* lib/ld-lib.exp (run_dump_test): Add -L$srcdir/$subdir.
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39
40 /* Flag indicating HP compilers were used; needed to correctly handle some
41 value operations with HP aCC code/runtime. */
42 extern int hp_som_som_object_present;
43
44 extern int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, struct type *t1[], struct value *t2[]);
48
49 static CORE_ADDR find_function_addr (struct value *, struct type **);
50 static struct value *value_arg_coerce (struct value *, struct type *, int);
51
52
53 static CORE_ADDR value_push (CORE_ADDR, struct value *);
54
55 static struct value *search_struct_field (char *, struct value *, int,
56 struct type *, int);
57
58 static struct value *search_struct_method (char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int check_field_in (struct type *, const char *);
63
64 static CORE_ADDR allocate_space_in_inferior (int);
65
66 static struct value *cast_into_complex (struct type *, struct value *);
67
68 static struct fn_field *find_method_list (struct value ** argp, char *method,
69 int offset, int *static_memfuncp,
70 struct type *type, int *num_fns,
71 struct type **basetype,
72 int *boffset);
73
74 void _initialize_valops (void);
75
76 /* Flag for whether we want to abandon failed expression evals by default. */
77
78 #if 0
79 static int auto_abandon = 0;
80 #endif
81
82 int overload_resolution = 0;
83
84 /* This boolean tells what gdb should do if a signal is received while in
85 a function called from gdb (call dummy). If set, gdb unwinds the stack
86 and restore the context to what as it was before the call.
87 The default is to stop in the frame where the signal was received. */
88
89 int unwind_on_signal_p = 0;
90 \f
91
92
93 /* Find the address of function name NAME in the inferior. */
94
95 struct value *
96 find_function_in_inferior (char *name)
97 {
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
100 if (sym != NULL)
101 {
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 {
104 error ("\"%s\" exists in this program but is not a function.",
105 name);
106 }
107 return value_of_variable (sym, NULL);
108 }
109 else
110 {
111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
112 if (msymbol != NULL)
113 {
114 struct type *type;
115 CORE_ADDR maddr;
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
121 }
122 else
123 {
124 if (!target_has_execution)
125 error ("evaluation of this expression requires the target program to be active");
126 else
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
128 }
129 }
130 }
131
132 /* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
134
135 struct value *
136 value_allocate_space_in_inferior (int len)
137 {
138 struct value *blocklen;
139 struct value *val = find_function_in_inferior ("malloc");
140
141 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
142 val = call_function_by_hand (val, 1, &blocklen);
143 if (value_logical_not (val))
144 {
145 if (!target_has_execution)
146 error ("No memory available to program now: you need to start the target first");
147 else
148 error ("No memory available to program: call to malloc failed");
149 }
150 return val;
151 }
152
153 static CORE_ADDR
154 allocate_space_in_inferior (int len)
155 {
156 return value_as_long (value_allocate_space_in_inferior (len));
157 }
158
159 /* Cast value ARG2 to type TYPE and return as a value.
160 More general than a C cast: accepts any two types of the same length,
161 and if ARG2 is an lvalue it can be cast into anything at all. */
162 /* In C++, casts may change pointer or object representations. */
163
164 struct value *
165 value_cast (struct type *type, struct value *arg2)
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 struct value *v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 struct value *retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 /* force evaluation */
273 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
274 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
275 return retvalp;
276
277 /* While pointers to methods don't really point to a function */
278 case TYPE_CODE_METHOD:
279 error ("Pointers to methods not supported with HP aCC");
280
281 default:
282 break; /* fall out and go to normal handling */
283 }
284 }
285
286 /* When we cast pointers to integers, we mustn't use
287 POINTER_TO_ADDRESS to find the address the pointer
288 represents, as value_as_long would. GDB should evaluate
289 expressions just as the compiler would --- and the compiler
290 sees a cast as a simple reinterpretation of the pointer's
291 bits. */
292 if (code2 == TYPE_CODE_PTR)
293 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
294 TYPE_LENGTH (type2));
295 else
296 longest = value_as_long (arg2);
297 return value_from_longest (type, convert_to_boolean ?
298 (LONGEST) (longest ? 1 : 0) : longest);
299 }
300 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
301 code2 == TYPE_CODE_ENUM ||
302 code2 == TYPE_CODE_RANGE))
303 {
304 /* TYPE_LENGTH (type) is the length of a pointer, but we really
305 want the length of an address! -- we are really dealing with
306 addresses (i.e., gdb representations) not pointers (i.e.,
307 target representations) here.
308
309 This allows things like "print *(int *)0x01000234" to work
310 without printing a misleading message -- which would
311 otherwise occur when dealing with a target having two byte
312 pointers and four byte addresses. */
313
314 int addr_bit = TARGET_ADDR_BIT;
315
316 LONGEST longest = value_as_long (arg2);
317 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
318 {
319 if (longest >= ((LONGEST) 1 << addr_bit)
320 || longest <= -((LONGEST) 1 << addr_bit))
321 warning ("value truncated");
322 }
323 return value_from_longest (type, longest);
324 }
325 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
326 {
327 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
328 {
329 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
330 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
331 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
332 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
333 && !value_logical_not (arg2))
334 {
335 struct value *v;
336
337 /* Look in the type of the source to see if it contains the
338 type of the target as a superclass. If so, we'll need to
339 offset the pointer rather than just change its type. */
340 if (TYPE_NAME (t1) != NULL)
341 {
342 v = search_struct_field (type_name_no_tag (t1),
343 value_ind (arg2), 0, t2, 1);
344 if (v)
345 {
346 v = value_addr (v);
347 VALUE_TYPE (v) = type;
348 return v;
349 }
350 }
351
352 /* Look in the type of the target to see if it contains the
353 type of the source as a superclass. If so, we'll need to
354 offset the pointer rather than just change its type.
355 FIXME: This fails silently with virtual inheritance. */
356 if (TYPE_NAME (t2) != NULL)
357 {
358 v = search_struct_field (type_name_no_tag (t2),
359 value_zero (t1, not_lval), 0, t1, 1);
360 if (v)
361 {
362 struct value *v2 = value_ind (arg2);
363 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
364 + VALUE_OFFSET (v);
365
366 /* JYG: adjust the new pointer value and
367 embedded offset. */
368 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
369 VALUE_EMBEDDED_OFFSET (v2) = 0;
370
371 v2 = value_addr (v2);
372 VALUE_TYPE (v2) = type;
373 return v2;
374 }
375 }
376 }
377 /* No superclass found, just fall through to change ptr type. */
378 }
379 VALUE_TYPE (arg2) = type;
380 arg2 = value_change_enclosing_type (arg2, type);
381 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
382 return arg2;
383 }
384 else if (chill_varying_type (type))
385 {
386 struct type *range1, *range2, *eltype1, *eltype2;
387 struct value *val;
388 int count1, count2;
389 LONGEST low_bound, high_bound;
390 char *valaddr, *valaddr_data;
391 /* For lint warning about eltype2 possibly uninitialized: */
392 eltype2 = NULL;
393 if (code2 == TYPE_CODE_BITSTRING)
394 error ("not implemented: converting bitstring to varying type");
395 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
396 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
397 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
398 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
399 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
400 error ("Invalid conversion to varying type");
401 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
402 range2 = TYPE_FIELD_TYPE (type2, 0);
403 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
404 count1 = -1;
405 else
406 count1 = high_bound - low_bound + 1;
407 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
408 count1 = -1, count2 = 0; /* To force error before */
409 else
410 count2 = high_bound - low_bound + 1;
411 if (count2 > count1)
412 error ("target varying type is too small");
413 val = allocate_value (type);
414 valaddr = VALUE_CONTENTS_RAW (val);
415 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
416 /* Set val's __var_length field to count2. */
417 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
418 count2);
419 /* Set the __var_data field to count2 elements copied from arg2. */
420 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
421 count2 * TYPE_LENGTH (eltype2));
422 /* Zero the rest of the __var_data field of val. */
423 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
424 (count1 - count2) * TYPE_LENGTH (eltype2));
425 return val;
426 }
427 else if (VALUE_LVAL (arg2) == lval_memory)
428 {
429 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
430 VALUE_BFD_SECTION (arg2));
431 }
432 else if (code1 == TYPE_CODE_VOID)
433 {
434 return value_zero (builtin_type_void, not_lval);
435 }
436 else
437 {
438 error ("Invalid cast.");
439 return 0;
440 }
441 }
442
443 /* Create a value of type TYPE that is zero, and return it. */
444
445 struct value *
446 value_zero (struct type *type, enum lval_type lv)
447 {
448 struct value *val = allocate_value (type);
449
450 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
451 VALUE_LVAL (val) = lv;
452
453 return val;
454 }
455
456 /* Return a value with type TYPE located at ADDR.
457
458 Call value_at only if the data needs to be fetched immediately;
459 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
460 value_at_lazy instead. value_at_lazy simply records the address of
461 the data and sets the lazy-evaluation-required flag. The lazy flag
462 is tested in the VALUE_CONTENTS macro, which is used if and when
463 the contents are actually required.
464
465 Note: value_at does *NOT* handle embedded offsets; perform such
466 adjustments before or after calling it. */
467
468 struct value *
469 value_at (struct type *type, CORE_ADDR addr, asection *sect)
470 {
471 struct value *val;
472
473 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
474 error ("Attempt to dereference a generic pointer.");
475
476 val = allocate_value (type);
477
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
483
484 return val;
485 }
486
487 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
488
489 struct value *
490 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
491 {
492 struct value *val;
493
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
496
497 val = allocate_value (type);
498
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
503
504 return val;
505 }
506
507 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
511
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
514
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
517 value is ignored. */
518
519 int
520 value_fetch_lazy (struct value *val)
521 {
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
524
525 struct type *type = VALUE_TYPE (val);
526 if (length)
527 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
528
529 VALUE_LAZY (val) = 0;
530 return 0;
531 }
532
533
534 /* Store the contents of FROMVAL into the location of TOVAL.
535 Return a new value with the location of TOVAL and contents of FROMVAL. */
536
537 struct value *
538 value_assign (struct value *toval, struct value *fromval)
539 {
540 register struct type *type;
541 struct value *val;
542 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
543 int use_buffer = 0;
544
545 if (!toval->modifiable)
546 error ("Left operand of assignment is not a modifiable lvalue.");
547
548 COERCE_REF (toval);
549
550 type = VALUE_TYPE (toval);
551 if (VALUE_LVAL (toval) != lval_internalvar)
552 fromval = value_cast (type, fromval);
553 else
554 COERCE_ARRAY (fromval);
555 CHECK_TYPEDEF (type);
556
557 /* If TOVAL is a special machine register requiring conversion
558 of program values to a special raw format,
559 convert FROMVAL's contents now, with result in `raw_buffer',
560 and set USE_BUFFER to the number of bytes to write. */
561
562 if (VALUE_REGNO (toval) >= 0)
563 {
564 int regno = VALUE_REGNO (toval);
565 if (REGISTER_CONVERTIBLE (regno))
566 {
567 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
568 REGISTER_CONVERT_TO_RAW (fromtype, regno,
569 VALUE_CONTENTS (fromval), raw_buffer);
570 use_buffer = REGISTER_RAW_SIZE (regno);
571 }
572 }
573
574 switch (VALUE_LVAL (toval))
575 {
576 case lval_internalvar:
577 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
578 val = value_copy (VALUE_INTERNALVAR (toval)->value);
579 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
580 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
581 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
582 return val;
583
584 case lval_internalvar_component:
585 set_internalvar_component (VALUE_INTERNALVAR (toval),
586 VALUE_OFFSET (toval),
587 VALUE_BITPOS (toval),
588 VALUE_BITSIZE (toval),
589 fromval);
590 break;
591
592 case lval_memory:
593 {
594 char *dest_buffer;
595 CORE_ADDR changed_addr;
596 int changed_len;
597
598 if (VALUE_BITSIZE (toval))
599 {
600 char buffer[sizeof (LONGEST)];
601 /* We assume that the argument to read_memory is in units of
602 host chars. FIXME: Is that correct? */
603 changed_len = (VALUE_BITPOS (toval)
604 + VALUE_BITSIZE (toval)
605 + HOST_CHAR_BIT - 1)
606 / HOST_CHAR_BIT;
607
608 if (changed_len > (int) sizeof (LONGEST))
609 error ("Can't handle bitfields which don't fit in a %d bit word.",
610 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
611
612 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
613 buffer, changed_len);
614 modify_field (buffer, value_as_long (fromval),
615 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
616 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
617 dest_buffer = buffer;
618 }
619 else if (use_buffer)
620 {
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = use_buffer;
623 dest_buffer = raw_buffer;
624 }
625 else
626 {
627 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
628 changed_len = TYPE_LENGTH (type);
629 dest_buffer = VALUE_CONTENTS (fromval);
630 }
631
632 write_memory (changed_addr, dest_buffer, changed_len);
633 if (memory_changed_hook)
634 memory_changed_hook (changed_addr, changed_len);
635 }
636 break;
637
638 case lval_register:
639 if (VALUE_BITSIZE (toval))
640 {
641 char buffer[sizeof (LONGEST)];
642 int len =
643 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
644
645 if (len > (int) sizeof (LONGEST))
646 error ("Can't handle bitfields in registers larger than %d bits.",
647 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
648
649 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
650 > len * HOST_CHAR_BIT)
651 /* Getting this right would involve being very careful about
652 byte order. */
653 error ("Can't assign to bitfields that cross register "
654 "boundaries.");
655
656 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
657 buffer, len);
658 modify_field (buffer, value_as_long (fromval),
659 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
660 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
661 buffer, len);
662 }
663 else if (use_buffer)
664 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
665 raw_buffer, use_buffer);
666 else
667 {
668 /* Do any conversion necessary when storing this type to more
669 than one register. */
670 #ifdef REGISTER_CONVERT_FROM_TYPE
671 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
672 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
673 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
674 raw_buffer, TYPE_LENGTH (type));
675 #else
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
678 #endif
679 }
680 /* Assigning to the stack pointer, frame pointer, and other
681 (architecture and calling convention specific) registers may
682 cause the frame cache to be out of date. We just do this
683 on all assignments to registers for simplicity; I doubt the slowdown
684 matters. */
685 reinit_frame_cache ();
686 break;
687
688 case lval_reg_frame_relative:
689 {
690 /* value is stored in a series of registers in the frame
691 specified by the structure. Copy that value out, modify
692 it, and copy it back in. */
693 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
694 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
695 int byte_offset = VALUE_OFFSET (toval) % reg_size;
696 int reg_offset = VALUE_OFFSET (toval) / reg_size;
697 int amount_copied;
698
699 /* Make the buffer large enough in all cases. */
700 /* FIXME (alloca): Not safe for very large data types. */
701 char *buffer = (char *) alloca (amount_to_copy
702 + sizeof (LONGEST)
703 + MAX_REGISTER_RAW_SIZE);
704
705 int regno;
706 struct frame_info *frame;
707
708 /* Figure out which frame this is in currently. */
709 for (frame = get_current_frame ();
710 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
711 frame = get_prev_frame (frame))
712 ;
713
714 if (!frame)
715 error ("Value being assigned to is no longer active.");
716
717 amount_to_copy += (reg_size - amount_to_copy % reg_size);
718
719 /* Copy it out. */
720 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
721 amount_copied = 0);
722 amount_copied < amount_to_copy;
723 amount_copied += reg_size, regno++)
724 {
725 get_saved_register (buffer + amount_copied,
726 (int *) NULL, (CORE_ADDR *) NULL,
727 frame, regno, (enum lval_type *) NULL);
728 }
729
730 /* Modify what needs to be modified. */
731 if (VALUE_BITSIZE (toval))
732 modify_field (buffer + byte_offset,
733 value_as_long (fromval),
734 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
735 else if (use_buffer)
736 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
737 else
738 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
739 TYPE_LENGTH (type));
740
741 /* Copy it back. */
742 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
743 amount_copied = 0);
744 amount_copied < amount_to_copy;
745 amount_copied += reg_size, regno++)
746 {
747 enum lval_type lval;
748 CORE_ADDR addr;
749 int optim;
750
751 /* Just find out where to put it. */
752 get_saved_register ((char *) NULL,
753 &optim, &addr, frame, regno, &lval);
754
755 if (optim)
756 error ("Attempt to assign to a value that was optimized out.");
757 if (lval == lval_memory)
758 write_memory (addr, buffer + amount_copied, reg_size);
759 else if (lval == lval_register)
760 write_register_bytes (addr, buffer + amount_copied, reg_size);
761 else
762 error ("Attempt to assign to an unmodifiable value.");
763 }
764
765 if (register_changed_hook)
766 register_changed_hook (-1);
767 }
768 break;
769
770
771 default:
772 error ("Left operand of assignment is not an lvalue.");
773 }
774
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
797
798 return val;
799 }
800
801 /* Extend a value VAL to COUNT repetitions of its type. */
802
803 struct value *
804 value_repeat (struct value *arg1, int count)
805 {
806 struct value *val;
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822 }
823
824 struct value *
825 value_of_variable (struct symbol *var, struct block *b)
826 {
827 struct value *val;
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
836 {
837 if (BLOCK_FUNCTION (b)
838 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
839 error ("No frame is currently executing in block %s.",
840 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
841 else
842 error ("No frame is currently executing in specified block");
843 }
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
849
850 return val;
851 }
852
853 /* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
874 */
875
876 struct value *
877 value_coerce_array (struct value *arg1)
878 {
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
886 }
887
888 /* Given a value which is a function, return a value which is a pointer
889 to it. */
890
891 struct value *
892 value_coerce_function (struct value *arg1)
893 {
894 struct value *retval;
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
903 }
904
905 /* Return a pointer value for the object for which ARG1 is the contents. */
906
907 struct value *
908 value_addr (struct value *arg1)
909 {
910 struct value *arg2;
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
928 /* Get target memory address */
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
933
934 /* This may be a pointer to a base subobject; so remember the
935 full derived object's type ... */
936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941 }
942
943 /* Given a value of a pointer type, apply the C unary * operator to it. */
944
945 struct value *
946 value_ind (struct value *arg1)
947 {
948 struct type *base_type;
949 struct value *arg2;
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
963 return value_at (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
970 /* Get the real type of the enclosing object */
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
980 arg2 = value_change_enclosing_type (arg2, enc_type);
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
989 return 0; /* For lint -- never reached */
990 }
991 \f
992 /* Pushing small parts of stack frames. */
993
994 /* Push one word (the size of object that a register holds). */
995
996 CORE_ADDR
997 push_word (CORE_ADDR sp, ULONGEST word)
998 {
999 register int len = REGISTER_SIZE;
1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017 }
1018
1019 /* Push LEN bytes with data at BUFFER. */
1020
1021 CORE_ADDR
1022 push_bytes (CORE_ADDR sp, char *buffer, int len)
1023 {
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038 }
1039
1040 #ifndef PARM_BOUNDARY
1041 #define PARM_BOUNDARY (0)
1042 #endif
1043
1044 /* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
1046
1047 static CORE_ADDR
1048 value_push (register CORE_ADDR sp, struct value *arg)
1049 {
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1051 register int container_len = len;
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1061 offset = container_len - len;
1062 else
1063 offset = 0;
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1070 }
1071 else
1072 {
1073 /* stack grows upward */
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
1076 }
1077
1078 return sp;
1079 }
1080
1081 CORE_ADDR
1082 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
1084 {
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090 }
1091
1092
1093 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1094
1095 How you should pass arguments to a function depends on whether it
1096 was defined in K&R style or prototype style. If you define a
1097 function using the K&R syntax that takes a `float' argument, then
1098 callers must pass that argument as a `double'. If you define the
1099 function using the prototype syntax, then you must pass the
1100 argument as a `float', with no promotion.
1101
1102 Unfortunately, on certain older platforms, the debug info doesn't
1103 indicate reliably how each function was defined. A function type's
1104 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1105 defined in prototype style. When calling a function whose
1106 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1107 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1108
1109 For modern targets, it is proper to assume that, if the prototype
1110 flag is clear, that can be trusted: `float' arguments should be
1111 promoted to `double'. You should register the function
1112 `standard_coerce_float_to_double' to get this behavior.
1113
1114 For some older targets, if the prototype flag is clear, that
1115 doesn't tell us anything. So we guess that, if we don't have a
1116 type for the formal parameter (i.e., the first argument to
1117 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1118 otherwise, we should leave it alone. The function
1119 `default_coerce_float_to_double' provides this behavior; it is the
1120 default value, for compatibility with older configurations. */
1121 int
1122 default_coerce_float_to_double (struct type *formal, struct type *actual)
1123 {
1124 return formal == NULL;
1125 }
1126
1127
1128 int
1129 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1130 {
1131 return 1;
1132 }
1133
1134
1135 /* Perform the standard coercions that are specified
1136 for arguments to be passed to C functions.
1137
1138 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1139 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1140
1141 static struct value *
1142 value_arg_coerce (struct value *arg, struct type *param_type,
1143 int is_prototyped)
1144 {
1145 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1146 register struct type *type
1147 = param_type ? check_typedef (param_type) : arg_type;
1148
1149 switch (TYPE_CODE (type))
1150 {
1151 case TYPE_CODE_REF:
1152 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1153 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1154 {
1155 arg = value_addr (arg);
1156 VALUE_TYPE (arg) = param_type;
1157 return arg;
1158 }
1159 break;
1160 case TYPE_CODE_INT:
1161 case TYPE_CODE_CHAR:
1162 case TYPE_CODE_BOOL:
1163 case TYPE_CODE_ENUM:
1164 /* If we don't have a prototype, coerce to integer type if necessary. */
1165 if (!is_prototyped)
1166 {
1167 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1168 type = builtin_type_int;
1169 }
1170 /* Currently all target ABIs require at least the width of an integer
1171 type for an argument. We may have to conditionalize the following
1172 type coercion for future targets. */
1173 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1174 type = builtin_type_int;
1175 break;
1176 case TYPE_CODE_FLT:
1177 /* FIXME: We should always convert floats to doubles in the
1178 non-prototyped case. As many debugging formats include
1179 no information about prototyping, we have to live with
1180 COERCE_FLOAT_TO_DOUBLE for now. */
1181 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1182 {
1183 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1184 type = builtin_type_double;
1185 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1186 type = builtin_type_long_double;
1187 }
1188 break;
1189 case TYPE_CODE_FUNC:
1190 type = lookup_pointer_type (type);
1191 break;
1192 case TYPE_CODE_ARRAY:
1193 /* Arrays are coerced to pointers to their first element, unless
1194 they are vectors, in which case we want to leave them alone,
1195 because they are passed by value. */
1196 if (current_language->c_style_arrays)
1197 if (!TYPE_VECTOR (type))
1198 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1199 break;
1200 case TYPE_CODE_UNDEF:
1201 case TYPE_CODE_PTR:
1202 case TYPE_CODE_STRUCT:
1203 case TYPE_CODE_UNION:
1204 case TYPE_CODE_VOID:
1205 case TYPE_CODE_SET:
1206 case TYPE_CODE_RANGE:
1207 case TYPE_CODE_STRING:
1208 case TYPE_CODE_BITSTRING:
1209 case TYPE_CODE_ERROR:
1210 case TYPE_CODE_MEMBER:
1211 case TYPE_CODE_METHOD:
1212 case TYPE_CODE_COMPLEX:
1213 default:
1214 break;
1215 }
1216
1217 return value_cast (type, arg);
1218 }
1219
1220 /* Determine a function's address and its return type from its value.
1221 Calls error() if the function is not valid for calling. */
1222
1223 static CORE_ADDR
1224 find_function_addr (struct value *function, struct type **retval_type)
1225 {
1226 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1227 register enum type_code code = TYPE_CODE (ftype);
1228 struct type *value_type;
1229 CORE_ADDR funaddr;
1230
1231 /* If it's a member function, just look at the function
1232 part of it. */
1233
1234 /* Determine address to call. */
1235 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1236 {
1237 funaddr = VALUE_ADDRESS (function);
1238 value_type = TYPE_TARGET_TYPE (ftype);
1239 }
1240 else if (code == TYPE_CODE_PTR)
1241 {
1242 funaddr = value_as_address (function);
1243 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1244 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1245 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1246 {
1247 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1248 value_type = TYPE_TARGET_TYPE (ftype);
1249 }
1250 else
1251 value_type = builtin_type_int;
1252 }
1253 else if (code == TYPE_CODE_INT)
1254 {
1255 /* Handle the case of functions lacking debugging info.
1256 Their values are characters since their addresses are char */
1257 if (TYPE_LENGTH (ftype) == 1)
1258 funaddr = value_as_address (value_addr (function));
1259 else
1260 /* Handle integer used as address of a function. */
1261 funaddr = (CORE_ADDR) value_as_long (function);
1262
1263 value_type = builtin_type_int;
1264 }
1265 else
1266 error ("Invalid data type for function to be called.");
1267
1268 *retval_type = value_type;
1269 return funaddr;
1270 }
1271
1272 /* All this stuff with a dummy frame may seem unnecessarily complicated
1273 (why not just save registers in GDB?). The purpose of pushing a dummy
1274 frame which looks just like a real frame is so that if you call a
1275 function and then hit a breakpoint (get a signal, etc), "backtrace"
1276 will look right. Whether the backtrace needs to actually show the
1277 stack at the time the inferior function was called is debatable, but
1278 it certainly needs to not display garbage. So if you are contemplating
1279 making dummy frames be different from normal frames, consider that. */
1280
1281 /* Perform a function call in the inferior.
1282 ARGS is a vector of values of arguments (NARGS of them).
1283 FUNCTION is a value, the function to be called.
1284 Returns a value representing what the function returned.
1285 May fail to return, if a breakpoint or signal is hit
1286 during the execution of the function.
1287
1288 ARGS is modified to contain coerced values. */
1289
1290 static struct value *
1291 hand_function_call (struct value *function, int nargs, struct value **args)
1292 {
1293 register CORE_ADDR sp;
1294 register int i;
1295 int rc;
1296 CORE_ADDR start_sp;
1297 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1298 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1299 and remove any extra bytes which might exist because ULONGEST is
1300 bigger than REGISTER_SIZE.
1301
1302 NOTE: This is pretty wierd, as the call dummy is actually a
1303 sequence of instructions. But CISC machines will have
1304 to pack the instructions into REGISTER_SIZE units (and
1305 so will RISC machines for which INSTRUCTION_SIZE is not
1306 REGISTER_SIZE).
1307
1308 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1309 target byte order. */
1310
1311 static ULONGEST *dummy;
1312 int sizeof_dummy1;
1313 char *dummy1;
1314 CORE_ADDR old_sp;
1315 struct type *value_type;
1316 unsigned char struct_return;
1317 CORE_ADDR struct_addr = 0;
1318 struct inferior_status *inf_status;
1319 struct cleanup *old_chain;
1320 CORE_ADDR funaddr;
1321 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1322 CORE_ADDR real_pc;
1323 struct type *param_type = NULL;
1324 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1325 int n_method_args = 0;
1326
1327 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1328 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1329 dummy1 = alloca (sizeof_dummy1);
1330 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1331
1332 if (!target_has_execution)
1333 noprocess ();
1334
1335 inf_status = save_inferior_status (1);
1336 old_chain = make_cleanup_restore_inferior_status (inf_status);
1337
1338 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1339 (and POP_FRAME for restoring them). (At least on most machines)
1340 they are saved on the stack in the inferior. */
1341 PUSH_DUMMY_FRAME;
1342
1343 old_sp = sp = read_sp ();
1344
1345 if (INNER_THAN (1, 2))
1346 {
1347 /* Stack grows down */
1348 sp -= sizeof_dummy1;
1349 start_sp = sp;
1350 }
1351 else
1352 {
1353 /* Stack grows up */
1354 start_sp = sp;
1355 sp += sizeof_dummy1;
1356 }
1357
1358 funaddr = find_function_addr (function, &value_type);
1359 CHECK_TYPEDEF (value_type);
1360
1361 {
1362 struct block *b = block_for_pc (funaddr);
1363 /* If compiled without -g, assume GCC 2. */
1364 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1365 }
1366
1367 /* Are we returning a value using a structure return or a normal
1368 value return? */
1369
1370 struct_return = using_struct_return (function, funaddr, value_type,
1371 using_gcc);
1372
1373 /* Create a call sequence customized for this function
1374 and the number of arguments for it. */
1375 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1376 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1377 REGISTER_SIZE,
1378 (ULONGEST) dummy[i]);
1379
1380 #ifdef GDB_TARGET_IS_HPPA
1381 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1382 value_type, using_gcc);
1383 #else
1384 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1385 value_type, using_gcc);
1386 real_pc = start_sp;
1387 #endif
1388
1389 if (CALL_DUMMY_LOCATION == ON_STACK)
1390 {
1391 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1392 if (USE_GENERIC_DUMMY_FRAMES)
1393 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1394 }
1395
1396 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1397 {
1398 /* Convex Unix prohibits executing in the stack segment. */
1399 /* Hope there is empty room at the top of the text segment. */
1400 extern CORE_ADDR text_end;
1401 static int checked = 0;
1402 if (!checked)
1403 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1404 if (read_memory_integer (start_sp, 1) != 0)
1405 error ("text segment full -- no place to put call");
1406 checked = 1;
1407 sp = old_sp;
1408 real_pc = text_end - sizeof_dummy1;
1409 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1410 if (USE_GENERIC_DUMMY_FRAMES)
1411 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1412 }
1413
1414 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1415 {
1416 extern CORE_ADDR text_end;
1417 int errcode;
1418 sp = old_sp;
1419 real_pc = text_end;
1420 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1421 if (errcode != 0)
1422 error ("Cannot write text segment -- call_function failed");
1423 if (USE_GENERIC_DUMMY_FRAMES)
1424 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1425 }
1426
1427 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1428 {
1429 real_pc = funaddr;
1430 if (USE_GENERIC_DUMMY_FRAMES)
1431 /* NOTE: cagney/2002-04-13: The entry point is going to be
1432 modified with a single breakpoint. */
1433 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1434 CALL_DUMMY_ADDRESS () + 1);
1435 }
1436
1437 #ifdef lint
1438 sp = old_sp; /* It really is used, for some ifdef's... */
1439 #endif
1440
1441 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1442 {
1443 i = 0;
1444 while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID)
1445 i++;
1446 n_method_args = i;
1447 if (nargs < i)
1448 error ("too few arguments in method call");
1449 }
1450 else if (nargs < TYPE_NFIELDS (ftype))
1451 error ("too few arguments in function call");
1452
1453 for (i = nargs - 1; i >= 0; i--)
1454 {
1455 /* Assume that methods are always prototyped, unless they are off the
1456 end (which we should only be allowing if there is a ``...'').
1457 FIXME. */
1458 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1459 {
1460 if (i < n_method_args)
1461 args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1);
1462 else
1463 args[i] = value_arg_coerce (args[i], NULL, 0);
1464 }
1465
1466 /* If we're off the end of the known arguments, do the standard
1467 promotions. FIXME: if we had a prototype, this should only
1468 be allowed if ... were present. */
1469 if (i >= TYPE_NFIELDS (ftype))
1470 args[i] = value_arg_coerce (args[i], NULL, 0);
1471
1472 else
1473 {
1474 param_type = TYPE_FIELD_TYPE (ftype, i);
1475 args[i] = value_arg_coerce (args[i], param_type, TYPE_PROTOTYPED (ftype));
1476 }
1477
1478 /*elz: this code is to handle the case in which the function to be called
1479 has a pointer to function as parameter and the corresponding actual argument
1480 is the address of a function and not a pointer to function variable.
1481 In aCC compiled code, the calls through pointers to functions (in the body
1482 of the function called by hand) are made via $$dyncall_external which
1483 requires some registers setting, this is taken care of if we call
1484 via a function pointer variable, but not via a function address.
1485 In cc this is not a problem. */
1486
1487 if (using_gcc == 0)
1488 if (param_type)
1489 /* if this parameter is a pointer to function */
1490 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1491 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1492 /* elz: FIXME here should go the test about the compiler used
1493 to compile the target. We want to issue the error
1494 message only if the compiler used was HP's aCC.
1495 If we used HP's cc, then there is no problem and no need
1496 to return at this point */
1497 if (using_gcc == 0) /* && compiler == aCC */
1498 /* go see if the actual parameter is a variable of type
1499 pointer to function or just a function */
1500 if (args[i]->lval == not_lval)
1501 {
1502 char *arg_name;
1503 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1504 error ("\
1505 You cannot use function <%s> as argument. \n\
1506 You must use a pointer to function type variable. Command ignored.", arg_name);
1507 }
1508 }
1509
1510 if (REG_STRUCT_HAS_ADDR_P ())
1511 {
1512 /* This is a machine like the sparc, where we may need to pass a
1513 pointer to the structure, not the structure itself. */
1514 for (i = nargs - 1; i >= 0; i--)
1515 {
1516 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1517 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1518 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1519 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1520 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1521 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1522 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1523 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1524 && TYPE_LENGTH (arg_type) > 8)
1525 )
1526 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1527 {
1528 CORE_ADDR addr;
1529 int len; /* = TYPE_LENGTH (arg_type); */
1530 int aligned_len;
1531 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1532 len = TYPE_LENGTH (arg_type);
1533
1534 if (STACK_ALIGN_P ())
1535 /* MVS 11/22/96: I think at least some of this
1536 stack_align code is really broken. Better to let
1537 PUSH_ARGUMENTS adjust the stack in a target-defined
1538 manner. */
1539 aligned_len = STACK_ALIGN (len);
1540 else
1541 aligned_len = len;
1542 if (INNER_THAN (1, 2))
1543 {
1544 /* stack grows downward */
1545 sp -= aligned_len;
1546 /* ... so the address of the thing we push is the
1547 stack pointer after we push it. */
1548 addr = sp;
1549 }
1550 else
1551 {
1552 /* The stack grows up, so the address of the thing
1553 we push is the stack pointer before we push it. */
1554 addr = sp;
1555 sp += aligned_len;
1556 }
1557 /* Push the structure. */
1558 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1559 /* The value we're going to pass is the address of the
1560 thing we just pushed. */
1561 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1562 (LONGEST) addr); */
1563 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1564 addr);
1565 }
1566 }
1567 }
1568
1569
1570 /* Reserve space for the return structure to be written on the
1571 stack, if necessary */
1572
1573 if (struct_return)
1574 {
1575 int len = TYPE_LENGTH (value_type);
1576 if (STACK_ALIGN_P ())
1577 /* MVS 11/22/96: I think at least some of this stack_align
1578 code is really broken. Better to let PUSH_ARGUMENTS adjust
1579 the stack in a target-defined manner. */
1580 len = STACK_ALIGN (len);
1581 if (INNER_THAN (1, 2))
1582 {
1583 /* stack grows downward */
1584 sp -= len;
1585 struct_addr = sp;
1586 }
1587 else
1588 {
1589 /* stack grows upward */
1590 struct_addr = sp;
1591 sp += len;
1592 }
1593 }
1594
1595 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1596 on other architectures. This is because all the alignment is
1597 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1598 in hppa_push_arguments */
1599 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1600 {
1601 /* MVS 11/22/96: I think at least some of this stack_align code
1602 is really broken. Better to let PUSH_ARGUMENTS adjust the
1603 stack in a target-defined manner. */
1604 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1605 {
1606 /* If stack grows down, we must leave a hole at the top. */
1607 int len = 0;
1608
1609 for (i = nargs - 1; i >= 0; i--)
1610 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1611 if (CALL_DUMMY_STACK_ADJUST_P)
1612 len += CALL_DUMMY_STACK_ADJUST;
1613 sp -= STACK_ALIGN (len) - len;
1614 }
1615 }
1616
1617 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1618
1619 if (PUSH_RETURN_ADDRESS_P ())
1620 /* for targets that use no CALL_DUMMY */
1621 /* There are a number of targets now which actually don't write
1622 any CALL_DUMMY instructions into the target, but instead just
1623 save the machine state, push the arguments, and jump directly
1624 to the callee function. Since this doesn't actually involve
1625 executing a JSR/BSR instruction, the return address must be set
1626 up by hand, either by pushing onto the stack or copying into a
1627 return-address register as appropriate. Formerly this has been
1628 done in PUSH_ARGUMENTS, but that's overloading its
1629 functionality a bit, so I'm making it explicit to do it here. */
1630 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1631
1632 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1633 {
1634 /* If stack grows up, we must leave a hole at the bottom, note
1635 that sp already has been advanced for the arguments! */
1636 if (CALL_DUMMY_STACK_ADJUST_P)
1637 sp += CALL_DUMMY_STACK_ADJUST;
1638 sp = STACK_ALIGN (sp);
1639 }
1640
1641 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1642 anything here! */
1643 /* MVS 11/22/96: I think at least some of this stack_align code is
1644 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1645 a target-defined manner. */
1646 if (CALL_DUMMY_STACK_ADJUST_P)
1647 if (INNER_THAN (1, 2))
1648 {
1649 /* stack grows downward */
1650 sp -= CALL_DUMMY_STACK_ADJUST;
1651 }
1652
1653 /* Store the address at which the structure is supposed to be
1654 written. Note that this (and the code which reserved the space
1655 above) assumes that gcc was used to compile this function. Since
1656 it doesn't cost us anything but space and if the function is pcc
1657 it will ignore this value, we will make that assumption.
1658
1659 Also note that on some machines (like the sparc) pcc uses a
1660 convention like gcc's. */
1661
1662 if (struct_return)
1663 STORE_STRUCT_RETURN (struct_addr, sp);
1664
1665 /* Write the stack pointer. This is here because the statements above
1666 might fool with it. On SPARC, this write also stores the register
1667 window into the right place in the new stack frame, which otherwise
1668 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1669 write_sp (sp);
1670
1671 if (SAVE_DUMMY_FRAME_TOS_P ())
1672 SAVE_DUMMY_FRAME_TOS (sp);
1673
1674 {
1675 char *retbuf = (char*) alloca (REGISTER_BYTES);
1676 char *name;
1677 struct symbol *symbol;
1678
1679 name = NULL;
1680 symbol = find_pc_function (funaddr);
1681 if (symbol)
1682 {
1683 name = SYMBOL_SOURCE_NAME (symbol);
1684 }
1685 else
1686 {
1687 /* Try the minimal symbols. */
1688 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1689
1690 if (msymbol)
1691 {
1692 name = SYMBOL_SOURCE_NAME (msymbol);
1693 }
1694 }
1695 if (name == NULL)
1696 {
1697 char format[80];
1698 sprintf (format, "at %s", local_hex_format ());
1699 name = alloca (80);
1700 /* FIXME-32x64: assumes funaddr fits in a long. */
1701 sprintf (name, format, (unsigned long) funaddr);
1702 }
1703
1704 /* Execute the stack dummy routine, calling FUNCTION.
1705 When it is done, discard the empty frame
1706 after storing the contents of all regs into retbuf. */
1707 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1708
1709 if (rc == 1)
1710 {
1711 /* We stopped inside the FUNCTION because of a random signal.
1712 Further execution of the FUNCTION is not allowed. */
1713
1714 if (unwind_on_signal_p)
1715 {
1716 /* The user wants the context restored. */
1717
1718 /* We must get back to the frame we were before the dummy call. */
1719 POP_FRAME;
1720
1721 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1722 a C++ name with arguments and stuff. */
1723 error ("\
1724 The program being debugged was signaled while in a function called from GDB.\n\
1725 GDB has restored the context to what it was before the call.\n\
1726 To change this behavior use \"set unwindonsignal off\"\n\
1727 Evaluation of the expression containing the function (%s) will be abandoned.",
1728 name);
1729 }
1730 else
1731 {
1732 /* The user wants to stay in the frame where we stopped (default).*/
1733
1734 /* If we did the cleanups, we would print a spurious error
1735 message (Unable to restore previously selected frame),
1736 would write the registers from the inf_status (which is
1737 wrong), and would do other wrong things. */
1738 discard_cleanups (old_chain);
1739 discard_inferior_status (inf_status);
1740
1741 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1742 a C++ name with arguments and stuff. */
1743 error ("\
1744 The program being debugged was signaled while in a function called from GDB.\n\
1745 GDB remains in the frame where the signal was received.\n\
1746 To change this behavior use \"set unwindonsignal on\"\n\
1747 Evaluation of the expression containing the function (%s) will be abandoned.",
1748 name);
1749 }
1750 }
1751
1752 if (rc == 2)
1753 {
1754 /* We hit a breakpoint inside the FUNCTION. */
1755
1756 /* If we did the cleanups, we would print a spurious error
1757 message (Unable to restore previously selected frame),
1758 would write the registers from the inf_status (which is
1759 wrong), and would do other wrong things. */
1760 discard_cleanups (old_chain);
1761 discard_inferior_status (inf_status);
1762
1763 /* The following error message used to say "The expression
1764 which contained the function call has been discarded." It
1765 is a hard concept to explain in a few words. Ideally, GDB
1766 would be able to resume evaluation of the expression when
1767 the function finally is done executing. Perhaps someday
1768 this will be implemented (it would not be easy). */
1769
1770 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1771 a C++ name with arguments and stuff. */
1772 error ("\
1773 The program being debugged stopped while in a function called from GDB.\n\
1774 When the function (%s) is done executing, GDB will silently\n\
1775 stop (instead of continuing to evaluate the expression containing\n\
1776 the function call).", name);
1777 }
1778
1779 /* If we get here the called FUNCTION run to completion. */
1780 do_cleanups (old_chain);
1781
1782 /* Figure out the value returned by the function. */
1783 /* elz: I defined this new macro for the hppa architecture only.
1784 this gives us a way to get the value returned by the function from the stack,
1785 at the same address we told the function to put it.
1786 We cannot assume on the pa that r28 still contains the address of the returned
1787 structure. Usually this will be overwritten by the callee.
1788 I don't know about other architectures, so I defined this macro
1789 */
1790
1791 #ifdef VALUE_RETURNED_FROM_STACK
1792 if (struct_return)
1793 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1794 #endif
1795
1796 return value_being_returned (value_type, retbuf, struct_return);
1797 }
1798 }
1799
1800 struct value *
1801 call_function_by_hand (struct value *function, int nargs, struct value **args)
1802 {
1803 if (CALL_DUMMY_P)
1804 {
1805 return hand_function_call (function, nargs, args);
1806 }
1807 else
1808 {
1809 error ("Cannot invoke functions on this machine.");
1810 }
1811 }
1812 \f
1813
1814
1815 /* Create a value for an array by allocating space in the inferior, copying
1816 the data into that space, and then setting up an array value.
1817
1818 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1819 populated from the values passed in ELEMVEC.
1820
1821 The element type of the array is inherited from the type of the
1822 first element, and all elements must have the same size (though we
1823 don't currently enforce any restriction on their types). */
1824
1825 struct value *
1826 value_array (int lowbound, int highbound, struct value **elemvec)
1827 {
1828 int nelem;
1829 int idx;
1830 unsigned int typelength;
1831 struct value *val;
1832 struct type *rangetype;
1833 struct type *arraytype;
1834 CORE_ADDR addr;
1835
1836 /* Validate that the bounds are reasonable and that each of the elements
1837 have the same size. */
1838
1839 nelem = highbound - lowbound + 1;
1840 if (nelem <= 0)
1841 {
1842 error ("bad array bounds (%d, %d)", lowbound, highbound);
1843 }
1844 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1845 for (idx = 1; idx < nelem; idx++)
1846 {
1847 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1848 {
1849 error ("array elements must all be the same size");
1850 }
1851 }
1852
1853 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1854 lowbound, highbound);
1855 arraytype = create_array_type ((struct type *) NULL,
1856 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1857
1858 if (!current_language->c_style_arrays)
1859 {
1860 val = allocate_value (arraytype);
1861 for (idx = 0; idx < nelem; idx++)
1862 {
1863 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1864 VALUE_CONTENTS_ALL (elemvec[idx]),
1865 typelength);
1866 }
1867 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1868 return val;
1869 }
1870
1871 /* Allocate space to store the array in the inferior, and then initialize
1872 it by copying in each element. FIXME: Is it worth it to create a
1873 local buffer in which to collect each value and then write all the
1874 bytes in one operation? */
1875
1876 addr = allocate_space_in_inferior (nelem * typelength);
1877 for (idx = 0; idx < nelem; idx++)
1878 {
1879 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1880 typelength);
1881 }
1882
1883 /* Create the array type and set up an array value to be evaluated lazily. */
1884
1885 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1886 return (val);
1887 }
1888
1889 /* Create a value for a string constant by allocating space in the inferior,
1890 copying the data into that space, and returning the address with type
1891 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1892 of characters.
1893 Note that string types are like array of char types with a lower bound of
1894 zero and an upper bound of LEN - 1. Also note that the string may contain
1895 embedded null bytes. */
1896
1897 struct value *
1898 value_string (char *ptr, int len)
1899 {
1900 struct value *val;
1901 int lowbound = current_language->string_lower_bound;
1902 struct type *rangetype = create_range_type ((struct type *) NULL,
1903 builtin_type_int,
1904 lowbound, len + lowbound - 1);
1905 struct type *stringtype
1906 = create_string_type ((struct type *) NULL, rangetype);
1907 CORE_ADDR addr;
1908
1909 if (current_language->c_style_arrays == 0)
1910 {
1911 val = allocate_value (stringtype);
1912 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1913 return val;
1914 }
1915
1916
1917 /* Allocate space to store the string in the inferior, and then
1918 copy LEN bytes from PTR in gdb to that address in the inferior. */
1919
1920 addr = allocate_space_in_inferior (len);
1921 write_memory (addr, ptr, len);
1922
1923 val = value_at_lazy (stringtype, addr, NULL);
1924 return (val);
1925 }
1926
1927 struct value *
1928 value_bitstring (char *ptr, int len)
1929 {
1930 struct value *val;
1931 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1932 0, len - 1);
1933 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1934 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1935 val = allocate_value (type);
1936 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1937 return val;
1938 }
1939 \f
1940 /* See if we can pass arguments in T2 to a function which takes arguments
1941 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1942 arguments need coercion of some sort, then the coerced values are written
1943 into T2. Return value is 0 if the arguments could be matched, or the
1944 position at which they differ if not.
1945
1946 STATICP is nonzero if the T1 argument list came from a
1947 static member function.
1948
1949 For non-static member functions, we ignore the first argument,
1950 which is the type of the instance variable. This is because we want
1951 to handle calls with objects from derived classes. This is not
1952 entirely correct: we should actually check to make sure that a
1953 requested operation is type secure, shouldn't we? FIXME. */
1954
1955 static int
1956 typecmp (int staticp, struct type *t1[], struct value *t2[])
1957 {
1958 int i;
1959
1960 if (t2 == 0)
1961 return 1;
1962 if (staticp && t1 == 0)
1963 return t2[1] != 0;
1964 if (t1 == 0)
1965 return 1;
1966 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1967 return 0;
1968 if (t1[!staticp] == 0)
1969 return 0;
1970 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1971 {
1972 struct type *tt1, *tt2;
1973 if (!t2[i])
1974 return i + 1;
1975 tt1 = check_typedef (t1[i]);
1976 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1977 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1978 /* We should be doing hairy argument matching, as below. */
1979 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1980 {
1981 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1982 t2[i] = value_coerce_array (t2[i]);
1983 else
1984 t2[i] = value_addr (t2[i]);
1985 continue;
1986 }
1987
1988 /* djb - 20000715 - Until the new type structure is in the
1989 place, and we can attempt things like implicit conversions,
1990 we need to do this so you can take something like a map<const
1991 char *>, and properly access map["hello"], because the
1992 argument to [] will be a reference to a pointer to a char,
1993 and the argument will be a pointer to a char. */
1994 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1995 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1996 {
1997 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1998 }
1999 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2000 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2001 TYPE_CODE(tt2) == TYPE_CODE_REF)
2002 {
2003 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
2004 }
2005 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2006 continue;
2007 /* Array to pointer is a `trivial conversion' according to the ARM. */
2008
2009 /* We should be doing much hairier argument matching (see section 13.2
2010 of the ARM), but as a quick kludge, just check for the same type
2011 code. */
2012 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2013 return i + 1;
2014 }
2015 if (!t1[i])
2016 return 0;
2017 return t2[i] ? i + 1 : 0;
2018 }
2019
2020 /* Helper function used by value_struct_elt to recurse through baseclasses.
2021 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2022 and search in it assuming it has (class) type TYPE.
2023 If found, return value, else return NULL.
2024
2025 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2026 look for a baseclass named NAME. */
2027
2028 static struct value *
2029 search_struct_field (char *name, struct value *arg1, int offset,
2030 register struct type *type, int looking_for_baseclass)
2031 {
2032 int i;
2033 int nbases = TYPE_N_BASECLASSES (type);
2034
2035 CHECK_TYPEDEF (type);
2036
2037 if (!looking_for_baseclass)
2038 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2039 {
2040 char *t_field_name = TYPE_FIELD_NAME (type, i);
2041
2042 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2043 {
2044 struct value *v;
2045 if (TYPE_FIELD_STATIC (type, i))
2046 v = value_static_field (type, i);
2047 else
2048 v = value_primitive_field (arg1, offset, i, type);
2049 if (v == 0)
2050 error ("there is no field named %s", name);
2051 return v;
2052 }
2053
2054 if (t_field_name
2055 && (t_field_name[0] == '\0'
2056 || (TYPE_CODE (type) == TYPE_CODE_UNION
2057 && (strcmp_iw (t_field_name, "else") == 0))))
2058 {
2059 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2060 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2061 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2062 {
2063 /* Look for a match through the fields of an anonymous union,
2064 or anonymous struct. C++ provides anonymous unions.
2065
2066 In the GNU Chill implementation of variant record types,
2067 each <alternative field> has an (anonymous) union type,
2068 each member of the union represents a <variant alternative>.
2069 Each <variant alternative> is represented as a struct,
2070 with a member for each <variant field>. */
2071
2072 struct value *v;
2073 int new_offset = offset;
2074
2075 /* This is pretty gross. In G++, the offset in an anonymous
2076 union is relative to the beginning of the enclosing struct.
2077 In the GNU Chill implementation of variant records,
2078 the bitpos is zero in an anonymous union field, so we
2079 have to add the offset of the union here. */
2080 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2081 || (TYPE_NFIELDS (field_type) > 0
2082 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2083 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2084
2085 v = search_struct_field (name, arg1, new_offset, field_type,
2086 looking_for_baseclass);
2087 if (v)
2088 return v;
2089 }
2090 }
2091 }
2092
2093 for (i = 0; i < nbases; i++)
2094 {
2095 struct value *v;
2096 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2097 /* If we are looking for baseclasses, this is what we get when we
2098 hit them. But it could happen that the base part's member name
2099 is not yet filled in. */
2100 int found_baseclass = (looking_for_baseclass
2101 && TYPE_BASECLASS_NAME (type, i) != NULL
2102 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2103
2104 if (BASETYPE_VIA_VIRTUAL (type, i))
2105 {
2106 int boffset;
2107 struct value *v2 = allocate_value (basetype);
2108
2109 boffset = baseclass_offset (type, i,
2110 VALUE_CONTENTS (arg1) + offset,
2111 VALUE_ADDRESS (arg1)
2112 + VALUE_OFFSET (arg1) + offset);
2113 if (boffset == -1)
2114 error ("virtual baseclass botch");
2115
2116 /* The virtual base class pointer might have been clobbered by the
2117 user program. Make sure that it still points to a valid memory
2118 location. */
2119
2120 boffset += offset;
2121 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2122 {
2123 CORE_ADDR base_addr;
2124
2125 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2126 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2127 TYPE_LENGTH (basetype)) != 0)
2128 error ("virtual baseclass botch");
2129 VALUE_LVAL (v2) = lval_memory;
2130 VALUE_ADDRESS (v2) = base_addr;
2131 }
2132 else
2133 {
2134 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2135 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2136 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2137 if (VALUE_LAZY (arg1))
2138 VALUE_LAZY (v2) = 1;
2139 else
2140 memcpy (VALUE_CONTENTS_RAW (v2),
2141 VALUE_CONTENTS_RAW (arg1) + boffset,
2142 TYPE_LENGTH (basetype));
2143 }
2144
2145 if (found_baseclass)
2146 return v2;
2147 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2148 looking_for_baseclass);
2149 }
2150 else if (found_baseclass)
2151 v = value_primitive_field (arg1, offset, i, type);
2152 else
2153 v = search_struct_field (name, arg1,
2154 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2155 basetype, looking_for_baseclass);
2156 if (v)
2157 return v;
2158 }
2159 return NULL;
2160 }
2161
2162
2163 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2164 * in an object pointed to by VALADDR (on the host), assumed to be of
2165 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2166 * looking (in case VALADDR is the contents of an enclosing object).
2167 *
2168 * This routine recurses on the primary base of the derived class because
2169 * the virtual base entries of the primary base appear before the other
2170 * virtual base entries.
2171 *
2172 * If the virtual base is not found, a negative integer is returned.
2173 * The magnitude of the negative integer is the number of entries in
2174 * the virtual table to skip over (entries corresponding to various
2175 * ancestral classes in the chain of primary bases).
2176 *
2177 * Important: This assumes the HP / Taligent C++ runtime
2178 * conventions. Use baseclass_offset() instead to deal with g++
2179 * conventions. */
2180
2181 void
2182 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2183 int offset, int *boffset_p, int *skip_p)
2184 {
2185 int boffset; /* offset of virtual base */
2186 int index; /* displacement to use in virtual table */
2187 int skip;
2188
2189 struct value *vp;
2190 CORE_ADDR vtbl; /* the virtual table pointer */
2191 struct type *pbc; /* the primary base class */
2192
2193 /* Look for the virtual base recursively in the primary base, first.
2194 * This is because the derived class object and its primary base
2195 * subobject share the primary virtual table. */
2196
2197 boffset = 0;
2198 pbc = TYPE_PRIMARY_BASE (type);
2199 if (pbc)
2200 {
2201 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2202 if (skip < 0)
2203 {
2204 *boffset_p = boffset;
2205 *skip_p = -1;
2206 return;
2207 }
2208 }
2209 else
2210 skip = 0;
2211
2212
2213 /* Find the index of the virtual base according to HP/Taligent
2214 runtime spec. (Depth-first, left-to-right.) */
2215 index = virtual_base_index_skip_primaries (basetype, type);
2216
2217 if (index < 0)
2218 {
2219 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2220 *boffset_p = 0;
2221 return;
2222 }
2223
2224 /* pai: FIXME -- 32x64 possible problem */
2225 /* First word (4 bytes) in object layout is the vtable pointer */
2226 vtbl = *(CORE_ADDR *) (valaddr + offset);
2227
2228 /* Before the constructor is invoked, things are usually zero'd out. */
2229 if (vtbl == 0)
2230 error ("Couldn't find virtual table -- object may not be constructed yet.");
2231
2232
2233 /* Find virtual base's offset -- jump over entries for primary base
2234 * ancestors, then use the index computed above. But also adjust by
2235 * HP_ACC_VBASE_START for the vtable slots before the start of the
2236 * virtual base entries. Offset is negative -- virtual base entries
2237 * appear _before_ the address point of the virtual table. */
2238
2239 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2240 & use long type */
2241
2242 /* epstein : FIXME -- added param for overlay section. May not be correct */
2243 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2244 boffset = value_as_long (vp);
2245 *skip_p = -1;
2246 *boffset_p = boffset;
2247 return;
2248 }
2249
2250
2251 /* Helper function used by value_struct_elt to recurse through baseclasses.
2252 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2253 and search in it assuming it has (class) type TYPE.
2254 If found, return value, else if name matched and args not return (value)-1,
2255 else return NULL. */
2256
2257 static struct value *
2258 search_struct_method (char *name, struct value **arg1p,
2259 struct value **args, int offset,
2260 int *static_memfuncp, register struct type *type)
2261 {
2262 int i;
2263 struct value *v;
2264 int name_matched = 0;
2265 char dem_opname[64];
2266
2267 CHECK_TYPEDEF (type);
2268 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2269 {
2270 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2271 /* FIXME! May need to check for ARM demangling here */
2272 if (strncmp (t_field_name, "__", 2) == 0 ||
2273 strncmp (t_field_name, "op", 2) == 0 ||
2274 strncmp (t_field_name, "type", 4) == 0)
2275 {
2276 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2277 t_field_name = dem_opname;
2278 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2279 t_field_name = dem_opname;
2280 }
2281 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2282 {
2283 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2284 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2285 name_matched = 1;
2286
2287 if (j > 0 && args == 0)
2288 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2289 else if (j == 0 && args == 0)
2290 {
2291 if (TYPE_FN_FIELD_STUB (f, j))
2292 check_stub_method (type, i, j);
2293 v = value_fn_field (arg1p, f, j, type, offset);
2294 if (v != NULL)
2295 return v;
2296 }
2297 else
2298 while (j >= 0)
2299 {
2300 if (TYPE_FN_FIELD_STUB (f, j))
2301 check_stub_method (type, i, j);
2302 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2303 TYPE_FN_FIELD_ARGS (f, j), args))
2304 {
2305 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2306 return value_virtual_fn_field (arg1p, f, j, type, offset);
2307 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2308 *static_memfuncp = 1;
2309 v = value_fn_field (arg1p, f, j, type, offset);
2310 if (v != NULL)
2311 return v;
2312 }
2313 j--;
2314 }
2315 }
2316 }
2317
2318 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2319 {
2320 int base_offset;
2321
2322 if (BASETYPE_VIA_VIRTUAL (type, i))
2323 {
2324 if (TYPE_HAS_VTABLE (type))
2325 {
2326 /* HP aCC compiled type, search for virtual base offset
2327 according to HP/Taligent runtime spec. */
2328 int skip;
2329 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2330 VALUE_CONTENTS_ALL (*arg1p),
2331 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2332 &base_offset, &skip);
2333 if (skip >= 0)
2334 error ("Virtual base class offset not found in vtable");
2335 }
2336 else
2337 {
2338 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2339 char *base_valaddr;
2340
2341 /* The virtual base class pointer might have been clobbered by the
2342 user program. Make sure that it still points to a valid memory
2343 location. */
2344
2345 if (offset < 0 || offset >= TYPE_LENGTH (type))
2346 {
2347 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2348 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2349 + VALUE_OFFSET (*arg1p) + offset,
2350 base_valaddr,
2351 TYPE_LENGTH (baseclass)) != 0)
2352 error ("virtual baseclass botch");
2353 }
2354 else
2355 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2356
2357 base_offset =
2358 baseclass_offset (type, i, base_valaddr,
2359 VALUE_ADDRESS (*arg1p)
2360 + VALUE_OFFSET (*arg1p) + offset);
2361 if (base_offset == -1)
2362 error ("virtual baseclass botch");
2363 }
2364 }
2365 else
2366 {
2367 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2368 }
2369 v = search_struct_method (name, arg1p, args, base_offset + offset,
2370 static_memfuncp, TYPE_BASECLASS (type, i));
2371 if (v == (struct value *) - 1)
2372 {
2373 name_matched = 1;
2374 }
2375 else if (v)
2376 {
2377 /* FIXME-bothner: Why is this commented out? Why is it here? */
2378 /* *arg1p = arg1_tmp; */
2379 return v;
2380 }
2381 }
2382 if (name_matched)
2383 return (struct value *) - 1;
2384 else
2385 return NULL;
2386 }
2387
2388 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2389 extract the component named NAME from the ultimate target structure/union
2390 and return it as a value with its appropriate type.
2391 ERR is used in the error message if *ARGP's type is wrong.
2392
2393 C++: ARGS is a list of argument types to aid in the selection of
2394 an appropriate method. Also, handle derived types.
2395
2396 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2397 where the truthvalue of whether the function that was resolved was
2398 a static member function or not is stored.
2399
2400 ERR is an error message to be printed in case the field is not found. */
2401
2402 struct value *
2403 value_struct_elt (struct value **argp, struct value **args,
2404 char *name, int *static_memfuncp, char *err)
2405 {
2406 register struct type *t;
2407 struct value *v;
2408
2409 COERCE_ARRAY (*argp);
2410
2411 t = check_typedef (VALUE_TYPE (*argp));
2412
2413 /* Follow pointers until we get to a non-pointer. */
2414
2415 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2416 {
2417 *argp = value_ind (*argp);
2418 /* Don't coerce fn pointer to fn and then back again! */
2419 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2420 COERCE_ARRAY (*argp);
2421 t = check_typedef (VALUE_TYPE (*argp));
2422 }
2423
2424 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2425 error ("not implemented: member type in value_struct_elt");
2426
2427 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2428 && TYPE_CODE (t) != TYPE_CODE_UNION)
2429 error ("Attempt to extract a component of a value that is not a %s.", err);
2430
2431 /* Assume it's not, unless we see that it is. */
2432 if (static_memfuncp)
2433 *static_memfuncp = 0;
2434
2435 if (!args)
2436 {
2437 /* if there are no arguments ...do this... */
2438
2439 /* Try as a field first, because if we succeed, there
2440 is less work to be done. */
2441 v = search_struct_field (name, *argp, 0, t, 0);
2442 if (v)
2443 return v;
2444
2445 /* C++: If it was not found as a data field, then try to
2446 return it as a pointer to a method. */
2447
2448 if (destructor_name_p (name, t))
2449 error ("Cannot get value of destructor");
2450
2451 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2452
2453 if (v == (struct value *) - 1)
2454 error ("Cannot take address of a method");
2455 else if (v == 0)
2456 {
2457 if (TYPE_NFN_FIELDS (t))
2458 error ("There is no member or method named %s.", name);
2459 else
2460 error ("There is no member named %s.", name);
2461 }
2462 return v;
2463 }
2464
2465 if (destructor_name_p (name, t))
2466 {
2467 if (!args[1])
2468 {
2469 /* Destructors are a special case. */
2470 int m_index, f_index;
2471
2472 v = NULL;
2473 if (get_destructor_fn_field (t, &m_index, &f_index))
2474 {
2475 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2476 f_index, NULL, 0);
2477 }
2478 if (v == NULL)
2479 error ("could not find destructor function named %s.", name);
2480 else
2481 return v;
2482 }
2483 else
2484 {
2485 error ("destructor should not have any argument");
2486 }
2487 }
2488 else
2489 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2490
2491 if (v == (struct value *) - 1)
2492 {
2493 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2494 }
2495 else if (v == 0)
2496 {
2497 /* See if user tried to invoke data as function. If so,
2498 hand it back. If it's not callable (i.e., a pointer to function),
2499 gdb should give an error. */
2500 v = search_struct_field (name, *argp, 0, t, 0);
2501 }
2502
2503 if (!v)
2504 error ("Structure has no component named %s.", name);
2505 return v;
2506 }
2507
2508 /* Search through the methods of an object (and its bases)
2509 * to find a specified method. Return the pointer to the
2510 * fn_field list of overloaded instances.
2511 * Helper function for value_find_oload_list.
2512 * ARGP is a pointer to a pointer to a value (the object)
2513 * METHOD is a string containing the method name
2514 * OFFSET is the offset within the value
2515 * STATIC_MEMFUNCP is set if the method is static
2516 * TYPE is the assumed type of the object
2517 * NUM_FNS is the number of overloaded instances
2518 * BASETYPE is set to the actual type of the subobject where the method is found
2519 * BOFFSET is the offset of the base subobject where the method is found */
2520
2521 static struct fn_field *
2522 find_method_list (struct value **argp, char *method, int offset,
2523 int *static_memfuncp, struct type *type, int *num_fns,
2524 struct type **basetype, int *boffset)
2525 {
2526 int i;
2527 struct fn_field *f;
2528 CHECK_TYPEDEF (type);
2529
2530 *num_fns = 0;
2531
2532 /* First check in object itself */
2533 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2534 {
2535 /* pai: FIXME What about operators and type conversions? */
2536 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2537 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2538 {
2539 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2540 *basetype = type;
2541 *boffset = offset;
2542 return TYPE_FN_FIELDLIST1 (type, i);
2543 }
2544 }
2545
2546 /* Not found in object, check in base subobjects */
2547 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2548 {
2549 int base_offset;
2550 if (BASETYPE_VIA_VIRTUAL (type, i))
2551 {
2552 if (TYPE_HAS_VTABLE (type))
2553 {
2554 /* HP aCC compiled type, search for virtual base offset
2555 * according to HP/Taligent runtime spec. */
2556 int skip;
2557 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2558 VALUE_CONTENTS_ALL (*argp),
2559 offset + VALUE_EMBEDDED_OFFSET (*argp),
2560 &base_offset, &skip);
2561 if (skip >= 0)
2562 error ("Virtual base class offset not found in vtable");
2563 }
2564 else
2565 {
2566 /* probably g++ runtime model */
2567 base_offset = VALUE_OFFSET (*argp) + offset;
2568 base_offset =
2569 baseclass_offset (type, i,
2570 VALUE_CONTENTS (*argp) + base_offset,
2571 VALUE_ADDRESS (*argp) + base_offset);
2572 if (base_offset == -1)
2573 error ("virtual baseclass botch");
2574 }
2575 }
2576 else
2577 /* non-virtual base, simply use bit position from debug info */
2578 {
2579 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2580 }
2581 f = find_method_list (argp, method, base_offset + offset,
2582 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2583 if (f)
2584 return f;
2585 }
2586 return NULL;
2587 }
2588
2589 /* Return the list of overloaded methods of a specified name.
2590 * ARGP is a pointer to a pointer to a value (the object)
2591 * METHOD is the method name
2592 * OFFSET is the offset within the value contents
2593 * STATIC_MEMFUNCP is set if the method is static
2594 * NUM_FNS is the number of overloaded instances
2595 * BASETYPE is set to the type of the base subobject that defines the method
2596 * BOFFSET is the offset of the base subobject which defines the method */
2597
2598 struct fn_field *
2599 value_find_oload_method_list (struct value **argp, char *method, int offset,
2600 int *static_memfuncp, int *num_fns,
2601 struct type **basetype, int *boffset)
2602 {
2603 struct type *t;
2604
2605 t = check_typedef (VALUE_TYPE (*argp));
2606
2607 /* code snarfed from value_struct_elt */
2608 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2609 {
2610 *argp = value_ind (*argp);
2611 /* Don't coerce fn pointer to fn and then back again! */
2612 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2613 COERCE_ARRAY (*argp);
2614 t = check_typedef (VALUE_TYPE (*argp));
2615 }
2616
2617 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2618 error ("Not implemented: member type in value_find_oload_lis");
2619
2620 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2621 && TYPE_CODE (t) != TYPE_CODE_UNION)
2622 error ("Attempt to extract a component of a value that is not a struct or union");
2623
2624 /* Assume it's not static, unless we see that it is. */
2625 if (static_memfuncp)
2626 *static_memfuncp = 0;
2627
2628 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2629
2630 }
2631
2632 /* Given an array of argument types (ARGTYPES) (which includes an
2633 entry for "this" in the case of C++ methods), the number of
2634 arguments NARGS, the NAME of a function whether it's a method or
2635 not (METHOD), and the degree of laxness (LAX) in conforming to
2636 overload resolution rules in ANSI C++, find the best function that
2637 matches on the argument types according to the overload resolution
2638 rules.
2639
2640 In the case of class methods, the parameter OBJ is an object value
2641 in which to search for overloaded methods.
2642
2643 In the case of non-method functions, the parameter FSYM is a symbol
2644 corresponding to one of the overloaded functions.
2645
2646 Return value is an integer: 0 -> good match, 10 -> debugger applied
2647 non-standard coercions, 100 -> incompatible.
2648
2649 If a method is being searched for, VALP will hold the value.
2650 If a non-method is being searched for, SYMP will hold the symbol for it.
2651
2652 If a method is being searched for, and it is a static method,
2653 then STATICP will point to a non-zero value.
2654
2655 Note: This function does *not* check the value of
2656 overload_resolution. Caller must check it to see whether overload
2657 resolution is permitted.
2658 */
2659
2660 int
2661 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2662 int lax, struct value **objp, struct symbol *fsym,
2663 struct value **valp, struct symbol **symp, int *staticp)
2664 {
2665 int nparms;
2666 struct type **parm_types;
2667 int champ_nparms = 0;
2668 struct value *obj = (objp ? *objp : NULL);
2669
2670 short oload_champ = -1; /* Index of best overloaded function */
2671 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2672 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2673 short oload_ambig_champ = -1; /* 2nd contender for best match */
2674 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2675 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2676
2677 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2678 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2679
2680 struct value *temp = obj;
2681 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2682 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2683 int num_fns = 0; /* Number of overloaded instances being considered */
2684 struct type *basetype = NULL;
2685 int boffset;
2686 register int jj;
2687 register int ix;
2688
2689 char *obj_type_name = NULL;
2690 char *func_name = NULL;
2691
2692 /* Get the list of overloaded methods or functions */
2693 if (method)
2694 {
2695 int i;
2696 int len;
2697 struct type *domain;
2698 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2699 /* Hack: evaluate_subexp_standard often passes in a pointer
2700 value rather than the object itself, so try again */
2701 if ((!obj_type_name || !*obj_type_name) &&
2702 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2703 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2704
2705 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2706 staticp,
2707 &num_fns,
2708 &basetype, &boffset);
2709 if (!fns_ptr || !num_fns)
2710 error ("Couldn't find method %s%s%s",
2711 obj_type_name,
2712 (obj_type_name && *obj_type_name) ? "::" : "",
2713 name);
2714 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2715 len = TYPE_NFN_FIELDS (domain);
2716 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2717 give us the info we need directly in the types. We have to
2718 use the method stub conversion to get it. Be aware that this
2719 is by no means perfect, and if you use STABS, please move to
2720 DWARF-2, or something like it, because trying to improve
2721 overloading using STABS is really a waste of time. */
2722 for (i = 0; i < len; i++)
2723 {
2724 int j;
2725 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2726 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2727
2728 for (j = 0; j < len2; j++)
2729 {
2730 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2731 check_stub_method (domain, i, j);
2732 }
2733 }
2734 }
2735 else
2736 {
2737 int i = -1;
2738 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2739
2740 /* If the name is NULL this must be a C-style function.
2741 Just return the same symbol. */
2742 if (!func_name)
2743 {
2744 *symp = fsym;
2745 return 0;
2746 }
2747
2748 oload_syms = make_symbol_overload_list (fsym);
2749 while (oload_syms[++i])
2750 num_fns++;
2751 if (!num_fns)
2752 error ("Couldn't find function %s", func_name);
2753 }
2754
2755 oload_champ_bv = NULL;
2756
2757 /* Consider each candidate in turn */
2758 for (ix = 0; ix < num_fns; ix++)
2759 {
2760 if (method)
2761 {
2762 /* For static member functions, we won't have a this pointer, but nothing
2763 else seems to handle them right now, so we just pretend ourselves */
2764 nparms=0;
2765
2766 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2767 {
2768 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2769 nparms++;
2770 }
2771 }
2772 else
2773 {
2774 /* If it's not a method, this is the proper place */
2775 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2776 }
2777
2778 /* Prepare array of parameter types */
2779 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2780 for (jj = 0; jj < nparms; jj++)
2781 parm_types[jj] = (method
2782 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2783 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2784
2785 /* Compare parameter types to supplied argument types */
2786 bv = rank_function (parm_types, nparms, arg_types, nargs);
2787
2788 if (!oload_champ_bv)
2789 {
2790 oload_champ_bv = bv;
2791 oload_champ = 0;
2792 champ_nparms = nparms;
2793 }
2794 else
2795 /* See whether current candidate is better or worse than previous best */
2796 switch (compare_badness (bv, oload_champ_bv))
2797 {
2798 case 0:
2799 oload_ambiguous = 1; /* top two contenders are equally good */
2800 oload_ambig_champ = ix;
2801 break;
2802 case 1:
2803 oload_ambiguous = 2; /* incomparable top contenders */
2804 oload_ambig_champ = ix;
2805 break;
2806 case 2:
2807 oload_champ_bv = bv; /* new champion, record details */
2808 oload_ambiguous = 0;
2809 oload_champ = ix;
2810 oload_ambig_champ = -1;
2811 champ_nparms = nparms;
2812 break;
2813 case 3:
2814 default:
2815 break;
2816 }
2817 xfree (parm_types);
2818 if (overload_debug)
2819 {
2820 if (method)
2821 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2822 else
2823 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2824 for (jj = 0; jj < nargs; jj++)
2825 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2826 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2827 }
2828 } /* end loop over all candidates */
2829 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2830 if they have the exact same goodness. This is because there is no
2831 way to differentiate based on return type, which we need to in
2832 cases like overloads of .begin() <It's both const and non-const> */
2833 #if 0
2834 if (oload_ambiguous)
2835 {
2836 if (method)
2837 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2838 obj_type_name,
2839 (obj_type_name && *obj_type_name) ? "::" : "",
2840 name);
2841 else
2842 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2843 func_name);
2844 }
2845 #endif
2846
2847 /* Check how bad the best match is */
2848 for (ix = 1; ix <= nargs; ix++)
2849 {
2850 if (oload_champ_bv->rank[ix] >= 100)
2851 oload_incompatible = 1; /* truly mismatched types */
2852
2853 else if (oload_champ_bv->rank[ix] >= 10)
2854 oload_non_standard = 1; /* non-standard type conversions needed */
2855 }
2856 if (oload_incompatible)
2857 {
2858 if (method)
2859 error ("Cannot resolve method %s%s%s to any overloaded instance",
2860 obj_type_name,
2861 (obj_type_name && *obj_type_name) ? "::" : "",
2862 name);
2863 else
2864 error ("Cannot resolve function %s to any overloaded instance",
2865 func_name);
2866 }
2867 else if (oload_non_standard)
2868 {
2869 if (method)
2870 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2871 obj_type_name,
2872 (obj_type_name && *obj_type_name) ? "::" : "",
2873 name);
2874 else
2875 warning ("Using non-standard conversion to match function %s to supplied arguments",
2876 func_name);
2877 }
2878
2879 if (method)
2880 {
2881 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2882 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2883 else
2884 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2885 }
2886 else
2887 {
2888 *symp = oload_syms[oload_champ];
2889 xfree (func_name);
2890 }
2891
2892 if (objp)
2893 {
2894 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2895 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2896 {
2897 temp = value_addr (temp);
2898 }
2899 *objp = temp;
2900 }
2901 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2902 }
2903
2904 /* C++: return 1 is NAME is a legitimate name for the destructor
2905 of type TYPE. If TYPE does not have a destructor, or
2906 if NAME is inappropriate for TYPE, an error is signaled. */
2907 int
2908 destructor_name_p (const char *name, const struct type *type)
2909 {
2910 /* destructors are a special case. */
2911
2912 if (name[0] == '~')
2913 {
2914 char *dname = type_name_no_tag (type);
2915 char *cp = strchr (dname, '<');
2916 unsigned int len;
2917
2918 /* Do not compare the template part for template classes. */
2919 if (cp == NULL)
2920 len = strlen (dname);
2921 else
2922 len = cp - dname;
2923 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2924 error ("name of destructor must equal name of class");
2925 else
2926 return 1;
2927 }
2928 return 0;
2929 }
2930
2931 /* Helper function for check_field: Given TYPE, a structure/union,
2932 return 1 if the component named NAME from the ultimate
2933 target structure/union is defined, otherwise, return 0. */
2934
2935 static int
2936 check_field_in (register struct type *type, const char *name)
2937 {
2938 register int i;
2939
2940 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2941 {
2942 char *t_field_name = TYPE_FIELD_NAME (type, i);
2943 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2944 return 1;
2945 }
2946
2947 /* C++: If it was not found as a data field, then try to
2948 return it as a pointer to a method. */
2949
2950 /* Destructors are a special case. */
2951 if (destructor_name_p (name, type))
2952 {
2953 int m_index, f_index;
2954
2955 return get_destructor_fn_field (type, &m_index, &f_index);
2956 }
2957
2958 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2959 {
2960 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2961 return 1;
2962 }
2963
2964 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2965 if (check_field_in (TYPE_BASECLASS (type, i), name))
2966 return 1;
2967
2968 return 0;
2969 }
2970
2971
2972 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2973 return 1 if the component named NAME from the ultimate
2974 target structure/union is defined, otherwise, return 0. */
2975
2976 int
2977 check_field (struct value *arg1, const char *name)
2978 {
2979 register struct type *t;
2980
2981 COERCE_ARRAY (arg1);
2982
2983 t = VALUE_TYPE (arg1);
2984
2985 /* Follow pointers until we get to a non-pointer. */
2986
2987 for (;;)
2988 {
2989 CHECK_TYPEDEF (t);
2990 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2991 break;
2992 t = TYPE_TARGET_TYPE (t);
2993 }
2994
2995 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2996 error ("not implemented: member type in check_field");
2997
2998 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2999 && TYPE_CODE (t) != TYPE_CODE_UNION)
3000 error ("Internal error: `this' is not an aggregate");
3001
3002 return check_field_in (t, name);
3003 }
3004
3005 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3006 return the address of this member as a "pointer to member"
3007 type. If INTYPE is non-null, then it will be the type
3008 of the member we are looking for. This will help us resolve
3009 "pointers to member functions". This function is used
3010 to resolve user expressions of the form "DOMAIN::NAME". */
3011
3012 struct value *
3013 value_struct_elt_for_reference (struct type *domain, int offset,
3014 struct type *curtype, char *name,
3015 struct type *intype)
3016 {
3017 register struct type *t = curtype;
3018 register int i;
3019 struct value *v;
3020
3021 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3022 && TYPE_CODE (t) != TYPE_CODE_UNION)
3023 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3024
3025 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3026 {
3027 char *t_field_name = TYPE_FIELD_NAME (t, i);
3028
3029 if (t_field_name && STREQ (t_field_name, name))
3030 {
3031 if (TYPE_FIELD_STATIC (t, i))
3032 {
3033 v = value_static_field (t, i);
3034 if (v == NULL)
3035 error ("Internal error: could not find static variable %s",
3036 name);
3037 return v;
3038 }
3039 if (TYPE_FIELD_PACKED (t, i))
3040 error ("pointers to bitfield members not allowed");
3041
3042 return value_from_longest
3043 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3044 domain)),
3045 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3046 }
3047 }
3048
3049 /* C++: If it was not found as a data field, then try to
3050 return it as a pointer to a method. */
3051
3052 /* Destructors are a special case. */
3053 if (destructor_name_p (name, t))
3054 {
3055 error ("member pointers to destructors not implemented yet");
3056 }
3057
3058 /* Perform all necessary dereferencing. */
3059 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3060 intype = TYPE_TARGET_TYPE (intype);
3061
3062 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3063 {
3064 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3065 char dem_opname[64];
3066
3067 if (strncmp (t_field_name, "__", 2) == 0 ||
3068 strncmp (t_field_name, "op", 2) == 0 ||
3069 strncmp (t_field_name, "type", 4) == 0)
3070 {
3071 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3072 t_field_name = dem_opname;
3073 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3074 t_field_name = dem_opname;
3075 }
3076 if (t_field_name && STREQ (t_field_name, name))
3077 {
3078 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3079 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3080
3081 if (intype == 0 && j > 1)
3082 error ("non-unique member `%s' requires type instantiation", name);
3083 if (intype)
3084 {
3085 while (j--)
3086 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3087 break;
3088 if (j < 0)
3089 error ("no member function matches that type instantiation");
3090 }
3091 else
3092 j = 0;
3093
3094 if (TYPE_FN_FIELD_STUB (f, j))
3095 check_stub_method (t, i, j);
3096 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3097 {
3098 return value_from_longest
3099 (lookup_reference_type
3100 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3101 domain)),
3102 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3103 }
3104 else
3105 {
3106 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3107 0, VAR_NAMESPACE, 0, NULL);
3108 if (s == NULL)
3109 {
3110 v = 0;
3111 }
3112 else
3113 {
3114 v = read_var_value (s, 0);
3115 #if 0
3116 VALUE_TYPE (v) = lookup_reference_type
3117 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3118 domain));
3119 #endif
3120 }
3121 return v;
3122 }
3123 }
3124 }
3125 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3126 {
3127 struct value *v;
3128 int base_offset;
3129
3130 if (BASETYPE_VIA_VIRTUAL (t, i))
3131 base_offset = 0;
3132 else
3133 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3134 v = value_struct_elt_for_reference (domain,
3135 offset + base_offset,
3136 TYPE_BASECLASS (t, i),
3137 name,
3138 intype);
3139 if (v)
3140 return v;
3141 }
3142 return 0;
3143 }
3144
3145
3146 /* Given a pointer value V, find the real (RTTI) type
3147 of the object it points to.
3148 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3149 and refer to the values computed for the object pointed to. */
3150
3151 struct type *
3152 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3153 {
3154 struct value *target;
3155
3156 target = value_ind (v);
3157
3158 return value_rtti_type (target, full, top, using_enc);
3159 }
3160
3161 /* Given a value pointed to by ARGP, check its real run-time type, and
3162 if that is different from the enclosing type, create a new value
3163 using the real run-time type as the enclosing type (and of the same
3164 type as ARGP) and return it, with the embedded offset adjusted to
3165 be the correct offset to the enclosed object
3166 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3167 parameters, computed by value_rtti_type(). If these are available,
3168 they can be supplied and a second call to value_rtti_type() is avoided.
3169 (Pass RTYPE == NULL if they're not available */
3170
3171 struct value *
3172 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3173 int xusing_enc)
3174 {
3175 struct type *real_type;
3176 int full = 0;
3177 int top = -1;
3178 int using_enc = 0;
3179 struct value *new_val;
3180
3181 if (rtype)
3182 {
3183 real_type = rtype;
3184 full = xfull;
3185 top = xtop;
3186 using_enc = xusing_enc;
3187 }
3188 else
3189 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3190
3191 /* If no RTTI data, or if object is already complete, do nothing */
3192 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3193 return argp;
3194
3195 /* If we have the full object, but for some reason the enclosing
3196 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3197 if (full)
3198 {
3199 argp = value_change_enclosing_type (argp, real_type);
3200 return argp;
3201 }
3202
3203 /* Check if object is in memory */
3204 if (VALUE_LVAL (argp) != lval_memory)
3205 {
3206 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3207
3208 return argp;
3209 }
3210
3211 /* All other cases -- retrieve the complete object */
3212 /* Go back by the computed top_offset from the beginning of the object,
3213 adjusting for the embedded offset of argp if that's what value_rtti_type
3214 used for its computation. */
3215 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3216 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3217 VALUE_BFD_SECTION (argp));
3218 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3219 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3220 return new_val;
3221 }
3222
3223
3224
3225
3226 /* C++: return the value of the class instance variable, if one exists.
3227 Flag COMPLAIN signals an error if the request is made in an
3228 inappropriate context. */
3229
3230 struct value *
3231 value_of_this (int complain)
3232 {
3233 struct symbol *func, *sym;
3234 struct block *b;
3235 int i;
3236 static const char funny_this[] = "this";
3237 struct value *this;
3238
3239 if (selected_frame == 0)
3240 {
3241 if (complain)
3242 error ("no frame selected");
3243 else
3244 return 0;
3245 }
3246
3247 func = get_frame_function (selected_frame);
3248 if (!func)
3249 {
3250 if (complain)
3251 error ("no `this' in nameless context");
3252 else
3253 return 0;
3254 }
3255
3256 b = SYMBOL_BLOCK_VALUE (func);
3257 i = BLOCK_NSYMS (b);
3258 if (i <= 0)
3259 {
3260 if (complain)
3261 error ("no args, no `this'");
3262 else
3263 return 0;
3264 }
3265
3266 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3267 symbol instead of the LOC_ARG one (if both exist). */
3268 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
3269 if (sym == NULL)
3270 {
3271 if (complain)
3272 error ("current stack frame not in method");
3273 else
3274 return NULL;
3275 }
3276
3277 this = read_var_value (sym, selected_frame);
3278 if (this == 0 && complain)
3279 error ("`this' argument at unknown address");
3280 return this;
3281 }
3282
3283 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3284 long, starting at LOWBOUND. The result has the same lower bound as
3285 the original ARRAY. */
3286
3287 struct value *
3288 value_slice (struct value *array, int lowbound, int length)
3289 {
3290 struct type *slice_range_type, *slice_type, *range_type;
3291 LONGEST lowerbound, upperbound, offset;
3292 struct value *slice;
3293 struct type *array_type;
3294 array_type = check_typedef (VALUE_TYPE (array));
3295 COERCE_VARYING_ARRAY (array, array_type);
3296 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3297 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3298 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3299 error ("cannot take slice of non-array");
3300 range_type = TYPE_INDEX_TYPE (array_type);
3301 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3302 error ("slice from bad array or bitstring");
3303 if (lowbound < lowerbound || length < 0
3304 || lowbound + length - 1 > upperbound
3305 /* Chill allows zero-length strings but not arrays. */
3306 || (current_language->la_language == language_chill
3307 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3308 error ("slice out of range");
3309 /* FIXME-type-allocation: need a way to free this type when we are
3310 done with it. */
3311 slice_range_type = create_range_type ((struct type *) NULL,
3312 TYPE_TARGET_TYPE (range_type),
3313 lowbound, lowbound + length - 1);
3314 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3315 {
3316 int i;
3317 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3318 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3319 slice = value_zero (slice_type, not_lval);
3320 for (i = 0; i < length; i++)
3321 {
3322 int element = value_bit_index (array_type,
3323 VALUE_CONTENTS (array),
3324 lowbound + i);
3325 if (element < 0)
3326 error ("internal error accessing bitstring");
3327 else if (element > 0)
3328 {
3329 int j = i % TARGET_CHAR_BIT;
3330 if (BITS_BIG_ENDIAN)
3331 j = TARGET_CHAR_BIT - 1 - j;
3332 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3333 }
3334 }
3335 /* We should set the address, bitssize, and bitspos, so the clice
3336 can be used on the LHS, but that may require extensions to
3337 value_assign. For now, just leave as a non_lval. FIXME. */
3338 }
3339 else
3340 {
3341 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3342 offset
3343 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3344 slice_type = create_array_type ((struct type *) NULL, element_type,
3345 slice_range_type);
3346 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3347 slice = allocate_value (slice_type);
3348 if (VALUE_LAZY (array))
3349 VALUE_LAZY (slice) = 1;
3350 else
3351 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3352 TYPE_LENGTH (slice_type));
3353 if (VALUE_LVAL (array) == lval_internalvar)
3354 VALUE_LVAL (slice) = lval_internalvar_component;
3355 else
3356 VALUE_LVAL (slice) = VALUE_LVAL (array);
3357 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3358 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3359 }
3360 return slice;
3361 }
3362
3363 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3364 value as a fixed-length array. */
3365
3366 struct value *
3367 varying_to_slice (struct value *varray)
3368 {
3369 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3370 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3371 VALUE_CONTENTS (varray)
3372 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3373 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3374 }
3375
3376 /* Create a value for a FORTRAN complex number. Currently most of
3377 the time values are coerced to COMPLEX*16 (i.e. a complex number
3378 composed of 2 doubles. This really should be a smarter routine
3379 that figures out precision inteligently as opposed to assuming
3380 doubles. FIXME: fmb */
3381
3382 struct value *
3383 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3384 {
3385 struct value *val;
3386 struct type *real_type = TYPE_TARGET_TYPE (type);
3387
3388 val = allocate_value (type);
3389 arg1 = value_cast (real_type, arg1);
3390 arg2 = value_cast (real_type, arg2);
3391
3392 memcpy (VALUE_CONTENTS_RAW (val),
3393 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3394 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3395 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3396 return val;
3397 }
3398
3399 /* Cast a value into the appropriate complex data type. */
3400
3401 static struct value *
3402 cast_into_complex (struct type *type, struct value *val)
3403 {
3404 struct type *real_type = TYPE_TARGET_TYPE (type);
3405 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3406 {
3407 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3408 struct value *re_val = allocate_value (val_real_type);
3409 struct value *im_val = allocate_value (val_real_type);
3410
3411 memcpy (VALUE_CONTENTS_RAW (re_val),
3412 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3413 memcpy (VALUE_CONTENTS_RAW (im_val),
3414 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3415 TYPE_LENGTH (val_real_type));
3416
3417 return value_literal_complex (re_val, im_val, type);
3418 }
3419 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3420 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3421 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3422 else
3423 error ("cannot cast non-number to complex");
3424 }
3425
3426 void
3427 _initialize_valops (void)
3428 {
3429 #if 0
3430 add_show_from_set
3431 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3432 "Set automatic abandonment of expressions upon failure.",
3433 &setlist),
3434 &showlist);
3435 #endif
3436
3437 add_show_from_set
3438 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3439 "Set overload resolution in evaluating C++ functions.",
3440 &setlist),
3441 &showlist);
3442 overload_resolution = 1;
3443
3444 add_show_from_set (
3445 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3446 (char *) &unwind_on_signal_p,
3447 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3448 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3449 is received while in a function called from gdb (call dummy). If set, gdb\n\
3450 unwinds the stack and restore the context to what as it was before the call.\n\
3451 The default is to stop in the frame where the signal was received.", &setlist),
3452 &showlist);
3453 }
This page took 0.151337 seconds and 4 git commands to generate.