gdb
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "target.h"
28 #include "language.h"
29 #include "gdb_string.h"
30 #include "doublest.h"
31 #include "dfp.h"
32 #include <math.h>
33 #include "infcall.h"
34
35 /* Define whether or not the C operator '/' truncates towards zero for
36 differently signed operands (truncation direction is undefined in C). */
37
38 #ifndef TRUNCATION_TOWARDS_ZERO
39 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
40 #endif
41
42 void _initialize_valarith (void);
43 \f
44
45 /* Given a pointer, return the size of its target.
46 If the pointer type is void *, then return 1.
47 If the target type is incomplete, then error out.
48 This isn't a general purpose function, but just a
49 helper for value_ptradd.
50 */
51
52 static LONGEST
53 find_size_for_pointer_math (struct type *ptr_type)
54 {
55 LONGEST sz = -1;
56 struct type *ptr_target;
57
58 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
59 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
60
61 sz = TYPE_LENGTH (ptr_target);
62 if (sz == 0)
63 {
64 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
65 sz = 1;
66 else
67 {
68 char *name;
69
70 name = TYPE_NAME (ptr_target);
71 if (name == NULL)
72 name = TYPE_TAG_NAME (ptr_target);
73 if (name == NULL)
74 error (_("Cannot perform pointer math on incomplete types, "
75 "try casting to a known type, or void *."));
76 else
77 error (_("Cannot perform pointer math on incomplete type \"%s\", "
78 "try casting to a known type, or void *."), name);
79 }
80 }
81 return sz;
82 }
83
84 /* Given a pointer ARG1 and an integral value ARG2, return the
85 result of C-style pointer arithmetic ARG1 + ARG2. */
86
87 struct value *
88 value_ptradd (struct value *arg1, LONGEST arg2)
89 {
90 struct type *valptrtype;
91 LONGEST sz;
92
93 arg1 = coerce_array (arg1);
94 valptrtype = check_typedef (value_type (arg1));
95 sz = find_size_for_pointer_math (valptrtype);
96
97 return value_from_pointer (valptrtype,
98 value_as_address (arg1) + sz * arg2);
99 }
100
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104 LONGEST
105 value_ptrdiff (struct value *arg1, struct value *arg2)
106 {
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
116 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
117
118 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
119 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
120 error (_("\
121 First argument of `-' is a pointer and second argument is neither\n\
122 an integer nor a pointer of the same type."));
123
124 sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
125 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
126 }
127
128 /* Return the value of ARRAY[IDX].
129
130 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
131 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
132 To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
133
134 See comments in value_coerce_array() for rationale for reason for
135 doing lower bounds adjustment here rather than there.
136 FIXME: Perhaps we should validate that the index is valid and if
137 verbosity is set, warn about invalid indices (but still use them). */
138
139 struct value *
140 value_subscript (struct value *array, LONGEST index)
141 {
142 struct value *bound;
143 int c_style = current_language->c_style_arrays;
144 struct type *tarray;
145
146 array = coerce_ref (array);
147 tarray = check_typedef (value_type (array));
148
149 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
150 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
151 {
152 struct type *range_type = TYPE_INDEX_TYPE (tarray);
153 LONGEST lowerbound, upperbound;
154 get_discrete_bounds (range_type, &lowerbound, &upperbound);
155
156 if (VALUE_LVAL (array) != lval_memory)
157 return value_subscripted_rvalue (array, index, lowerbound);
158
159 if (c_style == 0)
160 {
161 if (index >= lowerbound && index <= upperbound)
162 return value_subscripted_rvalue (array, index, lowerbound);
163 /* Emit warning unless we have an array of unknown size.
164 An array of unknown size has lowerbound 0 and upperbound -1. */
165 if (upperbound > -1)
166 warning (_("array or string index out of range"));
167 /* fall doing C stuff */
168 c_style = 1;
169 }
170
171 index -= lowerbound;
172 array = value_coerce_array (array);
173 }
174
175 if (c_style)
176 return value_ind (value_ptradd (array, index));
177 else
178 error (_("not an array or string"));
179 }
180
181 /* Return the value of EXPR[IDX], expr an aggregate rvalue
182 (eg, a vector register). This routine used to promote floats
183 to doubles, but no longer does. */
184
185 struct value *
186 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
187 {
188 struct type *array_type = check_typedef (value_type (array));
189 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
190 unsigned int elt_size = TYPE_LENGTH (elt_type);
191 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
192 struct value *v;
193
194 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
195 error (_("no such vector element"));
196
197 v = allocate_value (elt_type);
198 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
199 set_value_lazy (v, 1);
200 else
201 memcpy (value_contents_writeable (v),
202 value_contents (array) + elt_offs, elt_size);
203
204 set_value_component_location (v, array);
205 VALUE_REGNUM (v) = VALUE_REGNUM (array);
206 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
207 set_value_offset (v, value_offset (array) + elt_offs);
208 return v;
209 }
210
211 /* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
212
213 struct value *
214 value_bitstring_subscript (struct type *type,
215 struct value *bitstring, LONGEST index)
216 {
217
218 struct type *bitstring_type, *range_type;
219 struct value *v;
220 int offset, byte, bit_index;
221 LONGEST lowerbound, upperbound;
222
223 bitstring_type = check_typedef (value_type (bitstring));
224 gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
225
226 range_type = TYPE_INDEX_TYPE (bitstring_type);
227 get_discrete_bounds (range_type, &lowerbound, &upperbound);
228 if (index < lowerbound || index > upperbound)
229 error (_("bitstring index out of range"));
230
231 index -= lowerbound;
232 offset = index / TARGET_CHAR_BIT;
233 byte = *((char *) value_contents (bitstring) + offset);
234
235 bit_index = index % TARGET_CHAR_BIT;
236 byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
237 TARGET_CHAR_BIT - 1 - bit_index : bit_index);
238
239 v = value_from_longest (type, byte & 1);
240
241 set_value_bitpos (v, bit_index);
242 set_value_bitsize (v, 1);
243 set_value_component_location (v, bitstring);
244 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
245
246 set_value_offset (v, offset + value_offset (bitstring));
247
248 return v;
249 }
250
251 \f
252 /* Check to see if either argument is a structure, or a reference to
253 one. This is called so we know whether to go ahead with the normal
254 binop or look for a user defined function instead.
255
256 For now, we do not overload the `=' operator. */
257
258 int
259 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
260 {
261 struct type *type1, *type2;
262 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
263 return 0;
264
265 type1 = check_typedef (value_type (arg1));
266 if (TYPE_CODE (type1) == TYPE_CODE_REF)
267 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
268
269 type2 = check_typedef (value_type (arg2));
270 if (TYPE_CODE (type2) == TYPE_CODE_REF)
271 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
272
273 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
274 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
275 }
276
277 /* Check to see if argument is a structure. This is called so
278 we know whether to go ahead with the normal unop or look for a
279 user defined function instead.
280
281 For now, we do not overload the `&' operator. */
282
283 int
284 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
285 {
286 struct type *type1;
287 if (op == UNOP_ADDR)
288 return 0;
289 type1 = check_typedef (value_type (arg1));
290 for (;;)
291 {
292 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
293 return 1;
294 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
295 type1 = TYPE_TARGET_TYPE (type1);
296 else
297 return 0;
298 }
299 }
300
301 /* We know either arg1 or arg2 is a structure, so try to find the right
302 user defined function. Create an argument vector that calls
303 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
304 binary operator which is legal for GNU C++).
305
306 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
307 is the opcode saying how to modify it. Otherwise, OTHEROP is
308 unused. */
309
310 struct value *
311 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
312 enum exp_opcode otherop, enum noside noside)
313 {
314 struct value **argvec;
315 char *ptr;
316 char tstr[13];
317 int static_memfuncp;
318
319 arg1 = coerce_ref (arg1);
320 arg2 = coerce_ref (arg2);
321
322 /* now we know that what we have to do is construct our
323 arg vector and find the right function to call it with. */
324
325 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
326 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
327
328 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
329 argvec[1] = value_addr (arg1);
330 argvec[2] = arg2;
331 argvec[3] = 0;
332
333 /* make the right function name up */
334 strcpy (tstr, "operator__");
335 ptr = tstr + 8;
336 switch (op)
337 {
338 case BINOP_ADD:
339 strcpy (ptr, "+");
340 break;
341 case BINOP_SUB:
342 strcpy (ptr, "-");
343 break;
344 case BINOP_MUL:
345 strcpy (ptr, "*");
346 break;
347 case BINOP_DIV:
348 strcpy (ptr, "/");
349 break;
350 case BINOP_REM:
351 strcpy (ptr, "%");
352 break;
353 case BINOP_LSH:
354 strcpy (ptr, "<<");
355 break;
356 case BINOP_RSH:
357 strcpy (ptr, ">>");
358 break;
359 case BINOP_BITWISE_AND:
360 strcpy (ptr, "&");
361 break;
362 case BINOP_BITWISE_IOR:
363 strcpy (ptr, "|");
364 break;
365 case BINOP_BITWISE_XOR:
366 strcpy (ptr, "^");
367 break;
368 case BINOP_LOGICAL_AND:
369 strcpy (ptr, "&&");
370 break;
371 case BINOP_LOGICAL_OR:
372 strcpy (ptr, "||");
373 break;
374 case BINOP_MIN:
375 strcpy (ptr, "<?");
376 break;
377 case BINOP_MAX:
378 strcpy (ptr, ">?");
379 break;
380 case BINOP_ASSIGN:
381 strcpy (ptr, "=");
382 break;
383 case BINOP_ASSIGN_MODIFY:
384 switch (otherop)
385 {
386 case BINOP_ADD:
387 strcpy (ptr, "+=");
388 break;
389 case BINOP_SUB:
390 strcpy (ptr, "-=");
391 break;
392 case BINOP_MUL:
393 strcpy (ptr, "*=");
394 break;
395 case BINOP_DIV:
396 strcpy (ptr, "/=");
397 break;
398 case BINOP_REM:
399 strcpy (ptr, "%=");
400 break;
401 case BINOP_BITWISE_AND:
402 strcpy (ptr, "&=");
403 break;
404 case BINOP_BITWISE_IOR:
405 strcpy (ptr, "|=");
406 break;
407 case BINOP_BITWISE_XOR:
408 strcpy (ptr, "^=");
409 break;
410 case BINOP_MOD: /* invalid */
411 default:
412 error (_("Invalid binary operation specified."));
413 }
414 break;
415 case BINOP_SUBSCRIPT:
416 strcpy (ptr, "[]");
417 break;
418 case BINOP_EQUAL:
419 strcpy (ptr, "==");
420 break;
421 case BINOP_NOTEQUAL:
422 strcpy (ptr, "!=");
423 break;
424 case BINOP_LESS:
425 strcpy (ptr, "<");
426 break;
427 case BINOP_GTR:
428 strcpy (ptr, ">");
429 break;
430 case BINOP_GEQ:
431 strcpy (ptr, ">=");
432 break;
433 case BINOP_LEQ:
434 strcpy (ptr, "<=");
435 break;
436 case BINOP_MOD: /* invalid */
437 default:
438 error (_("Invalid binary operation specified."));
439 }
440
441 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
442
443 if (argvec[0])
444 {
445 if (static_memfuncp)
446 {
447 argvec[1] = argvec[0];
448 argvec++;
449 }
450 if (noside == EVAL_AVOID_SIDE_EFFECTS)
451 {
452 struct type *return_type;
453 return_type
454 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
455 return value_zero (return_type, VALUE_LVAL (arg1));
456 }
457 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
458 }
459 error (_("member function %s not found"), tstr);
460 #ifdef lint
461 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
462 #endif
463 }
464
465 /* We know that arg1 is a structure, so try to find a unary user
466 defined operator that matches the operator in question.
467 Create an argument vector that calls arg1.operator @ (arg1)
468 and return that value (where '@' is (almost) any unary operator which
469 is legal for GNU C++). */
470
471 struct value *
472 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
473 {
474 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
475 struct value **argvec;
476 char *ptr, *mangle_ptr;
477 char tstr[13], mangle_tstr[13];
478 int static_memfuncp, nargs;
479
480 arg1 = coerce_ref (arg1);
481
482 /* now we know that what we have to do is construct our
483 arg vector and find the right function to call it with. */
484
485 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
486 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
487
488 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
489 argvec[1] = value_addr (arg1);
490 argvec[2] = 0;
491
492 nargs = 1;
493
494 /* make the right function name up */
495 strcpy (tstr, "operator__");
496 ptr = tstr + 8;
497 strcpy (mangle_tstr, "__");
498 mangle_ptr = mangle_tstr + 2;
499 switch (op)
500 {
501 case UNOP_PREINCREMENT:
502 strcpy (ptr, "++");
503 break;
504 case UNOP_PREDECREMENT:
505 strcpy (ptr, "--");
506 break;
507 case UNOP_POSTINCREMENT:
508 strcpy (ptr, "++");
509 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
510 argvec[3] = 0;
511 nargs ++;
512 break;
513 case UNOP_POSTDECREMENT:
514 strcpy (ptr, "--");
515 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
516 argvec[3] = 0;
517 nargs ++;
518 break;
519 case UNOP_LOGICAL_NOT:
520 strcpy (ptr, "!");
521 break;
522 case UNOP_COMPLEMENT:
523 strcpy (ptr, "~");
524 break;
525 case UNOP_NEG:
526 strcpy (ptr, "-");
527 break;
528 case UNOP_PLUS:
529 strcpy (ptr, "+");
530 break;
531 case UNOP_IND:
532 strcpy (ptr, "*");
533 break;
534 default:
535 error (_("Invalid unary operation specified."));
536 }
537
538 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
539
540 if (argvec[0])
541 {
542 if (static_memfuncp)
543 {
544 argvec[1] = argvec[0];
545 nargs --;
546 argvec++;
547 }
548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
549 {
550 struct type *return_type;
551 return_type
552 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
553 return value_zero (return_type, VALUE_LVAL (arg1));
554 }
555 return call_function_by_hand (argvec[0], nargs, argvec + 1);
556 }
557 error (_("member function %s not found"), tstr);
558 return 0; /* For lint -- never reached */
559 }
560 \f
561
562 /* Concatenate two values with the following conditions:
563
564 (1) Both values must be either bitstring values or character string
565 values and the resulting value consists of the concatenation of
566 ARG1 followed by ARG2.
567
568 or
569
570 One value must be an integer value and the other value must be
571 either a bitstring value or character string value, which is
572 to be repeated by the number of times specified by the integer
573 value.
574
575
576 (2) Boolean values are also allowed and are treated as bit string
577 values of length 1.
578
579 (3) Character values are also allowed and are treated as character
580 string values of length 1.
581 */
582
583 struct value *
584 value_concat (struct value *arg1, struct value *arg2)
585 {
586 struct value *inval1;
587 struct value *inval2;
588 struct value *outval = NULL;
589 int inval1len, inval2len;
590 int count, idx;
591 char *ptr;
592 char inchar;
593 struct type *type1 = check_typedef (value_type (arg1));
594 struct type *type2 = check_typedef (value_type (arg2));
595 struct type *char_type;
596
597 /* First figure out if we are dealing with two values to be concatenated
598 or a repeat count and a value to be repeated. INVAL1 is set to the
599 first of two concatenated values, or the repeat count. INVAL2 is set
600 to the second of the two concatenated values or the value to be
601 repeated. */
602
603 if (TYPE_CODE (type2) == TYPE_CODE_INT)
604 {
605 struct type *tmp = type1;
606 type1 = tmp;
607 tmp = type2;
608 inval1 = arg2;
609 inval2 = arg1;
610 }
611 else
612 {
613 inval1 = arg1;
614 inval2 = arg2;
615 }
616
617 /* Now process the input values. */
618
619 if (TYPE_CODE (type1) == TYPE_CODE_INT)
620 {
621 /* We have a repeat count. Validate the second value and then
622 construct a value repeated that many times. */
623 if (TYPE_CODE (type2) == TYPE_CODE_STRING
624 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
625 {
626 count = longest_to_int (value_as_long (inval1));
627 inval2len = TYPE_LENGTH (type2);
628 ptr = (char *) alloca (count * inval2len);
629 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
630 {
631 char_type = type2;
632 inchar = (char) unpack_long (type2,
633 value_contents (inval2));
634 for (idx = 0; idx < count; idx++)
635 {
636 *(ptr + idx) = inchar;
637 }
638 }
639 else
640 {
641 char_type = TYPE_TARGET_TYPE (type2);
642 for (idx = 0; idx < count; idx++)
643 {
644 memcpy (ptr + (idx * inval2len), value_contents (inval2),
645 inval2len);
646 }
647 }
648 outval = value_string (ptr, count * inval2len, char_type);
649 }
650 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
651 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
652 {
653 error (_("unimplemented support for bitstring/boolean repeats"));
654 }
655 else
656 {
657 error (_("can't repeat values of that type"));
658 }
659 }
660 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
661 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
662 {
663 /* We have two character strings to concatenate. */
664 if (TYPE_CODE (type2) != TYPE_CODE_STRING
665 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
666 {
667 error (_("Strings can only be concatenated with other strings."));
668 }
669 inval1len = TYPE_LENGTH (type1);
670 inval2len = TYPE_LENGTH (type2);
671 ptr = (char *) alloca (inval1len + inval2len);
672 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
673 {
674 char_type = type1;
675 *ptr = (char) unpack_long (type1, value_contents (inval1));
676 }
677 else
678 {
679 char_type = TYPE_TARGET_TYPE (type1);
680 memcpy (ptr, value_contents (inval1), inval1len);
681 }
682 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
683 {
684 *(ptr + inval1len) =
685 (char) unpack_long (type2, value_contents (inval2));
686 }
687 else
688 {
689 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
690 }
691 outval = value_string (ptr, inval1len + inval2len, char_type);
692 }
693 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
694 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
695 {
696 /* We have two bitstrings to concatenate. */
697 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
698 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
699 {
700 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
701 }
702 error (_("unimplemented support for bitstring/boolean concatenation."));
703 }
704 else
705 {
706 /* We don't know how to concatenate these operands. */
707 error (_("illegal operands for concatenation."));
708 }
709 return (outval);
710 }
711 \f
712 /* Integer exponentiation: V1**V2, where both arguments are
713 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
714 static LONGEST
715 integer_pow (LONGEST v1, LONGEST v2)
716 {
717 if (v2 < 0)
718 {
719 if (v1 == 0)
720 error (_("Attempt to raise 0 to negative power."));
721 else
722 return 0;
723 }
724 else
725 {
726 /* The Russian Peasant's Algorithm */
727 LONGEST v;
728
729 v = 1;
730 for (;;)
731 {
732 if (v2 & 1L)
733 v *= v1;
734 v2 >>= 1;
735 if (v2 == 0)
736 return v;
737 v1 *= v1;
738 }
739 }
740 }
741
742 /* Integer exponentiation: V1**V2, where both arguments are
743 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
744 static ULONGEST
745 uinteger_pow (ULONGEST v1, LONGEST v2)
746 {
747 if (v2 < 0)
748 {
749 if (v1 == 0)
750 error (_("Attempt to raise 0 to negative power."));
751 else
752 return 0;
753 }
754 else
755 {
756 /* The Russian Peasant's Algorithm */
757 ULONGEST v;
758
759 v = 1;
760 for (;;)
761 {
762 if (v2 & 1L)
763 v *= v1;
764 v2 >>= 1;
765 if (v2 == 0)
766 return v;
767 v1 *= v1;
768 }
769 }
770 }
771
772 /* Obtain decimal value of arguments for binary operation, converting from
773 other types if one of them is not decimal floating point. */
774 static void
775 value_args_as_decimal (struct value *arg1, struct value *arg2,
776 gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
777 gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
778 {
779 struct type *type1, *type2;
780
781 type1 = check_typedef (value_type (arg1));
782 type2 = check_typedef (value_type (arg2));
783
784 /* At least one of the arguments must be of decimal float type. */
785 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
786 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
787
788 if (TYPE_CODE (type1) == TYPE_CODE_FLT
789 || TYPE_CODE (type2) == TYPE_CODE_FLT)
790 /* The DFP extension to the C language does not allow mixing of
791 * decimal float types with other float types in expressions
792 * (see WDTR 24732, page 12). */
793 error (_("Mixing decimal floating types with other floating types is not allowed."));
794
795 /* Obtain decimal value of arg1, converting from other types
796 if necessary. */
797
798 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
799 {
800 *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
801 *len_x = TYPE_LENGTH (type1);
802 memcpy (x, value_contents (arg1), *len_x);
803 }
804 else if (is_integral_type (type1))
805 {
806 *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
807 *len_x = TYPE_LENGTH (type2);
808 decimal_from_integral (arg1, x, *len_x, *byte_order_x);
809 }
810 else
811 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
812 TYPE_NAME (type2));
813
814 /* Obtain decimal value of arg2, converting from other types
815 if necessary. */
816
817 if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
818 {
819 *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
820 *len_y = TYPE_LENGTH (type2);
821 memcpy (y, value_contents (arg2), *len_y);
822 }
823 else if (is_integral_type (type2))
824 {
825 *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
826 *len_y = TYPE_LENGTH (type1);
827 decimal_from_integral (arg2, y, *len_y, *byte_order_y);
828 }
829 else
830 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
831 TYPE_NAME (type2));
832 }
833
834 /* Perform a binary operation on two operands which have reasonable
835 representations as integers or floats. This includes booleans,
836 characters, integers, or floats.
837 Does not support addition and subtraction on pointers;
838 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
839
840 struct value *
841 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
842 {
843 struct value *val;
844 struct type *type1, *type2, *result_type;
845
846 arg1 = coerce_ref (arg1);
847 arg2 = coerce_ref (arg2);
848
849 type1 = check_typedef (value_type (arg1));
850 type2 = check_typedef (value_type (arg2));
851
852 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
853 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
854 && !is_integral_type (type1))
855 || (TYPE_CODE (type2) != TYPE_CODE_FLT
856 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
857 && !is_integral_type (type2)))
858 error (_("Argument to arithmetic operation not a number or boolean."));
859
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
861 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
862 {
863 struct type *v_type;
864 int len_v1, len_v2, len_v;
865 enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
866 gdb_byte v1[16], v2[16];
867 gdb_byte v[16];
868
869 /* If only one type is decimal float, use its type.
870 Otherwise use the bigger type. */
871 if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
872 result_type = type2;
873 else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
874 result_type = type1;
875 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
876 result_type = type2;
877 else
878 result_type = type1;
879
880 len_v = TYPE_LENGTH (result_type);
881 byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
882
883 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
884 v2, &len_v2, &byte_order_v2);
885
886 switch (op)
887 {
888 case BINOP_ADD:
889 case BINOP_SUB:
890 case BINOP_MUL:
891 case BINOP_DIV:
892 case BINOP_EXP:
893 decimal_binop (op, v1, len_v1, byte_order_v1,
894 v2, len_v2, byte_order_v2,
895 v, len_v, byte_order_v);
896 break;
897
898 default:
899 error (_("Operation not valid for decimal floating point number."));
900 }
901
902 val = value_from_decfloat (result_type, v);
903 }
904 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
905 || TYPE_CODE (type2) == TYPE_CODE_FLT)
906 {
907 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
908 in target format. real.c in GCC probably has the necessary
909 code. */
910 DOUBLEST v1, v2, v = 0;
911 v1 = value_as_double (arg1);
912 v2 = value_as_double (arg2);
913
914 switch (op)
915 {
916 case BINOP_ADD:
917 v = v1 + v2;
918 break;
919
920 case BINOP_SUB:
921 v = v1 - v2;
922 break;
923
924 case BINOP_MUL:
925 v = v1 * v2;
926 break;
927
928 case BINOP_DIV:
929 v = v1 / v2;
930 break;
931
932 case BINOP_EXP:
933 errno = 0;
934 v = pow (v1, v2);
935 if (errno)
936 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
937 break;
938
939 case BINOP_MIN:
940 v = v1 < v2 ? v1 : v2;
941 break;
942
943 case BINOP_MAX:
944 v = v1 > v2 ? v1 : v2;
945 break;
946
947 default:
948 error (_("Integer-only operation on floating point number."));
949 }
950
951 /* If only one type is float, use its type.
952 Otherwise use the bigger type. */
953 if (TYPE_CODE (type1) != TYPE_CODE_FLT)
954 result_type = type2;
955 else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
956 result_type = type1;
957 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
958 result_type = type2;
959 else
960 result_type = type1;
961
962 val = allocate_value (result_type);
963 store_typed_floating (value_contents_raw (val), value_type (val), v);
964 }
965 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
966 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
967 {
968 LONGEST v1, v2, v = 0;
969 v1 = value_as_long (arg1);
970 v2 = value_as_long (arg2);
971
972 switch (op)
973 {
974 case BINOP_BITWISE_AND:
975 v = v1 & v2;
976 break;
977
978 case BINOP_BITWISE_IOR:
979 v = v1 | v2;
980 break;
981
982 case BINOP_BITWISE_XOR:
983 v = v1 ^ v2;
984 break;
985
986 case BINOP_EQUAL:
987 v = v1 == v2;
988 break;
989
990 case BINOP_NOTEQUAL:
991 v = v1 != v2;
992 break;
993
994 default:
995 error (_("Invalid operation on booleans."));
996 }
997
998 result_type = type1;
999
1000 val = allocate_value (result_type);
1001 store_signed_integer (value_contents_raw (val),
1002 TYPE_LENGTH (result_type),
1003 gdbarch_byte_order (get_type_arch (result_type)),
1004 v);
1005 }
1006 else
1007 /* Integral operations here. */
1008 {
1009 /* Determine type length of the result, and if the operation should
1010 be done unsigned. For exponentiation and shift operators,
1011 use the length and type of the left operand. Otherwise,
1012 use the signedness of the operand with the greater length.
1013 If both operands are of equal length, use unsigned operation
1014 if one of the operands is unsigned. */
1015 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1016 result_type = type1;
1017 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1018 result_type = type1;
1019 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1020 result_type = type2;
1021 else if (TYPE_UNSIGNED (type1))
1022 result_type = type1;
1023 else if (TYPE_UNSIGNED (type2))
1024 result_type = type2;
1025 else
1026 result_type = type1;
1027
1028 if (TYPE_UNSIGNED (result_type))
1029 {
1030 LONGEST v2_signed = value_as_long (arg2);
1031 ULONGEST v1, v2, v = 0;
1032 v1 = (ULONGEST) value_as_long (arg1);
1033 v2 = (ULONGEST) v2_signed;
1034
1035 switch (op)
1036 {
1037 case BINOP_ADD:
1038 v = v1 + v2;
1039 break;
1040
1041 case BINOP_SUB:
1042 v = v1 - v2;
1043 break;
1044
1045 case BINOP_MUL:
1046 v = v1 * v2;
1047 break;
1048
1049 case BINOP_DIV:
1050 case BINOP_INTDIV:
1051 if (v2 != 0)
1052 v = v1 / v2;
1053 else
1054 error (_("Division by zero"));
1055 break;
1056
1057 case BINOP_EXP:
1058 v = uinteger_pow (v1, v2_signed);
1059 break;
1060
1061 case BINOP_REM:
1062 if (v2 != 0)
1063 v = v1 % v2;
1064 else
1065 error (_("Division by zero"));
1066 break;
1067
1068 case BINOP_MOD:
1069 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1070 v1 mod 0 has a defined value, v1. */
1071 if (v2 == 0)
1072 {
1073 v = v1;
1074 }
1075 else
1076 {
1077 v = v1 / v2;
1078 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1079 v = v1 - (v2 * v);
1080 }
1081 break;
1082
1083 case BINOP_LSH:
1084 v = v1 << v2;
1085 break;
1086
1087 case BINOP_RSH:
1088 v = v1 >> v2;
1089 break;
1090
1091 case BINOP_BITWISE_AND:
1092 v = v1 & v2;
1093 break;
1094
1095 case BINOP_BITWISE_IOR:
1096 v = v1 | v2;
1097 break;
1098
1099 case BINOP_BITWISE_XOR:
1100 v = v1 ^ v2;
1101 break;
1102
1103 case BINOP_LOGICAL_AND:
1104 v = v1 && v2;
1105 break;
1106
1107 case BINOP_LOGICAL_OR:
1108 v = v1 || v2;
1109 break;
1110
1111 case BINOP_MIN:
1112 v = v1 < v2 ? v1 : v2;
1113 break;
1114
1115 case BINOP_MAX:
1116 v = v1 > v2 ? v1 : v2;
1117 break;
1118
1119 case BINOP_EQUAL:
1120 v = v1 == v2;
1121 break;
1122
1123 case BINOP_NOTEQUAL:
1124 v = v1 != v2;
1125 break;
1126
1127 case BINOP_LESS:
1128 v = v1 < v2;
1129 break;
1130
1131 case BINOP_GTR:
1132 v = v1 > v2;
1133 break;
1134
1135 case BINOP_LEQ:
1136 v = v1 <= v2;
1137 break;
1138
1139 case BINOP_GEQ:
1140 v = v1 >= v2;
1141 break;
1142
1143 default:
1144 error (_("Invalid binary operation on numbers."));
1145 }
1146
1147 val = allocate_value (result_type);
1148 store_unsigned_integer (value_contents_raw (val),
1149 TYPE_LENGTH (value_type (val)),
1150 gdbarch_byte_order
1151 (get_type_arch (result_type)),
1152 v);
1153 }
1154 else
1155 {
1156 LONGEST v1, v2, v = 0;
1157 v1 = value_as_long (arg1);
1158 v2 = value_as_long (arg2);
1159
1160 switch (op)
1161 {
1162 case BINOP_ADD:
1163 v = v1 + v2;
1164 break;
1165
1166 case BINOP_SUB:
1167 v = v1 - v2;
1168 break;
1169
1170 case BINOP_MUL:
1171 v = v1 * v2;
1172 break;
1173
1174 case BINOP_DIV:
1175 case BINOP_INTDIV:
1176 if (v2 != 0)
1177 v = v1 / v2;
1178 else
1179 error (_("Division by zero"));
1180 break;
1181
1182 case BINOP_EXP:
1183 v = integer_pow (v1, v2);
1184 break;
1185
1186 case BINOP_REM:
1187 if (v2 != 0)
1188 v = v1 % v2;
1189 else
1190 error (_("Division by zero"));
1191 break;
1192
1193 case BINOP_MOD:
1194 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1195 X mod 0 has a defined value, X. */
1196 if (v2 == 0)
1197 {
1198 v = v1;
1199 }
1200 else
1201 {
1202 v = v1 / v2;
1203 /* Compute floor. */
1204 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1205 {
1206 v--;
1207 }
1208 v = v1 - (v2 * v);
1209 }
1210 break;
1211
1212 case BINOP_LSH:
1213 v = v1 << v2;
1214 break;
1215
1216 case BINOP_RSH:
1217 v = v1 >> v2;
1218 break;
1219
1220 case BINOP_BITWISE_AND:
1221 v = v1 & v2;
1222 break;
1223
1224 case BINOP_BITWISE_IOR:
1225 v = v1 | v2;
1226 break;
1227
1228 case BINOP_BITWISE_XOR:
1229 v = v1 ^ v2;
1230 break;
1231
1232 case BINOP_LOGICAL_AND:
1233 v = v1 && v2;
1234 break;
1235
1236 case BINOP_LOGICAL_OR:
1237 v = v1 || v2;
1238 break;
1239
1240 case BINOP_MIN:
1241 v = v1 < v2 ? v1 : v2;
1242 break;
1243
1244 case BINOP_MAX:
1245 v = v1 > v2 ? v1 : v2;
1246 break;
1247
1248 case BINOP_EQUAL:
1249 v = v1 == v2;
1250 break;
1251
1252 case BINOP_NOTEQUAL:
1253 v = v1 != v2;
1254 break;
1255
1256 case BINOP_LESS:
1257 v = v1 < v2;
1258 break;
1259
1260 case BINOP_GTR:
1261 v = v1 > v2;
1262 break;
1263
1264 case BINOP_LEQ:
1265 v = v1 <= v2;
1266 break;
1267
1268 case BINOP_GEQ:
1269 v = v1 >= v2;
1270 break;
1271
1272 default:
1273 error (_("Invalid binary operation on numbers."));
1274 }
1275
1276 val = allocate_value (result_type);
1277 store_signed_integer (value_contents_raw (val),
1278 TYPE_LENGTH (value_type (val)),
1279 gdbarch_byte_order
1280 (get_type_arch (result_type)),
1281 v);
1282 }
1283 }
1284
1285 return val;
1286 }
1287 \f
1288 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1289
1290 int
1291 value_logical_not (struct value *arg1)
1292 {
1293 int len;
1294 const gdb_byte *p;
1295 struct type *type1;
1296
1297 arg1 = coerce_array (arg1);
1298 type1 = check_typedef (value_type (arg1));
1299
1300 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1301 return 0 == value_as_double (arg1);
1302 else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
1303 return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
1304 gdbarch_byte_order (get_type_arch (type1)));
1305
1306 len = TYPE_LENGTH (type1);
1307 p = value_contents (arg1);
1308
1309 while (--len >= 0)
1310 {
1311 if (*p++)
1312 break;
1313 }
1314
1315 return len < 0;
1316 }
1317
1318 /* Perform a comparison on two string values (whose content are not
1319 necessarily null terminated) based on their length */
1320
1321 static int
1322 value_strcmp (struct value *arg1, struct value *arg2)
1323 {
1324 int len1 = TYPE_LENGTH (value_type (arg1));
1325 int len2 = TYPE_LENGTH (value_type (arg2));
1326 const gdb_byte *s1 = value_contents (arg1);
1327 const gdb_byte *s2 = value_contents (arg2);
1328 int i, len = len1 < len2 ? len1 : len2;
1329
1330 for (i = 0; i < len; i++)
1331 {
1332 if (s1[i] < s2[i])
1333 return -1;
1334 else if (s1[i] > s2[i])
1335 return 1;
1336 else
1337 continue;
1338 }
1339
1340 if (len1 < len2)
1341 return -1;
1342 else if (len1 > len2)
1343 return 1;
1344 else
1345 return 0;
1346 }
1347
1348 /* Simulate the C operator == by returning a 1
1349 iff ARG1 and ARG2 have equal contents. */
1350
1351 int
1352 value_equal (struct value *arg1, struct value *arg2)
1353 {
1354 int len;
1355 const gdb_byte *p1;
1356 const gdb_byte *p2;
1357 struct type *type1, *type2;
1358 enum type_code code1;
1359 enum type_code code2;
1360 int is_int1, is_int2;
1361
1362 arg1 = coerce_array (arg1);
1363 arg2 = coerce_array (arg2);
1364
1365 type1 = check_typedef (value_type (arg1));
1366 type2 = check_typedef (value_type (arg2));
1367 code1 = TYPE_CODE (type1);
1368 code2 = TYPE_CODE (type2);
1369 is_int1 = is_integral_type (type1);
1370 is_int2 = is_integral_type (type2);
1371
1372 if (is_int1 && is_int2)
1373 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1374 BINOP_EQUAL)));
1375 else if ((code1 == TYPE_CODE_FLT || is_int1)
1376 && (code2 == TYPE_CODE_FLT || is_int2))
1377 {
1378 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1379 `long double' values are returned in static storage (m68k). */
1380 DOUBLEST d = value_as_double (arg1);
1381 return d == value_as_double (arg2);
1382 }
1383 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1384 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1385 {
1386 gdb_byte v1[16], v2[16];
1387 int len_v1, len_v2;
1388 enum bfd_endian byte_order_v1, byte_order_v2;
1389
1390 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1391 v2, &len_v2, &byte_order_v2);
1392
1393 return decimal_compare (v1, len_v1, byte_order_v1,
1394 v2, len_v2, byte_order_v2) == 0;
1395 }
1396
1397 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1398 is bigger. */
1399 else if (code1 == TYPE_CODE_PTR && is_int2)
1400 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1401 else if (code2 == TYPE_CODE_PTR && is_int1)
1402 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1403
1404 else if (code1 == code2
1405 && ((len = (int) TYPE_LENGTH (type1))
1406 == (int) TYPE_LENGTH (type2)))
1407 {
1408 p1 = value_contents (arg1);
1409 p2 = value_contents (arg2);
1410 while (--len >= 0)
1411 {
1412 if (*p1++ != *p2++)
1413 break;
1414 }
1415 return len < 0;
1416 }
1417 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1418 {
1419 return value_strcmp (arg1, arg2) == 0;
1420 }
1421 else
1422 {
1423 error (_("Invalid type combination in equality test."));
1424 return 0; /* For lint -- never reached */
1425 }
1426 }
1427
1428 /* Compare values based on their raw contents. Useful for arrays since
1429 value_equal coerces them to pointers, thus comparing just the address
1430 of the array instead of its contents. */
1431
1432 int
1433 value_equal_contents (struct value *arg1, struct value *arg2)
1434 {
1435 struct type *type1, *type2;
1436
1437 type1 = check_typedef (value_type (arg1));
1438 type2 = check_typedef (value_type (arg2));
1439
1440 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1441 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1442 && memcmp (value_contents (arg1), value_contents (arg2),
1443 TYPE_LENGTH (type1)) == 0);
1444 }
1445
1446 /* Simulate the C operator < by returning 1
1447 iff ARG1's contents are less than ARG2's. */
1448
1449 int
1450 value_less (struct value *arg1, struct value *arg2)
1451 {
1452 enum type_code code1;
1453 enum type_code code2;
1454 struct type *type1, *type2;
1455 int is_int1, is_int2;
1456
1457 arg1 = coerce_array (arg1);
1458 arg2 = coerce_array (arg2);
1459
1460 type1 = check_typedef (value_type (arg1));
1461 type2 = check_typedef (value_type (arg2));
1462 code1 = TYPE_CODE (type1);
1463 code2 = TYPE_CODE (type2);
1464 is_int1 = is_integral_type (type1);
1465 is_int2 = is_integral_type (type2);
1466
1467 if (is_int1 && is_int2)
1468 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1469 BINOP_LESS)));
1470 else if ((code1 == TYPE_CODE_FLT || is_int1)
1471 && (code2 == TYPE_CODE_FLT || is_int2))
1472 {
1473 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1474 `long double' values are returned in static storage (m68k). */
1475 DOUBLEST d = value_as_double (arg1);
1476 return d < value_as_double (arg2);
1477 }
1478 else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
1479 && (code2 == TYPE_CODE_DECFLOAT || is_int2))
1480 {
1481 gdb_byte v1[16], v2[16];
1482 int len_v1, len_v2;
1483 enum bfd_endian byte_order_v1, byte_order_v2;
1484
1485 value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
1486 v2, &len_v2, &byte_order_v2);
1487
1488 return decimal_compare (v1, len_v1, byte_order_v1,
1489 v2, len_v2, byte_order_v2) == -1;
1490 }
1491 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1492 return value_as_address (arg1) < value_as_address (arg2);
1493
1494 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1495 is bigger. */
1496 else if (code1 == TYPE_CODE_PTR && is_int2)
1497 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1498 else if (code2 == TYPE_CODE_PTR && is_int1)
1499 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1500 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1501 return value_strcmp (arg1, arg2) < 0;
1502 else
1503 {
1504 error (_("Invalid type combination in ordering comparison."));
1505 return 0;
1506 }
1507 }
1508 \f
1509 /* The unary operators +, - and ~. They free the argument ARG1. */
1510
1511 struct value *
1512 value_pos (struct value *arg1)
1513 {
1514 struct type *type;
1515
1516 arg1 = coerce_ref (arg1);
1517 type = check_typedef (value_type (arg1));
1518
1519 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1520 return value_from_double (type, value_as_double (arg1));
1521 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1522 return value_from_decfloat (type, value_contents (arg1));
1523 else if (is_integral_type (type))
1524 {
1525 return value_from_longest (type, value_as_long (arg1));
1526 }
1527 else
1528 {
1529 error ("Argument to positive operation not a number.");
1530 return 0; /* For lint -- never reached */
1531 }
1532 }
1533
1534 struct value *
1535 value_neg (struct value *arg1)
1536 {
1537 struct type *type;
1538
1539 arg1 = coerce_ref (arg1);
1540 type = check_typedef (value_type (arg1));
1541
1542 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1543 {
1544 struct value *val = allocate_value (type);
1545 int len = TYPE_LENGTH (type);
1546 gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
1547
1548 memcpy (decbytes, value_contents (arg1), len);
1549
1550 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
1551 decbytes[len-1] = decbytes[len - 1] | 0x80;
1552 else
1553 decbytes[0] = decbytes[0] | 0x80;
1554
1555 memcpy (value_contents_raw (val), decbytes, len);
1556 return val;
1557 }
1558 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
1559 return value_from_double (type, -value_as_double (arg1));
1560 else if (is_integral_type (type))
1561 {
1562 return value_from_longest (type, -value_as_long (arg1));
1563 }
1564 else
1565 {
1566 error (_("Argument to negate operation not a number."));
1567 return 0; /* For lint -- never reached */
1568 }
1569 }
1570
1571 struct value *
1572 value_complement (struct value *arg1)
1573 {
1574 struct type *type;
1575
1576 arg1 = coerce_ref (arg1);
1577 type = check_typedef (value_type (arg1));
1578
1579 if (!is_integral_type (type))
1580 error (_("Argument to complement operation not an integer or boolean."));
1581
1582 return value_from_longest (type, ~value_as_long (arg1));
1583 }
1584 \f
1585 /* The INDEX'th bit of SET value whose value_type is TYPE,
1586 and whose value_contents is valaddr.
1587 Return -1 if out of range, -2 other error. */
1588
1589 int
1590 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1591 {
1592 struct gdbarch *gdbarch = get_type_arch (type);
1593 LONGEST low_bound, high_bound;
1594 LONGEST word;
1595 unsigned rel_index;
1596 struct type *range = TYPE_INDEX_TYPE (type);
1597 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1598 return -2;
1599 if (index < low_bound || index > high_bound)
1600 return -1;
1601 rel_index = index - low_bound;
1602 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1603 gdbarch_byte_order (gdbarch));
1604 rel_index %= TARGET_CHAR_BIT;
1605 if (gdbarch_bits_big_endian (gdbarch))
1606 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1607 return (word >> rel_index) & 1;
1608 }
1609
1610 int
1611 value_in (struct value *element, struct value *set)
1612 {
1613 int member;
1614 struct type *settype = check_typedef (value_type (set));
1615 struct type *eltype = check_typedef (value_type (element));
1616 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1617 eltype = TYPE_TARGET_TYPE (eltype);
1618 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1619 error (_("Second argument of 'IN' has wrong type"));
1620 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1621 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1622 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1623 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1624 error (_("First argument of 'IN' has wrong type"));
1625 member = value_bit_index (settype, value_contents (set),
1626 value_as_long (element));
1627 if (member < 0)
1628 error (_("First argument of 'IN' not in range"));
1629 return member;
1630 }
1631
1632 void
1633 _initialize_valarith (void)
1634 {
1635 }
This page took 0.063954 seconds and 5 git commands to generate.