_MAX:
1245 v = v1 > v2 ? v1 : v2;
1246 break;
1247
1248 case BINOP_EQUAL:
1249 v = v1 == v2;
1250 break;
1251
1252 case BINOP_LESS:
1253 v = v1 < v2;
1254 break;
1255
1256 default:
1257 error (_("Invalid binary operation on numbers."));
1258 }
1259
1260 val = allocate_value (result_type);
1261 store_signed_integer (value_contents_raw (val),
1262 TYPE_LENGTH (value_type (val)),
1263 v);
1264 }
1265 }
1266
1267 return val;
1268 }
1269 \f
1270 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1271
1272 int
1273 value_logical_not (struct value *arg1)
1274 {
1275 int len;
1276 const gdb_byte *p;
1277 struct type *type1;
1278
1279 arg1 = coerce_array (arg1);
1280 type1 = check_typedef (value_type (arg1));
1281
1282 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1283 return 0 == value_as_double (arg1);
1284 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1285 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1));
1286
1287 len = TYPE_LENGTH (type1);
1288 p = value_contents (arg1);
1289
1290 while (--len >= 0)
1291 {
1292 if (*p++)
1293 break;
1294 }
1295
1296 return len < 0;
1297 }
1298
1299 /* Perform a comparison on two string values (whose content are not
1300 necessarily null terminated) based on their length */
1301
1302 static int
1303 value_strcmp (struct value *arg1, struct value *arg2)
1304 {
1305 int len1 = TYPE_LENGTH (value_type (arg1));
1306 int len2 = TYPE_LENGTH (value_type (arg2));
1307 const gdb_byte *s1 = value_contents (arg1);
1308 const gdb_byte *s2 = value_contents (arg2);
1309 int i, len = len1 < len2 ? len1 : len2;
1310
1311 for (i = 0; i < len; i++)
1312 {
1313 if (s1[i] < s2[i])
1314 return -1;
1315 else if (s1[i] > s2[i])
1316 return 1;
1317 else
1318 continue;
1319 }
1320
1321 if (len1 < len2)
1322 return -1;
1323 else if (len1 > len2)
1324 return 1;
1325 else
1326 return 0;
1327 }
1328
1329 /* Simulate the C operator == by returning a 1
1330 iff ARG1 and ARG2 have equal contents. */
1331
1332 int
1333 value_equal (struct value *arg1, struct value *arg2)
1334 {
1335 int len;
1336 const gdb_byte *p1;
1337 const gdb_byte *p2;
1338 struct type *type1, *type2;
1339 enum type_code code1;
1340 enum type_code code2;
1341 int is_int1, is_int2;
1342
1343 arg1 = coerce_array (arg1);
1344 arg2 = coerce_array (arg2);
1345
1346 type1 = check_typedef (value_type (arg1));
1347 type2 = check_typedef (value_type (arg2));
1348 code1 = TYPE_CODE (type1);
1349 code2 = TYPE_CODE (type2);
1350 is_int1 = is_integral_type (type1);
1351 is_int2 = is_integral_type (type2);
1352
1353 if (is_int1 && is_int2)
1354 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1355 BINOP_EQUAL)));
1356 else if ((code1 == TYPE_CODE_FLT || is_int1)
1357 && (code2 == TYPE_CODE_FLT || is_int2))
1358 {
1359 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1360 `long double' values are returned in static storage (m68k). */
1361 DOUBLEST d = value_as_double (arg1);
1362 return d == value_as_double (arg2);
1363 }
1364 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1365 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1366 {
1367 gdb_byte v1[16], v2[16];
1368 int len_v1, len_v2;
1369
1370 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1371
1372 return decimal_compare (v1, len_v1, v2, len_v2) == 0;
1373 }
1374
1375 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1376 is bigger. */
1377 else if (code1 == TYPE_CODE_PTR && is_int2)
1378 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1379 else if (code2 == TYPE_CODE_PTR && is_int1)
1380 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1381
1382 else if (code1 == code2
1383 && ((len = (int) TYPE_LENGTH (type1))
1384 == (int) TYPE_LENGTH (type2)))
1385 {
1386 p1 = value_contents (arg1);
1387 p2 = value_contents (arg2);
1388 while (--len >= 0)
1389 {
1390 if (*p1++ != *p2++)
1391 break;
1392 }
1393 return len < 0;
1394 }
1395 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1396 {
1397 return value_strcmp (arg1, arg2) == 0;
1398 }
1399 else
1400 {
1401 error (_("Invalid type combination in equality test."));
1402 return 0; /* For lint -- never reached */
1403 }
1404 }
1405
1406 /* Simulate the C operator < by returning 1
1407 iff ARG1's contents are less than ARG2's. */
1408
1409 int
1410 value_less (struct value *arg1, struct value *arg2)
1411 {
1412 enum type_code code1;
1413 enum type_code code2;
1414 struct type *type1, *type2;
1415 int is_int1, is_int2;
1416
1417 arg1 = coerce_array (arg1);
1418 arg2 = coerce_array (arg2);
1419
1420 type1 = check_typedef (value_type (arg1));
1421 type2 = check_typedef (value_type (arg2));
1422 code1 = TYPE_CODE (type1);
1423 code2 = TYPE_CODE (type2);
1424 is_int1 = is_integral_type (type1);
1425 is_int2 = is_integral_type (type2);
1426
1427 if (is_int1 && is_int2)
1428 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1429 BINOP_LESS)));
1430 else if ((code1 == TYPE_CODE_FLT || is_int1)
1431 && (code2 == TYPE_CODE_FLT || is_int2))
1432 {
1433 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1434 `long double' values are returned in static storage (m68k). */
1435 DOUBLEST d = value_as_double (arg1);
1436 return d < value_as_double (arg2);
1437 }
1438 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1439 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1440 {
1441 gdb_byte v1[16], v2[16];
1442 int len_v1, len_v2;
1443
1444 value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2);
1445
1446 return decimal_compare (v1, len_v1, v2, len_v2) == -1;
1447 }
1448 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1449 return value_as_address (arg1) < value_as_address (arg2);
1450
1451 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1452 is bigger. */
1453 else if (code1 == TYPE_CODE_PTR && is_int2)
1454 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1455 else if (code2 == TYPE_CODE_PTR && is_int1)
1456 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1457 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1458 return value_strcmp (arg1, arg2) < 0;
1459 else
1460 {
1461 error (_("Invalid type combination in ordering comparison."));
1462 return 0;
1463 }
1464 }
1465 \f
1466 /* The unary operators +, - and ~. They free the argument ARG1. */
1467
1468 struct value *
1469 value_pos (struct value *arg1)
1470 {
1471 struct type *type;
1472
1473 arg1 = coerce_ref (arg1);
1474 type = check_typedef (value_type (arg1));
1475
1476 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1477 return value_from_double (type, value_as_double (arg1));
1478 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1479 return value_from_decfloat (type, value_contents (arg1));
1480 else if (is_integral_type (type))
1481 {
1482 return value_from_longest (type, value_as_long (arg1));
1483 }
1484 else
1485 {
1486 error ("Argument to positive operation not a number.");
1487 return 0; /* For lint -- never reached */
1488 }
1489 }
1490
1491 struct value *
1492 value_neg (struct value *arg1)
1493 {
1494 struct type *type;
1495
1496 arg1 = coerce_ref (arg1);
1497 type = check_typedef (value_type (arg1));
1498
1499 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1500 {
1501 struct value *val = allocate_value (type);
1502 int len = TYPE_LENGTH (type);
1503 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1504
1505 memcpy (decbytes, value_contents (arg1), len);
1506
1507 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1508 decbytes[len-1] = decbytes[len - 1] | 0x80;
1509 else
1510 decbytes[0] = decbytes[0] | 0x80;
1511
1512 memcpy (value_contents_raw (val), decbytes, len);
1513 return val;
1514 }
1515 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1516 return value_from_double (type, -value_as_double (arg1));
1517 else if (is_integral_type (type))
1518 {
1519 return value_from_longest (type, -value_as_long (arg1));
1520 }
1521 else
1522 {
1523 error (_("Argument to negate operation not a number."));
1524 return 0; /* For lint -- never reached */
1525 }
1526 }
1527
1528 struct value *
1529 value_complement (struct value *arg1)
1530 {
1531 struct type *type;
1532
1533 arg1 = coerce_ref (arg1);
1534 type = check_typedef (value_type (arg1));
1535
1536 if (!is_integral_type (type))
1537 error (_("Argument to complement operation not an integer or boolean."));
1538
1539 return value_from_longest (type, ~value_as_long (arg1));
1540 }
1541 \f
1542 /* The INDEX'th bit of SET value whose value_type is TYPE,
1543 and whose value_contents is valaddr.
1544 Return -1 if out of range, -2 other error. */
1545
1546 int
1547 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1548 {
1549 LONGEST low_bound, high_bound;
1550 LONGEST word;
1551 unsigned rel_index;
1552 struct type *range = TYPE_INDEX_TYPE (type);
1553 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1554 return -2;
1555 if (index < low_bound || index > high_bound)
1556 return -1;
1557 rel_index = index - low_bound;
1558 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1);
1559 rel_index %= TARGET_CHAR_BIT;
1560 if (gdbarch_bits_big_endian (current_gdbarch))
1561 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1562 return (word >> rel_index) & 1;
1563 }
1564
1565 int
1566 value_in (struct value *element, struct value *set)
1567 {
1568 int member;
1569 struct type *settype = check_typedef (value_type (set));
1570 struct type *eltype = check_typedef (value_type (element));
1571 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1572 eltype = TYPE_TARGET_TYPE (eltype);
1573 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1574 error (_("Second argument of 'IN' has wrong type"));
1575 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1576 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1577 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1578 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1579 error (_("First argument of 'IN' has wrong type"));
1580 member = value_bit_index (settype, value_contents (set),
1581 value_as_long (element));
1582 if (member < 0)
1583 error (_("First argument of 'IN' not in range"));
1584 return member;
1585 }
1586
1587 void
1588 _initialize_valarith (void)
1589 {
1590 }
This page took 0.06708 seconds and 4 git commands to generate.