Lookup and invoke debug methods of C++ classes if they are the best match.
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include <string.h>
28 #include "doublest.h"
29 #include "dfp.h"
30 #include <math.h>
31 #include "infcall.h"
32 #include "exceptions.h"
33
34 /* Define whether or not the C operator '/' truncates towards zero for
35 differently signed operands (truncation direction is undefined in C). */
36
37 #ifndef TRUNCATION_TOWARDS_ZERO
38 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
39 #endif
40
41 void _initialize_valarith (void);
42 \f
43
44 /* Given a pointer, return the size of its target.
45 If the pointer type is void *, then return 1.
46 If the target type is incomplete, then error out.
47 This isn't a general purpose function, but just a
48 helper for value_ptradd. */
49
50 static LONGEST
51 find_size_for_pointer_math (struct type *ptr_type)
52 {
53 LONGEST sz = -1;
54 struct type *ptr_target;
55
56 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
57 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
58
59 sz = TYPE_LENGTH (ptr_target);
60 if (sz == 0)
61 {
62 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
63 sz = 1;
64 else
65 {
66 const char *name;
67
68 name = TYPE_NAME (ptr_target);
69 if (name == NULL)
70 name = TYPE_TAG_NAME (ptr_target);
71 if (name == NULL)
72 error (_("Cannot perform pointer math on incomplete types, "
73 "try casting to a known type, or void *."));
74 else
75 error (_("Cannot perform pointer math on incomplete type \"%s\", "
76 "try casting to a known type, or void *."), name);
77 }
78 }
79 return sz;
80 }
81
82 /* Given a pointer ARG1 and an integral value ARG2, return the
83 result of C-style pointer arithmetic ARG1 + ARG2. */
84
85 struct value *
86 value_ptradd (struct value *arg1, LONGEST arg2)
87 {
88 struct type *valptrtype;
89 LONGEST sz;
90 struct value *result;
91
92 arg1 = coerce_array (arg1);
93 valptrtype = check_typedef (value_type (arg1));
94 sz = find_size_for_pointer_math (valptrtype);
95
96 result = value_from_pointer (valptrtype,
97 value_as_address (arg1) + sz * arg2);
98 if (VALUE_LVAL (result) != lval_internalvar)
99 set_value_component_location (result, arg1);
100 return result;
101 }
102
103 /* Given two compatible pointer values ARG1 and ARG2, return the
104 result of C-style pointer arithmetic ARG1 - ARG2. */
105
106 LONGEST
107 value_ptrdiff (struct value *arg1, struct value *arg2)
108 {
109 struct type *type1, *type2;
110 LONGEST sz;
111
112 arg1 = coerce_array (arg1);
113 arg2 = coerce_array (arg2);
114 type1 = check_typedef (value_type (arg1));
115 type2 = check_typedef (value_type (arg2));
116
117 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
118 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
119
120 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
121 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
122 error (_("First argument of `-' is a pointer and "
123 "second argument is neither\n"
124 "an integer nor a pointer of the same type."));
125
126 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
127 if (sz == 0)
128 {
129 warning (_("Type size unknown, assuming 1. "
130 "Try casting to a known type, or void *."));
131 sz = 1;
132 }
133
134 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
135 }
136
137 /* Return the value of ARRAY[IDX].
138
139 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
140 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
141
142 See comments in value_coerce_array() for rationale for reason for
143 doing lower bounds adjustment here rather than there.
144 FIXME: Perhaps we should validate that the index is valid and if
145 verbosity is set, warn about invalid indices (but still use them). */
146
147 struct value *
148 value_subscript (struct value *array, LONGEST index)
149 {
150 int c_style = current_language->c_style_arrays;
151 struct type *tarray;
152
153 array = coerce_ref (array);
154 tarray = check_typedef (value_type (array));
155
156 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
157 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
158 {
159 struct type *range_type = TYPE_INDEX_TYPE (tarray);
160 LONGEST lowerbound, upperbound;
161
162 get_discrete_bounds (range_type, &lowerbound, &upperbound);
163 if (VALUE_LVAL (array) != lval_memory)
164 return value_subscripted_rvalue (array, index, lowerbound);
165
166 if (c_style == 0)
167 {
168 if (index >= lowerbound && index <= upperbound)
169 return value_subscripted_rvalue (array, index, lowerbound);
170 /* Emit warning unless we have an array of unknown size.
171 An array of unknown size has lowerbound 0 and upperbound -1. */
172 if (upperbound > -1)
173 warning (_("array or string index out of range"));
174 /* fall doing C stuff */
175 c_style = 1;
176 }
177
178 index -= lowerbound;
179 array = value_coerce_array (array);
180 }
181
182 if (c_style)
183 return value_ind (value_ptradd (array, index));
184 else
185 error (_("not an array or string"));
186 }
187
188 /* Return the value of EXPR[IDX], expr an aggregate rvalue
189 (eg, a vector register). This routine used to promote floats
190 to doubles, but no longer does. */
191
192 struct value *
193 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
194 {
195 struct type *array_type = check_typedef (value_type (array));
196 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
197 unsigned int elt_size = TYPE_LENGTH (elt_type);
198 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
199 struct value *v;
200
201 if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
202 && elt_offs >= TYPE_LENGTH (array_type)))
203 error (_("no such vector element"));
204
205 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
206 v = allocate_value_lazy (elt_type);
207 else
208 {
209 v = allocate_value (elt_type);
210 value_contents_copy (v, value_embedded_offset (v),
211 array, value_embedded_offset (array) + elt_offs,
212 elt_size);
213 }
214
215 set_value_component_location (v, array);
216 VALUE_REGNUM (v) = VALUE_REGNUM (array);
217 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
218 set_value_offset (v, value_offset (array) + elt_offs);
219 return v;
220 }
221
222 \f
223 /* Check to see if either argument is a structure, or a reference to
224 one. This is called so we know whether to go ahead with the normal
225 binop or look for a user defined function instead.
226
227 For now, we do not overload the `=' operator. */
228
229 int
230 binop_types_user_defined_p (enum exp_opcode op,
231 struct type *type1, struct type *type2)
232 {
233 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
234 return 0;
235
236 type1 = check_typedef (type1);
237 if (TYPE_CODE (type1) == TYPE_CODE_REF)
238 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
239
240 type2 = check_typedef (type2);
241 if (TYPE_CODE (type2) == TYPE_CODE_REF)
242 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
243
244 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
245 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
246 }
247
248 /* Check to see if either argument is a structure, or a reference to
249 one. This is called so we know whether to go ahead with the normal
250 binop or look for a user defined function instead.
251
252 For now, we do not overload the `=' operator. */
253
254 int
255 binop_user_defined_p (enum exp_opcode op,
256 struct value *arg1, struct value *arg2)
257 {
258 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
259 }
260
261 /* Check to see if argument is a structure. This is called so
262 we know whether to go ahead with the normal unop or look for a
263 user defined function instead.
264
265 For now, we do not overload the `&' operator. */
266
267 int
268 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
269 {
270 struct type *type1;
271
272 if (op == UNOP_ADDR)
273 return 0;
274 type1 = check_typedef (value_type (arg1));
275 if (TYPE_CODE (type1) == TYPE_CODE_REF)
276 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
277 return TYPE_CODE (type1) == TYPE_CODE_STRUCT;
278 }
279
280 /* Try to find an operator named OPERATOR which takes NARGS arguments
281 specified in ARGS. If the operator found is a static member operator
282 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
283 The search if performed through find_overload_match which will handle
284 member operators, non member operators, operators imported implicitly or
285 explicitly, and perform correct overload resolution in all of the above
286 situations or combinations thereof. */
287
288 static struct value *
289 value_user_defined_cpp_op (struct value **args, int nargs, char *operator,
290 int *static_memfuncp)
291 {
292
293 struct symbol *symp = NULL;
294 struct value *valp = NULL;
295
296 find_overload_match (args, nargs, operator, BOTH /* could be method */,
297 &args[0] /* objp */,
298 NULL /* pass NULL symbol since symbol is unknown */,
299 &valp, &symp, static_memfuncp, 0);
300
301 if (valp)
302 return valp;
303
304 if (symp)
305 {
306 /* This is a non member function and does not
307 expect a reference as its first argument
308 rather the explicit structure. */
309 args[0] = value_ind (args[0]);
310 return value_of_variable (symp, 0);
311 }
312
313 error (_("Could not find %s."), operator);
314 }
315
316 /* Lookup user defined operator NAME. Return a value representing the
317 function, otherwise return NULL. */
318
319 static struct value *
320 value_user_defined_op (struct value **argp, struct value **args, char *name,
321 int *static_memfuncp, int nargs)
322 {
323 struct value *result = NULL;
324
325 if (current_language->la_language == language_cplus)
326 result = value_user_defined_cpp_op (args, nargs, name, static_memfuncp);
327 else
328 result = value_struct_elt (argp, args, name, static_memfuncp,
329 "structure");
330
331 return result;
332 }
333
334 /* We know either arg1 or arg2 is a structure, so try to find the right
335 user defined function. Create an argument vector that calls
336 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
337 binary operator which is legal for GNU C++).
338
339 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
340 is the opcode saying how to modify it. Otherwise, OTHEROP is
341 unused. */
342
343 struct value *
344 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
345 enum exp_opcode otherop, enum noside noside)
346 {
347 struct value **argvec;
348 char *ptr;
349 char tstr[13];
350 int static_memfuncp;
351
352 arg1 = coerce_ref (arg1);
353 arg2 = coerce_ref (arg2);
354
355 /* now we know that what we have to do is construct our
356 arg vector and find the right function to call it with. */
357
358 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
359 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
360
361 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
362 argvec[1] = value_addr (arg1);
363 argvec[2] = arg2;
364 argvec[3] = 0;
365
366 /* Make the right function name up. */
367 strcpy (tstr, "operator__");
368 ptr = tstr + 8;
369 switch (op)
370 {
371 case BINOP_ADD:
372 strcpy (ptr, "+");
373 break;
374 case BINOP_SUB:
375 strcpy (ptr, "-");
376 break;
377 case BINOP_MUL:
378 strcpy (ptr, "*");
379 break;
380 case BINOP_DIV:
381 strcpy (ptr, "/");
382 break;
383 case BINOP_REM:
384 strcpy (ptr, "%");
385 break;
386 case BINOP_LSH:
387 strcpy (ptr, "<<");
388 break;
389 case BINOP_RSH:
390 strcpy (ptr, ">>");
391 break;
392 case BINOP_BITWISE_AND:
393 strcpy (ptr, "&");
394 break;
395 case BINOP_BITWISE_IOR:
396 strcpy (ptr, "|");
397 break;
398 case BINOP_BITWISE_XOR:
399 strcpy (ptr, "^");
400 break;
401 case BINOP_LOGICAL_AND:
402 strcpy (ptr, "&&");
403 break;
404 case BINOP_LOGICAL_OR:
405 strcpy (ptr, "||");
406 break;
407 case BINOP_MIN:
408 strcpy (ptr, "<?");
409 break;
410 case BINOP_MAX:
411 strcpy (ptr, ">?");
412 break;
413 case BINOP_ASSIGN:
414 strcpy (ptr, "=");
415 break;
416 case BINOP_ASSIGN_MODIFY:
417 switch (otherop)
418 {
419 case BINOP_ADD:
420 strcpy (ptr, "+=");
421 break;
422 case BINOP_SUB:
423 strcpy (ptr, "-=");
424 break;
425 case BINOP_MUL:
426 strcpy (ptr, "*=");
427 break;
428 case BINOP_DIV:
429 strcpy (ptr, "/=");
430 break;
431 case BINOP_REM:
432 strcpy (ptr, "%=");
433 break;
434 case BINOP_BITWISE_AND:
435 strcpy (ptr, "&=");
436 break;
437 case BINOP_BITWISE_IOR:
438 strcpy (ptr, "|=");
439 break;
440 case BINOP_BITWISE_XOR:
441 strcpy (ptr, "^=");
442 break;
443 case BINOP_MOD: /* invalid */
444 default:
445 error (_("Invalid binary operation specified."));
446 }
447 break;
448 case BINOP_SUBSCRIPT:
449 strcpy (ptr, "[]");
450 break;
451 case BINOP_EQUAL:
452 strcpy (ptr, "==");
453 break;
454 case BINOP_NOTEQUAL:
455 strcpy (ptr, "!=");
456 break;
457 case BINOP_LESS:
458 strcpy (ptr, "<");
459 break;
460 case BINOP_GTR:
461 strcpy (ptr, ">");
462 break;
463 case BINOP_GEQ:
464 strcpy (ptr, ">=");
465 break;
466 case BINOP_LEQ:
467 strcpy (ptr, "<=");
468 break;
469 case BINOP_MOD: /* invalid */
470 default:
471 error (_("Invalid binary operation specified."));
472 }
473
474 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
475 &static_memfuncp, 2);
476
477 if (argvec[0])
478 {
479 if (static_memfuncp)
480 {
481 argvec[1] = argvec[0];
482 argvec++;
483 }
484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
485 {
486 struct type *return_type;
487
488 return_type
489 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
490 return value_zero (return_type, VALUE_LVAL (arg1));
491 }
492
493 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
494 {
495 /* Static xmethods are not supported yet. */
496 gdb_assert (static_memfuncp == 0);
497 return call_xmethod (argvec[0], 2, argvec + 1);
498 }
499 else
500 return call_function_by_hand (argvec[0], 2 - static_memfuncp,
501 argvec + 1);
502 }
503 throw_error (NOT_FOUND_ERROR,
504 _("member function %s not found"), tstr);
505 #ifdef lint
506 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
507 #endif
508 }
509
510 /* We know that arg1 is a structure, so try to find a unary user
511 defined operator that matches the operator in question.
512 Create an argument vector that calls arg1.operator @ (arg1)
513 and return that value (where '@' is (almost) any unary operator which
514 is legal for GNU C++). */
515
516 struct value *
517 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
518 {
519 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
520 struct value **argvec;
521 char *ptr;
522 char tstr[13], mangle_tstr[13];
523 int static_memfuncp, nargs;
524
525 arg1 = coerce_ref (arg1);
526
527 /* now we know that what we have to do is construct our
528 arg vector and find the right function to call it with. */
529
530 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
531 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
532
533 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
534 argvec[1] = value_addr (arg1);
535 argvec[2] = 0;
536
537 nargs = 1;
538
539 /* Make the right function name up. */
540 strcpy (tstr, "operator__");
541 ptr = tstr + 8;
542 strcpy (mangle_tstr, "__");
543 switch (op)
544 {
545 case UNOP_PREINCREMENT:
546 strcpy (ptr, "++");
547 break;
548 case UNOP_PREDECREMENT:
549 strcpy (ptr, "--");
550 break;
551 case UNOP_POSTINCREMENT:
552 strcpy (ptr, "++");
553 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
554 argvec[3] = 0;
555 nargs ++;
556 break;
557 case UNOP_POSTDECREMENT:
558 strcpy (ptr, "--");
559 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
560 argvec[3] = 0;
561 nargs ++;
562 break;
563 case UNOP_LOGICAL_NOT:
564 strcpy (ptr, "!");
565 break;
566 case UNOP_COMPLEMENT:
567 strcpy (ptr, "~");
568 break;
569 case UNOP_NEG:
570 strcpy (ptr, "-");
571 break;
572 case UNOP_PLUS:
573 strcpy (ptr, "+");
574 break;
575 case UNOP_IND:
576 strcpy (ptr, "*");
577 break;
578 case STRUCTOP_PTR:
579 strcpy (ptr, "->");
580 break;
581 default:
582 error (_("Invalid unary operation specified."));
583 }
584
585 argvec[0] = value_user_defined_op (&arg1, argvec + 1, tstr,
586 &static_memfuncp, nargs);
587
588 if (argvec[0])
589 {
590 if (static_memfuncp)
591 {
592 argvec[1] = argvec[0];
593 nargs --;
594 argvec++;
595 }
596 if (noside == EVAL_AVOID_SIDE_EFFECTS)
597 {
598 struct type *return_type;
599
600 return_type
601 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
602 return value_zero (return_type, VALUE_LVAL (arg1));
603 }
604 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
605 {
606 /* Static xmethods are not supported yet. */
607 gdb_assert (static_memfuncp == 0);
608 return call_xmethod (argvec[0], 1, argvec + 1);
609 }
610 else
611 return call_function_by_hand (argvec[0], nargs, argvec + 1);
612 }
613 throw_error (NOT_FOUND_ERROR,
614 _("member function %s not found"), tstr);
615
616 return 0; /* For lint -- never reached */
617 }
618 \f
619
620 /* Concatenate two values with the following conditions:
621
622 (1) Both values must be either bitstring values or character string
623 values and the resulting value consists of the concatenation of
624 ARG1 followed by ARG2.
625
626 or
627
628 One value must be an integer value and the other value must be
629 either a bitstring value or character string value, which is
630 to be repeated by the number of times specified by the integer
631 value.
632
633
634 (2) Boolean values are also allowed and are treated as bit string
635 values of length 1.
636
637 (3) Character values are also allowed and are treated as character
638 string values of length 1. */
639
640 struct value *
641 value_concat (struct value *arg1, struct value *arg2)
642 {
643 struct value *inval1;
644 struct value *inval2;
645 struct value *outval = NULL;
646 int inval1len, inval2len;
647 int count, idx;
648 char *ptr;
649 char inchar;
650 struct type *type1 = check_typedef (value_type (arg1));
651 struct type *type2 = check_typedef (value_type (arg2));
652 struct type *char_type;
653
654 /* First figure out if we are dealing with two values to be concatenated
655 or a repeat count and a value to be repeated. INVAL1 is set to the
656 first of two concatenated values, or the repeat count. INVAL2 is set
657 to the second of the two concatenated values or the value to be
658 repeated. */
659
660 if (TYPE_CODE (type2) == TYPE_CODE_INT)
661 {
662 struct type *tmp = type1;
663
664 type1 = tmp;
665 tmp = type2;
666 inval1 = arg2;
667 inval2 = arg1;
668 }
669 else
670 {
671 inval1 = arg1;
672 inval2 = arg2;
673 }
674
675 /* Now process the input values. */
676
677 if (TYPE_CODE (type1) == TYPE_CODE_INT)
678 {
679 /* We have a repeat count. Validate the second value and then
680 construct a value repeated that many times. */
681 if (TYPE_CODE (type2) == TYPE_CODE_STRING
682 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
683 {
684 struct cleanup *back_to;
685
686 count = longest_to_int (value_as_long (inval1));
687 inval2len = TYPE_LENGTH (type2);
688 ptr = (char *) xmalloc (count * inval2len);
689 back_to = make_cleanup (xfree, ptr);
690 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
691 {
692 char_type = type2;
693
694 inchar = (char) unpack_long (type2,
695 value_contents (inval2));
696 for (idx = 0; idx < count; idx++)
697 {
698 *(ptr + idx) = inchar;
699 }
700 }
701 else
702 {
703 char_type = TYPE_TARGET_TYPE (type2);
704
705 for (idx = 0; idx < count; idx++)
706 {
707 memcpy (ptr + (idx * inval2len), value_contents (inval2),
708 inval2len);
709 }
710 }
711 outval = value_string (ptr, count * inval2len, char_type);
712 do_cleanups (back_to);
713 }
714 else if (TYPE_CODE (type2) == TYPE_CODE_BOOL)
715 {
716 error (_("unimplemented support for boolean repeats"));
717 }
718 else
719 {
720 error (_("can't repeat values of that type"));
721 }
722 }
723 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
724 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
725 {
726 struct cleanup *back_to;
727
728 /* We have two character strings to concatenate. */
729 if (TYPE_CODE (type2) != TYPE_CODE_STRING
730 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
731 {
732 error (_("Strings can only be concatenated with other strings."));
733 }
734 inval1len = TYPE_LENGTH (type1);
735 inval2len = TYPE_LENGTH (type2);
736 ptr = (char *) xmalloc (inval1len + inval2len);
737 back_to = make_cleanup (xfree, ptr);
738 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
739 {
740 char_type = type1;
741
742 *ptr = (char) unpack_long (type1, value_contents (inval1));
743 }
744 else
745 {
746 char_type = TYPE_TARGET_TYPE (type1);
747
748 memcpy (ptr, value_contents (inval1), inval1len);
749 }
750 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
751 {
752 *(ptr + inval1len) =
753 (char) unpack_long (type2, value_contents (inval2));
754 }
755 else
756 {
757 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
758 }
759 outval = value_string (ptr, inval1len + inval2len, char_type);
760 do_cleanups (back_to);
761 }
762 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL)
763 {
764 /* We have two bitstrings to concatenate. */
765 if (TYPE_CODE (type2) != TYPE_CODE_BOOL)
766 {
767 error (_("Booleans can only be concatenated "
768 "with other bitstrings or booleans."));
769 }
770 error (_("unimplemented support for boolean concatenation."));
771 }
772 else
773 {
774 /* We don't know how to concatenate these operands. */
775 error (_("illegal operands for concatenation."));
776 }
777 return (outval);
778 }
779 \f
780 /* Integer exponentiation: V1**V2, where both arguments are
781 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
782
783 static LONGEST
784 integer_pow (LONGEST v1, LONGEST v2)
785 {
786 if (v2 < 0)
787 {
788 if (v1 == 0)
789 error (_("Attempt to raise 0 to negative power."));
790 else
791 return 0;
792 }
793 else
794 {
795 /* The Russian Peasant's Algorithm. */
796 LONGEST v;
797
798 v = 1;
799 for (;;)
800 {
801 if (v2 & 1L)
802 v *= v1;
803 v2 >>= 1;
804 if (v2 == 0)
805 return v;
806 v1 *= v1;
807 }
808 }
809 }
810
811 /* Integer exponentiation: V1**V2, where both arguments are
812 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
813
814 static ULONGEST
815 uinteger_pow (ULONGEST v1, LONGEST v2)
816 {
817 if (v2 < 0)
818 {
819 if (v1 == 0)
820 error (_("Attempt to raise 0 to negative power."));
821 else
822 return 0;
823 }
824 else
825 {
826 /* The Russian Peasant's Algorithm. */
827 ULONGEST v;
828
829 v = 1;
830 for (;;)
831 {
832 if (v2 & 1L)
833 v *= v1;
834 v2 >>= 1;
835 if (v2 == 0)
836 return v;
837 v1 *= v1;
838 }
839 }
840 }
841
842 /* Obtain decimal value of arguments for binary operation, converting from
843 other types if one of them is not decimal floating point. */
844 static void
845 value_args_as_decimal (struct value *arg1, struct value *arg2,
846 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
847 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
848 {
849 struct type *type1, *type2;
850
851 type1 = check_typedef (value_type (arg1));
852 type2 = check_typedef (value_type (arg2));
853
854 /* At least one of the arguments must be of decimal float type. */
855 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
856 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
857
858 if (TYPE_CODE (type1) == TYPE_CODE_FLT
859 || TYPE_CODE (type2) == TYPE_CODE_FLT)
860 /* The DFP extension to the C language does not allow mixing of
861 * decimal float types with other float types in expressions
862 * (see WDTR 24732, page 12). */
863 error (_("Mixing decimal floating types with "
864 "other floating types is not allowed."));
865
866 /* Obtain decimal value of arg1, converting from other types
867 if necessary. */
868
869 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
870 {
871 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
872 *len_x = TYPE_LENGTH (type1);
873 memcpy (x, value_contents (arg1), *len_x);
874 }
875 else if (is_integral_type (type1))
876 {
877 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
878 *len_x = TYPE_LENGTH (type2);
879 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
880 }
881 else
882 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
883 TYPE_NAME (type2));
884
885 /* Obtain decimal value of arg2, converting from other types
886 if necessary. */
887
888 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
889 {
890 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
891 *len_y = TYPE_LENGTH (type2);
892 memcpy (y, value_contents (arg2), *len_y);
893 }
894 else if (is_integral_type (type2))
895 {
896 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
897 *len_y = TYPE_LENGTH (type1);
898 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
899 }
900 else
901 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
902 TYPE_NAME (type2));
903 }
904
905 /* Perform a binary operation on two operands which have reasonable
906 representations as integers or floats. This includes booleans,
907 characters, integers, or floats.
908 Does not support addition and subtraction on pointers;
909 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
910
911 static struct value *
912 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
913 {
914 struct value *val;
915 struct type *type1, *type2, *result_type;
916
917 arg1 = coerce_ref (arg1);
918 arg2 = coerce_ref (arg2);
919
920 type1 = check_typedef (value_type (arg1));
921 type2 = check_typedef (value_type (arg2));
922
923 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
924 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
925 && !is_integral_type (type1))
926 || (TYPE_CODE (type2) != TYPE_CODE_FLT
927 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
928 && !is_integral_type (type2)))
929 error (_("Argument to arithmetic operation not a number or boolean."));
930
931 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
932 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
933 {
934 int len_v1, len_v2, len_v;
935 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
936 gdb_byte v1[16], v2[16];
937 gdb_byte v[16];
938
939 /* If only one type is decimal float, use its type.
940 Otherwise use the bigger type. */
941 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
942 result_type = type2;
943 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
944 result_type = type1;
945 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
946 result_type = type2;
947 else
948 result_type = type1;
949
950 len_v = TYPE_LENGTH (result_type);
951 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
952
953 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
954 v2, &len_v2, &byte_order_v2);
955
956 switch (op)
957 {
958 case BINOP_ADD:
959 case BINOP_SUB:
960 case BINOP_MUL:
961 case BINOP_DIV:
962 case BINOP_EXP:
963 decimal_binop (op, v1, len_v1, byte_order_v1,
964 v2, len_v2, byte_order_v2,
965 v, len_v, byte_order_v);
966 break;
967
968 default:
969 error (_("Operation not valid for decimal floating point number."));
970 }
971
972 val = value_from_decfloat (result_type, v);
973 }
974 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
975 || TYPE_CODE (type2) == TYPE_CODE_FLT)
976 {
977 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
978 in target format. real.c in GCC probably has the necessary
979 code. */
980 DOUBLEST v1, v2, v = 0;
981
982 v1 = value_as_double (arg1);
983 v2 = value_as_double (arg2);
984
985 switch (op)
986 {
987 case BINOP_ADD:
988 v = v1 + v2;
989 break;
990
991 case BINOP_SUB:
992 v = v1 - v2;
993 break;
994
995 case BINOP_MUL:
996 v = v1 * v2;
997 break;
998
999 case BINOP_DIV:
1000 v = v1 / v2;
1001 break;
1002
1003 case BINOP_EXP:
1004 errno = 0;
1005 v = pow (v1, v2);
1006 if (errno)
1007 error (_("Cannot perform exponentiation: %s"),
1008 safe_strerror (errno));
1009 break;
1010
1011 case BINOP_MIN:
1012 v = v1 < v2 ? v1 : v2;
1013 break;
1014
1015 case BINOP_MAX:
1016 v = v1 > v2 ? v1 : v2;
1017 break;
1018
1019 default:
1020 error (_("Integer-only operation on floating point number."));
1021 }
1022
1023 /* If only one type is float, use its type.
1024 Otherwise use the bigger type. */
1025 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
1026 result_type = type2;
1027 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
1028 result_type = type1;
1029 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1030 result_type = type2;
1031 else
1032 result_type = type1;
1033
1034 val = allocate_value (result_type);
1035 store_typed_floating (value_contents_raw (val), value_type (val), v);
1036 }
1037 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
1038 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
1039 {
1040 LONGEST v1, v2, v = 0;
1041
1042 v1 = value_as_long (arg1);
1043 v2 = value_as_long (arg2);
1044
1045 switch (op)
1046 {
1047 case BINOP_BITWISE_AND:
1048 v = v1 & v2;
1049 break;
1050
1051 case BINOP_BITWISE_IOR:
1052 v = v1 | v2;
1053 break;
1054
1055 case BINOP_BITWISE_XOR:
1056 v = v1 ^ v2;
1057 break;
1058
1059 case BINOP_EQUAL:
1060 v = v1 == v2;
1061 break;
1062
1063 case BINOP_NOTEQUAL:
1064 v = v1 != v2;
1065 break;
1066
1067 default:
1068 error (_("Invalid operation on booleans."));
1069 }
1070
1071 result_type = type1;
1072
1073 val = allocate_value (result_type);
1074 store_signed_integer (value_contents_raw (val),
1075 TYPE_LENGTH (result_type),
1076 gdbarch_byte_order (get_type_arch (result_type)),
1077 v);
1078 }
1079 else
1080 /* Integral operations here. */
1081 {
1082 /* Determine type length of the result, and if the operation should
1083 be done unsigned. For exponentiation and shift operators,
1084 use the length and type of the left operand. Otherwise,
1085 use the signedness of the operand with the greater length.
1086 If both operands are of equal length, use unsigned operation
1087 if one of the operands is unsigned. */
1088 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1089 result_type = type1;
1090 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1091 result_type = type1;
1092 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1093 result_type = type2;
1094 else if (TYPE_UNSIGNED (type1))
1095 result_type = type1;
1096 else if (TYPE_UNSIGNED (type2))
1097 result_type = type2;
1098 else
1099 result_type = type1;
1100
1101 if (TYPE_UNSIGNED (result_type))
1102 {
1103 LONGEST v2_signed = value_as_long (arg2);
1104 ULONGEST v1, v2, v = 0;
1105
1106 v1 = (ULONGEST) value_as_long (arg1);
1107 v2 = (ULONGEST) v2_signed;
1108
1109 switch (op)
1110 {
1111 case BINOP_ADD:
1112 v = v1 + v2;
1113 break;
1114
1115 case BINOP_SUB:
1116 v = v1 - v2;
1117 break;
1118
1119 case BINOP_MUL:
1120 v = v1 * v2;
1121 break;
1122
1123 case BINOP_DIV:
1124 case BINOP_INTDIV:
1125 if (v2 != 0)
1126 v = v1 / v2;
1127 else
1128 error (_("Division by zero"));
1129 break;
1130
1131 case BINOP_EXP:
1132 v = uinteger_pow (v1, v2_signed);
1133 break;
1134
1135 case BINOP_REM:
1136 if (v2 != 0)
1137 v = v1 % v2;
1138 else
1139 error (_("Division by zero"));
1140 break;
1141
1142 case BINOP_MOD:
1143 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1144 v1 mod 0 has a defined value, v1. */
1145 if (v2 == 0)
1146 {
1147 v = v1;
1148 }
1149 else
1150 {
1151 v = v1 / v2;
1152 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1153 v = v1 - (v2 * v);
1154 }
1155 break;
1156
1157 case BINOP_LSH:
1158 v = v1 << v2;
1159 break;
1160
1161 case BINOP_RSH:
1162 v = v1 >> v2;
1163 break;
1164
1165 case BINOP_BITWISE_AND:
1166 v = v1 & v2;
1167 break;
1168
1169 case BINOP_BITWISE_IOR:
1170 v = v1 | v2;
1171 break;
1172
1173 case BINOP_BITWISE_XOR:
1174 v = v1 ^ v2;
1175 break;
1176
1177 case BINOP_LOGICAL_AND:
1178 v = v1 && v2;
1179 break;
1180
1181 case BINOP_LOGICAL_OR:
1182 v = v1 || v2;
1183 break;
1184
1185 case BINOP_MIN:
1186 v = v1 < v2 ? v1 : v2;
1187 break;
1188
1189 case BINOP_MAX:
1190 v = v1 > v2 ? v1 : v2;
1191 break;
1192
1193 case BINOP_EQUAL:
1194 v = v1 == v2;
1195 break;
1196
1197 case BINOP_NOTEQUAL:
1198 v = v1 != v2;
1199 break;
1200
1201 case BINOP_LESS:
1202 v = v1 < v2;
1203 break;
1204
1205 case BINOP_GTR:
1206 v = v1 > v2;
1207 break;
1208
1209 case BINOP_LEQ:
1210 v = v1 <= v2;
1211 break;
1212
1213 case BINOP_GEQ:
1214 v = v1 >= v2;
1215 break;
1216
1217 default:
1218 error (_("Invalid binary operation on numbers."));
1219 }
1220
1221 val = allocate_value (result_type);
1222 store_unsigned_integer (value_contents_raw (val),
1223 TYPE_LENGTH (value_type (val)),
1224 gdbarch_byte_order
1225 (get_type_arch (result_type)),
1226 v);
1227 }
1228 else
1229 {
1230 LONGEST v1, v2, v = 0;
1231
1232 v1 = value_as_long (arg1);
1233 v2 = value_as_long (arg2);
1234
1235 switch (op)
1236 {
1237 case BINOP_ADD:
1238 v = v1 + v2;
1239 break;
1240
1241 case BINOP_SUB:
1242 v = v1 - v2;
1243 break;
1244
1245 case BINOP_MUL:
1246 v = v1 * v2;
1247 break;
1248
1249 case BINOP_DIV:
1250 case BINOP_INTDIV:
1251 if (v2 != 0)
1252 v = v1 / v2;
1253 else
1254 error (_("Division by zero"));
1255 break;
1256
1257 case BINOP_EXP:
1258 v = integer_pow (v1, v2);
1259 break;
1260
1261 case BINOP_REM:
1262 if (v2 != 0)
1263 v = v1 % v2;
1264 else
1265 error (_("Division by zero"));
1266 break;
1267
1268 case BINOP_MOD:
1269 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1270 X mod 0 has a defined value, X. */
1271 if (v2 == 0)
1272 {
1273 v = v1;
1274 }
1275 else
1276 {
1277 v = v1 / v2;
1278 /* Compute floor. */
1279 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1280 {
1281 v--;
1282 }
1283 v = v1 - (v2 * v);
1284 }
1285 break;
1286
1287 case BINOP_LSH:
1288 v = v1 << v2;
1289 break;
1290
1291 case BINOP_RSH:
1292 v = v1 >> v2;
1293 break;
1294
1295 case BINOP_BITWISE_AND:
1296 v = v1 & v2;
1297 break;
1298
1299 case BINOP_BITWISE_IOR:
1300 v = v1 | v2;
1301 break;
1302
1303 case BINOP_BITWISE_XOR:
1304 v = v1 ^ v2;
1305 break;
1306
1307 case BINOP_LOGICAL_AND:
1308 v = v1 && v2;
1309 break;
1310
1311 case BINOP_LOGICAL_OR:
1312 v = v1 || v2;
1313 break;
1314
1315 case BINOP_MIN:
1316 v = v1 < v2 ? v1 : v2;
1317 break;
1318
1319 case BINOP_MAX:
1320 v = v1 > v2 ? v1 : v2;
1321 break;
1322
1323 case BINOP_EQUAL:
1324 v = v1 == v2;
1325 break;
1326
1327 case BINOP_NOTEQUAL:
1328 v = v1 != v2;
1329 break;
1330
1331 case BINOP_LESS:
1332 v = v1 < v2;
1333 break;
1334
1335 case BINOP_GTR:
1336 v = v1 > v2;
1337 break;
1338
1339 case BINOP_LEQ:
1340 v = v1 <= v2;
1341 break;
1342
1343 case BINOP_GEQ:
1344 v = v1 >= v2;
1345 break;
1346
1347 default:
1348 error (_("Invalid binary operation on numbers."));
1349 }
1350
1351 val = allocate_value (result_type);
1352 store_signed_integer (value_contents_raw (val),
1353 TYPE_LENGTH (value_type (val)),
1354 gdbarch_byte_order
1355 (get_type_arch (result_type)),
1356 v);
1357 }
1358 }
1359
1360 return val;
1361 }
1362
1363 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1364 replicating SCALAR_VALUE for each element of the vector. Only scalar
1365 types that can be cast to the type of one element of the vector are
1366 acceptable. The newly created vector value is returned upon success,
1367 otherwise an error is thrown. */
1368
1369 struct value *
1370 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1371 {
1372 /* Widen the scalar to a vector. */
1373 struct type *eltype, *scalar_type;
1374 struct value *val, *elval;
1375 LONGEST low_bound, high_bound;
1376 int i;
1377
1378 CHECK_TYPEDEF (vector_type);
1379
1380 gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY
1381 && TYPE_VECTOR (vector_type));
1382
1383 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1384 error (_("Could not determine the vector bounds"));
1385
1386 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1387 elval = value_cast (eltype, scalar_value);
1388
1389 scalar_type = check_typedef (value_type (scalar_value));
1390
1391 /* If we reduced the length of the scalar then check we didn't loose any
1392 important bits. */
1393 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1394 && !value_equal (elval, scalar_value))
1395 error (_("conversion of scalar to vector involves truncation"));
1396
1397 val = allocate_value (vector_type);
1398 for (i = 0; i < high_bound - low_bound + 1; i++)
1399 /* Duplicate the contents of elval into the destination vector. */
1400 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1401 value_contents_all (elval), TYPE_LENGTH (eltype));
1402
1403 return val;
1404 }
1405
1406 /* Performs a binary operation on two vector operands by calling scalar_binop
1407 for each pair of vector components. */
1408
1409 static struct value *
1410 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1411 {
1412 struct value *val, *tmp, *mark;
1413 struct type *type1, *type2, *eltype1, *eltype2;
1414 int t1_is_vec, t2_is_vec, elsize, i;
1415 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1416
1417 type1 = check_typedef (value_type (val1));
1418 type2 = check_typedef (value_type (val2));
1419
1420 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1421 && TYPE_VECTOR (type1)) ? 1 : 0;
1422 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1423 && TYPE_VECTOR (type2)) ? 1 : 0;
1424
1425 if (!t1_is_vec || !t2_is_vec)
1426 error (_("Vector operations are only supported among vectors"));
1427
1428 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1429 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1430 error (_("Could not determine the vector bounds"));
1431
1432 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1433 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1434 elsize = TYPE_LENGTH (eltype1);
1435
1436 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1437 || elsize != TYPE_LENGTH (eltype2)
1438 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1439 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1440 error (_("Cannot perform operation on vectors with different types"));
1441
1442 val = allocate_value (type1);
1443 mark = value_mark ();
1444 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1445 {
1446 tmp = value_binop (value_subscript (val1, i),
1447 value_subscript (val2, i), op);
1448 memcpy (value_contents_writeable (val) + i * elsize,
1449 value_contents_all (tmp),
1450 elsize);
1451 }
1452 value_free_to_mark (mark);
1453
1454 return val;
1455 }
1456
1457 /* Perform a binary operation on two operands. */
1458
1459 struct value *
1460 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1461 {
1462 struct value *val;
1463 struct type *type1 = check_typedef (value_type (arg1));
1464 struct type *type2 = check_typedef (value_type (arg2));
1465 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1466 && TYPE_VECTOR (type1));
1467 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1468 && TYPE_VECTOR (type2));
1469
1470 if (!t1_is_vec && !t2_is_vec)
1471 val = scalar_binop (arg1, arg2, op);
1472 else if (t1_is_vec && t2_is_vec)
1473 val = vector_binop (arg1, arg2, op);
1474 else
1475 {
1476 /* Widen the scalar operand to a vector. */
1477 struct value **v = t1_is_vec ? &arg2 : &arg1;
1478 struct type *t = t1_is_vec ? type2 : type1;
1479
1480 if (TYPE_CODE (t) != TYPE_CODE_FLT
1481 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1482 && !is_integral_type (t))
1483 error (_("Argument to operation not a number or boolean."));
1484
1485 /* Replicate the scalar value to make a vector value. */
1486 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1487
1488 val = vector_binop (arg1, arg2, op);
1489 }
1490
1491 return val;
1492 }
1493 \f
1494 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1495
1496 int
1497 value_logical_not (struct value *arg1)
1498 {
1499 int len;
1500 const gdb_byte *p;
1501 struct type *type1;
1502
1503 arg1 = coerce_array (arg1);
1504 type1 = check_typedef (value_type (arg1));
1505
1506 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1507 return 0 == value_as_double (arg1);
1508 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1509 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1510 gdbarch_byte_order (get_type_arch (type1)));
1511
1512 len = TYPE_LENGTH (type1);
1513 p = value_contents (arg1);
1514
1515 while (--len >= 0)
1516 {
1517 if (*p++)
1518 break;
1519 }
1520
1521 return len < 0;
1522 }
1523
1524 /* Perform a comparison on two string values (whose content are not
1525 necessarily null terminated) based on their length. */
1526
1527 static int
1528 value_strcmp (struct value *arg1, struct value *arg2)
1529 {
1530 int len1 = TYPE_LENGTH (value_type (arg1));
1531 int len2 = TYPE_LENGTH (value_type (arg2));
1532 const gdb_byte *s1 = value_contents (arg1);
1533 const gdb_byte *s2 = value_contents (arg2);
1534 int i, len = len1 < len2 ? len1 : len2;
1535
1536 for (i = 0; i < len; i++)
1537 {
1538 if (s1[i] < s2[i])
1539 return -1;
1540 else if (s1[i] > s2[i])
1541 return 1;
1542 else
1543 continue;
1544 }
1545
1546 if (len1 < len2)
1547 return -1;
1548 else if (len1 > len2)
1549 return 1;
1550 else
1551 return 0;
1552 }
1553
1554 /* Simulate the C operator == by returning a 1
1555 iff ARG1 and ARG2 have equal contents. */
1556
1557 int
1558 value_equal (struct value *arg1, struct value *arg2)
1559 {
1560 int len;
1561 const gdb_byte *p1;
1562 const gdb_byte *p2;
1563 struct type *type1, *type2;
1564 enum type_code code1;
1565 enum type_code code2;
1566 int is_int1, is_int2;
1567
1568 arg1 = coerce_array (arg1);
1569 arg2 = coerce_array (arg2);
1570
1571 type1 = check_typedef (value_type (arg1));
1572 type2 = check_typedef (value_type (arg2));
1573 code1 = TYPE_CODE (type1);
1574 code2 = TYPE_CODE (type2);
1575 is_int1 = is_integral_type (type1);
1576 is_int2 = is_integral_type (type2);
1577
1578 if (is_int1 && is_int2)
1579 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1580 BINOP_EQUAL)));
1581 else if ((code1 == TYPE_CODE_FLT || is_int1)
1582 && (code2 == TYPE_CODE_FLT || is_int2))
1583 {
1584 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1585 `long double' values are returned in static storage (m68k). */
1586 DOUBLEST d = value_as_double (arg1);
1587
1588 return d == value_as_double (arg2);
1589 }
1590 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1591 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1592 {
1593 gdb_byte v1[16], v2[16];
1594 int len_v1, len_v2;
1595 enum bfd_endian byte_order_v1, byte_order_v2;
1596
1597 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1598 v2, &len_v2, &byte_order_v2);
1599
1600 return decimal_compare (v1, len_v1, byte_order_v1,
1601 v2, len_v2, byte_order_v2) == 0;
1602 }
1603
1604 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1605 is bigger. */
1606 else if (code1 == TYPE_CODE_PTR && is_int2)
1607 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1608 else if (code2 == TYPE_CODE_PTR && is_int1)
1609 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1610
1611 else if (code1 == code2
1612 && ((len = (int) TYPE_LENGTH (type1))
1613 == (int) TYPE_LENGTH (type2)))
1614 {
1615 p1 = value_contents (arg1);
1616 p2 = value_contents (arg2);
1617 while (--len >= 0)
1618 {
1619 if (*p1++ != *p2++)
1620 break;
1621 }
1622 return len < 0;
1623 }
1624 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1625 {
1626 return value_strcmp (arg1, arg2) == 0;
1627 }
1628 else
1629 {
1630 error (_("Invalid type combination in equality test."));
1631 return 0; /* For lint -- never reached. */
1632 }
1633 }
1634
1635 /* Compare values based on their raw contents. Useful for arrays since
1636 value_equal coerces them to pointers, thus comparing just the address
1637 of the array instead of its contents. */
1638
1639 int
1640 value_equal_contents (struct value *arg1, struct value *arg2)
1641 {
1642 struct type *type1, *type2;
1643
1644 type1 = check_typedef (value_type (arg1));
1645 type2 = check_typedef (value_type (arg2));
1646
1647 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1648 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1649 && memcmp (value_contents (arg1), value_contents (arg2),
1650 TYPE_LENGTH (type1)) == 0);
1651 }
1652
1653 /* Simulate the C operator < by returning 1
1654 iff ARG1's contents are less than ARG2's. */
1655
1656 int
1657 value_less (struct value *arg1, struct value *arg2)
1658 {
1659 enum type_code code1;
1660 enum type_code code2;
1661 struct type *type1, *type2;
1662 int is_int1, is_int2;
1663
1664 arg1 = coerce_array (arg1);
1665 arg2 = coerce_array (arg2);
1666
1667 type1 = check_typedef (value_type (arg1));
1668 type2 = check_typedef (value_type (arg2));
1669 code1 = TYPE_CODE (type1);
1670 code2 = TYPE_CODE (type2);
1671 is_int1 = is_integral_type (type1);
1672 is_int2 = is_integral_type (type2);
1673
1674 if (is_int1 && is_int2)
1675 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1676 BINOP_LESS)));
1677 else if ((code1 == TYPE_CODE_FLT || is_int1)
1678 && (code2 == TYPE_CODE_FLT || is_int2))
1679 {
1680 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1681 `long double' values are returned in static storage (m68k). */
1682 DOUBLEST d = value_as_double (arg1);
1683
1684 return d < value_as_double (arg2);
1685 }
1686 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1687 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1688 {
1689 gdb_byte v1[16], v2[16];
1690 int len_v1, len_v2;
1691 enum bfd_endian byte_order_v1, byte_order_v2;
1692
1693 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1694 v2, &len_v2, &byte_order_v2);
1695
1696 return decimal_compare (v1, len_v1, byte_order_v1,
1697 v2, len_v2, byte_order_v2) == -1;
1698 }
1699 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1700 return value_as_address (arg1) < value_as_address (arg2);
1701
1702 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1703 is bigger. */
1704 else if (code1 == TYPE_CODE_PTR && is_int2)
1705 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1706 else if (code2 == TYPE_CODE_PTR && is_int1)
1707 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1708 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1709 return value_strcmp (arg1, arg2) < 0;
1710 else
1711 {
1712 error (_("Invalid type combination in ordering comparison."));
1713 return 0;
1714 }
1715 }
1716 \f
1717 /* The unary operators +, - and ~. They free the argument ARG1. */
1718
1719 struct value *
1720 value_pos (struct value *arg1)
1721 {
1722 struct type *type;
1723
1724 arg1 = coerce_ref (arg1);
1725 type = check_typedef (value_type (arg1));
1726
1727 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1728 return value_from_double (type, value_as_double (arg1));
1729 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1730 return value_from_decfloat (type, value_contents (arg1));
1731 else if (is_integral_type (type))
1732 {
1733 return value_from_longest (type, value_as_long (arg1));
1734 }
1735 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1736 {
1737 struct value *val = allocate_value (type);
1738
1739 memcpy (value_contents_raw (val), value_contents (arg1),
1740 TYPE_LENGTH (type));
1741 return val;
1742 }
1743 else
1744 {
1745 error (_("Argument to positive operation not a number."));
1746 return 0; /* For lint -- never reached. */
1747 }
1748 }
1749
1750 struct value *
1751 value_neg (struct value *arg1)
1752 {
1753 struct type *type;
1754
1755 arg1 = coerce_ref (arg1);
1756 type = check_typedef (value_type (arg1));
1757
1758 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1759 {
1760 struct value *val = allocate_value (type);
1761 int len = TYPE_LENGTH (type);
1762 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long. */
1763
1764 memcpy (decbytes, value_contents (arg1), len);
1765
1766 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1767 decbytes[len-1] = decbytes[len - 1] | 0x80;
1768 else
1769 decbytes[0] = decbytes[0] | 0x80;
1770
1771 memcpy (value_contents_raw (val), decbytes, len);
1772 return val;
1773 }
1774 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1775 return value_from_double (type, -value_as_double (arg1));
1776 else if (is_integral_type (type))
1777 {
1778 return value_from_longest (type, -value_as_long (arg1));
1779 }
1780 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1781 {
1782 struct value *tmp, *val = allocate_value (type);
1783 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1784 int i;
1785 LONGEST low_bound, high_bound;
1786
1787 if (!get_array_bounds (type, &low_bound, &high_bound))
1788 error (_("Could not determine the vector bounds"));
1789
1790 for (i = 0; i < high_bound - low_bound + 1; i++)
1791 {
1792 tmp = value_neg (value_subscript (arg1, i));
1793 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1794 value_contents_all (tmp), TYPE_LENGTH (eltype));
1795 }
1796 return val;
1797 }
1798 else
1799 {
1800 error (_("Argument to negate operation not a number."));
1801 return 0; /* For lint -- never reached. */
1802 }
1803 }
1804
1805 struct value *
1806 value_complement (struct value *arg1)
1807 {
1808 struct type *type;
1809 struct value *val;
1810
1811 arg1 = coerce_ref (arg1);
1812 type = check_typedef (value_type (arg1));
1813
1814 if (is_integral_type (type))
1815 val = value_from_longest (type, ~value_as_long (arg1));
1816 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1817 {
1818 struct value *tmp;
1819 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1820 int i;
1821 LONGEST low_bound, high_bound;
1822
1823 if (!get_array_bounds (type, &low_bound, &high_bound))
1824 error (_("Could not determine the vector bounds"));
1825
1826 val = allocate_value (type);
1827 for (i = 0; i < high_bound - low_bound + 1; i++)
1828 {
1829 tmp = value_complement (value_subscript (arg1, i));
1830 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1831 value_contents_all (tmp), TYPE_LENGTH (eltype));
1832 }
1833 }
1834 else
1835 error (_("Argument to complement operation not an integer, boolean."));
1836
1837 return val;
1838 }
1839 \f
1840 /* The INDEX'th bit of SET value whose value_type is TYPE,
1841 and whose value_contents is valaddr.
1842 Return -1 if out of range, -2 other error. */
1843
1844 int
1845 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1846 {
1847 struct gdbarch *gdbarch = get_type_arch (type);
1848 LONGEST low_bound, high_bound;
1849 LONGEST word;
1850 unsigned rel_index;
1851 struct type *range = TYPE_INDEX_TYPE (type);
1852
1853 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1854 return -2;
1855 if (index < low_bound || index > high_bound)
1856 return -1;
1857 rel_index = index - low_bound;
1858 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1859 gdbarch_byte_order (gdbarch));
1860 rel_index %= TARGET_CHAR_BIT;
1861 if (gdbarch_bits_big_endian (gdbarch))
1862 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1863 return (word >> rel_index) & 1;
1864 }
1865
1866 int
1867 value_in (struct value *element, struct value *set)
1868 {
1869 int member;
1870 struct type *settype = check_typedef (value_type (set));
1871 struct type *eltype = check_typedef (value_type (element));
1872
1873 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1874 eltype = TYPE_TARGET_TYPE (eltype);
1875 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1876 error (_("Second argument of 'IN' has wrong type"));
1877 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1878 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1879 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1880 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1881 error (_("First argument of 'IN' has wrong type"));
1882 member = value_bit_index (settype, value_contents (set),
1883 value_as_long (element));
1884 if (member < 0)
1885 error (_("First argument of 'IN' not in range"));
1886 return member;
1887 }
1888
1889 void
1890 _initialize_valarith (void)
1891 {
1892 }
This page took 0.070425 seconds and 5 git commands to generate.